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Preface

The AAECC symposia series was started in 1983 by Alain Poli (Toulouse), who,
together with R. Desq, D. Lazard and P. Camion, organized the first conference.
Originally the acronym AAECC stood for “Applied Algebra and Error-Correcting
Codes.” Over the years its meaning has shifted to “Applied Algebra, Algebraic Al-
gorithms and Error-CorrectingCodes,” reflecting the growing importance of com-
plexity, particularly for decoding algorithms. During the AAECC-12 symposium
the Conference Committee decided to enforce the theory and practice of the cod-
ing side as well as the cryptographic aspects. Algebra was conserved, as in the
past, but slightly more oriented to algebraic geometry codes, finite fields, com-
plexity, polynomials, and graphs. The main topics for AAECC-18 were algebra,
algebraic computation, codes and algebra, codes and combinatorics, modulation
and codes, sequences, and cryptography.

The invited speakers of this edition were Iwan Duursma, Henning Stichtenoth,
and Fernando Torres. We would like to express our deep regret for the loss of
Professor Ralf Kötter, who recently passed away and could not be our fourth
invited speaker.

Except for AAECC-1 (Discrete Mathematics 56, 1985) and AAECC-7 (Dis-
crete Applied Mathematics 33, 1991), the proceedings of all the symposia have
been published in Springer’s Lecture Notes in Computer Science (Vols. 228, 229,
307, 356, 357, 508, 539, 673, 948, 1255, 1719, 2227, 2643, 3857, 4851).

It is a policy of AAECC to maintain a high scientific standard, comparable to
that of a journal. This was made possible thanks to the many referees involved.
Each submitted paper was evaluated by at least two international researchers.
AAECC-18 received and refereed 50 submissions. Of these, 22 were selected
for publication in these proceedings as regular papers and 7 were selected as
extended abstracts.

The symposium was organized by Maria Bras-Amorós and Tom Høholdt,
with the help of Jesús Manjón, Glòria Pujol, Jordi Castellà, Antoni Mart́ınez,
and Xavier Fernández under the umbrella of the CRISES group for Cryptography
and Statistical Secrecy, at the Universitat Rovira i Virgili, led by Josep Domingo-
Ferrer.

It was sponsored by the Catalan Government, the UNESCO Chair in Data
Privacy located at Universitat Rovira i Virgili, and the Spanish Network on
Mathematics of Information Society.

We would like to dedicate these proceedings to the memory of our colleague
Ralf Kötter.

June 2009 Maria Bras-Amorós
Tom Høholdt
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Hakan Özadam and Ferruh Özbudak

There Are Not Non-obvious Cyclic Affine-invariant Codes . . . . . . . . . . . . . 101
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The Order Bound for Toric Codes

Peter Beelen and Diego Ruano�

DTU-Mathematics, Technical University of Denmark,
Matematiktorvet, Building 303,

2800 Kgs. Lyngby, Denmark
{P.Beelen,D.Ruano}@mat.dtu.dk

Abstract. In this paper we investigate the minimum distance of
generalized toric codes using an order bound like approach. We apply
this technique to a family of codes that includes the Joyner code. For
some codes in this family we are able to determine the exact minimum
distance.

1 Introduction

In 1998 J.P. Hansen considered algebraic geometry codes defined over toric sur-
faces [7]. Thanks to combinatorial techniques of such varieties he was able to
estimate the parameters of the resulting codes. For example, the minimum dis-
tance was estimated using intersection theory. Toric geometry studies varieties
which contain an algebraic torus as a dense subset and where moreover the torus
acts on the variety. The importance of such varieties, called toric varieties, resides
in their correspondence with combinatorial objects, which makes the techniques
to study the varieties (such as cohomology, intersection theory, resolution of
singularities, etc) more precise and at the same time tractable [3,6].

The order bound gives a way to obtain a lower bound for the minimum dis-
tance of linear codes [1,4,5,9]. Especially for codes from algebraic curves this
technique has been very successful. In this article we will develop a similar bound
for toric codes. Actually our bound also works for the more general class of gen-
eralized toric codes (see Section 2). This will give a new way of estimating the
minimum distance of toric codes that in some examples give a better bound
than intersection theory. Another advantage is that known algorithms [4,5] can
be used to decode the codes up to half the order bound. As an example we
will compute the order bound for a family of codes that includes the Joyner
codes [11]. For this reason we call these codes generalized Joyner codes. Also we
will compute the exact minimum distance for several generalized Joyner codes.
It turns out that a combination of previously known techniques and the order
bound gives a good estimate of the minimum distance of generalized Joyner
codes.

The paper is organized as follows. In Section 2 we will give an introduction to
toric codes and generalized toric codes, while in Section 3 the order bound for
� The work of D. Ruano is supported in part by DTU, H.C. Oersted post doc. grant

(Denmark) and by MEC MTM2007-64704 and Junta de CyL VA065A07 (Spain).

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 1–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 P. Beelen and D. Ruano

these codes will be established. The last section of the paper will illustrate the
theory by applying the results to generalized Joyner codes.

2 Toric Codes and Generalized Toric Codes

Algebraic geometry codes [9,19] are usually defined evaluating algebraic func-
tions over a non-singular projective variety X defined over a finite field. The
functions of L(D) are evaluated at certain rational points of the curve (P =
{P1, . . . , Pn}), where D is a divisor whose support does not contain any of the
evaluation points. The zeros and poles of the functions of L(D) are bounded by
D. More precisely, the algebraic geometry code C(X, D,P) is the image of the
linear map:

ev : L(D) → F
n
q

f �→ (f(P1), . . . , f(Pn))

In this section we introduce toric codes, that is, algebraic geometry codes over
toric varieties. One can define a toric variety and a Cartier divisor using a convex
polytope, namely, a convex polytope is the same datum as a toric variety and
Cartier divisor. Let M be a lattice isomorphic to Zr for some r ∈ Z and MR =
M ⊗ R. Let P be an r-dimensional rational convex polytope in MR and let us
consider XP and DP the toric variety and the Cartier divisor defined by P [15].
We may assume that XP is non singular, in other case we refine the fan [6,
Section 2.6]. Let L(DP ) be the Fq-vector space of functions f over XP such that
div(f) + DP � 0.

The toric code C(P ) associated to P is the image of the linear evaluation map

ev : L(DP ) → F
n
q

f �→ (f(t))t∈T

where the set of points P = T is the algebric torus T = (F∗q)
r . Since we evaluate

at #T points, C(P ) has length n = (q−1)r. One has that L(DP ) is the Fq-vector
space generated by the monomials with exponents in P ∩ M

L(DP ) = 〈{Xu = Xu1
1 · · ·Xur

r | u ∈ P ∩ M}〉 ⊂ Fq[X1, . . . , Xr]

The minimum distance of a toric code C(P ) may be estimated using intersection
theory [8,15]. Also, it can be estimated using a multivariate generalization of
Vandermonde determinants on the generator matrix [13]. For plane polytopes,
r = 2, one can estimate the minimum distance using the Hasse-Weil bound
and combinatorial invariants of the polytope (the Minkowsky sum [12] and the
Minkowsky length [17]).

An extension of toric codes are the so-called generalized toric codes [16]. The
generalized toric code C(U) is the image of the Fq-linear map

ev : Fq[U ] → F
n
q

f �→ (f(t))t∈T

where U ⊂ H = {0, . . . , q − 2}r and Fq[U ] is the Fq-vector space
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Fq[U ] = 〈Xu = Xu1
1 · · ·Xur

r | u = (u1, . . . , ur) ∈ U〉 ⊂ Fq[X1, . . . , Xr].

Let u be u mod ((q−1)Z)r , that is u = (u1 mod (q−1), . . . , ur mod (q−1)),
for u ∈ Zr, and U = {u | u ∈ U}. The dimension of the code C(U) is k = #U =
#U , since the evaluation map ev is injective.

By [16, Theorem 6], one has that the dual code of C(U) is C(U⊥), where
U⊥ = H \ −U , with −U = {−u |u ∈ U}. Namely, we have

ev(Xu) · ev(Xu′
) =

{
0 if u + u′ �= 0
(−1)r if u + u′ = 0

(1)

for u, u′ ∈ H , where · denotes the inner product in Fn
q .

The family of generalized toric codes includes the ones obtained evaluating
polynomials of an arbitrary subalgebra of Fq[X1, . . . , Xr] at T , in particular
toric codes. However, there is no estimate so far for the minimum distance in
this more general setting, the order bound techniques in this paper will apply to
generalized toric codes as well. From now on we will consider generalized toric
codes but for the sake of simplicity, we will just call them toric codes.

3 The Order Bound for Toric Codes

In this section we follow the order bound approach to estimate the minimum
distance of the dual code of a toric code C(U), for U ⊂ H .

Let B1 = {g1, . . . , gn} and B2 = {h1, . . . , hn} be two bases of Fq[H ]. For
c = ev(f) ∈ C(U), we consider the syndrome matrix S(c) = (si,j)1≤i,j≤n, with
si,j = (ev(gi)∗ev(hj)) ·ev(f) = ev(gihj) ·ev(f), where ∗ denotes the component-
wise product. In other words, S(c) = M1D(c)M t

2, where D is the diagonal matrix
with c in the diagonal and M1 and M2 are the evaluation matrices given by

M1 =

⎛
⎜⎜⎜⎝

g1(t1) g1(t2) · · · g1(tn)
g2(t1) g2(t2) · · · g2(tn)

...
...

...
...

gn(t1) gn(t2) · · · gn(tn)

⎞
⎟⎟⎟⎠ , M2 =

⎛
⎜⎜⎜⎝

h1(t1) h1(t2) · · · h1(tn)
h2(t1) h2(t2) · · · h2(tn)

...
...

...
...

hn(t1) hn(t2) · · · hn(tn)

⎞
⎟⎟⎟⎠ .

Here t1, . . . , tn denote the points of the algebraic torus. Note that M1 and M2

have full rank, since the evaluation map is injective. This implies that the rank
of S(c) equals wt(c). It is convenient to consider bases of Fq[H ] consisting of
monomials, that is, we set gi = Xvi and hi = Xwi , for i = 1, . . . , n, with
{v1, . . . , vn} = {w1, . . . , wn} = H . Then, we can easily compute the syndrome
matrix for a codeword using the following lemma.

Lemma 1. Let f =
∑

u∈H λuXu and S(ev(f)) = (si,j)1≤i,j≤n the syndrome
matrix of ev(f). Then, one has that si,j = (−1)rλ−(vi+wj)

. In particular, si,j

is equal to zero if and only if vi + wj /∈ −supp(f), where supp(f) denotes the
support of f , supp(f) = {u ∈ H | λu �= 0}.
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Proof. By definition,

si,j = ev(Xvi+wj ) · ev(
∑
u∈H

λuXu) =
∑
u∈H

ev(Xvi+wj ) · ev(λuXu)

= (−1)rλ−(vi+wj)
(by (1)).

Therefore, si,j is equal to zero if and only if −(vi + wj) is not in the support of
f . Equivalently, si,j = 0 if and only if vi + wj /∈ −supp(f). 
�
To bound the minimum distance using order domain theory, we should give a
lower bound for the rank of the syndrome matrix. Since the order bound gives
an estimate for the minimum distance of the dual code, we begin by considering
C(U)⊥ = C(U⊥) to get a bound for the minimum distance of C(U).

Let H = {u1, . . . , un}, with U⊥ = {u1, . . . , un−k} ⊂ H , notice that U =
{−un−k+1, . . . ,−un}. We are dealing with an arbitrary order on H , we only
require, for the sake of simplicity, that the first n − k elements of H are the
elements of U⊥. For l ∈ {0, . . . , k − 1}, we consider the following filtration of
codes depending on the previous ordering

C � C1 � C2 � · · · � Cl � Cl+1,

where C = C(U⊥) and Cm = C(U⊥∪{un−k+1, . . . , un−k+m}), for m = 1, . . . , l+
1, and their dual codes,

C⊥
� C⊥

1 � C⊥
2 � · · · � C⊥

l � C⊥
l+1,

with C⊥ = C(U) and C⊥
m = C(U \{−un−k+1, . . . ,−un−k+m}), for m = 1, . . . , l+

1, since (U⊥ ∪ {un−k+1, . . . , un−k+m})⊥ = U \ {−un−k+1, . . . ,−un−k+m}.
We wish to bound the weight of c ∈ C⊥

l \ C⊥
l+1. Let νl be the largest integer

(in {1, . . . , n}) such that

• vi + wi = un−k+l+1, for i = 1, . . . , νl.
• vi + wj ∈ U⊥ ∪ {un−k+1, . . . , un−k+l}, for i = 1, . . . , νl and j < i.

Proposition 1. Let c ∈ C⊥
l \ C⊥

l+1, then wt(c) ≥ νl.

Proof. Let c= ev(f), then f =
∑

λuXu, where u∈U \ {−un−k+1,. . . ,−un−k+l}.
Notice that λ−un−k+l+1

�= 0, since c /∈ C⊥
l+1. Hence we have by Lemma 1 that,

• si,i �= 0, for i = 1, . . . , νl, since vi + wi = un−k+l+1 ∈ −supp(f), for i =
1, . . . , νl.

• si,j = 0, for i = 1, . . . , νl, since vi + wj ∈ U⊥ ∪ {un−k+1, . . . , un−k+l}, for
j < i. That is, vi + wj /∈ −supp(f) because

H \ (U⊥ ∪ {un−k+1, . . . , un−k+l}) = −U \ {un−k+1, . . . , un−k+l}
Therefore, the submatrix of S(c) consisting of the first νl rows and columns has
full rank. In particular, the rank of S(c) is at least νl and the result holds since
the rank of S(c) is equal to the weight of c. 
�
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For every l in {0, . . . , k − 1} we consider a filtration and we obtain a bound for
the weight of a word in C⊥

l \ C⊥
l+1. Therefore, we have obtained the following

bound for the minimum distance of C⊥ = C(U).

Theorem 1. Let C(U) be a toric code with U ⊂ H. Then,

d(C(U)) ≥ min{νl | l = 0, . . . , k − 1}.

Remark 1. We can apply known decoding algorithms [4,5] to decode a toric code
C(U) up to half of the order bound obtained in the previous theorem.

In the next section we will use the above approach to estimate the minimum
distance of a family of toric codes.

4 Generalized Joyner Codes

In this section we will introduce a class of toric codes that includes the well-
known Joyner code [11, Example 3.9]. After introducing these codes, we will
calculate a lower bound for their minimum distances using techniques from Sec-
tion 3. Then we will calculate another lower bound for the minimum distance
using a combination of the order bound and Serre’s improvement of Hasse-Weil’s
theorem on the number of rational points on a curve [18]. In some cases we are
able to compute the exact minimum distance. In this section we will always
assume that r = 2, so that H = {0, . . . , q − 2} × {0, . . . , q − 2}.
Definition 1. Let q be a power of a prime and a an integer satisfying 2 ≤ a ≤
q − 2. We define the sets

Ua = {(u1, u2) ∈ H |u1 + u2 ≤ a + 1, u1 − au2 ≤ 0,−au1 + u2 ≤ 0},

Ta = {(u1, u2) ∈ H |u1 + u2 ≤ a + 1, u1 ≥ 1, u2 ≥ 1},

Va = Ua\{(1, a)}, and Wa = Ua\{(a, 1)}.
The set Ua consists of all elements of H lying in or on the boundary of the triangle
with vertices (0, 0), (1, a) and (a, 1). Note that the condition on a ensures that
the points (1, a) and (a, 1) are in H . Also note that the set Ua can be obtained
by joining (0, 0) to the set Ta. All sets in the above definition are actually sets
of integral points in a polytope, so the corresponding codes are classical toric
codes.

We wish to investigate the toric code C(Ua) and begin by establishing some
elementary properties:

Lemma 2. The code C(Ua) is an [(q − 1)2, 1 + a(a + 1)/2, d] code over Fq and
we have d ≤ (q − 1)(q − a).
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Proof. Since the set Ua is contained in H , the dimension of the corresponding
code is equal to the number of elements in Ua. Since Ua can be obtained by
joining {(0, 0)} to the set Ta the formula for the dimension follows by a counting
argument.

To prove the result on the minimum distance first note that the code C(Ta)
is a subcode of C(Ua). It is well known, [8, Theorem 1.3], that d(C(Ta)) = (q −
1)(q − a), so the result follows. 
�
The code C(U4) is the Joyner code over Fq, see [11]. It is known that for q ≥ 37
its minimum distance is equal to (q − 1)(q − 4), [17], meaning that the upper
bound in the previous lemma is attained. In fact equality already holds for
much smaller q. Using a computer one finds that q = 8 is the smallest value
of q for which equality holds. It is conjectured that for all q ≥ 8 one has that
d(C(U4)) = (q − 1)(q − 4). This behavior turns out to happen as well for other
values of a. This is the reason we study these codes in this section. We proceed
our investigation by calculating two lower bounds for the minimum distance of
the codes C(Ua). The first one holds for any q, while the second one turns out
to be interesting only for large q.

Proposition 2. The minimum distance d of the Fq-linear code C(Ua) satisfies
d ≥ (q − 1)(q − a − 1).

Proof. Since d(C(Ta)) = (q − 1)(q − a), the proposition follows once we have
shown that wt(c) ≥ (q − 1)(q − a − 1) for any c ∈ C(Ua)\C(Ta). For such c it
holds that c = ev(f) for some f ∈ Fq[Ua] satisfying that (0, 0) ∈ supp(f). We
will now use Proposition 1. Any number i between 0 and (q − 1)(q − a − 1) − 1
can be written uniquely as i = βi · (q− 1)+ αi with αi and βi integers satisfying
0 ≤ αi ≤ q− 2 and 0 ≤ βi ≤ q− a− 2. For i between 0 and (q− 1)(q− a− 1)− 1
we then define vi = (αi, βi) and wi = −vi. By construction of wi it then holds
that vi + wi = (0, 0). On the other hand, if j < i, then vi + wj �= (0, 0) and
0 ≤ βi − βj ≤ q − a − 2 implying that vi + wj �∈ −Ua. By Proposition 1, we get
that wt(c) ≥ (q − 1)(q − a − 1). 
�
For q = 8 and a = 4, the Joyner code case, we obtain that d ≥ 21. An other
method to obtain a lower bound for the minimum distance of toric codes is to
use intersection theory. For the Joyner code over F8 one can prove in this way
that d ≥ 12, [14]. The bound we get compares favorably to it. Another advantage
of the order bound techniques is that they are valid for generalized toric codes
as well.

Now we obtain a second lower bound on the minimum distance of the code
C(Ua). First we need a lemma.

Lemma 3. Let c be a nonzero codeword from the code C(Va) or the code C(Wa).
Then wt(c) ≥ (q − 1)(q − a).

Proof. Suppose that c ∈ C(Va) (the case that c ∈ C(Wa) can be dealt with
similarly by symmetry and will not be discussed below). If c ∈ C(Ta), we are
done. Therefore we can suppose that c ∈ C(Va)\C(Ta). Exactly as in the proof
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of Proposition 2 we now define for i between 0 and (q − 1)(q − a) − 1 the tuple
ui = (αi, βi). The only difference is that now βi is also allowed to be q − a,
otherwise everything is the same. Further we also define wi = −vi. Then we
have that vi + wi = (0, 0) and for j < i, we obtain that vi + wj �= (0, 0) and
0 ≤ βi − βj ≤ q − a − 1. This implies that vi + wj �∈ −Va. The lemma now
follows. 
�
One can use Lemma 3 and the fact that d(C(Ta)) = (q−1)(q−a) [8], to restrict the
number of possibilities for a non-zero codeword of weight less than (q−1)(q−a).
Namely, it has to be the evaluation of a function f =

∑
λuXu with non-zero

coefficients λ(a,1), λ(0,0), λ(1,a). We will use this in the following proposition. We
distinguish cases between a = 2 and a > 2.

Proposition 3. Let Ua be the set from Definition 1 and let a > 2. The minimum
distance d of the code C(Ua) satisfies

d ≥ min
{

(q − 1)(q − a), q2 − 3q + 2 − a(a − 1)
2

�2√q�
}

.

Proof. Let c ∈ C(Ua) be a nonzero codeword and suppose that c = ev(f). If
supp(f) ⊂ Ta then we know that wt(c) ≥ (q−1)(q−a) from [8] as noted before.
If supp(f) ⊂ Va or supp(f) ⊂ Wa then wt(c) ≥ (q − 1)(q − a) by Lemma 3.

We are left with the case that {(0, 0), (1, a), (a, 1)} ⊂ supp(f). In this case
the Newton-polygon of the polynomial f is Minkowski-indecomposable which
implies that the polynomial f is absolutely irreducible. We can therefore consider
the algebraic curve Cf defined by the equation f = 0. From Newton-polygon
theory it follows that this curve has geometric genus at most a(a − 1)/2 and
that the edges from (0, 0) to (1, a) and from (0, 0) to (a, 1) correspond to two
rational points at infinity using projective coordinates (see [2, Remark 3.18 and
Theorem 4.2]). We denote by N the total number of pairs (α, β) ∈ F2

q such that
f(α, β) = 0. We claim that N ≤ q − 1 + a(a − 1)/2�√q�. If the curve C has no
singularities, all solutions (α, β) correspond one-to-one to all affine Fq-rational
points. Taking into account that there at least 2 rational points at infinity (in
fact at least 3 if a = 2), the claim follows from Serre’s bound (and can be
slightly improved if a = 2). If there are singularities, a solution (α, β) may not
correspond to a rational point on C, but for every such solution the genus will
drop at least one, so the claim still follows from Serre’s bound. The proposition
now follows, since wt(c) ≥ (q − 1)2 − N . 
�
For a = 2 we can determine the exact minimum distance. We will do so in
the following theorem. This theorem is formulated using the existence or non-
existence of an elliptic curve with a certain number of points. The theorem is
completely constructive, since it is very easy to determine if an elliptic curve
defined over Fq with a certain number of points exists. To this end one can use
the following fact [20, Theorem 4.1]:

Let q be a power of a prime p and let t be an integer. There exists an elliptic
curve defined over Fq with q + 1 + t points if and only if the following holds:
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1. p � | t and t2 ≤ 4q,
2. e is odd and one of the following holds

(a) t = 0,
(b) t2 = 2q and p = 2,
(c) t2 = 3q and p = 3 ,

3. e is even and one of the following holds
(a) t2 = 4q,
(b) t2 = q and p �≡ 1 mod 3,
(c) t = 0 and p �≡ 1 mod 4.

Theorem 2. Denote by d the minimum distance of the Fq-linear code C(U2).
Further let t be the largest integer such that

1. 3 | q + 1 + t,
2. there exists an elliptic curve defined over Fq with q + 1 + t points.

Then we have: d = q2 − 3q + 3 − t.

Proof. Analogously as in the previous proposition we only have to consider code-
words coming from functions f such that {(0, 0), (1, 2), (2, 1)} ⊂ supp(f). We
again consider the curve Cf given by the equation f = 0. In this case all three
edges of the Newton polygon of f correspond to rational points at infinity.

The polynomial f can be written as α+βX1X2 + γX1X
2
2 + δX2

1X2, where α,
γ and δ are nonzero. We may assume that the curve does not have singularities,
since otherwise the geometric genus of Cf is zero, which implies that the equation
f = 0 has at most 1+(q+1)−3 = q−1 solutions in F2

q (the first term represents
the singular point which could have rational coordinates). This would give rise
to a codeword of weight at least (q − 1)2 − (q − 1) = q2 − 3q + 2.

By changing variables to U = −γX1X2/δ and V = γX2
1X2/δ (or equivalently

X1 = −V/U and X2 = δU2/(γV )) one can show that the curve Cf is also given
by the equation V 2 − βUV/δ + αγV/δ2 = U3. Since we have assumed that the
curve Cf is nonsingular, it is an elliptic curve and we already found a Weierstrass
equation for it. In (U, V ) coordinates one sees that (0, 0) is a point on the elliptic
curve and using the addition formula one checks that this point has order three
in the elliptic curve group.

Denote the total number of rational points on Cf by q + 1 + t, then clearly
there exists an elliptic curve with q + 1 + t points. Since the point (0, 0) has
order three, the total number of rational points has to be a multiple of three
and it follows that 3|q + 1 + t. Reasoning back we see that the total number of
affine solutions to the equation f = 0 in F2

q equals q + 1 + t − 3 = q − 2 + t.
On the other hand there are no solutions with zero coordinates, so we have that
wt(ev(f)) = (q − 1)2 − (q − 2 + t).

It remains to be shown which values of t are possible when the polynomial
f is varied. It is shown in [10, Section 4.2] that any elliptic curve having (0, 0)
as a point of order three has a Weierstrass equation of the form V 2 + a1UV +
a3V = U3, with a3 �= 0. This implies that t can be any value satisfying the two
conditions stated in the formulation of the theorem. Choosing the maximal one
among these values gives a codeword of lowest possible nonzero weight. This
concludes the proof. 
�
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If a > 2 the situation is more complicated. Given a fixed a the lower bound from
Proposition 2 is good for relatively small q, while the lower bound from Proposi-
tion 3 becomes better as q becomes larger. A combination of the techniques from
Section 3 and this section gives an in general good lower bound for the minimum
distance. In some cases we are able to determine the minimum distance and we
describe when this happens in the following theorem.

Theorem 3. Let q be a prime power and consider a natural number a satisfying
2 < a ≤ q − 2. Define the set Ua as in Definition 1. Then we have the following
for the minimum distance d of the Fq-linear code C(Ua):

d = (q − 1)(q − a) if 2(a − 2)(q − 1) ≥ (a − 1)a�2√q�.

Proof. If (q − 1)(q − a) ≤ q2 − 3q + 2 − a(a − 1)�2√q�/2, then it follows from
Lemma 2 and Proposition 3 that d = (q − 1)(q − a). The theorem follows after
some manipulation of this inequality. 
�
For small values of a we obtain the following corollary. Note that the results for
a = 4 are the same as in [17].

Corollary 1. We have
d(C(U3)) = (q − 1)(q − 3) if q ≥ 37,
d(C(U4)) = (q − 1)(q − 4) if q ≥ 37,
d(C(U5)) = (q − 1)(q − 5) if q = 41 or q ≥ 47,
d(C(U6)) = (q − 1)(q − 6) if q ≥ 59.

As in the case for the Joyner code it seems that the for many small values of q
it also holds that d(C(Ua)) = (q − 1)(q − a). We know by Corollary 1 and some
computer calculations that d(C(U3)) = (q−1)(q−3) if q ≥ 23. It is known for the
Joyner code that d(C(U4)) = (q − 1)(q − 4) if q ≥ 8. Finally we conjecture that
d(C(U5)) = (q−1)(q−5) if q ≥ 9. It remains future work to prove this conjecture
without the aid of a computer and to establish what happens for larger values
of a.
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Abstract. The most successful method to obtain lower bounds for the
minimum distance of an algebraic geometric code is the order bound,
which generalizes the Feng-Rao bound. By using a finer partition of the
set of all codewords of a code we improve the order bounds by Bee-
len and by Duursma and Park. We show that the new bound can be
efficiently optimized and we include a numerical comparison of differ-
ent bounds for all two-point codes with Goppa distance between 0 and
2g−1 for the Suzuki curve of genus g = 124 over the field of 32 elements.

