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Abstract— Serverless computing is a promising new event-
driven programming model that was designed by cloud vendors
to expedite the development and deployment of scalable web
services on cloud computing systems. Using the model, developers
write applications that consist of simple, independent, stateless
functions that the cloud invokes on-demand (i.e. elastically),
in response to system-wide events (data arrival, messages, web
requests, etc.).

In this work, we present STOIC (Serverless TeleOperable
HybrId Cloud), an application scheduling and deployment system
that extends the serverless model in two ways. First, it uses
the model in a distributed setting and schedules application
functions across multiple cloud systems. Second, STOIC sup-
ports serverless function execution using hardware acceleration
(e.g. GPU resources) when available from the underlying cloud
system. We overview the design and implementation of STOIC
and empirically evaluate it using real-world machine learning
applications and multi-tier (e.g. edge-cloud) deployments. We find
that STOIC’s combined use of edge and cloud resources is able
to outperform using either cloud in isolation for the applications
and datasets that we consider.
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I. INTRODUCTION

With the recent shift of application architectures from
monolithic to containers and microservices, serverless com-
puting has risen as a promising cloud service where simple,
stateless, event-driven functions comprise applications and
services. Serverless platforms relieve developers of the burden
of provisioning servers to deploy cloud and web applications.
Programmers typically write functions in high-level languages
which are triggered by the platform in response to events from
external sources or other cloud services.

This function-level abstraction also provides fine-grained
computational resource isolation and usage, meaning that each
serverless function can autoscale independently based on the
rate of incoming events. Providing such elasticity helps avoid
a single point failure and performance bottlenecks in data-
intensive applications. From this perspective, serverless archi-
tecture is an ideal system for machine learning applications,
especially for online training [1] and inference, which transfer
and manipulate large amounts of data or for which the input
sizes vary.

To enable such an event-driven system, one concerning
situation is for machine learning applications that receive
their data from heterogeneous IoT devices, ranging from

Fig. 1: The abstract design of STOIC – a system for executing distributed
machine learning applications in IoT (e.g. edge + cloud) settings.

temperature sensors to mobile phones to autonomous drones.
For such deployments, application execution should be “near”
(in terms of network latency) the data sources to achieve fast
response times. Such settings motivate us to explore extending
the serverless model to the edge for the execution of data
analytics applications.

One challenge with edge computing is the scarcity of com-
putational resources relative to resource-rich public and private
clouds. Moreover, public/private clouds may offer specialized
hardware (e.g. GPUs) that significantly speed up machine
learning applications, which is not commonly available in
resource-restricted edge clouds. In our work, we investigate
how to extend the serverless computing model to hybrid cloud
systems that consist of edge and cloud resources and that
integrate GPU acceleration.

Toward this end, we present STOIC – a Serverless Tele-
Operable Hybrid Cloud. As depicted in Figure 1, STOIC is
a framework to which IoT devices stream data in batches
for training and inference by machine learning applications.
The framework implements serverless computing and deploy-
ment for the applications. Unique to STOIC, however, is its
scheduling system which intelligently places the application
workload on edge and cloud systems that it predicts will
result in the fastest time to completion. Moreover, STOIC
takes advantage of GPU acceleration when available from
the underlying cloud resource. In this paper, we discuss the



Fig. 2: The STOIC Architecture

design and implementation of this architecture, investigate the
efficacy of using this extended serverless model for machine
learning applications that span edge-cloud systems, and em-
pirically evaluate the performance of doing so. Using real
workloads and deployments, we find that STOIC reduces the
total response time of the applications we study from 6.48% to
32.05%, compared with four different runtimes, each running
in isolation. Finally, we discuss related and future work and
conclude.

II. STOIC

To leverage hardware acceleration and distributed schedul-
ing within a serverless architecture, we have developed
STOIC, a framework for executing analytics applications in
multi-tier IoT (sensing-edge-cloud) settings. STOIC stream-
lines the end-to-end process of packaging, transferring,
scheduling, executing, and result retrieval for machine learning
applications. Figure 2 shows three principal pillars of STOIC’s
architecture: Edge Controller, Edge Cloud, and Public Cloud.