Keywords: Algebraic geometric code, order bound, Suzuki curve.

1 Introduction

To obtain lower bounds for the minimum distance of algebraic geometric codes
we follow [7] and exploit a relation between the minimum distance of algebraic
geometric codes and the representation of divisor classes by differences of base
point free divisors. Theorem 2 gives a new improved lower bound for the weight
of vectors in a subset of the code. In Section 5 we outline methods to efficiently
optimize lower bounds for the minimum distance using the theorem. Section 6
has tables that compare different bounds for two-point Suzuki codes over the
field of 32 elements.

Let X/F be an algebraic curve (absolutely irreducible, smooth, projective) of
genus g over a finite field F. Let F(X) be the function field of X/F. A nonzero
rational function f ∈ F(X) has divisor (f) =

∑
P∈X ordP (f)P = (f)0 − (f)∞,

where the positive part (f)0 gives the zeros of f and their multiplicities, and
the negative part (f)∞ gives the poles of f and their multiplicities. A divisor
D =

∑
P mP P is principal if it is of the form D = (f) for some f ∈ F(X). Two

divisors D and D′ are linearly equivalent if D′ = D + (f) for some f ∈ F(X).
Given a divisor D on X defined over F, let L(D) denote the vector space over
F of nonzero functions f ∈ F(X) for which (f) + D ≥ 0 together with the zero
function. A point P is a base point for the linear system of divisors {(f) + D :
f ∈ L(D)} if (f) + D ≥ P for all f ∈ L(D), that is to say if L(D) = L(D − P ).

We give the definition of an algebraic geometric code. For n distinct rational
points P1, . . . , Pn on X and for disjoint divisors D = P1 + · · · + Pn and G, the
geometric Goppa code CL(D, G) is defined as the image of the map

αL : L(G) −→ F
n, f �→ ( f(P1), . . . , f(Pn) ).

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 11–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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With the Residue theorem, the dual code CL(D, G)⊥ can be expressed in terms
of differentials. Let Ω(X) be the module of rational differentials for X/F. For
a given divisor E on X defined over F, let Ω(E) denote the vector space over
F of nonzero differentials ω ∈ Ω(X) for which (ω) ≥ E together with the zero
differential. Let K represent the canonical divisor class. The geometric Goppa
code CΩ(D, G) is defined as the image of the map

αΩ : Ω(G − D) −→ F
n, ω �→ (ResP1(ω), . . . , ResPn(ω) ).

The code CΩ(D, G) is the dual code for the code CL(D, G). We use the following
characterization of the minimum distance.

Proposition 1. [7, Proposition 2.1] For the code CL(D, G), and for C = D−G,

d(CL(D, G)) = min{deg A : 0 ≤ A ≤ D | L(A − C) �= L(−C)}.

For the code CΩ(D, G), and for C = G − K,

d(CΩ(D, G)) = min{deg A : 0 ≤ A ≤ D | L(A − C) �= L(−C)}.

Proof. There exists a nonzero word in CL(D, G) with support in A, for 0 ≤ A ≤
D, if and only if L(G − D + A)/L(G − D) �= 0. There exists a nonzero word in
CΩ(D, G) with support in A, for 0 ≤ A ≤ D, if and only if Ω(G−A)/Ω(G) �= 0
if and only if L(K − G + A)/L(K − G) �= 0.

It is clear that in each case d ≥ deg C. The lower bound dGOP = deg C is the
Goppa designed minimum distance of a code.

2 Coset Bounds

For a point P disjoint from D, consider the subcodes CL(D, G−P ) ⊆ CL(D, G)
and CΩ(D, G + P ) ⊆ CΩ(D, G).

Proposition 2. [7, Proposition 3.5] Let A = supp(c) be the support of a code-
word c = (cP : P ∈ D), with 0 ≤ A ≤ D. For C = D − G,

c ∈ CL(D, G)\CL(D, G − P ) ⇒ L(A − C) �= L(A − C − P ).

For C = G − K,

c ∈ CΩ(D, G)\CΩ(D, G + P ) ⇒ L(A − C) �= L(A − C − P ).

Proof. There exists a word in CL(D, G)\CL(D, G − P ) with support in A, for
0 ≤ A ≤ D, if and only if CL(D, G− (D−A)) �= CL(D, G−P − (D−A)) only if
L(G−D+A) �= L(G−D+A−P ). There exists a word in CΩ(D, G)\CΩ(D, G+P )
with support in A, for 0 ≤ A ≤ D, if and only if CΩ(A, G) �= CΩ(A, G + P )
only if Ω(G −A) �= Ω(G − A + P ), which can be expressed as L(K − G + A) �=
L(K − G + A − P ).
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The order bound for the minimum distance of an algebraic geometric code is
motivated by the decoding procedures in [10], [8] and combines estimates for the
weight of a word c ∈ CL(D, G)\ CL(D, G−P ), or c ∈ CΩ(D, G)\ CΩ(D, G+P ).
The basic version (often referred to as the simple or first order bound [13], [4])
takes the form

d(CL(D, G)) = min
i≥0

(min{wt(c) : c ∈ CL(D, G − iP )\CL(D, G − (i + 1)P )} ),

d(CΩ(D, G)) = min
i≥0

(min{wt(c) : c ∈ CΩ(D, G + iP )\CL(D, G + (i + 1)P )} ).

The order bound makes it possible to use separate estimates for different sub-
sets of codewords. The bound is successful if for each subset, i.e. for each i, we
can find an estimate that is better than a uniform lower bound for all code-
words. Methods that provide uniform lower bounds include the Goppa designed
minimum distance and bounds of floor type [17], [16], [11], [7]. It follows from
the Singleton bound that the minimum distance of an algebraic geometric code
can not exceed its designed minimum distance by more than g, where g is the
genus of the curve. This implies that the minimum in the order bound occurs
for i ∈ {0, . . . , g}.

For a curve X defined over the field F, let Pic(X) be the group of divisor
classes. Let Γ = {A : L(A) �= 0} be the semigroup of effective divisor classes.
For a divisor class C, define

Γ (C) = {A : L(A) �= 0 and L(A − C) �= 0},
Γ ∗(C) = {A : L(A) �= 0 and L(A − C) �= L(−C)}.

The semigroup Γ (C) has the property that A + E ∈ Γ (C) whenever A ∈ Γ (C)
and E ∈ Γ. With the extra structure Γ (C) is a semigroup ideal. Similar for
Γ ∗(C).

For a suitable choice of divisor class C, the subsets of coordinates A that
support a codeword in an algebraic geometric code CL(D, G) or CΩ(D, G) belong
to the semigroup ideals Γ ∗(C) ⊆ Γ (C).

c ∈ CL(D, G)\{0} ⇒ A = supp(c) ∈ Γ ∗(C) ⊆ Γ (C),
c ∈ CΩ(D, G)\{0} ⇒ A = supp(c) ∈ Γ ∗(C) ⊆ Γ (C).

Following [7], our approach from here on will be to estimate the minimal degree
of a divisor A ∈ Γ ∗(C). For that purpose we no longer need to refer to the codes
CL(D, G) or CΩ(D, G) after we choose C = D − G or C = G−K, respectively.
We write C(C) to refer to any code with designed minimum support D − G or
G − K in the divisor class C. In this short paper, we restrict ourselves to the
case deg C > 0 (i.e. to codes with positive Goppa designed minimum distance),
so that L(−C) = 0, and Γ ∗(C) = Γ (C). The case deg C ≤ 0 is handled with a
straightforward modification similar to that used in [7].

To apply the order bound argument we restate Proposition 2 in terms of
semigroup ideals. For a given point P ∈ X , let ΓP = {A : L(A) �= L(A−P )} be
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the semigroup of effective divisor classes with no base point at P . For a divisor
class C and for a point P , define the semigroup ideal

ΓP (C) = {A : L(A) �= L(A − P ) and L(A − C) �= L(A − C − P )}.
The implications in Proposition 2 become

c ∈ CL(D, G)\CL(D, G − P ) ⇒ A = supp(c) ∈ ΓP (C),
c ∈ CΩ(D, G)\CΩ(D, G + P ) ⇒ A = supp(c) ∈ ΓP (C).

Let ΔP (C) be the complement of ΓP (C) in ΓP ,

ΔP (C) = {A : L(A) �= L(A − P ) and L(A − C) = L(A − C − P )}.
Theorem 1. (Duursma-Park [7]) Let {A1 ≤ A2 ≤ · · · ≤ Aw} ⊂ ΔP (C) be a
sequence of divisors with Ai+1 ≥ Ai + P , for i = 1, . . . , w − 1. Then deg A ≥ w,
for every divisor A ∈ ΓP (C) with support disjoint from Aw − A1.

Proof. A more general version is proved in the next section.

3 Order Bounds

Following [1], we use the order bound with a sequence of points {Qi : i ≥ 0}.
For Ri = Q0 + Q1 + · · · + Qi−1, i ≥ 0,

c ∈ CL(D, G − Ri)\CL(D, G − Ri − Qi) ⇒ A = supp(c) ∈ ΓQi(C + Ri),
c ∈ CΩ(D, G + Ri)\CΩ(D, G + Ri + Qi) ⇒ A = supp(c) ∈ ΓQi(C + Ri).

Repeated application of Theorem 1 gives the following bound for the minimum
distance.

Corollary 1. (Duursma-Park bound dDP for the minimum distance) Let deg A
≥ w for A ∈ ΓQi(C + Ri), i ≥ 0 Then a code with designed minimum support
in the divisor class C and with divisor D disjoint from Aw − A1 as required by
the application of Theorem 1, has minimum distance at least w.

The Beelen bound dB for the minimum distance [1, Theorem 7, Remark 5] is
similar but assumes in the application of Theorem 1 that Aw − A1 has support
in the single point Qi, for a seqeunce {A1 ≤ A2 ≤ · · · ≤ Aw} ⊂ ΔQi(C + Ri).

The Beelen bound dB has a weaker version (which we will denote by dB0) that
assumes that moreover A1 has support in the point Qi. The simple or first order
bound uses the further specialization that Qi = P for i ≥ 0. For G = K + C,
such that deg C > 0, and for D disjoint from P , the simple order bound becomes

d(CL(D, G)⊥) ≥ min
i≥0

#(ΔP (C + iP ) ∩ {jP : j ≥ 0}).

For G = mP this is the original Feng-Rao bound.
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The purpose of the order bound is to improve on uniform bounds such as the
floor bound. In rare occasions the Beelen bound is less than bounds of floor type
[1], [7] (this is the case for a single code in Table 1). Compared to the Beelen
bound, the ABZ order bound dABZ′ [7, Theorem 6.6] allows Aj+1 −Aj �∈ {kQi :
k > 0} for a single j in the range j = 1, . . . , w − 1. With that modification the
ABZ order bound always is at least the ABZ floor bound dABZ [7, Theorem 2.4]
which is the best known bound of floor type. In general, dB0 ≤ dB ≤ dABZ′ ≤
dDP and dABZ ≤ dABZ′ .

4 Extension of the Order Bound

We seek to exploit the argument in the order bound a step further by using a
partition

CL(D, G − iP )\CL(D, G − (i + 1)P )
= ∪j≥0 CL(D, G − iP − jQ)\

(CL(D, G − (i + 1)P − jQ) ∪ CL(D, G − iP − (j + 1)Q).

We apply the argument in the setting of the divisor semigroups. For a finite set
S of rational points, let ΓS = ∩P∈SΓP , and let ΓS(C) = {A ∈ ΓS : A−C ∈ ΓS},
so that ΓS(C) = ∩P∈SΓP (C). Let ΔS(C) = ∪P∈SΔP (C).

Proposition 3. For a divisor class C, for a finite set of rational points S, and
for P �∈ S,

ΓS(C) ∩ ΓP = ∪i≥0ΓS∪P (C + iP ).

Proof. Since P �∈ S, P ∈ ΓS , and, for A − C − iP ∈ ΓS , A − C ∈ ΓS . Therefore

ΓS∪P (C + iP ) = ΓS(C + iP ) ∩ ΓP (C + iP ) ⊆ ΓS(C) ∩ ΓP .

For the other inclusion, let A ∈ ΓS(C)∩ΓP . Then A−C ∈ ΓS and L(A−C) �= 0.
Choose i ≥ 0 maximal such that L(A−C) = L(A−C− iP ). Then A−C − iP ∈
ΓS∪P .

As a special case Γ (C)∩ΓP = ∪i≥0 ΓP (C + iP ). Theorem 1 gives a lower bound
for deg A, for A ∈ ΓP (C). Combination of the lower bounds for C ∈ {C + iP :
i ≥ 0} then gives a lower bound for deg A, for A ∈ Γ (C) ∩ ΓP .

In combination with Γ (C + iP )∩ΓQ = ∪j≥0 Γ{P,Q}(C + iP + jQ), we obtain,
for S = {P, Q},

Γ (C) ∩ ΓS = ∪i,j≥0 ΓS(C + iP + jQ).

The next theorem gives a lower bound for deg A, for A ∈ ΓS(C). For S = {P, Q},
combination of the lower bounds for C ∈ {C + iP + jQ : i, j ≥ 0} then gives a
lower bound for deg A, for A ∈ Γ (C) ∩ ΓS .

Theorem 2. (Main theorem) Let {A1 ≤ A2 ≤ · · · ≤ Aw} ⊂ ΔS(C) be a
sequence of divisors with Ai ∈ ΔPi(C), Pi ∈ S, for i = 1, . . . , w, such that
Ai − Pi ≥ Ai−1 for i = 2, . . . , w. Then deg A ≥ w, for every divisor A ∈ ΓS(C)
with support disjoint from Aw − A1.
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Lemma 1. For D′ ∈ ΓP (C), ΔP (C) ⊆ ΔP (D′).

Proof. For D′ − C ∈ ΓP , if A − C �∈ ΓP then A − D′ �∈ ΓP .

Lemma 2. Let lC(A) = l(A) − l(A − C). Then

A ∈ ΔP (C) ⇔ lC(A) − lC(A − P ) = 1.

Proof.

lC(A)− lC(A−P ) = 1 ⇔ (l(A)− l(A−P ))− (l(A−C)− l(A−C−P )) = 1
⇔ l(A) − l(A − P ) = 1 ∧ l(A − C) − l(A − C − P ) = 0 ⇔ A ∈ ΔP (C).

Proof. (Theorem 2) For A = D′ ∈ ΓS(C) ⊆ ΓPi(C) and for Ai ∈ ΔPi(C),
Ai ∈ ΔPi(D′), by Lemma 1, and lD′(Ai) = lD′(Ai − Pi) + 1 by Lemma 2. With
Ai − Pi ≥ Ai−1, there exists a natural map

L(Ai−1)/L(Ai−1 − D′) −→ L(Ai − Pi)/L(Ai − Pi − D′).

With (Ai − Pi) − Ai−1 disjoint form D′, the map is injective, since L(Ai−1) ∩
L(Ai − Pi − D′) = L(Ai−1 − D′). So that lD′(Ai − Pi) ≥ lD′(Ai−1). Iteration
over i yields

deg D′ ≥ lD′(Aw) ≥ lD′(Aw−1) + 1 ≥ · · · ≥ lD′(A1) + w − 1 ≥ lD′(A1 −P1) + w.

To obtain lower bounds with the theorem, we need to construct sequences of
divisors in ΔS(C). In the next section we discuss how this can be done effectively.

5 Efficient Computation of the Bounds

The main theorem can be used efficiently to compute coset distances, which
in turn can be used to compute two-point code distances. To compute with a
certain curve we use, for given points P and Q, a function dP,Q that encapsulates
some geometric properties of the curve [7], see also [2], [14].

Lemma 3. Let B be a divisor and let P, Q be distinct points. There exists a
unique integer k(B, P, Q) such that B + k′P ∈ ΓQ if and only if k′ ≥ k(B, P, Q)

Proof. This amounts to showing that B + kP ∈ ΓQ implies B + (k + 1)P ∈ ΓQ.
Now use that ΓQ is a semigroup and that P ∈ ΓQ.

Let us restrict our attention to two-point divisors. Using the previous notation
define the following integer valued function.

dP,Q(a) = k(aQ, P, Q) + a
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Theorem 3. For a divisor A with support in {P, Q},
A ∈ ΓQ ⇔ deg(A) ≥ dP,Q(AQ).

Proof. Let A = kP+aQ, then deg(A) ≥ dP,Q(a) is equivalent to k ≥ k(aQ, P, Q),
which by definition is aQ + kP ∈ ΓQ.

This property makes the d function a powerful computational tool. Moreover,
for m such that mP ∼ mQ, d is defined modulo m. In general, the function
d depends on the ordering of the points P and Q, but it is easy to see that
the functions dP,Q and dQ,P satisfy the relation dP,Q(a) = a + b if and only if
dQ,P (b) = a + b. The function d = dP,Q and the parameter m are enough to
compute sequences of two-point divisors Ai ∈ ΔP (C) as required by Theorem 1.
A simple application of the Riemann-Roch Theorem give us that we can restrict
our search to a finite range of divisors, since, for A ∈ ΔP (C),

min{0, deg C} ≤ deg A ≤ max{2g − 1, deg C + 2g − 1}.
Using mP ∼ mQ, we can assume moreover, for A = AP P + AQQ, that AQ ∈
[0, . . . , m − 1].

To find long sequences of divisors Ai ∈ ΔP (C) we use a graph theory weight-
maximizing algorithm on a rectangular grid T , such that Ti,j is a path of longest
length up to the divisor A with degree i and AQ = j (i.e. A = iP + j(Q − P )).

Computing bounds for the coset C(C)\C(C + P ) with Theorem 1

1. Initialize the first row of T (corresponding to degree i = min{0, deg C} − 1)
with 0.

2. Update each row of T successively by the rule

Ti,j = max{Ti−1,j−1, Ti−1,j + BPi,j}
where BPi,j is 1 if A ∈ ΔP (C) and 0 otherwise, for the divisor A of degree
i with AQ = j. BPi,j is computed using Theorem 3.

3. Iterate up to the last row (corresponding to degree i = max{2g − 1, deg C +
2g − 1}).

4. Return the maximum value in the last row.

Using the algorithm we compute bounds for the cosets C(C, S)\C(C + P, S) and
C(C, S)\C(C +Q, S) over all possible divisors C. We store them in arrays CP and
CQ where the row denotes the degree of C and the column is CQ (mod m). For
rational points P and Q such that dP,Q = dQ,P , we can save some work and ob-
tain the table CQ from CP with the relabeling CQi,j = CPi,j′ for j′ = i − j
(mod m). After computing the coset bounds, we traverse all possible coset filtra-
tions of all codes to find bounds for the minimum distances. We use a graph theory
flow-maximizing algorithm on a rectangular grid D, such that Di,j is a bound for
the minimum distance of a code C(C) with C of degree i and CQ = j.

Computing bounds for the distances of all codes C(C) using P -coset
and Q-coset tables

1. Initialize the last row of D (corresponding to degree i = 2g) with 2g.
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2. Update each row of D successively by the rule

Di,j = max{min{Di+1,j , CPi,j}, min{Di+1,j+1, CQi,j}}
3. Iterate up to the first row (corresponding to degree i = 0).

Theorem 2 can be used to obtain improved lower bounds for the cosets C(C)\C
(C + P ) and C(C)\C(C + Q). The basic algorithm is the same as before with
an extra step of using the table of all bounds for C(C, S)\ ∪P∈S C(C + P, S) to
produce the P - and Q-coset tables.

Computing P - and Q-coset bounds using Theorem 2

1. Compute table CS with bounds for C(C, S)\ ∪P∈S C(C + P, S). This step
is done in exactly the same way as the computation for Theorem 1, but the
new table T for each C has the update rule

Ti,j = max{Ti−1,j−1 + BQi,i−j , Ti−1,j + BPi, j}
2. Initialize CP and CQ at the top row (corresponding to degree i = 2g)

with 2g.
3. Compute CP in decreasing row order using the rule CPi,j = min{CPi+1,j+1,

Ti,j}.
4. Compute CQ in decreasing row order using the rule CQi,j = min{CQi+1,j ,

Ti,j}.
Once the P - and Q-coset bounds are known, exactly the same minimizing flow
method as the one used for obtaining dDP can be used for an improved bound,
denoted dDK .

6 Tables for the Suzuki Curve over F32

The Suzuki curve over the field of q = 2q2
0 elements is defined by the equation

yq + y = xq
0(x

q + x). The curve has q2 + 1 rational points and genus g =
q0(q−1). The semigroup of Weierstrass nongaps at a rational point is generated
by {q, q+q0, q+2q0, q+2q0+1}. For any two rational points P and Q there exists a
function with divisor (q +2q0 +1)(P −Q). Let m = q +2q0 +1 = (q0 +1)2 + q0

2,
and let H be the divisor class containing mP ∼ mQ. The canonical divisor
K ∼ 2(q0 − 1)H. For the Suzuki curve over the field of 32 elements we use
q0 = 4, q = 32, g = 124, m = 41, K ∼ 6H. The action of the automorphism
group on the rational points of the curve is 2-transitive, so that dP,Q(a) = d(a)
does not depend on the choice of the points P and Q. For the Suzuki curve with
parameter q0, the d function is given by

d(k) = (q0 − a)(q − 1)

where a,b are the unique integers such that |a|+ |b| ≤ q0 and k ≡ a(q0 +1)+bq0−
q0(q0 + 1) (mod m). A detailed explanation of the geometry behind this result
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can be found in [7]. To store the function d as a list, we go through all integers a
and b with |a| + |b| ≤ q0. To compute d(k) for a single value k, we may use

d(k) = (q − 1)(2q0 − q(k − 1, 2q0 + 1)+
− q(r(k − 1, 2q0 + 1), q0 + 1) − r(r(k − 1, 2q0 + 1), q0 + 1)),

where q(a, b) and r(a, b) are the quotient and the remainder, respectively, when
a is divided by b, and k − 1 is taken modulo m.

Table 1. Number of improvements of one bound over another (top), and the maximum
improvement (bottom), based on 10168 two-point codes for the Suzuki curve over F32

Floor bounds Order bounds

dBPT dLM dGST dABZ dB0 dB dABZ′ dDP dDK

dGOP 6352 6352 6352 6352 6352 6352 6352 6352 6352
dBPT · 4527 4551 4597 5260 5264 5264 5264 5274

dLM · · 2245 2852 4711 4729 4731 4731 4757
dGST · · · 2213 4711 4729 4731 4731 4757
dABZ · · · · 4665 4683 4685 4685 4711

dB0 · 1 1 1 · 176 374 412 1643
dB · 1 1 1 · · 198 236 1565
dABZ′ · · · · · · · 38 1404
dDP · · · · · · · · 1366

dGOP 1 8 13 21 33 33 33 33 33
dBPT · 7 12 20 32 32 32 32 32

dLM · · 7 15 28 28 28 28 28
dGST · · · 8 24 24 24 24 24
dABZ · · · · 24 24 24 24 24

dB0 · 1 1 1 · 1 5 5 6
dB · 1 1 1 · · 5 5 6
dABZ′ · · · · · · · 1 6
dDP · · · · · · · · 6

Table 2. Improvements of dDP and dDK over dB for 10168 two-point codes

dDK − dDP = 0 1 2 3 4 5 6

dDP − dB = 0 8603 656 356 198 50 6 63
1 92 12 0 0 0 0 0
2 33 4 0 0 0 0 0
3 74 4 1 0 0 0 0
4 0 0 0 0 0 0 0
5 0 16 0 0 0 0 0
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Table 3. Optimal codes (For given deg C = 2, . . . , 124 (= g), dDK is the maximum
lower bound for a two-point code defined with C = CP P + CQQ, and CQ gives values
for which the maximum is achieved. Suppressed are divisors that define subcodes with
the same minimum distance as already listed codes. Exchanging P and Q gives a similar
code and listed are only divisors with CQ (mod m) ≤ CP (mod m). The last columns
give the amount by which dDK exceeds similarly defined maximum lower bounds for
dDP and dB, respectively.

deg C dDK CQ

2 31 [5] · ·
3 31 · ·
4 31 · ·
5 32 [0] · ·
6 32 · ·
7 32 · ·
8 38 [2] · 3
9 38 · 3

10 38 · 3
11 44 [1] · ·
12 44 [6] · ·
13 44 · ·
14 44 · ·
15 48 [5] · 1
16 48 · ·
17 48 · ·
18 50 [8] · 1
19 50 · ·
20 51 [9] · 1
21 54 [10] · 3
22 54 · 3
23 54 · 1
24 54 · 3
25 54 · ·
26 54 · ·
27 54 · ·
28 56 [12] · 1
29 56 · ·
30 58 [13] 2 2
31 58 [10] 2 2
32 58 2 2
33 59 [12] 3 3
34 61 [13] 3 3
35 62 [10 14] 3 3
36 62 [17] 3 3
37 62 3 3
38 62 2 2
39 62 2 2
40 62 2 2
41 62 2 2
42 62 2 2

deg C dDK CQ

43 62 [5] · ·
44 62 · ·
45 63 [5] · ·
46 64 [0] · ·
47 64 · ·
48 64 · ·
49 68 [2] · 2
50 68 · 2
51 70 [2, 4] · 2
52 72 [1] · ·
53 72 [4, 6] · ·
54 72 · ·
55 74 [7] 2 2
56 75 [7] 2 3
57 75 · 2
58 75 · ·
59 75 · ·
60 77 [8] · ·
61 77 · ·
62 78 [10] · ·
63 79 [10] 1 1
64 80 [11] 2 2
65 80 [8] · ·
66 81 [5] 1 1
67 83 [10] 1 1
68 85 [11] 2 2
69 85 1 1
70 85 [5, 9] 1 1
71 87 [10] 3 3
72 87 2 2
73 87 [7, 16] · ·
74 87 · ·
75 89 [10] 1 1
76 91 [10, 11] 3 3
77 91 1 1
78 91 [8] 1 1
79 91 [5, 7] · ·
80 93 [10, 11] 2 2
81 93 2 2
82 93 1 1
83 93 [7] · 1

deg C dDK CQ

84 94 [1] · 1
85 94 [0, 5] · ·
86 96 [1] · 1
87 96 [0] · ·
88 96 · ·
89 96 · ·
90 99 [1, 2] · ·
91 100 [2, 3] · ·
92 102 [3] · ·
93 102 · ·
94 103 [5] · ·
95 104 [2] · ·
96 106 [7] · ·
97 106 · ·
98 106 · ·
99 108 [2, 6] · ·

100 110 [7] · ·
101 110 · ·
102 110 · ·
103 112 [6] · ·
104 112 [2] · ·
105 114 [7] 1 1
106 114 [9] 1 1
107 114 · ·
108 116 [2, 6, 7] · ·
109 118 [7] 2 2
110 118 2 2
111 118 1 1
112 120 [6] 1 1
113 120 [2] 1 1
114 121 [7] 2 2
115 121 [2, 6, 9] 1 1
116 122 [2, 6, 7, 10, 15] · ·
117 123 [2, 6, 7] 1 1
118 124 [2, 6, 7] 2 2
119 124 1 1
120 124 [1, 5, 10, 19] · ·
121 125 [1] · ·
122 126 [1] · ·
123 127 [1] · ·
124 128 [0] · ·
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Table 1 compares the Goppa bound dGOP , the base point bound dBPT (an
improvement of the Goppa bound by one whenever C has a base point), the
floor bounds dLM [16, Theorem 3], dGST [11, Theorem 2.4], dABZ [7, Theorem
2.4], and the order bounds dB0 , dB, dABZ′ , dDP , dDK . Each bound was optimized
over the full parameter space corresponding to that bound. The computations
for the Suzuki curve of genus g = 124 over F32 were very efficient, computations
for the 2g ·m = 10168 two-point codes with Goppa designed minimum distance
in the range 0, . . . , 2g − 1, took less than 10 minutes on a desktop PC for any
given bound.

As can be seen, the Beelen bound dB offers only slight improvement over the
weaker Beelen bound dB0 . Similar for the improvement of the Duursma-Park
bound dDP over the weaker ABZ bound dABZ′ . Table 2 gives a further break-
down of the 236 codes for which dDP improves dB and the 1366 codes for which
dDK improves dDP . The improvements are by at most 5 and 6, respectively.

The 63 codes with dDK = dDP + 6 all have dDK = 62 which agrees with
the actual minimum distance (namely realized by a choice of 62 points with
P1 + . . . + P62 ∼ 31P + 31Q). For each of the 63 codes, the coset with C =
23P + 23Q is the unique coset where Theorem 1 fails to give a lower bound
above 56. For the same coset, Theorem 2 gives a lower bound of 62, for example
with a sequence A1, . . . , A62 of type

{A1 = 24Q, . . . , A24 = 114P + 24Q} (⊆ ΔP (C))
∪ {A25 = 114P + 25Q, . . . , A38 = 114P + 40Q} (⊆ ΔQ(C))

∪ {A39 = 156P, . . . , A62 = 270P} (⊆ ΔP (C)).

Table 1 and Table 2 do not show whether the improvements occur for good
codes or for poor codes. For Table 3 we select for each degree deg C, i.e. for
each given Goppa designed minimum distance, the optimal code with respect to
each of the bounds dB, dDP , dDK and we compare those. In this case, depending
on the degree, the improvements of dDK , obtained with Theorem 2, over the
bounds dB and dDP vary between 0 and 3.
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Abstract. We investigate the class of numerical semigroups verifying
the property ρi+1 − ρi ≥ 2 for every two consecutive elements smaller
than the conductor. These semigroups generalize Arf semigroups.

1 Introduction

Let N0 be the set of nonnegative integers and H = {0 = ρ1 < ρ2 < · · ·} ⊆ N0 be
a numerical semigroup of finite genus g. This means that the complement N0\H
is a set of g integers called gaps, Gaps(H) = {�1, . . . , �g}. Then c = �g + 1 is the
smallest integer such that c + h ∈ H for all h ∈ N0. The number c is called the
conductor of H and clearly c = ρc−g+1.

Semigroups play an important role in the theory of one point algebraic geom-
etry codes. In fact, the computation of the order bound on the minimum distance
of such a code C(X , D, mQ) –constructed from a curve X , a divisor D on X and
a point Q of X– involves computations in the Weierstrass semigroup associated
to Q (see Section 5 and [6] for more details). Some families of semigroups have
been studied in deep from this point of view. Relevant for this article are Arf
and inductive semigroups. Let us remember that the semigroup H is said to be
Arf if ρi + ρj − ρk ∈ H for i ≥ j ≥ k ≥ 0. The study of Arf semigroups has been
carried in the context of Coding Theory, [3],[5], and Local Algebra Theory, [1],
[2], [7], among others (see [12] and the references therein). Inductive semigroups
are a particular class of Arf semigroups ([5]). A sequence (Sn) of semigroups is
called inductive if there exist sequences of positive integers (an) and (bn) such
that S1 = N0 and for n > 1, Sn = anSn−1∪{m ∈ N0 : m ≥ anbn}. A semigroup
is called inductive if it is a member of an inductive sequence.

Note that the Arf condition implies (see Corollary 1 below)

�i − �i−1 ≤ 2, for i = 2, . . . , g, (1)

or equivalently ρi+1−ρi ≥ 2 for i = 1, . . . , c−g. There are numerical semigroups
satisfying (1) which are not Arf, e.g. those given in Example 1. This fact provides
a motivation to introduce and study the class of semigroups for which (1) holds.
These will be called sparse. Let us remark that there exist other generalizations
of Arf semigroups, proposed by different authors. For example, in ([4]) the Arf
property is extended to a widely class of semigroups via the concept of patterns
of semigroups. The sparse and pattern properties are disjoint in general.
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From a geometrical point of view, sparse semigroups are closely related to
Weierstrass semigroups arising in double covering of curves, cf. [14]. Its arith-
metical structure is strongly influenced by the parity of its largest gap �g. Recall
that for all semigroups we have �g ≤ 2g − 1 ([9]). When equality holds then the
semigroup is called symmetric. For even �g we consider the family

Hg,k := {H : H is a sparse semigroup of genus g and �g = 2g − 2k}. (2)

For each H ∈ Hg,k we prove that g ≤ 6k − 3 (Theorem 2); this was noticed
by Barucci et al. [2, Thm. I.4.5] and Bras-Amorós [3, Prop. 3.2] when k = 1.
The approach used here is quite different from theirs. In particular we show that
∪gHg,k is finite. For �g odd, write �g = 2g − (2γ + 1) with γ ≥ 0 an integer. We
prove (Theorem 3) that for g large enough with respect to γ, H is of the form

H = 2H̄ ∪ {h ∈ N : h ≥ 2g − 2γ + 1}, (3)

where H̄ is a semigroup of genus γ uniquely determined by H . When γ = 0 then
H is hyperelliptic, that is 2 ∈ H (which has already been noticed in [2], [3], [5]).
Finally in Section 5 we observe that sparse semigroups of genus large enough
satisfy the acute property in the sense of Bras-Amorós [3], and we obtain the
order of such semigroups as a function of g and �g (Proposition 5).

2 Sparse Semigroups

Let H = {0 = ρ1 < ρ2 < · · ·} be a semigroup of genus g and conductor c. Our
starting point is the following result (see [5], Proposition 1).

Proposition 1. H is Arf iff for all integers i ≥ j ≥ 1, it holds that 2ρi−ρj ∈ H.

Corollary 1. The set of gaps of an Arf semigroup H of genus g satisfy (1).

Proof. Let Gaps(H) = {�1, . . . , �g}. Suppose there exists i ∈ {2, . . . , g} such that
�i− �i−1 > 2. Then �i−2 and �i−1 are non-gaps of H and Proposition 1 implies
2(�i − 1) − (�i − 2) = �i ∈ H , a contradiction.

Example 1. Let g ≥ 7. The set

H = N0 \ {1, . . . , g − 3, g − 1, g + 1, g + 2} = {0, g − 2, g, g + 3, g + 4, . . .}

is a semigroup of genus g satisfying (1). Since 2g − (g − 2) = g + 2 �∈ H it is not
Arf.

Definition 1. A semigroup H = {0 = ρ1 < ρ2 < . . .} of genus g is called sparse
if the set of its gaps, Gaps(H), satisfies (1).

Equivalently, H is sparse if ρi+1 − ρi ≥ 2 for i = 1, . . . , c − g. Obviously, every
Arf semigroup is sparse. Other remarkable examples of sparse semigroups are as
follows.
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Example 2. Let H̄ be an arbitrary semigroup of conductor c̄ and genus γ.

(a) Given two integers a ≥ 2, R ≥ 0, the semigroup H := aH̄∪{h ∈ N0 : h ≥ R}
is sparse. In particular, inductive semigroups are sparse. Note that when a = 2
and R ≥ 2c̄, then H is Arf iff H̄ is Arf.
(b) Let g be an integer such that g ≥ γ + c̄. Then H = 2H̄ ∪ {h ∈ N : h ≥
2g − 2γ + 1} is a sparse semigroup of genus g with �g = 2g − (2γ + 1), whose
number of even gaps is γ. In Section 4 we will show that every sparse semigroup
with �g odd and genus large enough with respect to γ arise in this way.

For a semigroup H , let m = m(H) = ρ2 − 1. When H �= N0, m is the largest
integer such that �m = m. Then m(H) = 1 iff H is hyperelliptic.

Proposition 2. Let H be a symmetric semigroup of genus g > 0. The following
statements are equivalent:

1. H is Arf;
2. H is sparse;
3. m(H) = 1.

Proof. The symmetry property implies �g−1 = �g − ρ2; then from inequalities
(1) it follows that ρ2 = 2. This shows that (2) implies (3). If 2 ∈ H , assertion
(1) follows from Example 2 as H = 2N0 ∪ {n ∈ N : n ≥ 2g}.

Proposition 3. Let H be a semigroup with m(H) = 2 and g > 2. The following
statements are equivalent:

1. H is Arf;
2. H is sparse;
3. H = 〈3, 	(3g + 2)/2
, 	(3g + 5)/2
〉.

In this case �g = 	(3g − 1)/2
.

Proof. If H is sparse, by induction �i = 	(3i − 1)/2
 for i = 1, . . . , g. Then
H = 3N0 ∪ {n ∈ N : n ≥ 	(3g + 2)/2
}.

The following results show a strong restriction on the arithmetic of sparse semi-
groups. They generalize the statement (2) implies (3) in Proposition 2.

Lemma 1. Let H be a sparse semigroup of genus g with Gaps(H) = {�1, . . . , �g}.
If �g−i = �g−i+1 − 1, then 2�g−i < 3(g − i).

Proof. The set {1, . . . , �g−i} contains g − i gaps and t = �g−i − (g − i) non-
gaps. Write {1, . . . , �g−i} ∩ H = {ρ2, . . . , ρt+1}. All elements in the set {�g−i −
ρ2, · · · , �g−i −ρt+1}∪{�g−i+1−ρ2, · · · , �g−i+1−ρt+1} are distinct gaps. If other-
wise �g−i−ρr = �g−i+1−ρs = �g−i+1−ρs, then ρr+1 = ρs contradicting the fact
of H being sparse. Thus 2(�g−i−(g−i))+1 ≤ g−i and hence 2�g−i ≤ 3(g−i)−1.

Let m = m(H) = ρ2 − 1 be as above and let K = K(H) = 2g − �g.
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Theorem 1. LetH be a sparse semigroupof genus g withGaps(H) = {�1, . . . , �g}.
Then

1. �i ≥ 2i − K for all i = 1, . . . , g. In particular m ≤ K.
2. If �i = 2i − K then �j = 2j − K for j = i, . . . , g.
3. If g ≥ 2K − 1 then �i = 2i − K for all i = 2K − 2, . . . , g.

Proof. (1) By the sparse property, �g − �i ≤ 2(g − i) so that �i ≥ 2i − K. Then
2(j + 1) − K ≤ �j+1 ≤ �j + 2 and the result follows. (2) is clear. (3) Since
�g = 2g − K by definition of K, it is enough to prove that �i+1 = �i + 2 for
i = 2k − 2, . . . , g − 1. We use induction on j = g − i and thus we have to
prove the statement �g−j = �g−j+1 − 2 for j = 1, . . . , g − 2K + 2. If �g−1 �=
�g − 2, the sparse property implies �g−1 = �g − 1. Then, according to Lemma
1, 2(�g − 1) = 2�g−1 < 3(g − 1) and so g < 2K − 1, a contradiction. Suppose
that the assertion is true for all t = 1, . . . , j (1 ≤ j ≤ g − 2K + 1) and let
us prove it for j + 1. If �g−j−1 = �g−j − 1, then from the Lemma it follows
that 2(�g−j − 1)) = 2�g−j−1 < 3(g − i − 1). By induction hypothesis we have
�g−j = �g − 2j, hence j > g − 2K + 1, which is also a contradiction.

Example 3. Let H be a semigroup. According to the Theorem, m(H) ≤ K(H).
When equality holds, then H is sparse iff �i = 2i − K for i = K, . . . , g. Note
that in this case H is also Arf. If K = 2k, then H is sparse iff H has exactly
(g − k) even gaps. Here observe that 2(2k + 1) ≥ 2g − 2k + 2 so that g ≤ 3k.
This example will be generalized in Theorem 2.

3 The Largest Gap: Even Case

As we have seen, the structure of sparse semigroups H �= N0 is strongly influ-
enced by its largest gap �g, and in particular by the parity of �g. Let us study
now the case in which �g is even and thus m = m(H) = ρ2 − 1 ≥ 2.

Theorem 2. Let H be a sparse semigroup of genus g with �g = 2g−K = 2g−2k.
If g ≥ 4k − 1, then g ≤ 6k − m(H) − 1. In particular, the family of semigroups
Hk =

⋃
g≥0 Hg,k, where Hg,k is as in (2), is finite.

Proof. From Theorem 1(3), the gaps 6k−2 = �4k−1 < . . . < 2g−2k = �g, are all
of them even numbers. Thus the gaps 3k − 1 = �I−(g−4k+1) < · · · < g − k = �I

are consecutive integers and I ≤ 4k − 1. By the sparse property, �4k−1 − �I ≤
2(4k− 1− I), hence 2I ≤ g + k (∗). If m ≥ g − k, then g ≤ 3k by Theorem 1(1),
so that k = 1 and g = 3. If m < g − k, then m < 3k − 1. By applying the sparse
property once again, it follows that 3k − 1 − m ≤ 2(I − g + 4k − 1 − m), i.e.,
2g ≤ 2I + 5k − m − 1. Finally (∗) implies g ≤ 6k − m − 1.

Example 4. In [2] and [3], Barucci et al. and Bras-Amorós proved that there exist
only two Arf semigroups with �g = 2g − 2, namely H = {0, 3, 4, . . .} and H =
{0, 3, 5, 6, 7, . . .}. By the above Theorem, the following statements are equivalent:
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1. H is Arf with �g = 2g − 2;
2. H is sparse with �g = 2g − 2;
3. g = 2 and H = {0, 3, 4, . . .}, or g = 3 and H = {0, 3, 5, 6, 7, . . .} = 3N0∪{h ∈

N : h ≥ 5}.

Example 5. By using the above results we can compute all sparse semigroups
with �g = 2g − 4. First note that all these semigroups have genus g ≥ 4. Also
g ≤ 7. If otherwise g ≥ 4k = 8, Theorem 2 implies g ≤ 11−m and hence m = 2
or m = 3. In both cases 12 ∈ H . Since �7 = 10, we have 12 ≥ 2g which is a
contradiction.

Thus 4 ≤ g ≤ 7. Let g > 4. By Theorem 1(1) we have 2 ≤ m ≤ 4. If m = 2
then Proposition 3 allows us to compute H . Let m = 3. We shall show that g = 5
and H = {0, 4, 7, 8, 9, 10, . . .} = 4N0 ∪ {h ∈ N : h ≥ 7}. In fact, here ρ2 = 4,
�4 = 5. If 6 ∈ H , then {4, 6, 8, 10, . . .} ⊆ H , which implies 2g − 4 ≤ 2. Thus
�5 = 6. If g > 5, 8 ∈ Gaps(H) by the sparse property. Finally the case m = 4 is
computed via Example 3.

We subsume all these computations as follows. Let H be a semigroup with
�g = 2g − 4. The following statements are equivalent:

1. H is Arf;
2. H is sparse;
3. g = 4 and Gaps(H) = {1, 2, 3, 4}, or g = 5 and H = 〈3, 8, 10〉, or g = 6 and

H = 〈3, 10, 11〉, or g = 7 and H = 〈3, 11, 13〉, or g = 5 and H = 〈4, 7, 9, 10〉,
or m(H) = 4 and hence H has exactly (g − 2) even gaps for g = 5, 6, 7.

Remark 1. We can also study the cardinality of the family (2). Consider the
semigroups H of genus g with �g(H) = 2g − 2k and m(H) = 2k. We have
2k ≤ g ≤ 3k and we obtain exactly k + 1 of such semigroups (cf. Example 3).

4 The Largest Gap: Odd Case

Let us study now the case �g odd. To do that we shall need some results con-
cerning γ-hyperelliptic semigroups, which are those semigroups having exactly
γ even gaps (cf. [13], [14]).

Proposition 4. Let H be a semigroup. If there exists an integer γ ≥ 0 such
that ρ2γ+2 = 6γ + 2 and g ≥ 6γ + 4, then H can be written in the form

H = 2H̄ ∪ {uγ, . . . , u1} ∪ {n ∈ N : n ≥ 2g} ,

where H̄ is a semigroup of genus γ and uγ < · · · < u1 ≤ 2g − 1 are precisely the
γ odd nongaps of H up to 2g.

Proof. See [13], Theorem 2.1.

Observe that H in the above Proposition has exactly γ even nongaps and H̄ =
{h/2 : h ∈ H, h ≡ 0 (mod 2)}. The main result of this section is the following.



28 C. Munuera, F. Torres, and J. Villanueva

Theorem 3. Let H be a sparse semigroup with �g = 2g− (2γ +1). If g ≥ 6γ +4
then H = 2H̄ ∪ {uγ, . . . , u1} ∪ {n ∈ N : n ≥ 2g}, where H̄ is a semigroup of
genus γ and ui = 2g − 2i + 1 for i = 1, . . . , γ.

Proof. By Theorem 1 we have �2K−1 = 3K−2 and �2K = 3K where K = 2γ+1.
Thus ρK+1 = 3K − 1, hence ρ2γ+2 = 6γ + 2 and the result follows.

A semigroup as in the Theorem will be called ordinary γ-hyperelliptic.

Remark 2. The lower bound on the genus in Theorem 3 is necessary as the
following example shows. Let γ ≥ 1 be an integer and consider the Arf semigroup
H = 〈3, 6γ + 2, 6γ + 4〉. H is 2γ-hyperelliptic of genus g = 4γ + 1 but �g =
2g − (2γ + 1) (cf. Proposition 3).

Remark 3. There exist γ-hyperelliptic sparse semigroups of genus g ≥ 2γ + 1.
Let H be the semigroup defined in Example 3. Here �i = i for i = 1, . . . , K,
�i = 2i − K for i = K, . . . , g, and K = 2γ + 1.

Corollary 2. Let γ ≥ 0 be an integer. Let H be a sparse semigroup of genus
g ≥ 6γ + 4 with �g = 2g − (2γ + 1). Let H̄ = {h/2 : h ∈ H, h ≡ 0 (mod 2)}.
Then H is Arf if and only if so is H̄.

Proof. We can write H = 2H̄∪{h ∈ N : h ≥ 2g−2γ+1}. Since R = 2g−2γ+1 ≥
2c̄ + 1 (note 2γ ≥ c̄), the result follows from Example 2.

Example 6. If g ≥ 4 and �g = 2g − 1, then γ = 0 and we find a new proof of
Proposition 2.

Remember that there exists just one semigroup of genus 1, namely {0, 2, 3, . . .}
and two semigroups of genus 2, {0, 2, 4, 5, . . .} and {0, 3, 4, 5, . . .}. All of them
are Arf semigroups.

Example 7. Let H be a semigroup of genus g ≥ 10 with �g = 2g − 3. The
following statements are equivalent:

1. H is Arf;
2. H is sparse;
3. H is ordinary 1-hyperelliptic, that is H = 2{0, 2, 3, . . .} ∪ {n ∈ N0 : n ≥

2g − 1}.
Example 8. Let H be a semigroup of genus g ≥ 16 with �g = 2g − 5. The
following statements are equivalent:

1. H is Arf;
2. H is sparse;
3. H is ordinary 2-hyperelliptic, that is H = 2H̄ ∪ {2g− 3, 2g − 1}, where H̄ is

a semigroup of genus 2.

Example 9. For every γ ≥ 3, there exist semigroups H̄ of genus γ which are not
Arf. For example, H := N0 \ {1, 2, . . . , γ − 1, γ + 2}. Thus for every γ ≥ 3 there
exist ordinary γ-hyperelliptic semigroups having largest gap �g odd, which are
not Arf property (cf. Corollary 2).
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5 On the Order of Semigroups

In this section we are interested in the order bound of sparse semigroups. Let us
remember that for a semigroup H = {0 = ρ1 < ρ2 < · · ·}, we can consider the
sets

A(�) = A[ρ�] := {(s, t) ∈ N2 : ρs + ρt = ρ�}
� ∈ N, and their cardinals

ν� := |A(� + 1)|
(or equivalently, ν� = |{ρ�+1 − ρ1, . . . , ρ�+1 − ρ�+1} ∩ H |). For � ∈ N0 we define
the �-th order bound of H as d�(H) := min{νm : m ≥ �}. The order bound
was introduced in the context of the Theory of Error-Correcting codes. In fact,
d�(H) gives a lower bound on the minimum distance of Algebraic Geometry
codes related to H (see [6] for details). The order bound is often difficult to
compute. For this reason, we define the order number of H as

o(H) := min{� ∈ N : νj ≤ νj+1 for all j ≥ �} .

It is clear that d�(H) = ν� for all � ≥ o(H).
Let us recall the concept of acute and near-acute semigroups (cf. [3], [8]).

Write
H = {0} ∪ [cm, dm] ∪ · · · ∪ [c1, d1] ∪ [c0,∞) , (4)

where ci, di are non-negative integers such that di+1 + 2 ≤ ci ≤ di for i =
1, . . . , m, d1 + 2 ≤ c, and cm+1 = dm+1 = 0, with c0 equals the conductor c of
H . Consider the following conditions:

(I) c0 − d1 ≤ c1 − d2;
(II) c0 − d1 ≤ d1 − d2;

(III) 2d1 − c0 + 1 �∈ H .

We say that H is acute if it satisfies (I); H is near-acute if it satisfies (II) or
(III). Notice that (I) implies (II). Define the function ι on H by ι(ρi) = i. In [8,
Thm. 3.11] it is shown that o(H) = min{ι(2d1 +1), ι(c0 + c1 − 1)} provided that
H is near-acute (*). See also [10,11] for more information.

Proposition 5. Let H be a sparse semigroup of genus g with �g = 2g − K. If
2�g ≥ 3g then H is acute and o(H) = 2�g − g = 3g − 2K.

Proof. Notation as in equation (4). From Theorem 1, c0 = �g+1, c1 = d1 = �g−1
and c2 = d2 = �g − 3. We have 2d1 + 1 = c0 + c1 − 1 = 2�g − 1 and thus H is
acute. Now 2�g − 1 = ρ2�g−g and the proof follows from the above formula (∗)
for o(H).

Example 10. For g ≥ 7, let H = {0, g − 2, g, g + 3, g + 4 . . .} be the sparse
semigroup of Example 1 (thus �g = g + 2 = 2g − (g − 2)). It is easy to check
that H is not near-acute. We claim that o(H) = g−1 (in particular, o(H) is not
given by the formula (∗) above).
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Since r = 2c0 − g − 1 = g + 5, from [8, Thm. 2.6], the sequence (ν�)�≥g+5 is
strictly increasing. Thus we have to consider the numbers ν� for � ≤ g + 5. Here
ρ1 = 0, ρ2 = g − 2, ρ3 = g and ρ� = g + � − 1 for � ≥ 4. Let k ∈ {1, . . . , 6} and
i ∈ [k + 3, g + k − 1]. We have ρg+k − ρi = g + k − i ∈ [1, g − 3] and so

νg+k−1 = |{ρg+k − ρ2, . . . , ρg+k − ρk+2} ∩ H | + 2 .

If k = 1 then νg = |{g + 2, g} ∩ H | + 2 = 3, otherwise

ρg+k − ρk+2 = g − 2 , if k ≥ 2
ρg+k − ρk+1 = g − 1 /∈ H , if k ≥ 3

ρg+k − ρk = g , if k ≥ 4 .

In addition, if k ≥ 2 we obtain ρg+k − ρ2 = g + k + 1 ∈ H and thus

νg+k−1 = |{ρg+k − ρ3, . . . , ρg+k − ρk+2} ∩ H | + 3 .

Therefore

νg+1 = |{g + 1, g − 2} ∩ H | + 3 = 4 ,

νg+2 = |{g + 2, g − 1, g − 2} ∩ H | + 3 = 4 ,

νg+3 = |{g + 3, g, g − 1, g − 2} ∩ H | + 3 = 6 ,

νg+4 = |{g + 4, g + 1, g, g − 1, g − 2} ∩ H | + 3 = 6 ,

νg+5 = |{g + 5, g + 2, g + 1, g, g − 1, g − 2} ∩ H | + 3 = 6 .

Now, let s ∈ {0, 1} and j ∈ [4, g + s − 1] then ρg−s − ρj = g − s − j ∈ [1, g − 4]
and so

νg−s−1 = |{ρg−s − ρ2, ρg−s − ρ3} ∩ H | + 2 .

Then

νg−1 = |{g + 1, g − 1} ∩ H | + 2 = 2 ,

νg−2 = |{g, g − 2} ∩ H | + 2 = 4 .

Thus o(H) = g − 1.

Acknowledgment. The authors wish to thank the reviewers for their detailed
comments and suggestions.
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Abstract. The twoprimary decoding algorithms forReed-Solomon codes
are the Berlekamp-Massey algorithm and the Sugiyama et al. adaptation
of the Euclidean algorithm, both designed to solve a key equation. This
article presents a new version of the key equation and a way to use the Eu-
clidean algorithm to solve it. A straightforward reorganization of the algo-
rithm yields the Berlekamp-Massey algorithm.

1 Introduction

For correcting primal Reed-Solomon codes a useful tool are the so-called locator
and evaluator polynomials. Once we know them, the error positions are deter-
mined by the inverses of the roots of the locator polynomial and the error values
can be computed by a formula due to Forney [4] which uses the evaluator and
the derivative of the locator evaluated at the inverses of the error positions.

Berlekamp presented in [1] a key equation determining the decoding polyno-
mials for primal Reed-Solomon codes. Sugiyama et al. introduced in [9] their
celebrated algoithm for solving this key equation based on the Euclidean al-
gorithm for computing the greatest common divisor of two polynomials and
the coefficients of the Bézout’s identity. Another celebrated algorithm for solv-
ing the key equation is the algorithm by Berlekamp and Massey [1, 6] which is
widely accepted to have better performance than the Sugiyama et al. algorithm,
although its formulation is more difficult to understand. The connections be-
tween both algorithms were analyzed in [3, 5].