A. Edge Controller

We deploy a collection of edge devices, including multiple
motion-detecting camera traps in open field and a local server
as edge controller in the research facility at Sedgwick Natural
Reserve [2]. In this deployment, we install motion-triggered
cameras (i.e. camera traps) at watering holes to capture images
of wildlife in their natural habitat (as part of conservation
science studies). The cameras are connected via a wireless
radio to a computer located in an outbuilding at the reserve.
We refer to this computer as the edge controller. It is connected
to a private campus cloud via a microwave link. When a
camera trap detects motion, it takes photos and persists the
images in flash storage. Periodically, the camera traps transfer
saved photos to the edge controller. STOIC runs on the

edge controller and its execution is triggered by the arrival
of batches of images from camera traps located across the
reserve. When a batch arrives, STOIC partitions the image
processing application (for object/animal classification) into
tasks that it assigns to 1+ cloud components.

B. Edge Cloud

As an intermediate computational tier between the sensors
and the public cloud, the edge cloud can be placed anywhere,
preferably near the edge devices, to lower the response latency
of analytics applications processing the images. Our edge
cloud is currently deployed in our lab on campus which is
connected to the edge controller via a fast network link.

Our edge cloud consists of a cluster of nine Intel NUCs [3].
Eucalyptus cloud system [4] manages the edge cloud and
supports Linux virtual machine instances. Running on an
instance, the STOIC socket client listens for the request from
edge controller and then either executes the job locally on
edge cloud or has STOIC requester interact with public cloud
to complete the designated task.

C. Remote Public/Private Cloud

To investigate the use of the serverless architecture with
hardware accelerators, we employ a shared, multi-university,
GPU cloud Nautilus [5] as our remote cloud system. Nautilus
is an Internet-connected, HyperCluster research platform led
by researchers at UC San Diego, National Science Foundation,
the Department of Energy, and various participating universi-
ties globally. Being designed for running data and computa-
tionally intensive applications, Nautilus uses Kubernetes [6] as
an interface to manage and scale containerized applications. It
uses Rook [7] to integrate Ceph [8] data services. As of Nov.
2019, Nautilus consists of 141 computing nodes across the US
and 422 GPUs are available in the cluster. All of these nodes
are connected via a multi-campus network. In this study, we
consider Nautilus as a public cloud that enables us to leverage
hardware acceleration (GPUs) in the serverless architecture to
serve edge devices.

D. Implementation

Considering performance and interface, we implement
STOIC using Golang [9]. Golang provides high performance
(vs scripting languages)and a user-friendly interface [10] to
Kubernetes. STOIC currently supports machine learning ap-
plications developed using the TensorFlow framework [11].

1) Serverless framework: For our serverless architecture,
STOIC employs kubeless [12] and Docker [13] in the Nautilus
Cloud. As a Kubernetes-native serverless framework, kubeless
uses the Custom Resource Definition (CRD) [14] to dynam-
ically create functions as Kubernetes custom resources and
launches runtimes on-demand. For specific machine learning
tasks that STOIC executes, we use Docker to build customized
runtime images that we upload to Docker Hub [15] in advance.
When the function controller at Nautilus Cloud receives a task
request, it pulls the latest image from Docker Hub before



TABLE I:
PERFORMANCE COMPARISON ON THREE BENCHMARKS BETWEEN
STANDARD AND CUSTOM TENSORFLOW LIBRARY COMPILED WITH

AVX2 / SSE / FMA CPU INSTRUCTION SET SUPPORT

Mean Std. (sec) Mean Custom. (sec) Speed-up %
Iris 53.17 41.86 21.3

MNIST 268.81 189.80 29.4
InceptionV3 958.47 791.28 17.4

launching the function. This deployment pipeline makes the
runtime flexible and extensible for evolving applications.

For the edge cloud, we execute tasks by directly invoking
the application function binaries. We make this design decision
to simplify STOIC’s control plane in our prototype but we
are investigating the use of a consistent serverless architecture
across edge and public/private cloud as part of future work.

2) STOIC Library Support: To leverage the computational
power of the CPU systems available in the Edge and Pub-
lic Cloud, we compile Tensorflow from source with AVX2,
SSE4.2 [16] and FMA [17] instruction set support. We then
test the performance of customized Tensorflow package on
three common machine learning training tasks: (A) Iris [18]
with 10-fold cross-validation; (B) MNIST [19] on 20 Epochs;
(C) InceptionV3 [20] on 10 epochs with 1,000 images.

We execute these applications 10 times on standard and
customized Tensorflow packages. Table I shows the mean
execution time of three benchmarks for each package. We
calculate speed-up as (Ts−Tc)/Ts, where Ts and Tc represent
the execution time by the standard and customized Tensorflow
library respectively. We observe that, in all three benchmarks,
the customized library achieves a speed-up that ranges from
17.4% to 29.5%. STOIC uses the customized TensorFlow
packages for cloud systems that implement these instruction
sets. In our prototype, both the edge and public cloud have
these extensions.