In this work we take the perspective of dual Reed Solomon codes. In Section 3
we present a key equation for dual Reed-Solomon codes and in Section 4 we
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introduce an Euclidean-based algorithm for solving it, following Sugiyama et
al.’s idea. While the key equation for primal Reed-Solomon codes states that a
linear combination of the decoding polynomials is a multiple of a certain power of
x, in the key equation presented here the linear combination has bounded degree.
Then, while in Sugiyama et al.’s algorithm the locator and evaluator polynomials
play the role of one of the Bézout’s coefficients and the residue respectively, in
the Euclidean algorithm presented here the locator and evaluator polynomials
play the role of the two coefficients of the Bézout’s identity.

The decoding polynomials are now slightly different and in a sense more nat-
ural, since the error positions are given by the roots themselves of the locator
polynomial rather than their inverses and that the error values are obtained by
evaluating the evaluator polynomial and the derivative of the locator polynomial
at the error positions rather than evaluating them at the inverses of the error
positions. In addition the equivalent of the Forney formula does not have the
minus sign.

In Section 5 we prove that the new Euclidean-based algorithm is exactly the
Berlekamp-Massey algorithm. The connections between the Euclidean and the
Berlekamp-Massey algorithms seem to be much more transparent for the dual
Reed-Solomon codes than for the primal codes [3,5]. In Section 6 we move back
to primal Reed Solomon codes and see how all the developments of the previous
sections can be applied to primal codes with minor modifications.

2 Settings and Notations

In this section we establish the notions and notations that we will use in the
present work. A general reference is [8]. Let F be a finite field of size q = pm

and let α be a primitive element in F. Let n = q − 1. We identify the vector
u = (u0, . . . , un−1) with the polynomial u(x) = u0 + · · ·+ un−1x

n−1 and denote
u(a) the evaluation of u(x) at a.

Classically the (primal) Reed-Solomon code C∗(k) of dimension k is the cyclic
code generated by the polynomial (x−α)(x−α2) · · · (x−αn−k), and has generator
matrix G∗(k) = (αij)i

j , for i = 0, . . . , k − 1, and j = 0, . . . , n − 1, while the dual
Reed-Solomon code C(k) of dimension k is generated by the polynomial (x −
α−(k+1)) · · · (x − α−(n−1))(x − 1) and has generator matrix G∗(k) = (α(i+1)j)i

j ,
for i = 0, . . . , k − 1, and j = 0, . . . , n − 1.

Both codes have minimum distance d = n − k + 1. Furthermore, C(k)⊥ =
C∗(n−k). There is a natural bijection from F

n to itself, c �→ c∗, that takes C(k)
to C∗(k). Indeed, let i be a vector of dimension k and let c = (c0, c1, . . . , cn−1) =
iG(k) ∈ C(k), c∗ = (c∗0, c∗1, . . . , c∗n−1) = iG∗(k) ∈ C∗(k). Then,

c = (c∗0, αc∗1, α
2c∗2, . . . , α

n−1c∗n−1). (1)

In particular, c(αi) = c∗0 + αc∗1αi + α2c∗2α2i + · · ·+ αn−1c∗n−1α
(n−1)i = c∗(αi+1).
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3 Key Equations for Primal and Dual Reed-Solomon
Codes

3.1 Polynomials for Correction of RS Codes

Suppose that a word c∗ ∈ C∗(k) is transmitted and that an error e∗ occurred
with t ≤ d−1

2 non-zero positions, so that u∗ = c∗ + e∗ is received. Define the
error locator polynomial Λ∗ and the error evaluator polynomial Ω∗ as

Λ∗ =
∏

i:e∗
i �=0

(1 − αix), Ω∗ =
∑

i:e∗
i �=0

e∗i α
i

∏

j:e∗
j �=0,j �=i

(1 − αix),

and the syndrome polynomial

S∗ = e∗(α) + e∗(α2)x + e∗(α3)x2 + · · · + e∗(αn)xn−1.

Notice that from the received word we only know e∗(α) = u∗(α), . . . , e∗(αn−k) =
u∗(αn−k). This is why we use the truncated syndrome polynomial

S̄∗ = e∗(α) + e∗(α2)x + · · · + e∗(αn−k)xn−k−1.

If Λ∗ and Ω∗ are known, the error positions can be identified as the indices i
such that

Λ∗(α−i) = 0

and the error values can be computed by the Forney formula [4]

e∗i = −Ω∗(α−i)
Λ′∗(α−i)

.

3.2 Polynomials for Correction of Dual RS Codes

Suppose that a word c ∈ C(k) is transmitted and that an error e occurred with
t ≤ d−1

2 non-zero positions, so that u = c + e is received. In this case define the
error locator polynomial Λ and the error evaluator polynomial Ω as

Λ =
∏

i:ei �=0

(x − αi), Ω =
∑

i:ei �=0

ei

∏

j:ej �=0,j �=i

(x − αi), (2)

and the syndrome polynomial

S = e(αn−1) + e(αn−2)x + · · · + e(α)xn−2 + e(1)xn−1. (3)

Notice that now, from the received word we only know e(1) = u(1), . . . , e(αn−k−1)
= u(αn−k−1). This is why we use the truncated syndrome polynomial

S̄ = e(αn−k−1)xk + e(αn−k−2)xk+1 + · · · + e(1)xn−1. (4)
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In this case, if Λ and Ω are known, the error positions can be identified as the
indices i such that

Λ(αi) = 0 (5)

and the error values can be computed by the formula

ei =
Ω(αi)
Λ′(αi)

. (6)

It is easy to check that when the error vectors e and e∗ satisfy the relationship
(1), then the polynomials Λ, Ω, S, S associated to the error e are related to the
polynomials Λ∗, Ω∗, S∗, S̄∗ associated to the error e∗ as follows:

Λ = xtΛ∗(1/x), Ω = xt−1Ω∗(1/x),
S = xn−1S∗(1/x), S̄ = xn−1S̄∗(1/x).

3.3 Key Equations

A straightforward computation shows that

ΛS = (xn − 1)Ω (7)

or, equivalently, Λ∗S∗ = (1 − xn)Ω∗. See [7] for a proof. In particular, the
polynomial Λ∗S̄∗ + (xn − 1)Ω∗ = Λ∗(S̄∗ − S∗) has only terms of order n − k or
larger and this implies

Λ∗S̄∗ = Ω∗ mod xn−k

This is the key equation introduced by Berlekamp [1]. Massey [6] gave an algo-
rithm for solving linear feedback shift registers and its application to decoding
BCH and thus RS codes. Sugiyama et al. [9] recognized that the Euclidean algo-
rithm for finding the greatest common divisor of two polynomials and for solving
Bézout’s identity, could also be adapted to solve this kind of equation for Λ∗ and
Ω∗, starting with r−2 = xn−k and r−1 = S̄∗. Their method is often referred to
as the Euclidean decoding algorithm for Reed Solomon codes.

On the other hand, the polynomial ΛS̄ − (xn − 1)Ω = Λ(S̄ − S) has degree
at most �d−1

2 � + k − 1 = �d−1
2 � + n − d = n − �d+1

2 	. That is

deg(ΛS̄ − (xn − 1)Ω) ≤ n − �d+1
2 	

The aim of the present work is to deal with this alternative key equation on Λ
and Ω and solving it by the Euclidean algorithm starting with r−2 = xn −1 and
r−1 = S̄.

4 Euclidean Algorithm for Dual Reed-Solomon Codes

The next theorem characterizes the decoding polynomials by means of the alterna-
tive key equation, the polynomial degrees, and their coprimality. It is the analogue
of [2, Theorem 4.8] for the standard key equation, and the proof is similar.
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Theorem 1. Suppose that at most �d−1
2 � errors occurred. Then Λ and Ω are

the unique polynomials f , ϕ satisfying the following properties.

1. deg(fS̄ − (xn − 1)ϕ) ≤ n − �d+1
2 	

2. deg(ϕ) < deg(f) ≤ �d−1
2 	

3. f, ϕ are coprime.
4. f is monic

Consider the following algorithm:

Initialize:
r−2 = xn − 1, f−2 = 0, ϕ−2 = −1,
r−1 = S̄, f−1 = 1, ϕ−1 = 0,
i = −1.

while deg(ri) > n − � d+1
2

�:
qi = Quotient(ri−2, ri−1)

ri = Remainder(ri−2, ri−1)

ϕi = ϕi−2 − qiϕi−1

fi = fi−2 − qifi−1

end while

Return fi/LeadingCoefficient(fi), ϕi/LeadingCoefficient(fi)

The polynomial ϕ has been initialized to negative 1 because we want that fi, ϕi

satisfy at each step fiS̄ − ϕi(xn − 1) = ri.
The next theorem verifies the algorithm. Its proof has also been ommitted

and will appear in the final form of this article.

Theorem 2. If t ≤ d−1
2 then the algorithm outputs Λ and Ω.

5 From the Euclidean to the Berlekamp-Massey
Algorithm

In this section we will perform a series of minor modifications to the previous
algorithm that will lead to the Berlekamp-Massey algorithm. This will show that
they are essentially the same.

First of all, notice that the updating step in the previous algorithm can be
expressed in matrix form as

(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
=

(−qi 1
1 0

) (
ri−1 fi−1 ϕi−1

ri−2 fi−2 ϕi−2

)
.

Furthermore, if qi = q
(0)
i + q

(1)
i x + · · · + q

(l)
i xl then

(−qi 1
1 0

)
=

(
1 −q

(0)
i

0 1

) (
1 −q

(1)
i x

0 1

) (
1 −q

(2)
i x2

0 1

)
. . .

(
1 −q

(l)
i xl

0 1

) (
0 1
1 0

)
.

If we split all matrix multiplications we will need to add intermediate variables.
Thus, it does not make sense anymore to consider matrices
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(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
.

We will use auxiliary polynomials Ri, Fi, Ψi, R̃i, F̃i, Ψ̃i and matrices
(

Ri Fi Ψi

R̃i F̃i Ψ̃i

)
.

These matrices will satisfy at given stages of the algorithm (exactly when deg(Ri)
< deg(R̃i)) that Ri, Fi, Ψi are the remainder and the intermediate Bézout coeffi-
cients in one of the steps of the original Euclidean algorithm and that R̃i, F̃i, Ψ̃i

are respectively the remainder and the intermediate Bézout coefficients previous
to Ri, Fi, Ψi.

The previous algorithm can be expressed now:

Initialize:
(

R−1 F−1 Ψ−1

R̃−1 F̃−1 Ψ̃−1

)
=

(
S̄ 1 0
xn − 1 0 −1

)

while deg(Ri) > n − � d+1
2

�:
(

Ri+1 Fi+1 Ψi+1

R̃i+1 F̃i+1 Ψ̃i+1

)
=

(
0 1
1 0

) (
Ri Fi Ψi

R̃i F̃i Ψ̃i

)

(quotient=0)

while deg(Ri) ≥ deg(R̃i) :

μ = LeadingTerm(Ri)/LeadingTerm(R̃i)

(quotient=quotient+μ)
(

Ri+1 Fi+1 Ψi+1

R̃i+1 F̃i+1 Ψ̃i+1

)
=

(
1 −μ
0 1

) (
Ri Fi Ψi

R̃i F̃i Ψ̃i

)

end while

end while

Return Fi/LeadingCoefficient(Fi), Ψi/LeadingCoefficient(Fi)

5.1 Making Remainders Monic

A useful modification is to keep R̃i monic in all steps. This makes it easier to
compute the μ’s. It is enough to force this every time we get deg(Ri) < deg(R̃i).
When deg(Ri) ≥ deg(R̃i), then R̃i stays the same and so it remains monic. To
this end we divide R̃i by its leading coefficient μ̃, and also F̃i and Ψ̃i in order
to keep the properties. Analogously, we multiply Ri, Fi and Ψi by −μ̃ in order to
make the Fi’s monic. Another modification is the use of an integer p keeping track
of the degree difference between Ri and R̃i and that we take leading coefficients
of Ri instead of leading terms.

With these modifications, the algorithm is now:
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Initialize:(
R−1 R−1 Ψ−1

R̃−1 F̃−1 Ψ̃−1

)
=

(
S̄ 1 0
xn − 1 0 −1

)

while deg(Ri) > n − � d+1
2

�:
μ = LeadingCoefficient(Ri)

p = deg(Ri) − deg(R̃i)

if p < 0 then(
Ri+1 Fi+1 Ψi+1

R̃i+1 F̃i+1 Ψ̃i+1

)
=

(
0 −μ
1/μ 0

) (
Ri Ri Ψi

R̃i F̃i Ψ̃i

)

else(
Ri+1 Fi+1 Ψi+1

R̃i+1 F̃i+1 Ψ̃i+1

)
=

(
1 −μxp

0 1

) (
Ri Fi Ψi

R̃i F̃i Ψ̃i

)

end if

end while

Return Fi, Ψi

5.2 Joining Steps

It is easy to check that after each step corresponding to p < 0 the new p is
exactly the previous one with opposite sign and so is μ. With this observation
we can join each step corresponding to p < 0 with the following one:

Initialize:(
R−1 F−1 Ψ−1

R̃−1 F̃−1 Ψ̃−1

)
=

(
S̄ 1 0
xn − 1 0 −1

)

while deg(Ri) > n − � d+1
2

�:
μ = LeadingCoefficient(Ri)

p = deg(Ri) − deg(R̃i)

if p < 0 then(
Ri+1 Fi+1 Ψi+1

R̃i+1 F̃i+1 Ψ̃i+1

)
=

(
x−p −μ
1/μ 0

) (
Ri Fi Ψi

R̃i F̃i Ψ̃i

)

else(
Ri+1 Fi+1 Ψi+1

R̃i+1 F̃i+1 Ψ̃i+1

)
=

(
1 −μxp

0 1

) (
Ri Fi Ψi

R̃i F̃i Ψ̃i

)

end if

end while

Return Fi, Ψi

5.3 Skipping Remainders

Finally, the only reason to keep the polynomials Ri (and R̃i) is that we need
to compute their leading coefficients (the μ’s). We now show that these leading
coefficients may be obtained without reference to the polynomials Ri. This allows
to compute the Fi, Ψi iteratively and dispense with the polynomials Ri.
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On one hand, the remainder Ri = FiS̄ − Ψi(xn − 1) = FiS̄ − xnΨi + Ψi has
degree at most n − 1 for all i ≥ −1. This means that all terms of xnΨi cancel
with terms of FiS̄ and that the leading term of Ri must be either a term of FiS̄
or a term of Ψi or a sum of a term of FiS̄ and a term of Ψi.

On the other hand, the algorithm only computes LeadingCoefficient(Ri) while
deg(Ri) ≥ n − �d−1

2 	. We want to see that in this case the leading term of Ri

has degree strictly larger than that of Ψi. Indeed, one can check that for i ≥ −1,
deg(Ψi) < deg(Fi) and that all Fi’s in the algorithm have degree at most �d−1

2 	.
So deg(Ψi) < deg(Fi) ≤ �d−1

2 	 ≤ d − �d−1
2 	 ≤ n − �d−1

2 	 ≤ deg(Ri).
The previous algorithm can be transformed in a way such that the remainders

are not kept but their degrees:

Initialize:

d−1 = deg(S̄) d−2 = n(
f−1 ϕ−1

F−1 Ψ−1

)
=

(
1 0
0 −1

)

while di > n − � d+1
2

�:
μ = Coefficient(fiS̄, di)

p = di − di−1

if μ = 0 then

di = di − 1
else if p < 0 then(

fi+1 ϕi+1

Fi+1 Ψi+1

)
=

(
x−p −μ
1/μ 0

) (
fi ϕi

Fi Ψi

)

di = di−2 − 1

else(
fi+1 ϕi+1

Fi+1 Ψi+1

)
=

(
1 −μxp

0 1

) (
fi ϕi

Fi Ψi

)

di = di − 1
end if

end while

Return fi, ϕi

This last algorithm is the Berlekamp-Massey algorithm that solves the linear
recurrence

∑t
j=0 Λje(αi+j−1) = 0 for all i > 0. This recurrence is derived from

Λ S
xn−1 being a polynomial (see (7)) and thus having no terms of negative order

in its expression as a Laurent series in 1/x, and from the equality

S

xn − 1
=

1
x

(
e(1) +

e(α)
x

+
e(α2)
x2

+ · · ·
)

.

A proof of this last equality can be found in [7].

6 Moving Back to Primal Reed-Solomon Codes

It is well known that the words of a dual Reed-Solomon code are in bijec-
tion with those of the primal Reed-Solomon code of the same dimension. The
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natural bijection was previously mentioned in (1). Suppose that a code word
c∗ from the primal Reed-Solomon code C∗(k) is transmitted, and that an error
e∗ is added to it giving the received word u∗ = c∗ + e∗. Notice that if c =
(c∗0, αc∗1, α

2c∗2, . . . , α
n−1c∗n−1) and e = (e∗0, αe∗1, α

2e∗2, . . . , α
n−1e∗n−1), then c ∈

C(k) and u := c + e = (u∗
0, αu∗

1, α
2u∗

2, . . . , α
n−1u∗

n−1). So, e has the same non-
zero positions as e∗, and the error values e∗i added to u∗

i can be computed from
the error values ei added to ui by e∗i = ei/αi.

Table 1. Steps of the classical Euclidean algorithm

q(x) = 0
r(x) = x9

f(x) = 2
ϕ(x) = 0

q(x) = 0
r(x) = α14x8 + αx7 + α10x6 + α10x5 + α17x4 + α5x3 + x2 + α11x + 2
f(x) = 0
ϕ(x) = 1

q(x) = α12x + α12

r(x) = α3x7 + α22x6 + 2x5 + α6x4 + α16x3 + α9x2 + α5x + α12

f(x) = 2
ϕ(x) = α25x + α25

q(x) = α11x + α21

r(x) = α3x6 + x5 + α23x4 + α19x3 + α23x2 + α24x + α17

f(x) = α11x + α21

ϕ(x) = α23x2 + α3x + α4

q(x) = x + 2
r(x) = α10x5 + α11x4 + α14x3 + αx2 + α23x + α3

f(x) = α24x2 + α9x + α2

ϕ(x) = α10x3 + α20x2 + α4x + α16

q(x) = α19x + α10

r(x) = α4x3 + α4x2 + α10x + α20

f(x) = α4x3 + x2 + α7x + 2
ϕ(x) = α16x4 + α4x3 + α17x2 + α9x + α7

Now we can perform the previous versions of the algorithm using

S̄ = e(αn−k−1)xk + e(αn−k−2)xk+1 + · · · + e(1)xn−1

= e∗(αn−k)xk + e∗(αn−k−1)xk+1 + · · · + e∗(α)xn−1,

which is known because it is equal to u∗(αn−k)xk + u∗(αn−k−1)xk+1 + · · · +
u∗(α)xn−1.

Then, once we have the error positions, we can compute the error values as

e∗i =
Ω(αi)

αiΛ′(αi)
.

As an example, consider F27 = F2[x]/(x3 + 2x + 1) and suppose that α is the
class of x. Suppose d = 10 and e∗ = α4x + α2x2 + α6x8 + α3x24.

For the classical Euclidean algorithm, we need the polynomial
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Table 2. Steps of the new Euclidean algorithm

q(x) = 0
r(x) = x26 + 2
f(x) = 0
ϕ(x) = 2

q(x) = 0
r(x) = 2x25 + α11x24 + x23 + α5x22 + α17x21 + α10x20 + α10x19 + αx18 + α14x17

f(x) = 1
ϕ(x) = 0

q(x) = 2x + α24

r(x) = α14x24 + α16x23 + α25x22 + α17x21 + α20x20 + α6x19 + α7x18 + α25x17 + 2
f(x) = x + α11

ϕ(x) = 2

q(x) = α25x + α17

r(x) = α16x23 + α15x22 + α7x21 + α7x20 + α11x19 + α25x18 + 2x17 + α25x + α17

f(x) = α12x2 + αx + α25

ϕ(x) = α25x + α17

q(x) = α24x + α6

r(x) = α24x22 + 2x21 + α25x20 + α9x19 + α21x18 + α3x17 + α10x2 + α24x + α11

f(x) = α23x3 + α9x2 + α22x + α15

ϕ(x) = α10x2 + α24x + α11

q(x) = α18x + α18

r(x) = α8x20 + α2x19 + α21x18 + α25x17 + α15x3 + α5x2 + α25x + α25

f(x) = α2x4 + α4x3 + α12x2 + α25x + α11

ϕ(x) = α15x3 + α5x2 + α25x + α25

S̄∗ = e∗(α)+e∗(α2)x+ · · ·+e∗(αn−k)xn−k−1 = α14x8+αx7+α10x6+α10x5+
a17x4 + α5x3 + x2 + α11x + 2.

For the new Euclidean algorithm we will use S̄ = e∗(αn−k)xk+e∗(αn−k−1)xk+1

+ · · ·+ e∗(α)xn−1 = 2x25 + α11x24 + x23 + α5x22 + α17x21 + α10x20 + α10x19 +
αx18 + α14x17.

The steps of both algorithms are written in Table 1 and Table 2.
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Abstract. Recently, new families of quaternary linear Reed-Muller codes
such that, after the Gray map, the corresponding Z4-linear codes have
the same parameters and properties as the codes in the usual binary lin-
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rank is established generalizing the known results about the rank for Z4-
linear Hadamard and Z4-linear extended 1-perfect codes.
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1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and modulo 4, respectively. Let Z
n
2

be the set of all binary vectors of length n and let Z
n
4 be the set of all quaternary

vectors of length n. Any nonempty subset C of Z
n
2 is a binary code and a

subgroup of Z
n
2 is called a binary linear code or a Z2-linear code. Equivalently,

any nonempty subset C of Z
n
4 is a quaternary code and a subgroup of Z

n
4 is called

a quaternary linear code. Some authors also use the term “quaternary codes” to
refer to additive codes over GF (4) [1], but note that these are not the codes we
are considering in this paper.

The Hamming distance dH(u, v) between two vectors u, v ∈ Z
n
2 is the number

of coordinates in which u and v differ. The Hamming weight of a vector u ∈ Z
n
2 ,

denoted by wH(u), is the number of nonzero coordinates of u. The minimum
Hamming distance of a binary code C is the minimum value of dH(u, v) for
u, v ∈ C satisfying u �= v.

The Gray map, φ : Z
n
4 −→ Z

2n
2 given by φ(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn))

where ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0), is an isometry
which transforms Lee distances over Z

n
4 into Hamming distances over Z

2n
2 .

Let C be a quaternary linear code. Since C is a subgroup of Z
n
4 , it is isomorphic

to an abelian structure Z
γ
2 × Z

δ
4. Therefore, C is of type 2γ4δ as a group, it has

|C| = 2γ+2δ codewords and 2γ+δ codewords of order two. The binary image
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C = φ(C) of any quaternary linear code C of length n and type 2γ4δ is called a
Z4-linear code of binary length N = 2n and type 2γ4δ.

Two binary codes C1 and C2 of length n are said to be isomorphic if there is
a coordinate permutation π such that C2 = {π(c) : c ∈ C1}. They are said to
be equivalent if there is a vector a ∈ Z

n
2 and a coordinate permutation π such

that C2 = {a+π(c) : c ∈ C1} [11]. Two quaternary linear codes C1 and C2 both
of length n and type 2γ4δ are said to be monomially equivalent, if one can be
obtained from the other by permuting the coordinates and (if necessary) chang-
ing the signs of certain coordinates. They are said to be permutation equivalent
if they differ only by a permutation of coordinates [9]. Note that if two quater-
nary linear codes C1 and C2 are monomially equivalent, then the corresponding
Z4-linear codes C1 = φ(C1) and C2 = φ(C2) are isomorphic.

Two structural invariants for binary codes are the rank and dimension of the
kernel. The rank of a binary code C, denoted by rC , is simply the dimension
of 〈C〉, which is the linear span of the codewords of C. The kernel of a binary
code C, denoted by K(C), is the set of vectors that leave C invariant under
translation, i.e. K(C) = {x ∈ Z

n
2 : C + x = C}. If C contains the all-zero

vector, then K(C) is a binary linear subcode of C. The dimension of the kernel
of C will be denoted by kC . These two invariants do not give a full classification
of binary codes, since two nonisomorphic binary codes could have the same rank
and dimension of the kernel. In spite of that, they can help in classification,
since if two binary codes have different ranks or dimensions of the kernel, they
are nonisomorphic.

It is well-known that an easy way to built the binary linear Reed-Muller family
of codes, denoted by RM , is using the Plotkin construction [11]. In [14],[15], Pujol
et al. introduced new quaternary Plotkin constructions to build new families of
quaternary linear Reed-Muller codes, denoted by RMs. The quaternary linear
Reed-Muller codes RMs(r, m) of length 2m−1, for m ≥ 1, 0 ≤ r ≤ m and
0 ≤ s ≤ 	m−1

2 
, in these new families satisfy that the corresponding Z4-linear
codes have the same parameters and properties (length, dimension, minimum
distance, inclusion and duality relationship) as the binary linear codes in the well-
known RM family. In the binary case, there is only one family. In contrast, in the
quaternary case, for each m there are 	m+1

2 
 families, which will be distinguished
using subindexes s from the set {0, . . . , 	m−1

2 
}.
The dimension of the kernel and rank have been studied for some families of

Z4-linear codes [2], [4], [5], [10], [12]. In the RM family, the RM(1, m) and
RM(m − 2, m) binary codes are a linear Hadamard and extended 1-perfect
code, respectively. Recall that a Hadamard code of length n = 2m is a binary
code with 2n codewords and minimum Hamming distance n/2, and an extended
1-perfect code of length n = 2m is a binary code with 2n−m codewords and
minimum Hamming distance 4. Equivalently, in the RMs families, the corre-
sponding Z4-linear code of any RMs(1, m) and RMs(m− 2, m) is a Hadamard
and extended 1-perfect code, respectively [14],[15]. For the corresponding Z4-
linear codes of RMs(1, m) and RMs(m − 2, m), the rank were studied and
computed in [5],[10].
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Specifically,

rH =
{

γ + 2δ if s = 0, 1
γ + 2δ +

(
δ−1
2

)
if s ≥ 2

and (1)

rP = γ̄ + 2δ̄ + δ = 2m−1 + δ̄ (except rP = 11, if m = 4 and s = 0), where
H = φ(RMs(1, m)) of type 2γ4δ and P = φ(RMs(m − 2, m)) of type 2γ̄4δ̄.

The dimension of the kernel was computed for all RMs(r, m) codes in [13].
The aim of this paper is the study of the rank for these codes, generalizing
the known results about the rank for the RMs(r, m) codes with r ∈ {0, 1, m−
2, m − 1, m} [5],[10]. The paper is organized as follows. In Section 2, we recall
some properties related to quaternary linear codes and the rank of these codes.
Moreover, we describe the construction of the RMs families of codes. In Sec-
tion 3, we establish the rank for all codes in the RMs families with s ∈ {0, 1}.
Furthermore, we establish the rank for the RMs(r, m) codes with r ∈ {2, m−3}.
In Section 4, we show that the rank allows us to classify the RMs(r, m) codes
with r ∈ {2, m− 3}. Finally, the conclusions are given in Section 5.

2 Preliminaries

2.1 Quaternary Linear Codes

Let C be a quaternary linear code of length n and type 2γ4δ. Although C is not
a free module, every codeword is uniquely expressible in the form

γ∑
i=1

λiui +
δ∑

j=1

μjvj ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, μj ∈ Z4 for 1 ≤ j ≤ δ and ui, vj are vectors in Z
n
4

of order two and four, respectively. The vectors ui, vj give us a generator matrix
G of size (γ + δ) × n for the code C. In [8], it was shown that any quaternary
linear code of type 2γ4δ is permutation equivalent to a quaternary linear code
with a canonical generator matrix of the form(

2T 2Iγ 0
S R Iδ

)
, (2)

where R, T are matrices over Z2 of size δ × γ and γ × (n − γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n − γ − δ).

The concepts of duality for quaternary linear codes were also studied in [8],
where the inner product for any two vectors u, v ∈ Z

n
4 is defined as u · v =∑n

i=1 uivi ∈ Z4. Then, the dual code of C, denoted by C⊥, is defined in the
standard way C⊥ = {v ∈ Z

n
4 : u · v = 0 for all u ∈ C}. The corresponding binary

code φ(C⊥) is denoted by C⊥ and called the Z4-dual code of C = φ(C). Moreover,
the dual code C⊥, which is also a quaternary linear code, is of type 2γ4n−γ−δ.

Let u ∗ v denote the component-wise product for any u, v ∈ Z
n
4 .

Lemma 1 ([6],[7]). Let C be a quaternary linear code of type 2γ4δ and let C =
φ(C) be the corresponding Z4-linear code. Let G be a generator matrix of C and let
{ui}γ

i=1 be the rows of order two and {vj}δ
j=0 the rows of order four in G. Then,

〈C〉 is generated by {φ(ui)}γ
i=1, {φ(vj), φ(2vj)}δ

j=1 and {φ(2vj ∗ vk)}1≤j<k≤δ .
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2.2 Quaternary Linear Reed-Muller Codes

Recall that a binary linear rth-order Reed-Muller code RM(r, m) with 0 ≤ r ≤
m and m ≥ 2 can be described using the Plotkin construction as follows [11]:

RM(r, m) = {(u|u + v) : u ∈ RM(r, m − 1), v ∈ RM(r − 1, m − 1)},
where RM(0, m) is the repetition code {0,1}, RM(m, m) is the universe code,
and ”|” denotes concatenation. For m = 1, there are only two codes: the repeti-
tion code RM(0, 1) and the universe code RM(1, 1). This RM family of codes

has length 2m, minimum distance 2m−r and dimension
r∑

i=0

(
m

i

)
. Moreover, the

code RM(r−1, m) is a subcode of RM(r, m) and the code RM(r, m) is the dual
code of RM(m − 1 − r, m) for 0 ≤ r < m.

In the recent literature [2],[3],[8],[16],[17] several families of quaternary linear
codes have been proposed and studied trying to generalize the RM family. How-
ever, when the corresponding Z4-linear codes are taken, they do not satisfy all
the same properties as the RM family. In [14],[15], new quaternary linear Reed-
Muller families, RMs, such that the corresponding Z4-linear codes have the
parameters and properties of RM family of codes, were proposed. The following
two constructions are necessary to generate these new RMs families.

Definition 2 (Plotkin Construction). Let A and B be two quaternary linear
codes of length n, types 2γA4δA and 2γB4δB , and minimum distances dA and
dB, respectively. A new quaternary linear code PC(A,B) is defined as

PC(A,B) = {(u|u + v) : u ∈ A, v ∈ B}.
It is easy to see that if GA and GB are generator matrices of A and B, respectively,
then the matrix

GPC =
(GA GA

0 GB

)

is a generator matrix of the code PC(A,B). Moreover, the code PC(A,B) is of
length 2n, type 2γA+γB4δA+δB , and minimum distance d = min{2dA, dB} [14],[15].

Definition 3 (BQ-Plotkin Construction). Let A, B, and C be three quater-
nary linear codes of length n; types 2γA4δA , 2γB4δB , and 2γC4δC ; and minimum
distances dA, dB, and dC, respectively. Let GA, GB, and GC be generator matrices
of the codes A, B, and C, respectively. A new code BQ(A,B, C) is defined as the
quaternary linear code generated by

GBQ =

⎛
⎜⎜⎝

GA GA GA GA
0 G′

B 2G′
B 3G′

B
0 0 ĜB ĜB
0 0 0 GC

⎞
⎟⎟⎠ ,

where G′
B is the matrix obtained from GB after switching twos by ones in their γB

rows of order two, and ĜB is the matrix obtained from GB after removing their
γB rows of order two.
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The code BQ(A,B, C) is of length 4n, type 2γA+γC4δA+γB+2δB+δC , and minimum
distance d = min{4dA, 2dB, dC} [14],[15].

Now, the quaternary linear Reed-Muller codes RMs(r, m) of length 2m−1,
for m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1

2 
, will be defined. For the recursive
construction it will be convenient to define them also for r < 0 and r > m. We
begin by considering the trivial cases. The code RMs(r, m) with r < 0 is defined
as the zero code. The code RMs(0, m) is defined as the repetition code with
only the all-zero and all-two vectors. The code RMs(r, m) with r ≥ m is defined
as the whole space Z

m−1
4 . For m = 1, there is only one family with s = 0, and

in this family there are only the zero, repetition and universe codes for r < 0,
r = 0 and r ≥ 1, respectively. In this case, the generator matrix of RM0(0, 1) is
G0(0,1) =

(
2
)

and the generator matrix of RM0(1, 1) is G0(1,1) =
(
1
)
.

For any m ≥ 2, given RMs(r, m − 1) and RMs(r − 1, m − 1) codes, where
0 ≤ s ≤ 	m−2

2 
, the RMs(r, m) code can be constructed in a recursive way
using the Plotkin construction given by Definition 2 as follows:

RMs(r, m) = PC(RMs(r, m − 1),RMs(r − 1, m − 1)).

For example, for m = 2, the generator matrices of RM0(r, 2), 0 ≤ r ≤ 2, are
the following:

G0(0,2) =
(
2 2

)
; G0(1,2) =

(
0 2
1 1

)
; G0(2,2) =

(
1 0
0 1

)
.

Note that when m is odd, the RMs family with s = m−1
2 can not be generated

using the Plotkin construction. In this case, for any m ≥ 3, m odd and s = m−1
2 ,

given RMs−1(r, m − 2), RMs−1(r − 1, m − 2) and RMs−1(r − 2, m − 2), the
RMs(r, m) code can be constructed using the BQ-Plotkin construction given
by Definition 3 as follows:

RMs(r, m) = BQ(RMs−1(r, m−2),RMs−1(r−1, m−2),RMs−1(r−2, m−2)).

For example, for m = 3, there are two families. The RM0 family can be gen-
erated using the Plotkin construction. On the other hand, the RM1 family has
to be generated using the BQ-Plotkin construction. The generator matrices of
RM1(r, 3), 0 ≤ r ≤ 3, are the following: G1(0,3) =

(
2 2 2 2

)
;

G1(1,3) =
(

1 1 1 1
0 1 2 3

)
; G1(2,3) =

⎛
⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 2

⎞
⎟⎟⎠ ; G1(3,3) =

⎛
⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Table 1 shows the type 2γ4δ of all these RMs(r, m) codes for m ≤ 10.
The following proposition summarizes the parameters and properties of these

RMs families of codes.

Proposition 4 ([14],[15]). A quaternary linear Reed-Muller code RMs(r, m),
with m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1

2 
, has the following parameters and
properties:
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1. the length is n = 2m−1;
2. the minimum distance is d = 2m−r;

3. the number of codewords is 2k, where k =
r∑

i=0

(
m

i

)
;

4. the code RMs(r − 1, m) is a subcode of RMs(r, m) for 0 ≤ r ≤ m;
5. the codes RMs(1, m) and RMs(m−2, m), after the Gray map, are Z4-linear

Hadamard and Z4-linear extended perfect codes, respectively;
6. the code RMs(r, m) is the dual code of RMs(m−1−r, m) for −1 ≤ r ≤ m.

3 Rank for Some Infinite Families of RMs(r, m) Codes

In this section, we will compute the rank for some infinite families of the qua-
ternary linear Reed-Muller codes RMs(r, m). The rank of RMs(r, m) will be
denoted by rs(r,m) instead of rRMs(r,m).

First of all, we will recall the result that gives us which of the RMs(r, m) codes
are binary liner codes after the Gray map. Note that if we have a quaternary
linear code of type 2γ4δ which is a binary linear code after the Gray map, we
can compute the rank as γ + 2δ [6],[7].

Proposition 5 ([13]). For all m ≥ 1, the corresponding Z4-linear code of the
RMs(r, m) code is a binary linear code if and only if

⎧⎨
⎩

s = 0 and r ∈ {0, 1, 2, m− 1, m},
s = 1 and r ∈ {0, 1, m− 1, m},
s ≥ 2 and r ∈ {0, m− 1, m}.

Now, we will give an expression for the parameters γ and δ of a quaternary linear
Reed-Muller code RMs(r, m) of type 2γ4δ, depending on s, r and m.

Lemma 6. Let C be a quaternary linear Reed-Muller code RMs(r, m) of type
2γ4δ. Then, for s ≥ 0, m ≥ 2s + 1 and 0 ≤ r ≤ m,

γ =
� r

2 �∑
i=0

(
m − 2s − 1

r − 2i

)(
s

i

)
and δ =

1
2

r∑
i=0

(
m

i

)
− γ

2
.

The next proposition gives us an important result for these quaternary linear
Reed-Muller codes. In some cases, we obtain two codes with the same rank, but
different s. We will prove that these codes are equal. This proposition will be
used for the classification of some of the RMs(r, m) codes in Section 4, and it
will also be used to calculate the rank of these codes as exceptions.

Proposition 7. Given two codes RMs(r, m) and RMs−1(r, m) of type 2γ4δ

and 2γ′
4δ′

, respectively, such that m ≥ 3 is odd, r ≥ 2 is even, and s = m−1
2 ,

then RMs(r, m) = RMs−1(r, m).
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Proof. The generator matrix Gs−1(r,m) of RMs−1(r, m) is obtained using the
Plotkin construction from RMs−1(r−1, m−1) and RMs−1(r, m−1). Further-
more, the generator matrices of RMs−1(r−1, m−1) and RMs−1(r, m−1) can
be obtained using Plotkin construction again from codes with m − 2 value. So
we can write the generator matrix Gs−1(r,m) as follows:

Gs−1(r,m) =

⎛
⎜⎜⎝

Gs−1(r,m−2) Gs−1(r,m−2) Gs−1(r,m−2) Gs−1(r,m−2)

0 Gs−1(r−1,m−2) 0 Gs−1(r−1,m−2)

0 0 Gs−1(r−1,m−2) Gs−1(r−1,m−2)

0 0 0 Gs−1(r−2,m−2)

⎞
⎟⎟⎠ .

The generator matrix Gs(r,m) of RMs(r, m) can be obtained using the BQ-
Plotkin construction given by Definition 3. Since r is even and m is odd, r − 1
and m− 2 are odd. In this case any RMs−1(r− 1, m− 2) code, where s = m−1

2 ,
is of type 204δ′′

. This result can be proved by induction on m and using the BQ-
Plotkin construction. Since Gs−1(r−1,m−2) is of type 204δ′′

, then G′
s−1(r−1,m−2) =

Gs−1(r−1,m−2) and Ĝs−1(r−1,m−2) = Gs−1(r−1,m−2). It is easy to find a linear
combination of rows that transforms the matrix Gs−1(r,m) into the matrix Gs(r,m).

Now, we will give a recursive way to compute the rank for all Reed-Muller codes
in the RM0 and RM1 families. Note that the first binary nonlinear code is
RM0(3, 5). Thus, for m < 5 the rank is γ + 2δ.

Proposition 8. Let C be a quaternary linear Reed-Muller code RM0(r, m). The
rank of C for m ≥ 5 is

r0(r,m) = r0(r,m−1) + r0(r−1,m−1) +
{

0 if r ∈ {0, 1, 2, m− 1, m}(
m−2
2r−3

)
if r ∈ {3, . . . , m − 2}

Proposition 9. Let C be a quaternary linear Reed-Muller code RM1(r, m). The
rank of C for m ≥ 5 is

r1(r,m) = r1(r,m−1) + r1(r−1,m−1) +

⎧⎨
⎩

0 if r ∈ {0, 1, m− 1, m}
m − 2 if r = 2
2
(

m−1
2r−3

)
if r ∈ {3, . . . , m − 2}.

The next proposition gives the rank for all quaternary linear Reed-Muller codes
with r ∈ {0, 1, m− 3, m − 2, m− 1, m} and any s.

Proposition 10. Let RMs(r, m) be a quaternary linear Reed-Muller code of
type 2γ4δ. The rank of RMs(r, m) can be computed as

rs(r,m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ + 2δ if r ∈ {0, m− 1, m}
γ + 2δ if r = 1 and s ∈ {0, 1}
γ + 2δ +

(
δ−1
2

)
if r = 1 and s ≥ 2

2m−1 + δ if r = m − 3 and m > 6
2m−1 + δ if r = m − 2 and m > 4.
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Finally, the next proposition gives a recursive way to compute the rank of all
quaternary linear Reed-Muller codes with r = 2 and any s.

Proposition 11. Let RMs(2, m) be a quaternary linear Reed-Muller code of
type 2γ4δ. The rank of RMs(2, m) can be computed as

rs(2,m) = rs(2,m−1) + rs(1,m−1) + 2s +
(

s + 1
2

)
(m − s − 3),

except when m is odd and s = m−1
2 , since the rank is rs(2,m) = rs−1(2,m).

When m is odd and s = m−1
2 , by Proposition 7, the codes RMs(2, m) and

RMs−1(2, m) are equals. Thus, the rank is also the same. Note that, for s = 0
and r = 2, we have a binary linear code and the rank is γ + 2δ.

4 Classification of Some Families of RMs(r, m) Codes

In this section, we will show that this invariant, the rank, will allow us to clas-
sify these RMs(r, m) codes in some cases depending on the parameter r. This
classification was given for r = 1 and r = m − 2 [5], [10]. Now, we will extend
this result for r = 2 and r = m− 3. We are close to generalize this result for all
0 ≤ r ≤ m, but it is not easy to obtain a general form to compute the rank for
all quaternary linear Reed-Muller codes RMs(r, m).

Table 1 shows the type 2γ4δ and the rank of all these RMs(r, m) codes
for m ≤ 10. In these examples, you can see that the rank is always different,
except for the codes quoted in Proposition 7. If two codes have different rank,
we can say that they are nonisomorphic. The next theorem proves that for a
given m ≥ 4, and r ∈ {2, m− 3}2, the RMs(r, m) codes have different rank, so
they are nonisomorphic. In some cases, there is an exception, but we know by
Proposition 7 that the codes are equal.

Theorem 12. For all m ≥ 4 and r ∈ {2, m−3}, there are at least 	m+1
2 
 noni-

somorphic binary codes with the same parameters as the code RM(r, m), except
when m is odd, and r is even. In this case, there are at least m−1

2 nonisomorphic
binary codes with the same parameters as the code RM(r, m).

Proof. By Proposition 11, we know that rs(2,m) = rs(2,m−1) + rs(1,m−1) + 2s +(
s+1
2

)
(m − s − 3). If r = 1, the code is Hadamard and rs(1,m−1) increases or

is equal to, depending on s. For m ≥ 4 the expression 2s +
(
s+1
2

)
(m − s − 3)

also increases, depending on s. We can suppose that rs(2,m−1) is crescent on s
for m = 4 and proceed by induction on m. Therefore, rs(2,m) is different for
every s, except when m is odd, where we have two codes with the same rank.
By Proposition 7, these two codes are equal.

By Proposition 10, we know that rs(m−3,m) = 2m−1 + δ. In Proposition 6, we
can see a way to compute γ. Since r = m − 3, then the value of γ is decreasing
on s. Thus, δ is crescent and the rank is also crescent, depending on s. When
m is odd and r is even, we have again the case of two equal codes, solved in
Proposition 7.



Rank for Some Families of Quaternary Reed-Muller Codes 51

Table 1. Type 2γ4δ and rank rs(r,m) for all RMs(r,m) codes with m ≤ 10 and
r ∈ {0, 1, 2, 3}, showing them in the form (γ, δ) rs(r,m)

m ���s
r 0 1 2 m − 3 m − 2 m − 1 m

1 0 (1,0) 1 (0,1) 2 (1,0) 1 (0,1) 2
2 0 (1,0) 1 (1,1) 3 (0,2) 4 (1,0) 1 (1,1) 3 (0,2) 4

3 0 (1,0) 1 (2,1) 4 (1,3) 7 (1,0) 1 (2,1) 4 (1,3) 7 (0,4) 8
1 (1,0) 1 (0,2) 4 (1,3) 7 (1,0) 1 (0,2) 4 (1,3) 7 (0,4) 8

4 0 (1,0) 1 (3,1) 5 (3,4) 11 (3,1) 5 (3,4) 11 (1,7) 15 (0,8) 16
1 (1,0) 1 (1,2) 5 (1,5) 13 (1,2) 5 (1,5) 13 (1,7) 15 (0,8) 16

5
0 (1,0) 1 (4,1) 6 (6,5) 16 (6,5) 16 (4,11) 27 (1,15) 31 (0,16) 32
1 (1,0) 1 (2,2) 6 (2,7) 21 (2,7) 21 (2,12) 28 (1,15) 31 (0,16) 32
2 (1,0) 1 (0,3) 7 (2,7) 21 (2,7) 21 (0,13) 29 (1,15) 31 (0,16) 32

6
0 (1,0) 1 (5,1) 7 (10,6) 22 (. . . ) (10,16) 47 (5,26) 58 (1,31) 63 (0,32) 64
1 (1,0) 1 (3,2) 7 (4,9) 31 (. . . ) (4,19) 51 (3,27) 59 (1,31) 63 (0,32) 64
2 (1,0) 1 (1,3) 8 (2,10) 35 (. . . ) (2,20) 52 (1,28) 60 (1,31) 63 (0,32) 64

7

0 (1,0) 1 (6,1) 8 (15,7) 29 (. . . ) (15,42) 106 (6,57) 121 (1,63) 127 (0,64) 128
1 (1,0) 1 (4,2) 8 (7,11) 43 (. . . ) (7,46) 110 (4,58) 122 (1,63) 127 (0,64) 128
2 (1,0) 1 (2,3) 9 (3,13) 53 (. . . ) (3,48) 112 (2,59) 123 (1,63) 127 (0,64) 128
3 (1,0) 1 (0,4) 11 (3,13) 53 (. . . ) (3,48) 112 (0,60) 124 (1,63) 127 (0,64) 128

8

0 (1,0) 1 (7,1) 9 (21,8) 37 (. . . ) (21, 99) 227 (7,120) 248 (1,127) 255 ( 0,128) 256
1 (1,0) 1 (5,2) 9 (11,13) 57 (. . . ) (11,104) 232 (5,121) 249 (1,127) 255 ( 0,128) 256
2 (1,0) 1 (3,3) 10 (5,16) 75 (. . . ) (5,107) 235 (3,122) 250 (1,127) 255 ( 0,128) 256
3 (1,0) 1 (1,4) 12 (3,17) 82 (. . . ) (3,108) 236 (1,123) 251 (1,127) 255 ( 0,128) 256

9

0 (1,0) 1 (8,1) 10 (28,9) 46 (. . . ) (28,219) 475 (8,247) 503 (1,255) 511 (0,256) 512
1 (1,0) 1 (6,2) 10 (16,15) 73 (. . . ) (16,225) 481 (6,248) 504 (1,255) 511 (0,256) 512
2 (1,0) 1 (4,3) 11 (8,19) 101 (. . . ) (8,229) 485 (4,249) 505 (1,255) 511 (0,256) 512
3 (1,0) 1 (2,4) 13 (4,21) 118 (. . . ) (4,231) 487 (2,250) 506 (1,255) 511 (0,256) 512
3 (1,0) 1 (0,5) 16 (4,21) 118 (. . . ) (4,231) 487 (0,251) 507 (1,255) 511 (0,256) 512

10

0 (1,0) 1 (7,1) 11 (36,10) 56 (. . . ) (36,466) 978 (9,502) 1014 (1,511) 1023 (0,512) 1024
1 (1,0) 1 (5,2) 11 (22,17) 91 (. . . ) (22,473) 985 (7,503) 1015 (1,511) 1023 (0,512) 1024
2 (1,0) 1 (3,3) 12 (12,22) 131 (. . . ) (12,478) 990 (5,504) 1016 (1,511) 1023 (0,512) 1024
3 (1,0) 1 (1,4) 14 (6,25) 161 (. . . ) ( 6,481) 993 (3,505) 1017 (1,511) 1023 (0,512) 1024
3 (1,0) 1 (1,5) 17 (4,26) 172 (. . . ) ( 4,482) 994 (1,506) 1018 (1,511) 1023 (0,512) 1024

5 Conclusions

In a recent paper [15], new families of quaternary linear codes, the RMs(r, m)
codes, are constructed in such a way that, after the Gray map, the Z4-linear
codes fulfill the same properties and fundamental characteristics as the binary
linear Reed-Muller codes. In this paper, a structural invariant for binary codes,
the rank, is used to classify some of these new families of codes. Specifically, we
classified the RMs(r, m) codes with r ∈ {2, m− 3}. The RMs(r, m) codes with
r ∈ {0, 1, m − 2, m − 1, m} were already classified using the rank [5],[10]. As a
future research, it would be interesting to compute the rank for the RMs(r, m)
codes with r ∈ {3, . . . , m − 4} and s ≥ 2, in order to see whether it is possible
to obtain a full classification of all these RMs(r, m) codes using this invariant.

In this paper, we also proved that, when m is odd, m ≥ 5, and r is even, there
are two codes with the same rank, because these two codes are equal. Moreover,
we also computed the rank for all codes in the RM0 and RM1 families.
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Abstract. We characterize optimal bipartite expander graphs and give
necessary and sufficient conditions for optimality. We determine the ex-
pansion parameters of the BIBD graphs and show that they yield optimal
expander graphs that are also bipartite Ramanujan graphs. In particu-
lar, we show that the bipartite graphs derived from finite projective and
affine geometries yield optimal Ramanujan graphs. This in turn leads to a
theoretical explanation of the good performance of a class of LDPC codes.

Keywords: Bipartite graphs, expander graphs, eigenvalues of graphs,
Ramanujan graphs, BIBD, finite geometries, LDPC and expander codes.

1 Introduction

An expander graph is a highly connected “sparse” graph (see, for example [51]).
Expander graphs have numerous applications including those in communication
science, computer science (especially complexity theory), network design, cryp-
tography, combinatorics and pure mathematics (see the books and articles in
the Bibliography).

Expander graphs have played a prominent role in recent developments in cod-
ing theory (LDPC codes, expander codes, linear time encodable and decodable
codes, codes attaining the Zyablov bound with low complexity of decoding)

(see [55], [53], [54], [48], [57], [58], [38] [8],[27], [26], [4], [13], and others).
We shall consider graphs X = (V, E), where V is the set of vertices and E is

the set of edges of X . We will assume that the graph is undirected and connected
and we shall only consider finite graphs. For F ⊂ V , the boundary ∂F is the set of
edges connecting F to V \F . The expanding constant, or isoperimetric constant
of X is defined as,

h(X ) = min
∅�=F⊂V

|∂F |
min{|F |, |V \ F |}

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 53–64, 2009.
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If X is viewed as the graph of a communication network, then h(X ) measures
the “quality” of the network as a transmission network. In all applications, the
larger the h(X ) the better, so we seek graphs (or families of graphs) with h(X )
as large as possible with some fixed parameters.

It is well-known that the expansion properties of a graph are closely related
to the eigenvalues of the adjacency matrix A of the graph X = (V, E); it is
indexed by pairs of vertices x, y of X and Axy is the number of edges between x
and y. When X has n vertices, A has n real eigenvalues, repeated according to
multiplicities that we list in decreasing order

μ0 ≥ μ1 ≥ . . . ≥ μn−1

It is also known that if X is D-regular, i.e. all vertices have degree D, then
μ0 = D and if morover the graph is connected μ1 < D. Also X is bipartite if
and only if −μ0 is an eigenvalue of A. We recall the following

Theorem 1. Let X be a finite, connected , D-regular graph then

(D − μ1)/2 ≤ h(X ) ≤
√

2D(D − μ1)

and

Theorem 2. Let (Xm)m≥1 be a family of finite connected, D-regular graphs with
|Vm| → +∞ as m → ∞. Then

lim inf
N→∞

μ1(Xm) ≥ 2
√

D − 1.

This leads to the following

Definition 1. A finite connected, D-regular graph X is Ramanujan if, for every
eigenvalue μ of A other than ±D, one has

μ ≤ 2
√

D − 1.

We will also need

Definition 2 (Bipartite Ramanujan Graphs). Let X be a (c, d)-regular bi-
partite graph. Then X is called a Ramanujan graph if μ1(X ) ≤ √

c − 1+
√

d − 1.

In this article, we address the optimality of expander graphs and the property
of being Ramanujan for:

A D-regular graphs;
B (c, d)-regular bipartite graphs;
C Irregular bipartite graphs.

We also show that the bipartite graphs of Balanced Incomplete Block Designs
yield optimal Ramanujan graphs (meaning that we have equality in definition 1).
Furthermore, we show that the bipartite graphs derived from finite projective
and affine geometries (PG/EG) also yield optimal Ramanujan graphs.
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2 Optimal Expander Graphs and Balanced Incomplete
Block Designs

Unless otherwise specified, for background on block designs, we follow Hall [14].

Definition 3. A balanced incomplete block design (BIBD) D with parameters
(v, b, r, k, λ) is an incidence structure with a set V of v distinct varieties (or
objects) denoted a1, · · · , av and a set B of b distinct blocks denoted B1, · · · , Bb,
such that each of the b blocks is incident with k varieties, and each of the v
varieties is incident with r blocks, and every pair of varieties is incident with
precisely λ blocks. The design is called symmetric if b = v and its parameters
are denoted by (v, k, r).