3) GPU Accessibility: To enable GPU access by server-
less functions, we build a container with NVIDIA Container
Toolkit [21] support. Such support includes the NVIDIA
runtime library and utilities which link serverless functions
to NVIDIA GPUs. We also install CUDA 10.0 and cuDNN
7.0 in the image.

4) STOIC Runtime: To schedule the machine learning tasks
across hybrid cloud deployments, we define four runtime
scenarios: (A) edge - A VM instance on the edge cloud
with AVX2 support; (B) cpu - A Kubernetes pod on Nautilus
containing a single CPU with AVX2 support; (C) gpu1 - A
Kubernetes pod on Nautilus containing a single GPU; (D)
gpu2 - A Kubernetes pod on Nautilus containing two GPUs.
STOIC considers each of these deployment options as part of
its scheduling decisions. Users can parameterize STOIC with
their choice of deployment or allow STOIC to automatically
schedule their applications.

E. Execution Time Estimation

As depicted in Figure 2, the STOIC socket server executes
in the edge cloud and listens for requests from the edge

controller (machine learning job requests). After a preset
period (parameterizable but currently set to 1 hour), STOIC
estimates total response time (Tr) of a requested batch, based
on 4 different runtime scenarios. The total response time
includes data transfer time (Tt), runtime deployment time (Td)
and corresponding processing time (Tp):

1) Transfer time (Tt): measures the time spent in transmit-
ting a compressed batch of images from the edge controller
to edge cloud and public cloud. We calculate transfer time as
Tt = Fb/Bc where Fb represents the file size of batch and
Bc represents the bandwidth at the moment provided by a
bandwidth monitor at the edge controller.

2) Runtime deployment time (Td): It measures the time
Nautilus uses to deploy requested kubeless function. Since the
scarcity of computation, it is common that gpu2 runtime takes
longer to deploy than gpu1 and cpu runtimes. We analyze the
deployment log and calculate the average deployment time for
each Nautilus runtime. In future work, we plan to develop a
feedback control loop to dynamically update deployment time
for each runtime. Note that, for edge runtime, the transfer and
runtime deployment time zero out since STOIC executes the
task locally in the edge cloud.

3) Processing time (Tp): is the execution time of a specific
machine learning task. As a primary component for scheduling
tasks across the hybrid cloud, we regress processing time based
on prior experiment data by Bayesian Ridge Regression [22]
due to its robustness to ill-posed problems compared to Ordi-
nary Least Squares regression [23]. Thus, STOIC formulates
the regression and uses it to predict the processing time based
on the file size of the current batch.

F. Workflow

The STOIC workflow is as follows: based on the three time
components, STOIC predicts the total response times (Tr)
of the four deployment options. The scheduler selects the
runtime with the shortest estimated response time. Then the
edge controller sends a request, including the payload of
compressed image batch and runtime information, to edge
cloud. Upon acceptance, the edge cloud executes the task
locally if the choice is the edge runtime. Such deployment
is common when a batch of images is small.

For large batch sizes, STOIC typically schedules one of the
three public runtime options. For these three scenarios, the
edge cloud first requests the deployment on the public cloud.
It then sends the payload to public cloud storage. The public
cloud then deploys and executes the kubeless function. As
a design decision, instead of running a requester pod in the
public cloud, we run an instance on the edge cloud. We do so
because the edge cloud is more stable and fault resilient than
Nautilus which experiences intermittent downtime.

Once Nautilus successfully deploys the serverless function,
it informs the edge cloud’s requester to trigger the function
via an HTTP request. When the task completes, the requester
retrieves the results and runtime metrics, and transmits them
back to the edge controller. Finally, the controller saves the
results and metrics to persistent storage.



G. Intelligent Probing

With a series of experiments, we have found that the
processing times from the same image batch and kubeless
function can vary significantly between the first run and
successive runs. This is due to the differences between cold
and warm starts [24]. A cold start is when a machine learning
task requires retrieval of stored model and dataset from cloud
storage, which takes time. Once the function retrieves and
caches this information, successive invocations of the function
(using the same container) avoid this cost (i.e. experience a
warm start).

STOIC accounts for cold and warm starts in its scheduling
estimate using intelligent probes. When STOIC schedules an
incoming task in a different runtime than the previous one, it
triggers the function with the least amount of input data to
ensure the function caches the model and dataset in memory.
Following this, STOIC triggers the actual tasks. To avoid
redundant probing, STOIC starts the task directly when the
designated runtime is the same as the previous batch.