Proposition 1. For a (BIBD) D with parameters (v, b, r, k, λ),

1. b · k = v · r
2. r(k − 1) = λ(v − 1)

Remark 1. For a BIBD, Fisher’s inequality implies that b ≥ v and hence r ≥ k
and for symmetric designs b = v, and r = k. Furthermore, in any (v, k, r)
symmetric block design, every pair of blocks is incident with precisely λ varieties,
and if v is even then k − λ is a square.

Definition 4. A BIBD can be described by a v× b incidence matrix H := (hij),
where for 1 ≤ i ≤ v and 1 ≤ j ≤ b, hij = 1 if ai is incident with Bj, and hij := 0
else.

Then D is a block design if and only if the following system of equations hold.

B := HHT = (r − λ)I + λJv (1v)T H = k1b (1)

where Jv is the v×v all 1’s matrix, and 1v and 1b are all 1’s vectors of appropriate
lengths.

2.1 The Bipartite Graph of a BIBD

Definition 5. Let D be a BIBD. The bipartite graph XD has left set of vertices
V and right set of vertices B and the adjacency of the left and right vertices is
defined by the incidence structure of the design.

It is clear that the left vertices of XD all have degree r and the right vertices
all have degree k so the graph is what is called (r, k)-regular. In the symmetric
case all vertices have degree r so the graph is r-regular.

The adjacency matrix of the bipartite graph XD is then,

A =
[

0 H
HT 0

]
(2)

We will from the following proposition from [18] determine the eigenvalues of A.
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Proposition 2. Let M be a Hermitian matrix.

1. M is diagonalizable by a Unitary matrix.
2. The geometric multiplicity of an eigenvalue of M equals its algebraic multi-

plicity.
3. All the eigenvalues of M are real.
4. If PM (x) =

∏l
i=1(x − λi)mi is the characteristic polynomial of M with dis-

tinct real eigenvalues λi with algebraic multiplicities mi, then the minimal
polynomial of M is mM (x) =

∏l
i=1(x − λi)

With notations as above we can now prove

Lemma 1. 1. The characteristic and minimal polynomials of B = HHT are
PB(x) = (x − r · k)(x − (r − λ))v−1,
mB(x) = (x − r · k)(x − (r − λ)).

2. The characteristic and minimal polynomials of C = HT H are,
PC(x) = xb−v(x − r · k)(x − (r − λ))v−1,
mC(x) = x(x − r · k)(x − (r − λ)).

Proof. The matrix Jv has eigenvalue v with multiplicity 1 and corresponding
eigenvector 1v, and eigenvalue 0 with multiplicity (v − 1) with eigenspace W =
{Y |Y ⊥ 1v}. And all eigenvectors are also eigenvectors of I. From the relation
1, we conclude that r · k is an eigenvalue of B with eigenvector 1v, and (r − λ)
with eigenspace W , and hence multiplicity (v − 1). Therefore, PB(X) = (x −
r · k)(x − (r − λ))v−1. Since B is a symmetric matrix, from Proposition 2, we
have mB(x) = (x − r · k)(x − (r − λ)).

Since HHT and HT H have the same nonzero eigenvalues with the same
multiplicities ([11] p.186 ) we get

PC(x) = xb−v(x − r · k)(x − (r − λ))v−1,

and from Propostion 2 mC(x) = x(x − r · k)(x − (r − λ)). Q.E.D.

This in turn leads to

Theorem 3. The adjacency matrix of the A of the bipartite graph XD of a
(v, b, r, k, λ) BIBD has characteristic polynomial PA(x) = (x−√

k · r)(x+
√

k · r)
(x − √

r − λ)v−1(x +
√

r − λ)v−1xb−v, and minimal polynomial mA(x) = (x −√
k · r)(x+

√
k · r)(x−√

r − λ)(x+
√

r − λ)x. In particular, the eigenvalues are√
k · r with multiplicity 1,

√
r − λ with multiplicity v−1, 0 with multiplicity b−v,

−√
r − λ with multiplicity v − 1, and −√

k · r with multiplicity 1.

Proof. First

AAT = A2 =
[
HHT 0

0 HT H

]
(3)

Therefore, the characteristic polynomial PA2(x) = PB(x)PC(x). Therefore, from
Lemma 1, PA2(x) = (x − r · k)2(x − (r − λ))2(v−1)xb−v. It is clear that

PA2(x2) = PA(x)PA(−x) and since the graph is bipartite we have PA(−x) =
(−1)v+bPA(x) ( [11] p. 31) and hence
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(−1)v+b(PA(x))2 = PA2(x2) = (x2 − r · k)2(x2 − (r − λ))2(v−1)x2(b−v)

so we have
PA(x) = ±(x2 − r · k)(x2 − (r − λ))v−1xb−v (4)

and the theorem follows directly. Q.E.D.

Theorem 4. (I) The bipartite graph XD of a (v, b, r, k, λ) BIBD is a (r, k)-
regular bipartite Ramanujan graph with μ1 =

√
r − λ.

(II) The r-regular graph of a symmetric BIBD is an r-regular bipartite Ramanu-
jan graph with μ1 =

√
r − λ.

Proof. The proofs of (I) and (II) follow from Theorem 1 by applying the
definition of Ramanujan graphs and following the inequalities. Q.E.D.

We also will show that the bipartite graph of a BIBD is an optimal expander
graph for its parameters.

3 Characterization of Optimal Bipartite (c, d) Regular
Expander Graphs

We recall that a matrix A with rows and columns indexed by a set X is called
irreducible when it is not possible to find a proper subset of X so that A(x, y) = 0
whenever x ∈ S and y ∈ X \ S. Equivalently, A is not irreducible if and only if
it is possible to apply a simultaneous row and column permutation a matrix in
a square block form so that one of the blocks is a zero block. For the following
Lemma, see for example ([18] p. 363).

Lemma 2. Let D be a finite graph. Then the adjacency matrix of A is irreducible
if and only if D is connected.

We shall also need

Proposition 3 (Perron-Frobenius). Let A be an irreducible non-negative
matrix. Then, there is up to scalar multiples, a unique non-negative eigenvec-
tor a := (a1, a2, · · · , an) all of whose coordinates ai are strictly positive. The
corresponding eigenvalue μ0 (called the dominant eigenvalue of A has algebraic
multiplicity 1 and μ0 ≥ μi for any eigenvalue μi of A.

We recall the following special case of Courant-Fisher Theorem (called the
Raleigh-Ritz Theorem) (see for example, ([18], Theorem 4.2.2))

Theorem 5. Let A be an n×n Hermitian matrix over the complex field C, then
it is known that all its eigenvalues are real, with maximum eigenvalue μmax.
For 0 
= X ∈ Cn, define the Raleigh quotient RX := X∗T AX

X∗T X
. Then μmax =

maxX �=0 RX . Furthermore, RX ≤ μmax with equality if and only if X is an
eigenvector corresponding to the eigenvalue μmax.
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Definition 6. Let X be a bipartite graph with average left degrees c and average
right degree d. Define v := |E|/c and b := |E|/d. Let μ1 := maxγ{|γ||γ 
= μmax},
where the maximization is over the eigenvalues of X , and μmax is the maximum
eigenvalue of the adjancency matrix of X .

Theorem 6. Let X be a connected bipartite graph with average left degrees c

and average right degree d and maximum eigenvalue μmax. Then
√

cd ≤ μmax

with equality if and only is X is a (c, d)-regular bipartite graph.

Proof. If X is a (c, d)-regular bipartite graph, with adjancy matrix

A =
[

0 H
HT 0

]

then it is easy to see that [1, 1, . . . , 1, τ, . . . , τ ] where τ =
√

d
c is an eigenvec-

tor corresponding to the eigenvalue
√

cd and then the inequality and equal-
ity follow from the Perron-Frobenius theorem (3). Conversely, assume that X
is a connected bipartite graph on v left vertices of average degree c and b
right vertices of average degree d and maximum eigenvalue μmax. Define Z :=

[1, 1, · · · , 1, τ, · · · , τ ]T , in which the first v component are 1, and where τ :=
√

d
c .

Then one can see that RZ =
√

cd and therefore
√

cd ≤ μmax. If we have
equality then RZ = μmax, and from the Courant-Fisher Theorem Z is an eigen-
vector corresponding to the maximal eigenvalue RZ . Therefore, AZ = μmaxZ.
By assumption, then AZ =

√
cdZ.

By solving the simultaneous equations, we get that cvi = c for every left
vertex vi, and dbj = d for every right vertex bj. Consequently, X is a (c, d)
regular graph. Q.E.D.

Theorem 7. Let X be a connected graph such that both ±μmax are eigenvalues
(i.e. it is a bipartite with say v left vertices and b right vertices). Suppose that

(
1
2v

∑

μi

μi
2

)

·
(

1
2b

∑

μi

μi
2

)

= μ2
max.

Then X is a (c, d)-regular graph, where c := |E|/v and d := |E|/b

Proof. By definition of the adjacency matrix, Trace(AAT ) = 2|E|. But Trace
(AAT ) =

∑
μi

μi
2 Since, c := |E|/v and d = |E|/b, by assumption we get

cd = μ2
max and therefore by Theorem 6, X is a (c, d) regular graph with c := |E|/v

and d := |E|/b. Q.E.D.

Theorem 8. Suppose that X is a bipartite graph with v left vertices and b right
vertices where b ≥ v ≥ 2. Suppose the eigenvalues are ±α with multiplicity 1,
±β with multiplicity (v − 1), 0 with multiplicity (b − v) (and α > β > 0). If

α2 + (v − 1)β2 = α2bv
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then X is the graph of a balanced incomplete block design with parameters (b, v, r,
k, λ), where
r = α2+(v−1)β2

b , k = α2+(v−1)β2

v and λ =
√

r − β2.

Proof. With r and k as above we have that r = |E|
v is the avearge degree of

the left vertices and k = |E|
b is the average degree of the right vertices. But then

by the condition we get
√

rk = α so by Theorem 7, X is a bipartite (r, k)-regular
graph.

Let X = [
√

r,
√

r, · · · ,√r,
√

k,
√

k, · · · ,√k], where the multiplicity of
√

r is v,
and

√
k is b.

Then we can verify that AX =
√

r · kX .
Therefore,

AT AX =
√

r · kAX = (rk)X (5)

Let A =
[

0 H
HT 0

]
. Then AAT = A2 =

[
HHT 0

0 HT H

]
.

Let B = HHT , where H is the left-right incidence matrix of the bipartite
graph, and let Q = HT H .

Hence, from the definition of H , we can confirm that BY = r · kY, where
Y = [

√
r,
√

r, · · · ,√r]T . Consequently Z = [1, 1, · · · , 1]T is an eigenvector
corresponding to the eigenvalue r · k.

Then by ([11] p.186), B has eigenvalues α = r · k with multiplicity 1, β with
multiplicity (v − 1).

Therefore, the minimal polynomial of B is mB(x) = (x−α)q(x), where q(x) =
(x−β). (Since B is real symmetric, it is diagonalizable by an orthonormal basis,
and therefore its minimal polynomial is composed of distinct factors).

Substituting B for X , we have Bq(B) = r · kq(B). Since α is a simple eigen-
value of B with eigenvector Z, q(B) has columns that are multiples of Z. However
q(B) is symmetric, as B is symmetric, we conclude that all the column multiples
are the same scalar c, i.e.

q(B) = cJ,

where J is the v × v matrix of all 1’s. Hence B − β2Iv = B − (r − λ)Iv = c · J .
Hence, B = (r − λ)Iv + c · Jv.

By taking Trace both sides, and since Trace(B) = Trace(HHT ) = rv, we
conclude that c = λ. Hence

B = HHT = (r − λ)I + λJ,

and 1vH = k.1b since the graph is a bipartite graph. Therefore, H is the incidence
matrix of a (v, b, r, k, λ) BIBD. Q.E.D.

3.1 Bounds on the Eigenvalues of Irregular Bipartite Graphs

Theorem 9. Let X be a connected bipartite graph with average left degree c and
average right degree d. Let v := |E|/c and b := |E|/d (we assume b ≥ v) and
maximum eigenvalue μmax. Then
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μ1 ≥
( |E| − μ2

max

v − 1

)1/2

with equality if and only if the eigenvalues are ±μmax (with multiplicity 1), ±μ1

(with multiplicity (v − 1), and 0 with multiplicity b − v.

Proof. Since X is a connected bipartite graph, the set of eigenvalues is S(X ) :=
{±μmax,±μ1,±μ2,± · · · ± μN−1, 0} with 2N non-zero eigenvalues, where the
absolute values are in decreasing order.

Since AAT = A2 =
[

HHT 0
0 HT H

]

we get by taking the trace, Trace(A2) = Trace(HHT ) + Trace(HT H) = vc +
b · d = |E| + |E| = 2|E|. Therefore, 2|E| = Trace(A2) = 2μmax

2 + 2μ1
2 +

2
∑N−1

i=2 [μ2
i ≤ 2μmax

2 + 2(N − 1)μ1
2 . Hence

μ1 ≥
( |E| − μ2

max

N − 1

)1/2

≥
( |E| − μ2

max

v − 1

)1/2

where the last inequality follows from the fact that N ≤ v. It is clear that
equality occurs if and only if the eigenvalues are ±μmax with multiplicity 1, ±μ1

with multiplicity (v − 1), and 0 with multiplicity b − v.
Q.E.D.

Corollary 1. Let X be a connected (c, d)-regular bipartite graph. Define v :=
|E|/c and b := |E|/d. Then μmax =

√
c · d, and

μ1 ≥
( |E| − μ2

max

v − 1

)1/2

with equality if the eigenvalues are ±μmax (with multiplicity 1), ±μ1 (with mul-
tiplicity (v − 1)), and 0 with multiplicity b − v.

We can now derive the central theorem in this paper:

Theorem 10. The bipartite graph XD of a (v, b, r, k, λ) BIBD is a (r, k)-regular
bipartite Ramanujan graph with μ1(X) =

√
r − λ, and it is optimal expander

graph with these parameters.

4 Optimal Ramanujan Graphs from Finite Geometries

In this we consider special type of BIBD that are highly structured, namely
those coming from Finite Affine and Projective Geometries. The corresponding
class of bipartite graphs from PG(n, IFq) and EG(n, IFq) coming from subspaces,
yield us, by way of Theorem 12 optimal bipartite expander graphs. The class
has been used to construct good LDPC codes ( [38], [39] , [40]) and our results
on the eigenvalues and hence the expansion coefficient give a partial theoretical
explanation of the good performance of these codes.
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4.1 Optimal Bipartite Ramanujan Graphs of Projective Geometries

Let IFq be the finite field with q = pm elements. Let n ≥ 2 be an integer, and
let s be an integer such that 1 ≤ s ≤ n − 1.

We consider the incidence structure X (n, s, q) = (V,B), where V = the points
of the n-dimensional projective geometry PG(n, q), and B = {S| dim S =
s and S a subspace of PG(n, q)}.

Proposition 4 (Hall [14]). The graph of the incidence structure X (n, s, q) is a
bipartite graph of a (v, b, r, k, λ) BIBD with parameters b =
(qn+1−1)(qn+1−q)···(qn+1−qs)
(qs+1−1)(qs+1−q)···(qs+1−qs) , v = (qn+1−1)

(q−1) , k = (qs+1−1)
(q−1) , r = (qn−1)···(qn−qs−1)

(qs−1)···(qs−qs−1) ,

λ = (qn+1−q2)···(qn+1−qs)
(qs+1−q2)···(qs+1−qs) .

Theorem 11. The bipartite graph X (n, s, q) is a (r, k)-regular bipartite Ra-
manujan graph with μ1(X) =

√
r − λ, and it is optimal expander graph with

these parameters.

4.2 Optimal Bipartite Ramanujan Graphs of Affine Geometries

Let IFq be the finite field with q = pm elements. Let n ≥ 2 be an integer, and
let s be an integer such that 1 ≤ s ≤ n − 1.

We consider the incidence structure Y(n, s, q) = (V,B), where V = the
points of the n-dimensional affine geometry EG(n, q), and B = {S| dim S =
s and S a subspace of EG(n, q)}.

Proposition 5 (Hall [14]). The graph of the incidence structure Y(n, s, q) is a
bipartite graph of a (v, b, r, k, λ) BIBD with parameters b =
qn(qn−1)(qn−q)···(qn+1−qs−1)
qs(qs−1)(qs+1−q)···(qs−qs−1) , v = qn, b = (qn−1)(qn−q)···(qn+1−qs−1)

(qs−1)(qs+1−q)···(qs−qs−1) , k = qs, λ =
(qn−q2)···(qn−qs−1)
(qs−q)···(qs+1−qs−1) .

Theorem 12. The bipartite graph Y(n, s, q) is a (r, k)-regular bipartite Ra-
manujan graph with μ1(X) =

√
r − λ, and it is optimal expander graph with

these parameters.

5 Conclusion

In this article we have considered a special type of expander graphs coming from
balanced incomplete block designs, in particular from finite geometries. We have
shown that these yield optimal Ramanujan graphs.

In a forthcoming paper, Janwa and Høholdt [17], we study the expander codes
and LDPC codes that are derived from BIBD and codes based on finite affine
and projective geometric based bipartite graph and provide theoretical bounds
on their parameters such as distance and rate, and derive some excellent codes.
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Abstract. Using stratified sampling a desired confidence level and a
specified margin of error can be achieved with smaller sample size than
under standard sampling. We apply stratified sampling to the simulation
of the sum-product algorithm on a binary low-density parity-check code.
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1 Introduction

One of the mysterious aspects of decoding low-density parity-check codes with
the sum-product algorithm is the error floor appearing in the performance curve.
As is now well known, the performance of the SPA, measured in either bit-error-
rate or word-error-rate as a function of the signal-to-noise ratio, tends to have two
regions: a “waterfall” portion, where the curve descends ever more steeply until
it reaches the second region, the “error floor,” where the curve flattens out con-
siderably. The change in descent has been attrributed to “near-codewords” [4],
also called trapping sets [5]. The error floor for ensembles of codes using erasure
decoding and also maximum a posteriori (MAP) decoding are analyzed with
sophisticated probabilistic techniques in [6, 3.24,4.14]. The analysis of the error
floor for the SPA appears to be quite challenging. In particular, for individual
codes, “the error floor does not concentrate [to the ensemble average] and sig-
nificant differences can arise among the individual members of an ensemble. It
is therefore important to indentify ‘good elements’ of an ensemble” [6, p.266].

The error floor is important because it limits the utility of an LDPC code.
In practice, it may be desirable to have assurance that the (bit) error rate at
a particular signal-to-noise ratio is lower than 10−10, but simulation to achieve
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a reasonable level of confidence at this rate can be expensive. There are some
methods to improve code constructions to lower the error floor see e.g. [3,1], but
there is no clear theory to explain the error floor and no method to compute
it for a particular LDPC code. Thus one might hope for improved methods of
simulation.

Our approach to this problem is based on the observation that with high
probability, a received vector for input in the SPA has a very small number of
badly corrupted bits and will decode successfully; to look at it another way,
the input vectors that fail to decode are concentrated in a region of relatively
low probability. In this article, we summarize how stratified sampling may be
used to greatly reduce the sample size required for a desired confidence level and
margin of error. We apply stratified sampling to a particular LDPC code—a
(3, 6) regular code of length 26—that is small but still interesting. The method
reduces the number of samples required by roughly a factor of 70, at SNR 9.0,
a margin of error of 20% of the error rate (which is roughly 4× 10−6), and 95%
confidence level.

2 Stratified Sampling

In this section, we give a brief resumé of the ideas behind stratified sampling,
which is a method for reducing the variance in a sample (Cf. [2, Ch. 8] for
a more complete account). We give a rather general treatment, provide some
simple examples, and finally interpret the method in the context of block-error
rates for LDPC codes.

2.1 Theoretical Overview

Let (Ω, p) be a probability space, and let X be a real-valued random variable on
Ω, which we will assume to have finite mean μ and variance σ2. We are inter-
ested in the problem of estimating the expected value μ = E(X) from a sample
(x1, x2 . . . , xr) of size r taken from X . Provided that X is relatively well behaved
and that r is sufficiently large, the sample mean X̄ has approximate distribution
N(μ, σ2/r). Again with the same provisions, σ2 is adequately approximated by
the sample variance s2, so we can obtain a reasonable confidence interval for μ
as (x̄ − z∗s/

√
r, x̄ + z∗s/

√
r), where x̄ is the mean obtained from our particular

sample and z∗ is an appropriate standard-normal critical value.
Now suppose that Y is another random variable on Ω taking on the finite set

Y1, Y2, . . . , Yk of values; we will refer to the events Y = Yk as strata of Ω. Suppose
further that pk = p(Y = Yk) is known or can be approximated effectively. This
suggests an alternate method for estimating μ from a sample of size r: Take
a sample (xj1, xj2 . . . , xjrj ) of size rj from each of the variables Xj = X |Yj ,
where r =

∑
rj , and take the weighted sum x̂ =

∑
pj x̄j of sample means. The

sample mean X̄j has approximate distribution N(E(X |Yj), V (X |Yj)/rj); note
that

∑
pjE(X |Yj) = μ. If we again assume that the jth sample variance s2

j

adequately approximates the true variance V (X |Yj), we find that the variance
of

∑
pjX̄j is approximately

∑
p2

js
2
j/rj .
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To find the values of rj , subject to
∑

rj = r that minimize the variance, use

Lagrange multipliers: We find that −p2
js

2
j

r2
j

= λ for all j, so rj = r · pjsj∑
pisi

. The

approximate value of the total variance of this estimator is thus

Var x̂ ≈
∑ p2

js
2
j

∑
pisi

rpjsj
=

(
∑

pjsj)2

r
. (1)

We note that the term “stratified sampling” is sometimes used for the specific
case in which the ri are chosen to be proportional to the pi. In general, this ap-
proach also leads to some reduction in variance, simply because it controls one
contributor to sampling variance, namely the variance in the sampling distribu-
tion of Y -values. The approach outlined above clearly yields superior reduction
in variance, based as it is on optimization.

2.2 An Example

Suppose that we wish to obtain an accurate estimate for the incidence of a certain
gene in a population. Suppose further that the population is 70% white and
30% non-white, that we have obtained the approximate values of .01% incidence
in the white population and 17% in the non-white population, and that these
approximations provide acceptable values for the purposes of estimating sample
variances. This gives an approximate value of .05107 for the proportion of the
population with this gene, and the proportion for a “raw” sample of size r would

thus have variance approximately
.05107 · (1 − .05107)

r
≈ .04846

r
.

Now write Y1 for the event that a member of the population is white and Y2

for the event that s/he is non-white; then, in the notation established above,
p1 = .7, s1 =

√
.0001 · .9999 ≈ .01, so p1s1 ≈ .007; and p2 = .3, s2 =

√
.17 · .83 ≈

.3756, so p2s2 ≈ .1127. The calculations above show that the optimal stratified

sample of size r takes r · .007
.007 + .1127

≈ .0585 from the white population and

therefore about 94.15% of the total sample from the non-white population. The

sample variance in this scheme is
(.007 + .1127)2

r
=

.0143
r

, an improvement

by a factor of almost 3.4. In practical terms, the standard error (= standard
deviation of the sample proportion) is about

√
.0143 · .04846 ≈ .54 as large using

stratified sampling as with the “raw” method. For a given sample size, then,
stratification allows us to obtain an estimate with just over half the margin of
error; alternatively, it allows us to use a much smaller sample – about .3 as
large, since the standard error decreases as the square root of the sample size –
to obtain the same level of accuracy.

We can gain even more advantage if the population can be further separated
into strata with different characteristics. Suppose that the non-white population
breaks down as 25% African-American and 5% Asian-American and that the
gene has incidence about 1% in the African-American population and about
97% in the Asian-American population. An analogous calculation to the above
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calls for a sample that is about 17.3% white, 65.6% African-American, and 21.1%

Asian-American, and the total variance in this case comes out to about
.00163

r
– a further improvement by a factor of about 9 over the first stratified example,
and a further reduction by a factor of almost 3 in standard error. Compared
to “raw” sampling, this final stratified sampling scheme reduces the necessary
sample size for a given margin of error by a factor of about 29.7.

2.3 Stratified Sampling with LDPC Codes

We now consider a code of length n with code symbols ±1 (i.e., {(−1)0, (−1)1}),
transmitted across a Gaussian memoryless binary symmetric channel. In this
setting the probability space Ω consists of all vectors (�1, �2, . . . , �n), 0 < �j < 1,
where �j is the likelihood of the value −1 at the jth bit, inferred by the decoder
at the initial step based on the received value at that bit. For the purposes
of simulation it is sufficient to restrict to the all-1 codeword; see [6][Sec. 4.3];
by our assumptions, the components of Ω are iid and the distribution on each
component can be calculated using normal distributions.

Our random variable X of interest takes on the value 1 if the SPA decoder
does not produce the all 1 codeword and 0 otherwise, so E(X) is the frame-error
rate (FER) of the code.

We can compute the density function for �i under the assumption that the
all-1 codeword was sent.

Let T1 stand for the input at a bit given that a 1 is transmitted. T1 is dis-

tributed according to the Gaussian N1(t) = 1
σ
√

2π
e−

(t−1)2

2σ2 . Similarly, if a −1 is

transmitted, the input T−1 is distributed according to N−1(t) = 1
σ
√

2π
e−

(t+1)2

2σ2 .

Now, for a given input value t, the likelihood ratio
�t(−1)
�t(1)

is given by
N−1(t)
N1(t)

=

e−
2t
σ2 , and therefore the likelihood r(t) that a −1 was sent is equal to

�t(−1)
�t(−1) + �t(0)

=
e−

2t
σ2

e−
2t
σ2 + 1

=
1

1 + e
2t
σ2

.

Note that q = r(t) is a strictly decreasing function of t, and we can solve for
t to obtain t = σ2

2 ln
(

1−q
q

)
. Now, under the assumption that a 1 was actually

transmitted, for any q in the interval (0, 1), the distribution function FQ(q) is
given by

FQ(q) = P (Q ≤ q) = P

(

T1 ≥ σ2

2
ln

(
1 − q

q

))

FQ(q) = P

(
T1 − 1

σ
≥

(
σ

2
ln

(
1 − q

q

)

− 1
σ

))

FQ(q) = 1 −
⎡

⎣1
2

⎛

⎝1 + erf
σ
2 ln

(
1−q

q

)
− 1

σ√
2

⎞

⎠

⎤

⎦ (2)
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where erf is the the error function,’ defined by erf(x) =
2√
π

∫ x

1

e−u2
du so

that
1
2
(1+ erf(X/

√
2)) is the distribution function for the standard normal, any

particular value of which can be well approximated.
Now, set some threshold value t1 above which a likelihood �j is to be con-

sidered “high,” and stratify the set of likelihood vectors by the number of high
entries contained in each, so that our variable Y takes on the values 0, 1, . . . , n
corresponding to the number of high values in a vector. Note that pj = p(Y = j)
is relatively straightforward to calculate from the distribution on � and binomial
coefficients. This situation is a prime candidate for stratified sampling, because
the strata corresponding to large j have a much higher incidence of decoding
failure than those with low j-values.