III. EVALUATION

In this section, we empirically evaluate STOIC’s perfor-
mance when executing machine learning applications. We
compare its use of multiple runtimes versus solely using a
single runtime for all batches. In the sections that follow,
we first describe the machine learning application that we
consider. We then present our experimental setup and results.

A. Benchmark Application and Dataset

We evaluate STOIC using an image processing applica-
tion that classifies animal images from a wildlife monitoring
system called “Where’s The Bear” (WTB) [25]. “Where’s
The Bear” is an end-to-end distributed data acquisition and
analytics system that implements an IoT architecture and edge
cloud. Our application makes inferences for each photo taken
by deployed camera traps in Sedgwick Natural Reserve using a
convolutional neural network (CNN) [26]. We train the model
using labeled images from the WTB dataset. Technically,
the application employs Tensorflow and Scikit-learn [27] to
implement image classification.

In total, there are five classes that we consider in the
CNN model training: Bird, Fox, Rodent, Human and Empty.
Since class size is unbalanced due to frequencies of animal
occurrences, we up-sample minority classes (e.g. fox) using
the Keras ImageDataGenerator [28]. Doing so ensures that the
classification model is not biased. We resize every image in
the WTB dataset to 1920×1080, and for each class, the dataset
contains 251 images used to train the CNN model. Once model
training is complete, the application stores this model in hdf5
format in cloud storage at both edge cloud (disk storage) and
Nautilus (a shared volume in a Ceph file system).

B. Performance Evaluation

We first test the efficacy of STOIC by processing an image
batch of fixed size at four runtimes individually and then
compare them with STOIC. To make the result reliable, we

TABLE II:
MEAN AND STDEV. OF TOTAL RESPONSE TIME (Tr ) AND PROCESSING
TIME (Tp) OF 40-IMAGE BATCH: STOIC SCHEDULES TASKS ONTO THE
RUNTIME (gpu1) THAT HAS THE LEAST TOTAL RESPONSE TIME (Tr ).

Mean Tr (sec) Stdev. Tr (sec) Mean Tp (sec) Stdev. Tp (sec)
edge 108.88 1.65 108.88 1.65
cpu 100.0 4.93 86.99 4.92

gpu1 98.90 4.03 50.65 4.05
gpu2 106.29 5.53 39.21 5.55

STOIC 97.73 3.13 50.49 3.11

Fig. 3: Total Response Time (Tr) of image batches of growing sizes: The x-
axis represents the batch size, while the y-axis is the total response time (Tr).
STOIC, which is depicted in the blue dashed line, schedules the task on the
runtime with the least total response time.

again experiment 10 times and list the mean and standard
deviation of total response time (Tr) and processing time (Tp)
in Table II. We can observe from Table II that STOIC sched-
ules 40-image batch to gpu1 runtime, based on its prediction
that gpu1 would have the least total response time (Tr). One
important observation is that gpu2 runtime has even lower
processing time (Tp) than gpu1, but STOIC disregard gpu2 in
this scenario, because its gain in processing time (Tp) does
not compensate for its lengthy deployment time (Td) on the
Nautilus cloud.

We next test STOIC by processing a series of image batches
of growing sizes on the four runtimes and STOIC. Figure 3
shows their total response times. The x-axis is the size of the
image batch and the y-axis is the total response time (Tr) in
seconds. The red curve shows that latency increases linearly
over the edge runtime. The yellow curve shows the perfor-
mance of the cpu runtime in the Nautilus cloud. We observe
that its slope is more moderate than edge runtime since CPUs
in nodes of Nautilus cloud are usually more powerful than
those in the edge cloud. The pink and green curves represent
the gpu1 and gpu2 runtimes, respectively, and they intersect
at a batch size of 95, at which STOIC would switch the
deployment of tasks from gpu1 to gpu2. The blue dashed line
depicts the total response time (Tr) of STOIC, which is able
to schedule a series of tasks to the runtime with the least
latency. According to such result, STOIC improves system
performance by determining the best runtime for the given
task dynamically.

We next perform an empirical evaluation of STOIC by



Fig. 4: Average total response time (Tr) on the 24-hour dataset: The x-axis
represents runtimes, while the y-axis represents the average total response
time (Tr) by STOIC and four other runtimes on the 24-hour dataset. The
data labels on columns are specific numbers of Tr . The seeded simulator
generates the 24-hour batch sizes from the distribution of historical data.

comparing the total response time (Tr) of multiple image
batches of different sizes across the four single runtimes and
STOIC. To accelerate the repetitive experiment, we developed
a simulator to generate image batches based on the frequency
distribution of the WTB dataset.