We then carry out sampling as follows: For a given j, choose randomly the j
“high” positions; then sample from the conditional density � > t1 in these places
and from the conditional density � < t1 in the others.

Of course, the threshold t1 is a parameter in this scheme. More generally, in
fact, one can define multiple thresholds t1 < t1 < · · · < tm, define tm+1 = 1, and
stratify Ω by the m-tuple of integers (y1, y2, . . . , ym) where yj is the number of
entries falling between tj and tj+1, so that n − y1 − · · · − ym is the number of
entries between 0 and t1.

Because the large sample sizes required to get meaningful estimates for error
rates incurs a high cost in terms of time and compute cycles, our purpose for
stratified sampling is not to obtain a superior estimate of block-error rate for
a given sample size but rather to obtain an equally accurate estimate with a
smaller sample size. In the next section, we show for a specific code the amount
of sample-size reduction that is possible with stratified sampling.

3 Application

We applied stratified sampling to a (3, 6) regular graph with 26 bit nodes and
13 check nodes. The girth of the graph is 6. We simulated the sum-product
algorithm for signal to noise ratios from 5 to 9, over which range the output
FER drops from roughly 10−2 to 5 × 10−6. We want to estimate block error
rate with a 95% confidence level and within 20% of the estimate θ̂. Let r̃ be
the sample size needed for the stratified sampling, and let r be the sample size
needed for standard sampling. We are interested in comparing these values.

We chose the threshold t1 to be 0.5. As described above, the probability space
Ω is stratified by the number j of high values in the vector, where j varies from
0 to 26. The probability of the jth stratum is

(
26
j

)
qj(1 − q)26−j , where q is the

probability, calculated as above, that any given received value is over 0.5. The
vast majority of strata have very low probability and may be ignored.

For regular sampling, variance of θ̂ can be calculated with Var(θ̂) = σ2

r , where
σ2 is estimated by θ̂ ·(1− θ̂). Sample size required for the standard sampling can be
calculated with r = z2

ασ2

M2 , where σ2 is the variance of θ̂ and M is margin of error.
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With stratified sampling, variance of θ̂ is found as in Equation 1 above:

Var(θ̂) ≈ (
∑

j pjsj)
2

r̃ , where sj =
√

θ̂j · (1 − θ̂j). The relative sample sizes for
a given margin of error is then given by

r

r̃
=

θ̂ · (1 − θ̂)
(
∑

j pjsj)2
.

Note that this ratio is independent of the desired margin of error.
In order to use stratified sampling for the problem of estimating FER, we

first need to obtain an approximate value for the FER within each stratum in

Table 1. Data for several strata at each SNR

SNR θ̂ M2 stratum j pj θ̂j sj pj × sj rj

5 9.50e-03 3.61e-06 0 3.68e-01 1.00e-10 1.00e-05 3.68e-06 1
1 3.75e-01 1.04e-03 3.22e-02 1.21e-02 677
2 1.84e-01 1.28e-02 1.12e-01 2.06e-02 1,155
3 5.75e-02 6.19e-02 2.41e-01 1.39e-02 776
4 1.29e-02 1.70e-01 3.76e-01 4.87e-03 273
5 2.23e-03 4.05e-01 4.91e-01 1.20e-03 62
6 3.06e-04 3.33e-01 4.71e-01 1.44e-04 9

Total 5.27e-02 2,953

6 3.36e-03 4.52e-07 0 5.46e-01 1.00e-10 1.00e-05 5.46e-06 2
1 3.34e-01 3.50e-04 1.87e-02 6.25e-03 1,289
2 9.84e-02 1.61e-02 1.26e-01 1.24e-02 2,553
3 1.85e-02 6.67e-02 2.49e-01 4.62e-03 953
4 2.51e-03 1.44e-01 3.51e-01 8.81e-04 182
5 2.60e-04 2.46e-01 4.31e-01 1.12e-04 24

Total 2.43e-02 5,003

7 6.57e-04 1.73e-08 0 7.19e-01 1.00e-10 1.00e-05 7.19e-06 12
1 2.38e-01 1.70e-04 1.30e-02 3.11e-03 5,170
2 3.80e-02 7.31e-03 8.52e-02 3.24e-03 5,382
3 3.87e-03 7.27e-02 2.60e-01 1.01e-03 1,674
4 2.84e-04 1.90e-01 3.92e-01 1.12e-04 186
5 1.59e-05 1.96e-01 3.97e-01 6.32e-06 11

Total 7.48e-03 12,435

8 8.65e-05 2.99e-10 0 8.55e-01 1.00e-10 1.00e-05 8.55e-06 175
1 1.34e-01 3.31e-05 5.75e-03 7.73e-04 15,748
2 1.01e-02 4.48e-03 6.68e-02 6.77e-04 13,806
3 4.90e-04 6.86e-2 2.53e-01 1.24e-04 2,525
4 1.70e-05 1.78e-01 3.83e-01 6.51e-06 133

Total 1.59e-03 32,387

9 4.84e-06 9.36e-13 0 9.39e-01 1.00e-10 1.00e-05 9.39e-06 9,610
1 5.91e-02 7.57e-06 2.75e-03 1.63e-04 166,289
2 1.79e-03 1.54e-03 3.93e-02 7.01e-05 71,753
3 3.46e-05 4.36e-02 2.04e-01 7.06e-06 7,220
4 4.81e-07 2.63e-01 4.40e-01 2.12e-07 217

Total 2.49e-04 255,089
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Table 2. Summarized data for each SNR

SNR θ̂ (1 − θ̂) · θ̂ (
∑

j pjsj)
2 ratio r r̃

5 9.50e-03 9.41e-03 2.77e-03 3 10,011 2,953
6 3.36e-03 3.35e-03 5.89e-04 6 28,466 5,003
7 6.57e-04 6.57e-04 5.59e-05 12 146,065 12,435
8 8.65e-05 8.65e-05 2.52e-06 34 1,109,868 32,387
9 4.84e-06 4.84e-06 6.21e-08 78 19,855,359 255,089

order to set the sample sizes rj = ( pjsj∑
j pjsj

)r̃ = pjsj
Z2

α

M2 (
∑

j pjsj). We do this
by taking relatively small samples; note that any sampling error has only the
“second-order” effect of changing the estimated standard error s2

j , so we expect
the final outcome to be fairly robust to this type of error.

Given these estimates, select rj vectors from each stratum j at random. This
can be achieved in practice by first randomly choosing j bit positions for “high”
values and then sampling “high” values and “low” values by conditioning the
distribution according to Equation 2.

The estimated value for the frame-error rate is θ̂ =
∑

j pj θ̂j . For all included
strata, sample sizes mj are shown in Table 1.

Table 2 shows how much sample-size reduction can be achieved with stratified
sampling, together with calculated sample sizes needed for standard and stratified
sampling for a margin of error approximately 20% of the FER. At SNR 5 the reduc-
tion ratio is approximately 3; however, as SNR increases this ratio also increases.
For example, standard sampling for SNR9 requires almost 20millionunits,whereas
stratified sampling needs only 255 thousand, reducing sample size by a factor of ap-
proximately 77.

4 Conclusions and Future Work

The results shown here indicate that stratified sampling is an effective strategy
for reducing sample size necessary to estimate decoder performance on an LDPC
code at high SNR, within a specified margin of error. At this stage, there are a
number of clear paths for future examination.

First, a length-26 code is far to short to have any real-world value, so it is
necessary to validate these results with longer codes. We have begun testing
codes of length 282 using massively parallel batch jobs on the Condor pool 1 [7],
1 Condor provides (among many features) the ability to “harvest” computing cycles

from idle computers that are connected to the Internet. For these experiments, we
use a Condor pool located in the Computer Science Department at the University of
California, Santa Barbara consisting of approximately 100 machines. In addition, the
Condor Project at the University of Wisconsin allows UCSB’s Condor pool to “off-
load” work that exceeds the available idle machine capacity; thus each experiment
had available to it up to 300 machines for the purpose of computing each Monte Carlo
simulation. The ability to harvest unused cycles and load-share between institutions
made the investigation feasible in a short span of time.
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and it is already evident from preliminary results that it will be necessary to
adjust the cutoff value q = 0.5; while we have achieved a speedup by a factor of
5 or so using such adjustments, it is not clear that the straightforward approach
used for the length-26 code will achieve such dramatic results.

However, there are a number of ways in which the stratification scheme can be
made more sophisticated. As discussed earlier, one can use multiple thresholds,
t1 < t2 < · · · < tm. For example, with m = 2, we could associate to each
vector of likelihoods an ordered pair (a, b), where a stands for the number of
values between, say, 0.5 and 0.9 and b stands for the number of values greater
than 0.9. Probabilities of the various strata can still be calculated with binomial
coefficients, and sampling can still be done with linear conditioning on random-
number generators. Another possibility is to stratify based on the proximity of
high-valued bits on the associated graph; intuitively, if high-valued bits are close
together (e.g. sharing a check), the bits’ inaccurate values tends to reinforce one
another and affect nearby bit estimates in the SPA.

We note that our method can be adapted to bit-error rate (BER), which
in some applications is a more suitable measure for decoding error than FER.
In fact, a stratified method would likely work even better here, since the low-
probability badly behaved strata will likely have much more variance in the
number of errors per word than the high-probability strata and will therefore
contribute proportionally more to the variance of the BER estimator.

As was kindly pointed out by one of the referees, the general framework of
stratified sampling may well apply to a wide variety of communications systems,
which typically lack precise analytical means for error analysis and therefore
rely on sampling. While our experience is mainly in LDPC codes, exploring this
broader applicability may lead to better and more general results.
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1 Introduction

Convolutional codes [6, 10, 14] are an specific class of error correcting codes
that can be represented as time-invariant discrete linear systems over a finite
field [19]. They are used in phone data transmission, radio or mobile communi-
cation systems and in image transmissions from satellites [11, 13]. Convolutional
coding is the main error correcting technique in data transmission applications
due to its easy implementation and nice performance in random error channels
[12, 23].
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code search. Since the required computation in a code search grows exponentially
with the number of delay elements of a code, this code search of the minimum
free distance can become difficult. As well, the computational requirements of
the decoding increase with the amount of delay elements δ. In the construction
proposed in this paper we will see that δ does not increase, what can reduce
decoding computation [17].

The rest of the paper is organized as follows. In Section 2 we provide all the
necessary concepts about convolutional codes to follow the rest of the paper. In
Section 3 we give initial knowledge about periodically time variant convolutional
codes and we construct the time-invariant equivalent one. In Subsection 3.1 we
develop the minimality conditions for the constructed code, and in Subsection 3.2
we study sufficient conditions for the time-invariant code to be controllable and
observable when this is formed by (n, 1, 1) or (n, n− 1, 1) codes. In Section 4 we
give a lower bound on the free distance. Finally, we provide some conclusions
and future research lines in Section 5.

2 Preliminaries

Let F be a finite field. A rate k/n convolutional code C is a submodule of F
n[z]

that can be described (see [21, 25]) as

C =
{
v(z) ∈ F

n[z] | v(z) = G(z)u(z) with u(z) ∈ F
k[z]

}

where u(z) is the information vector or information word, v(z) is the code
vector or code word and G(z) is an n×k polynomial matrix with rank k called
generator or encoding matrix of C.

The complexity δ of C is the maximum of the degrees of the determinants
of the k × k submatrices of any generator matrix of C. We call C an (n, k, δ)
convolutional code (see [14]).

We can describe an (n, k, δ) convolutional code C by means of the system

xt+1 = Axt + But

yt = Cxt + Dut

}
, t = 0, 1, 2, . . . ; x0 = 0 (1)

where A ∈ F
δ×δ, B ∈ F

δ×k, C ∈ F
(n−k)×δ, D ∈ F

(n−k)×k and vt =
[

yt

ut

]
.

The four matrices (A, B, C, D) are called the input-state-output repre-
sentation of the code C. This representation was introduced in [21] and has
been used in the last years to analyze and construct convolutional codes [1, 4,
5, 9, 18, 19, 21, 25].

For each positive integer j let us define the matrices

Φj(A, B) =
[
B AB · · · Aj−2B Aj−1B

]
and Ωj(A, C) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C
CA
...

CAj−2

CAj−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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Definition 1. Let A and B be matrices of sizes δ × δ and δ × k, respectively.
The pair (A, B) is controllable if rank(Φδ(A, B)) = δ. If (A, B) is a controllable
pair, then the smallest integer κ such that rank(Φκ(A, B)) = δ is the control-
lability index of (A, B).

Definition 2. Let A and C be matrices of sizes δ × δ and (n − k) × δ, respec-
tively. The pair (A, C) is observable if rank(Ωδ(A, C)) = δ. If (A, C) is an
observable pair, then the smallest integer ν such that rank(Ων(A, C)) = δ is the
observability index of (A, C).

An important distance measures of a convolutional code is the free distance

dfree(C) = min
u0 �=0

{ ∞∑

t=0

wt(ut) +
∞∑

t=0

wt(yt)

}

where wt(·) denotes the Hamming weight of a vector.
Rosenthal and Smarandache [20] gave a generalization of the Singleton bound

for block codes.

Theorem 1 (Theorem 2.2 of [20]). If C is a (n, k, δ)-code over any field F,
then

dfree(C) ≤ (n − k)
(⌊

δ

k

⌋
+ 1

)
+ δ + 1. (2)

This bound is known as the generalized Singleton bound. Analogously to
block codes, we say that a (n, k, δ)-code is maximum distance separable (MDS)
if the free distance attains the generalized Singleton bound.

3 Periodically Time-Variant Convolutional Codes

In this section we define periodically time-varying convolutional codes and ex-
plain the concrete characteristics of our construction.

Let us assume that the matrices At, Bt, Ct and Dt at time t are of sizes δ× δ,
δ×k, (n−k)× δ and (n−k)×k, respectively. A time-variant convolutional code
can be defined by means of the system

xt+1 = Atxt + Btut

yt = Ctxt + Dtut

}
, t = 0, 1, 2, . . . x0 = 0 (3)

The defined time-variant convolutional code is a dynamical system which can
have a minimal representation, that is, a representation where the matrices
have the smallest size possible. It is known that the realization (A, B, C, D) of
a linear system is minimal if and only if (A, B) is a controllable pair and (A, C)
is an observable pair [2]. In Subsection 3.1 and 3.2 we will study the conditions
for our code to have a minimal representation.

If the matrices change periodically with periods τA, τB, τC and τD respec-
tively, (that is, AτA+t = At, BτB+t = Bt, CτC+t = Ct and DτD+t = Dt for
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all t) then we have a periodically time-varying convolutional code of period τ =
lcm (τA,τB , τC , τD). Any periodic time-varying convolutional code is equivalent
to an invariant one [3, 15, 16]. Relating every state and every output to previous
states, we can always rewrite any block of τ iterations at a given time j as

xτ(j+1) = Aτ−1,0xτj

+
[
Aτ−1,1B0 Aτ−1,2B1 . . . Aτ−1,τ−1Bτ−2 Bτ−1

]

⎡

⎢
⎢
⎢
⎣

uτj

uτj+1

...
uτj+τ−1

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

yτj

yτj+1
...

yτj+τ−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢
⎣

C0

C1A0,0

C2A1,0

...
Cτ−1Aτ−2,0

⎤

⎥
⎥
⎥
⎥⎥
⎦

xτj

+

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

D0 O . . . O O
C1B0 D1 . . . O O

C2A1,1B0 C2B1 . . . O O
...

...
...

...
Cτ−2Aτ−3,1B0 Cτ−2Aτ−3,2B1 . . . Dτ−2 O
Cτ−1Aτ−2,1B0 Cτ−1Aτ−2,2B1 . . . Cτ−1Bτ−2 Dτ−1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

uτj

uτj+1

...
uτj+τ−1

⎤

⎥⎥
⎥
⎦

where

Ai,j =

{
AiAi−1 · · ·Aj+1Aj , if i �= j,

Ai, if i = j.

This system can be written as

Xj+1 = AXj + BUj

Yj = CXj + DUj

}
(4)

where

A = Aτ−1,0, B =
[
Aτ−1,1B0 Aτ−1,2B1 . . . Aτ−1,τ−1Bτ−2 Bτ−1

]
,

C =

⎡

⎢
⎢
⎢⎢
⎢
⎣

C0

C1A0,0

C2A1,0

...
Cτ−1Aτ−2,0

⎤

⎥
⎥
⎥⎥
⎥
⎦

, D =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

D0 O . . . O O
C1B0 D1 . . . O O

C2A1,1B0 C2B1 . . . O O
...

...
...

...
Cτ−2Aτ−3,1B0 Cτ−2Aτ−3,2B1 . . . Dτ−2 O
Cτ−1Aτ−2,1B0 Cτ−1Aτ−2,2B1 . . . Cτ−1Bτ−2 Dτ−1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,

Xj = xτj, Yj =

⎡

⎢
⎢⎢
⎣

yτj

yτj+1
...

yτj+τ−1

⎤

⎥
⎥⎥
⎦

and Uj =

⎡

⎢
⎢⎢
⎣

uτj

uτj+1

...
uτj+τ−1

⎤

⎥
⎥⎥
⎦

.
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System (4) is the time-invariant convolutional code equivalent to the periodic
time-varying system (3). Our particular construction replaces matrices At and
Dt by fixed matrices A and D, respectively, for all t. Then, expression (3) turns
into

xt+1 = Axt + Btut

yt = Ctxt + Dut

}
, t = 0, 1, 2, . . . , (5)

and matrices A, B, C and D of system (4) become

A = Aτ , B =
[
Aτ−1B0 Aτ−2B1 . . . ABτ−2 Bτ−1

]
,

C =

⎡

⎢
⎢
⎢
⎣

C0

C1A
...

Cτ−1A
τ−1

⎤

⎥
⎥
⎥
⎦

, D =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

D O . . . O O
C1B0 D . . . O O

C2AB0 C2B1 . . . O O
...

...
...

...
Cτ−2A

τ−3B0 Cτ−2A
τ−4B1 . . . D O

Cτ−1A
τ−2B0 Cτ−1A

τ−3B1 . . . Cτ−1Bτ−2 D

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

3.1 Minimality Conditions

In this subsection we study conditions for the controllability and observability
of the new equivalent time-invariant convolutional code of our construction.

Theorem 2. If τk ≥ δ and the matrices Bj, for j = 0, 1, . . . , τ − 1, are such
that Bj = A−(τ−j−1)Ej, being Ej ∈ F

δ×k with E =
[
E0 E1 . . . Eτ−1

]
a full

rank matrix, then the system defined by expression (4) is controllable.

Proof. According to the form of the controllable matrix in (5) we have that

Φδ(A, B) =
[
B AB . . . Aδ−1B

]
=

[
E AτE . . . A(δ−1)τE

]

which is clearly a full rank matrix. So, the system (4) is controllable. ��

Similarly, we have the following result for the observability. Here we denote by
MT the transpose matrix of M .

Theorem 3. If τ(n − k) ≥ δ and the matrices Cj , for j = 0, 1, . . . , τ − 1, are
such that Cj = FjA

−j, being Fj ∈ F
(n−k)×δ with F =

[
FT

0 FT
1 . . . FT

τ−1

]T a full
rank matrix, then the system defined by expression (4) is observable.

Note that if we choose Bj and Cj as in Theorems 2 and 3, then we ensure the
minimality of the new invariant system.

Moreover, taking A = Iδ, E as the parity check matrix of a block code, and F

such that Fj is the submatrix of I =
[
I I I . . .

]T formed by the rows j(n−k)+ l
for l = 1, 2, . . . , n−k, then we obtain the periodically time-variant convolutional
code proposed in [17]. So, our construction generalizes that case.
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3.2 Minimality for Generic Periodic Time-Variant Convolutional
Codes

Let us now return to the general case given by expression (3). Another repre-
sentation of the time-invariant equivalent code is the following state-space form
(see [7]):

R(λ)x̃t(h) = Ax̃t(h) + But(h)
yt(h) = Cx̃t(h) + Dut(h)

}

where

ut(h) =

⎡

⎢
⎢
⎢
⎣

ut+hτ

ut+hτ+1

...
ut+hτ+τ−1

⎤

⎥
⎥
⎥
⎦

, yt(h) =

⎡

⎢
⎢
⎢
⎣

yt+hτ

yt+hτ+1
...

yt+hτ+τ−1

⎤

⎥
⎥
⎥
⎦

, x̃t(h) =

⎡

⎢
⎢
⎢
⎣

xt+hτ

xt+hτ+1

...
xt+hτ+τ−1

⎤

⎥
⎥
⎥
⎦

and R(λ) =
[

O I(τ−1)δ

λIδ O

]
where λ denotes the one-step-forward time operator

in the variable h and O denotes the null matrix of the appropriate size. The
matrices A, B, C and D are now block-diagonal matrices defined as

A = diag (A0, A1, . . . , Aτ−1) , B = diag (B0, B1, . . . , Bτ−1) ,

C = diag (C0, C1, . . . , Cτ−1) and D = diag (D0, D1, . . . , Dτ−1) .

If we define P i(λ) =
[A−R(λ) B ]

and P0(λ) =
[A−R(λ)

C
]

, then the fol-

lowing theorem, which will be useful for the proofs of further results, holds also
for finite fields.

Theorem 4 ([7]). The periodic system (3) is controllable (respectively, observa-
ble) if and only if the matrix P i(λ) (respectively, P0(λ)) has full row (respectively,
column) rank for all λ ∈ C.

For the case where the subsystems forming the periodically time-varying con-
volutional code are (n, 1, 1)-codes or (n, n − 1, 1)-codes we have the following
result.

Theorem 5. If the periodically time-varying convolutional code is generated by
τ controllable and observable (n, 1, 1)-codes (or (n, n − 1, 1)-codes), then the pe-
riodically time-varying convolutional code obtained is as well controllable and
observable.

Proof. We will develop the proof for the case (n, 1, 1). In this case

At = [at], Bt = [bt], Ct =

⎡

⎢
⎢
⎢
⎣

ct,0

ct,1

...
ct,n−2

⎤

⎥
⎥
⎥
⎦

, and Dt =

⎡

⎢
⎢
⎢
⎣

dt,0

dt,1

...
dt,n−2

⎤

⎥
⎥
⎥
⎦

.
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Following the previous theorem, our periodic system is controllable if and only
if the matrix

P i(λ) =
[A−R(λ) B ]

=

⎡

⎢⎢
⎢
⎢
⎢
⎣

a0 −1 0 . . . 0 0 b0 0 . . . 0
0 a1 −1 . . . 0 0 0 b1 . . . 0
...

...
...

...
...

...
...

...
0 0 0 . . . 0 −1 0 0 . . . 0
−λ 0 0 . . . 0 aτ−1 0 0 . . . bτ−1

⎤

⎥⎥
⎥
⎥
⎥
⎦

has full row rank. To ensure that this matrix has full rank we will check that
bi �= 0 for i = 0, 1, . . . , τ − 1.

For every subsystem we have that controllability holds. Then by Popov-
Belevitch-Hautus test (see [8]) it holds that rank(

[
zI − ai bi

]
) = 1 for every

eigenvalue z of [ai] and i = 0, 1, . . . , τ − 1. Since the only eigenvalue of [ai] is
z = ai then it must hold that bi �= 0. Thus the matrix P i(λ) has full rank and
the periodic time-varying convolutional code is controllable.

On the other hand, by the previous result, our periodic system is observable
if and only if the matrix

P0(λ) =
[A−R(λ)

C
]

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

a0 −1 0 . . . 0 0
0 a1 −1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 −1
−λ 0 0 . . . 0 aτ−1

c0,0 0 0 . . . 0 0
c0,1 0 0 0 0
...

...
...

...
...

c0,n−2 0 0 . . . 0 0
0 c1,0 0 . . . 0 0
0 c1,1 0 . . . 0 0
...

...
...

...
...

0 c1,n−2 0 . . . 0 0
0 0 0 . . . 0 cτ−1,0

0 0 0 . . . 0 cτ−1,1

...
...

...
...

...
0 0 0 . . . 0 cτ−1,n−2

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

has full column rank. To ensure that this matrix has full rank we will check that
for each i = 0, 1, . . . , τ − 1 there exist at least one j such that ci,j �= 0.

For every subsystem we assumed that observability holds. Again by Popov-

Belevitch-Hautus test it holds that rank

⎛

⎜
⎜⎜
⎜
⎜
⎝

⎡

⎢
⎢⎢
⎢
⎢
⎣

zI − ai

ci,0

ci,1

...
c1,n−2

⎤

⎥
⎥⎥
⎥
⎥
⎦

⎞

⎟
⎟⎟
⎟
⎟
⎠

= 1 for every eigenvalue
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z of [ai] and i = 0, 1, . . . , τ − 1. Then it must exist at least one j such that
ci,j �= 0. Thus the matrix P0(λ) has full rank and the periodic time-varying
convolutional code is observable.

The proof for the case (n − 1, n, 1) is analogous. ��

4 Free Distance

In this section we obtain a lower bound on the free distance of the periodic time-
varying code by means of the free distance of the invariant equivalent associated,
due to the fact that both are the same (see [24]).

Theorem 6 (Theorem 3.1 of [22]). Let C be an observable, rate k/n, degree
δ, convolutional code defined through the matrices A, B, C and D. Let ν be the
observability index of the pair (A, C) and suppose that there exists d ∈ Z

+ such
that Φdν(A, B) forms the parity-check matrix of a block code of distance d. Then
the free distance of C is greater than or equal to d.

Now we have the following result.

Theorem 7. If the matrix Φdν(A, B) =
[
B AB . . . Adν−1B

]
represents the

parity-check matrix of an MDS block code of distance d, then dfree ≥ δ + 1.

Proof. Let P =
[
Aτ−1B0 Aτ−2B1 . . . Bτ−1

]
. The matrix

[
B AB . . . Adν−1B

]
=

[
P AτP . . . A(dν−1)τP

]

has size δ×τkdν. Since the parity-check matrix of a block code is a matrix of size
(N−K)×N , we have that the parameters of the block code are [τkdν, τkdν−δ, d].
The block code is MDS so the distance d achieves the Singleton bound N−K+1.
Then we have

dfree(C) ≥ d = τkdν − τkdν + δ + 1 = δ + 1. ��
Note that if dfree(C) = δ + 1, then C cannot be an MDS convolutional code
since, in order to attain the generalized Singleton bound, n = k should hold.

5 Conclusion

In this paper we propose a new method for constructing periodically time-variant
convolutional codes. We study the minimality conditions of the new system and
state some results about the dependence between the controllability and obser-
vability of the subsystems and the minimality of the time-invariant equivalent
one. We also study the general case for particular forming subsystems. A lower
bound on the free distance is as well given using the fact that both codes have
the same dfree.