According to 2016 WTB dataset, the size of image batch
fits to normal distribution N(µ = 42.75, σ2 = 39.5). Thus,
the simulator generates 24 image batches in the edge con-
troller to emulate streaming data in one day from open field
camera traps. To conduct an unbiased evaluation, we seed the
simulator to make these 24 image batches consistent across
all runtimes and STOIC.

To ensure the validity of the outcome, we run each ex-
periment 10 times for each runtime scenario and report the
average value. Figure 4 shows the average total response
time (Tr) for STOIC and the four individual runtimes. STOIC
achieves the lowest average latency versus the four other
single runtimes. STOIC reduces total response time (Tr) by
32.05% (versus edge), 6.48% (versus cpu), 11.15% (versus
gpu1) and 12.24% (versus gpu2) respectively. According to
such a result, we conclude that STOIC outperforms any single-
runtime scheduling mechanism on the empirical datasets and
real-world machine learning applications.

IV. RELATED WORK

As related work, we consider recent advances in both
machine learning infrastructure and serverless computing do-
mains. In the former area, much research has extended efforts
into designing efficient systems for inference and deployment
of machine learning models. As a complement to the Ten-
sorflow framework, Tensorflow-serving [29] integrates new
models and updates versions from training to serving. Though
it makes seminal exploration on the multi-tenant model hosting
service, Tensorflow-serving does not realize authentic high-
performing parallelism to handle concurrent heavy query
loads.

Clipper [30] constructs a general-purpose low-latency pre-
diction serving system, which attempts to solve the problem of
demanding real-time prediction at the client-side and handling
heavy query load at the server-side. It also enables the model
composition and online learning to improve accuracy and
render more reliable predictions. To explore the multi-pipeline
techniques, PRETZEL [31] casts model-serving as a database
problem and applies multi-query optimizations to maximize
performance. However, both Clipper and PRETZEL require
considerable compute resources in caching, batching, adaptive
model selection and off-line training to maximize throughput.
Therefore, they are not optimized for resource-constrained
and heterogeneous, multi-tier IoT systems. To the best of our
knowledge, STOIC is the first work to addresses this problem
by integrating machine learning applications into a serverless
architecture that leverages GPU as additional computational
resources for IoT devices. We consider it as a promising
and extensible solution for high-throughput and low-latency
system for online training and machine learning applications
in general.

To build an end-to-end system for practical machine
learning applications, we require several other components.
Seneca [32] fine-tunes hyper-parameters of machine learning
models on a general-purpose serverless architecture (AWS
Lambda [33]). It provides a fast and low-cost method to
grid search for the best-performing hyper-parameter set, which
is essential in the deployment pipeline of machine learning
applications. Velox [34] offers a low-latency and scalable
solution for complex analytical model-serving, in which it
completes a missing piece of personalized prediction serving
using Apache Spark [35]. For calibrating performance, Mc-
Grath et al. [36] propose an empirical methodology to measure
the design and performance of serverless platforms, including
latency and auto-scaling capability. These related systems are
complementary to STOIC and can be combined to provide a
robust serverless ecosystem for machine learning applications.

V. CONCLUSION

In this paper, we propose a framework, called STOIC,
for executing machine learning applications in hybrid cloud
settings based on serverless architecture. STOIC integrates
three components: Edge Controller, Edge Cloud, and Public
Cloud. When the scheduler at the edge controller receives a
batch of images from open field camera traps, it predicts the
total response time for processing the batch based on batch
size and historical log data. It then schedules the task to
the runtime that it predicts to have the least total response
time. Our STOIC prototype considers four different runtime
scenarios. When STOIC schedules the task to the public cloud,
the edge cloud deploys a serverless function and then relays
the request and payload to the public cloud. STOIC returns
the result and metrics to the edge controller when the task
completes.

We present the design principles, implementation details,
workflow and empirical evaluation on real-world machine
learning application for STOIC. Our evaluation demonstrates



STOIC is able to intelligently schedule machine learning tasks
across hybrid cloud deployments and obtain better perfor-
mance that using any single deployment option in isolation.
Our speed-up percentages range from 6.48% to 32.05% for
the application and datasets that we study.

As part of future work, we are developing a feedback control
loop to dynamically update the deployment and processing
time of STOIC tasks. We plan to also investigate the feasibility
of executing model-training tasks using STOIC. Finally, we
plan to investigate ways of not having sufficient labeling
for image classification tasks and to unify the serverless
architecture across all edge and cloud systems within the
STOIC system and for the applications that execute using it.
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