As it is shown in this construction, the number of delay elements remains as
δ. This fact makes that the decoding complexity of the new time-varying code
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does not increase respect to the complexity of the subsystems. This gives us a
lower complexity of the arithmetic circuits when implementing the model.

As future research lines we will study the properties of the time-invariant
convolutional code depending on the properties of the subsystems forming the
periodically time-variant convolutional one; we will attempt to construct MDS
convolutional codes and maximum distance profile (MDP) convolutional codes,
which are an optimum subclass.
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Abstract. The algebraic geometric tools used by Goppa to construct
block codes with good properties have been also used successfully in the
setting of convolutional codes. We present here this construction carried
out over elliptic curves, yielding a variety of codes which are optimal with
respect to different bounds. We provide a number of examples for dif-
ferent values of their parameters, including some explicit strongly MDS
convolutional codes. We also introduce some conditions for certain codes
of this class to be MDS.

1 Introduction

Goppa codes, introduced by V.D. Goppa in the late seventies [4,5] were the
seed of a fruitful link between coding theory and algebraic geometry. A further
use of algebraic geometric tools in coding theory resulted in many other code
constructions but also in the study of related open questions, as for instance the
number of rational points of a given curve.

Different algebraic elements have been used also to construct convolutional
codes. A convolutional code of length n and dimension k is often defined as a
k-dimensional subspace of F

n
q (z). However it is known that there exists always

a polynomial generator matrix. As explained in [1], the term “convolutional” is
used because the output sequences can be regarded as the convolution of the
input sequences with the sequences in the encoder. Hence, the output at time
t does not only depend on the input at time t, but also on those at previous
time instants. The output vector at time t is precisely the coefficient of zt. The
amount of this dependance is a critical parameter of the convolutional code
called the degree or the complexity of the code, δ, and can be computed as the
sum of the row degrees of a polynomial generator matrix in row proper form. In
fact convolutional codes of degree 0 are precisely linear block codes. In addition,
the highest row degree of a polynomial generator matrix in row proper form
stands for the number of previous inputs on which every output depends, and it
is another invariant of the code known as its memory, m.

Since the components of convolutional codewords are not constant the weight
function considered is slightly different than the one in block coding. The weight
of a convolutional codeword is the sum of the non-zero coefficients at each of
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its components. In a similar way the distance of two codewords is defined, and
the minimum among them is called the free distance, df , of the code. Similarly
to block coding, several bounds on the free distance are used. Two of the most
commonly ones used, to which we will refer later (and which are generalizations
of bounds for block codes), are

dfree ≤ S(n, k, δ) = (n − k)
(⌊

δ
k

⌋
+ 1

)
+ δ + 1

generalized Singleton bound [11]

dfree ≤ max{d′∈{1, . . . , S(n, k, δ)}|
k(m+i)−δ−1∑

l=0

⌈
d′

ql

⌉
≤ n(m + i), for all i ∈ N̂}

N̂ =
{

N ≡ {1, 2, . . .} if km = δ
N0 ≡ {0, 1, 2, . . .} if km > δ

.

Griesmer bound [3]

By analogy with block coding, convolutional codes attaining the generalized
Singleton bound are known as Maximum Distance Separable, MDS, codes.

As convolutional codes are a generalization of linear block codes, one might
wonder wether algebraic geometric tools, and in particular similar tools as the
ones used by Goppa, could be also used to construct families of convolutional
codes with certain good properties.

A first attempt to define convolutional Goppa codes was made in [10], where
instead of a curve, a family of curves parameterized by the affine line was con-
sidered. Instead of points, disjoint sections of the projection of this family over
the affine line were taken, and instead of divisors on a curve, a Cartier divisor
and an invertible sheaf. An analogous construction to the classical one led to a
family of convolutional codes “of Goppa type”.

After that, a more general construction with simpler geometric tools has been
given in [9].

The paper is structured as follows. In Section 2 we expose the use of alge-
braic geometric elements to construct convolutional Goppa codes. In Section 3
we apply this construction to the case in which the curve considered is elliptic.
An explicit expression of the elements involved, in particular of the rational
points taken, will allow to determine the generator matrices of the codes so ob-
tained. In Section 4 we present several examples of optimal elliptic convolutional
Goppa codes. Finally in Section 5 we address the problem of characterizing MDS
codes.

2 Geometric Construction of Convolutional Goppa Codes

Let Fq be a finite field and Fq(z) the field of rational functions on one variable.
Let X be a smooth projective curve over Fq(z) of genus g and let us assume
that Fq(z) is algebraically closed in the field of rational functions of X . Both
Riemann-Roch and the Residues theorems still hold under this hypothesis [6].
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Let us take n different Fq(z)-rational points P1, . . . , Pn and the divisor D =
P1+ · · ·+Pn, with its associated invertible sheaf OX(D). We have then the exact
sequence of sheaves

0 → OX(−D) → OX → Q → 0 , (1)

where Q is a sheaf with support only at the points Pi.
Let G be another divisor on X with support disjoint from D. By tensoring

the exact sequence (1) by the associated invertible sheaf OX(G), we have

0 → OX(G − D) → OX(G) → Q → 0 .

and by taking global sections we get the sequence

0 → H0(X,OX(G − D)) → H0(X,OX(G)) α→ H0(X, Q) →
→ H1(X,OX(G − D)) → H1(X,OX(G)) → 0

.

If we impose deg(G) < n = deg(D), we have an injective Fq(z)-linear map

0 �� L(G) α ��
Fq(z) × n

�. . . × Fq(z) �� . . .

s � �� (s(P1), . . . , s(Pn))

Definition 1. The convolutional Goppa code C(D, G) defined by the divisors
D and G is the image of α : L(G) → Fq(z)n. Given a subspace S ⊆ L(G), the
convolutional Goppa code C(D, S) defined by D and S is the image of α|S .

We can use the Riemann-Roch theorem to calculate the dimension of a convo-
lutional Goppa code.

Proposition 1 ([9]). C(D, G) is a convolutional code of length n=deg(D) and
dimension k ≥ deg(G)+1−g. Further, if deg(G) > 2g−2 then k = deg(G)+1−g.

Proof. Since deg(G) < n, dimL(G − D) = 0, hence the map α is injective and
k = dim L(G). If 2g − 2 < deg(G), dim L(G) = 1− g + deg(G) by the Riemann-
Roch theorem.

The geometric tools to characterize the free distance of convolutional Goppa
codes are much more sophisticated than the analogous ones in the block case,
involving jets, osculating planes and an interpretation of the points Pi as sections
over the affine line. Then, the calculus of the free distance could be interpreted
as a problem of Enumerative Geometry over finite fields [9]. However a few
conditions to obtain MDS convolutional codes will be given in Section 5.

Similarly, a convolutional code can be constructed by considering the dual
morphisms of those defining C(D, G) and by means of the Residues Theorem it
can be proven that the code so constructed is the dual code of C(D, G).
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3 Convolutional Goppa Codes over Elliptic Curves

Let X ⊂ P
2
Fq(z) be a plane elliptic curve over Fq(z). Without loss of generality

we will assume that X has a rational point of order at least 4 (so that there are
enough rational points to define a convolutional code). Then, in an affine plane
containing this point, X can be written in Tate Normal form [7]

y2 + axy + by = x3 + bx2 (2)

being x, y the affine coordinates in this plane and a, b ∈ Fq(z). Let P∞ be the
point at infinity, P0 = (0, 0) and P1, . . . , Pn n different rational points of X , with
Pi = (xi, yi) and xi, yi ∈ Fq(z). Consider the divisors D = P1 + · · · + Pn and
G = rP∞, with 0 < r < n.

Recall that the divisors of the functions x, y are

(x) = P0 + Q − 2P∞ , (y) = 2P0 + Q′ − 3P∞

where Q, Q′ are two rational points different from P0, P∞.
Then, a basis of L(G) is given by {1, x, y, . . . , xiyj, . . .}, where i, j satisfy

2i + 3j ≤ r = deg(G) (and to avoid linear dependencies j = 0, 1).
Since r < n then the evaluation map

α : L(G) �� Fq(z)n

xiyj � �� (xi
1y

j
1, . . . , x

i
nyj

n)

is an injective morphism and Imα defines the convolutional Goppa code C(D, G)
with length n. As g = 1 and deg(G) > 2g − 2 the code has dimension k = r =
deg(G).

Let us consider now the more general case with G = rP∞−sP0, where r, s > 0
and 0 < r − s < n. Then {xayb | s ≤ a + 2b, 2a + 3b ≤ r} is a basis of L(G).
The code C(D, G) has length n and dimension r − s.

The explicit expression of a generator matrix of the code C(D, G) is

G =

⎛

⎜⎜
⎜
⎝

xa
1y

b
1 xa

2y
b
2 . . . xa

nyb
n

xa+1
1 yb

1 xa+1
2 yb

2 . . . xa+1
n yb

n
...

...
. . .

...
xc

1y
d
1 xc

2y
d
2 . . . xc

nyd
n

⎞

⎟⎟
⎟
⎠

.

The following examples illustrate this construction, as well as the fact that it
provides optimal codes.

Example 1. Let us consider the elliptic curve with Tate Normal form

y2 + zxy + y = x3 + x2

over the field F2(z).
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We take the divisor D = P1 + P2 + P3 + P4 with

P1 = (1 + z, z) P2 = (1 + z, 1 + z2)
P3 = (1+z3

z2 , 1+z3+z4+z5

z3 ) P4 = (1+z3

z2 , 1+z2+z4

z3 )

and the divisor G = 3P∞ − P0, being therefore L(G) =
〈

x, y
〉
. Then the con-

volutional Goppa Code defined by D and G is generated by the matrix
(

z2 z2 1 + z + z2 1 + z + z2

1 + z 1 + z2 + z3 1 + z + z3 0

)
,

where the rows are the images of the functions z2

1+z x and zy + 1+z+z2

1+z x respec-
tively. C(D, G) has parameters [n, k, δ, m, dfree] = [4, 2, 5, 3, 8]. The free distance
of the code attains the Griesmer bound.

Example 2. We consider now the elliptic curve

y2 + zxy + 2z2y = x3 + 2z2x2

over F5(z), and the divisor D = P1 + P2, with support at the points

P1 = (3z2, 3z2 + 2z3) P2 = (2z2+3z3+4z4

1+3z+z2 , 2z4+2z5+3z6

4+3z+2z2+z3 )

We take the divisor G = 2P∞ − P0, and we have L(G) = 〈x〉.
A generator matrix of the code C(D, G) is

(
2 + z + 2z2, 3 + 2z + z2

)

given by the image of the function 4+2z+4z2

z2 x. The code has parameters [n, k, δ,
dfree] = [2, 1, 2, 6], and hence it is MDS.

Example 3. Now we take the curve

y2 + (1 + z + z2)xy + (z2 + z3)y = x3 + (z2 + z3)x2

over Fq(z), with q �= 2m. We consider the divisor D = P1 + P2 + P3 where

P1 = (0,−z3 − z2)
P2 = (z2 − z,−z4 − 2z3 + z2)
P3 = (−z2 − z,−z3 + z)

Let us take G = 2P∞, then L(G) = 〈1, x〉 and a generator matrix for the
convolutional Goppa code C(D, G) is

(
1 1 1
0 1 − z 1 + z

)
,

whose rows are images of the functions 1 and − 1
z x. C(D, G), has parameters

[n, k, δ, m, dfree] = [3, 2, 1, 1, 3]. Then C(D, G) is an MDS convolutional code.
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4 Some Optimal Convolutional Goppa Codes over
Elliptic Curves

The previous examples illustrate the construction of elliptic convolutional Goppa
codes with different parameters from their defining elements, i. e., the elliptic
curve and the divisors D and G. They also show the existence of optimal con-
volutional codes defined over elliptic curves.

In this section we present a representative collection of convolutional Goppa
codes defined over elliptic curves. A more extensive one can be found in [8].
The description of the codes is done by means of their generating elements.
To characterize the elliptic curve over which each code is defined, let a, b be
the parameters on its Tate Normal form (2). On this curve we take the points
{Pi}7

i=1 = {2P, 3P,−3P, 4P,−4P, 5P,−5P}, where P = (0, 0) = P0 is a rational
point which belongs to the curve, and nP , n ∈ Z is obtained by the addition
law defined over every elliptic curve. Together with them, the basis or the bases
(when in the same curve and with the same divisor D there is more than one
code for those parameters) of the space of functions that define each code are
provided. We include for each code its parameters, the size p of the base field
(which for the codes presented will be always prime) and the bound that it
reaches so that it is considered optimal.

As shown on the table, for those codes that are optimal with respect to the
Griesmer bound (i.e., there does not exist MDS codes over that field) there exist
also MDS codes if the size of the base field is big enough.

4.1 Strongly MDS Convolutional Codes

The set of strongly MDS convolutional codes is a particularly interesting subset
of MDS convolutional codes. They are characterized by the property that to de-
code the coefficients vector at time t, the smallest possible number of coefficients
vectors of the received word are needed. This property is very convenient to de-
velop iterative decoding algorithms, as the one in [2], with an error decoding
capability per time interval similar to MDS block codes of a large length.

The family of convolutional Goppa codes defined over elliptic curves provides
also a number of codes which are strongly MDS. A representative subset of them
are presented in the following table. More examples can be found in [8].

We would like to stress two interesting facts. In [2] several examples of strongly
MDS convolutional codes are presented, which are obtained by different meth-
ods. However all of them have in common that the length of the code and the
characteristic of the base field must be coprime. This condition is not necessary
in our construction and actually some of the codes obtained in this way don’t
fulfill it. Secondly, the already mentioned decoding algorithm for this kind of
codes that is proposed in the same paper, has the drawback of needing a general
syndrome decoding algorithm. The variety of examples presented suggests that
elliptic convolutional Goppa codes are a promising way to obtain strongly MDS
codes with a rich algebraic structure that would allow to adapt that decoding
scheme in order to make it practical.
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Table 1. Examples of optimal elliptic convolutional Goppa codes

[n, k, δ] p dfree (a,b) L(G) i,D =
∑

Pi Bound

[2,1,1] 3 4 (α1z, α1z + 2z2) {x} 1, 4 MDS

[2,1,1] ≥ 3 4 (z, α2z − α2z
2) {x} 1, 4 MDS

[2,1,2] 2 5 (1 + z, 1) {y}, {xy} 4, 5 Griesmer

[2,1,2] ≥ 5 6 (2z, 1) {x} 2, 6 MDS

[2,1,7] 7 15 (z + 2z2, 1 + 4z + 3z2) {y}, {xy} 6, 7 Griesmer

[2,1,7] 13 16 (3z2, 1 + 2z + 2z2) {y}, {xy} 6, 7 MDS

[3,1,1] ≥ 5 6 (z, 2 − 5z + 3z2) {y}, {xy} 1, 4, 5 MDS

[3,1,2] 2 8 (z, z2) {x} 1, 4, 5 Griesmer

[3,1,2] 7 9 (z, 1 + 2z + 4z2) {y} 1, 4, 5 MDS

[3,1,6] 11 21 (z, 1 + 3z2) {xy} 1, 4, 5 MDS

[4,1,2] 5 12 (z, 1 + 2z + 2z2) {y} 2, 3, 6, 7 MDS

[4,1,6] 11 28 (z, 1 + 4z + 6z2) {xy} 2, 3, 6, 7 MDS

[4,1,8] 11 36 (3z, 6 + 4z2) {y} 2, 3, 6, 7 MDS

[3,2,1] 5 3 (1 + z, z + 3z2) {x, y}, {x2, xy} 1, 4, 5 MDS

[3,2,1] 7 3 (1 + 2z, 2z + z2) {x, y}, {x2, xy} 1, 4, 5 MDS

[3,2,3] 7 6 (2z, 2 + 6z2) {x, y} 1, 4, 5 MDS

[4,2,1] ≥ 3 4 (z,−2 + 2z) {1, x} 0, 1, 2, 4 MDS

[4,2,1] ≥ 3 4 (z,−2 + 3z − z2) {1, x} 1, 2, 4, 6 MDS

[4,2,3] 7 8 (2z, 3 + 2z2) {x, y} 2, 3, 6, 7 MDS

[4,2,5] 2 8 (z, 1) {x, y} 2, 3, 6, 7 Griesmer

[4,2,5] 13 12 (z, 4 + 4z + 5z2) {x, y} 2, 3, 6, 7 MDS

[5,2,1] ≥ 3 5 (z,−2 + 3z − z2) {1, x} 0, 1, 2, 4, 6 MDS

[4,3,2] 7 4 (5 + α3z, 3 − α3z) {1, x, y} 1, 3, 6, 7 MDS

[4,3,2] 11 4 (6 + α3z, 6 − α3z) {1, x, y} 1, 3, 6, 7 MDS

α2 �= −1 α3 �= 0

Table 2. Examples of strongly MDS elliptic convolutional Goppa codes

[n, k, δ] p dfree (a,b) L(G) i,D =
∑

Pi

[2,1,1] 5 4 (z, 1 + 2z + 2z2) {x} 2, 6

[2,1,1] 7 4 (z, 2 + 2z + 3z2) {x} 2, 6

[2,1,2] 11 6 (0, 2 + α1z) {y}, {xy} 4, 5

[2,1,2] 11,13 6 (2z, 3) {y}, {xy} 4, 5

[2,1,2] 13 6 (2z, 5 + 3z) {y}, {xy} 6, 7

[3,1,2] 3 3 (z2, 1 + z) {1, x} 1, 2, 6

[3,1,2] ≥ 5 3 (z, 1 − 3z + 2z2) {x, y},{x2, xy} 1, 4, 5

[4,2,1] 5,11 4 (2 + α2z, α3 + α2α3z) {1, x} 0, 1, 2, 4

α1 = 1, . . . , 6, α2 ≥ 1, α3 ≥ 2

5 Conditions on Maximum Distance Separability

In [11] a condition is provided so that a codeword has weight bigger or equal
to the value for the generalized Singleton bound, the so-called weight property.
A codeword holds this property if every subset of k components has weight at
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least δ + 1. Hence a sufficient condition for a convolutional code to be MDS is
that every codeword holds the weight property.

As it is shown, the weight property implies that at least n−k+1 components
must have weight at least �δ/k
+ 1. In particular, since these components must
be of course different from 0, the previous condition is also a sufficient condition
to be a MDS block code over Fq(z).

It is easy to check that actually 1-dimensional MDS convolutional codes are
also MDS as block codes. In particular, the necessary conditions for
1-dimensional MDS block codes are also of application in the convolutional case.

One of the necessary conditions that have to be verified is the following.

Proposition 2. If C(D, G) is a 1-dimensional MDS elliptic code, then for any
point P such that G ∼ P , P /∈ supp(D).

Proof. Since G ∼ P , then there exists a function f such that (f) = G− P , i. e.,
f ∈ L(G − P ). On the other side, f may not have a zero on the support of D
since we assume that C(D, G) is MDS. Then P /∈ supp(D).

In particular, for elliptic convolutional Goppa codes we have

Proposition 3. If C(D, G) is a 1-dimensional MDS convolutional code, then for
any function f such that α(f) is polynomial of degree δ, then w(f(Pi)) = δ + 1
for all i.

Proof. It is a direct consequence of generalized Singleton bound.

Note that these results cannot be extended to (n− 1)-dimensional codes (as one
would do for block codes) since the dual code of a MDS convolutional code may
not be MDS.

6 Conclusions

The Goppa construction to define linear block codes can be also considered
in a very natural way on the convolutional coding context. In particular an
explicit expression of convolutional Goppa codes defined over elliptic curves can
be given. This construction yields optimal codes over different fields and for
different values of their parameters. It is of particular interest the set of strongly
MDS convolutional codes of this family. However the problem of determining
the free distance is far harder than in the block coding case. Some conditions to
get 1-dimensional MDS convolutional codes have been given, but still remains
unknown wether they can be extended for codes of any dimension.
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1 Introduction

Although it has been shown in [1] that repeated-root cyclic codes over finite
fields are “asymptotically bad”, they remain to be interesting in some cases
(see, for example, [6,7,8,9]). For instance, a sequence of binary repeated-root
cyclic codes, that are optimal, was found in [8]. Moreover, in [6], it has been
shown that the minimum Hamming distance of repeated-root cyclic codes over
Galois rings can be determined by the minimum Hamming distance of codes of
the same length over the residue finite field. Using this result of [6], the minimum
Hamming distance of cyclic codes of length ps over Galois rings of characteristic
pa is given in [7].

The minimum Hamming distance of cyclic codes of length ps over a finite field
of characteristic p is given in [2]. Later in [5], we have shown that the minimum
Hamming distance of these codes can also be computed by using the results of [1]
via simpler and more direct methods compared to that of [2]. In this study, we
extend our methods to cyclic codes of length 2ps. Namely, we determine the
minimum Hamming distance of all cyclic codes, of length 2ps, over a finite field
of characteristic p, where p is an odd prime and s is an arbitrary positive integer.

This paper is organized as follows. In Section 2, we fix our notation and
recall some preliminaries. In Section 3, using the results of [1], we compute the
minimum Hamming distance of all cyclic codes of length 2ps over a finite field of
characteristic p, where p is an odd prime. We summarize our results in Table 1
at the end of Section 3.

2 Preliminaries

Let p be an odd prime and Fq be a finite field of characteristic p. Let n be a
positive integer. Throughout this paper we identify a codeword (a0, a1, . . . , an−1)

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 92–100, 2009.
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over Fq with the polynomial a(x) = a0+a1x+· · ·+an−1x
n−1 ∈ Fq[x]. We denote

the minimum Hamming distance of a code C by dH(C).
Let a = 〈xn − 1〉 be an ideal of Fq[x] and let Ra be the finite ring given by

Ra = Fq[x]/a. It is well-known that cyclic codes, of length n, over Fq are ideals
of Ra (see, for example, Chapter 7 of [4]). Any element of Ra can be represented
uniquely as f(x) + a where deg(f(x)) < n. The codeword which corresponds to
f(x) + a is (f0, f1, . . . , fn−1), where f(x) = f0 + f1x + · · · + fn−1x

n−1 ∈ Fq[x].
Since Fq[x] is a principal ideal domain, for any ideal I of Ra, there exists a
unique monic polynomial g(x) ∈ Fq[x] with deg(g(x)) < n and g(x)|xn − 1 such
that I = 〈g(x)〉.

Let h(x) ∈ Fq[x] be a polynomial with h(0) �= 0, then h(x) | xm − 1 for some
positive integer m (c.f. [3, Lemma 3.1]). Let e be the least positive integer with
h(x) | xe−1. The order of h(x) is defined to be e and it is denoted by ord(h) = e.

3 Cyclic Codes of Length 2ps

In this section we determine the minimum Hamming distance of all cyclic codes
of length 2ps over Fq, where s is a positive integer.

Let 0 ≤ i, j ≤ ps be integers. Since x2ps − 1 = (x2 − 1)ps

= (x− 1)ps

(x + 1)ps

,
all cyclic codes of length 2ps over Fq are of the form 〈(x − 1)i(x + 1)j〉.

Let Ra = Fq[x]/〈x2ps−1〉 and let C = 〈(x−1)i(x+1)j〉 ⊂ Ra. If (i, j) = (0, 0),
then C = Ra and if (i, j) = (ps, ps), then C = {0}. These are the trivial cyclic
codes of length 2ps over Fq. In the rest of this section, we compute the minimum
Hamming distance of all non-trivial cyclic codes of length 2ps over Fq.

We partition the set {0, 1, . . . , ps} into 4 subsets. The first one is the range
0, . . . , ps−1, the second one is the range ps−1 + 1, . . . , (p − 1)ps−1, the third one
is the range (p−1)ps−1 +1, . . . , ps −1 and the last one just consists of ps. These
ranges arise naturally from technicalities of our computations explained below.

If i = 0, or j = 0, or 0 ≤ i, j ≤ ps−1, then the minimum Hamming distance
of C can easily be determined as shown in Lemma 2 and Lemma 3 below.

We note that from Lemma 8 till Theorem 2, we consider only the cases, where
i ≥ j, explicitly. This is because the cases, where j > i, can be treated similarly
as the corresponding case of i > j and consequently, we have the analogous
results in these cases. Finally, in Theorem 2, we state all of our results explicitly
corresponding to each case including the ones where j > i.

First we give an overview of the results in this section. If 0 < j ≤ ps−1 and
ps−1 + 1 ≤ i ≤ ps, then the minimum Hamming distance of C is computed in
Lemma 8 and Lemma 9. Note that we use the results of [1] for our computations
after Lemma 5. If ps−1 + 1 ≤ j ≤ i ≤ (p− 1)ps−1, then the minimum Hamming
distance of C is computed in Lemma 10. If ps−1 + 1 ≤ j ≤ (p − 1)ps−1 < i ≤
ps − 1, then the minimum Hamming distance of C is computed in Lemma 11.
If (p − 1)ps−1 + 1 ≤ j ≤ i ≤ ps − 1, then the minimum Hamming distance of C
is computed in Lemma 12 and Lemma 13. If 0 < j ≤ ps−1 and i = ps, then the
minimum Hamming distance of C is computed in Lemma 14. If ps−1 + 1 ≤ j ≤
(p− 1)ps−1 and i = ps, then the minimum Hamming distance of C is computed
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in Lemma 15. Finally, if (p − 1)ps−1 + 1 ≤ j ≤ ps − 1 and i = ps, then the
minimum Hamming distance of C is computed in Lemma 16.

We begin to present and prove our results with the next lemma.

Lemma 1. Let C be an ideal of Ra with {0} �= C � Ra. Then dH(C) ≥ 2.

Proof. This follows from the observation that αxm is a unit in Ra for α ∈ Fq\{0}
and m ∈ Z

+ ∪ {0}. 
�

Lemma 2. Let 0 < i, j ≤ ps be integers, let C = 〈(x− 1)i〉 and D = 〈(x + 1)j〉.
Then dH(C) = dH(D) = 2.

Proof. The proof follows from Lemma 1 and the observation that (x−1)i|xps −1
and (x + 1)j|xps

+ 1. 
�

Lemma 3. Let C = 〈(x + 1)i(x − 1)j〉, for some 0 ≤ i, j ≤ ps−1 with (i, j) �=
(0, 0). Then dH(C) = 2.

Proof. For this range of i and j, we have (x + 1)i(x − 1)j|(x2ps−1 − 1). 
�

The following lemma shows that we can use the results of [1] for computing the
minimum Hamming distance of the remaining codes.

Lemma 4. Let f(x) = (x − 1)i(x + 1)j ∈ Fq[x] for some integers 0 ≤ i, j ≤ pe.
Then ord(f) = 2pe if j > pe−1, or if j > 0 and i > pe−1.

Proof. The proof follows from the fact that ord(x+1) = 2, [3, Theorem 3.8] and
[3, Theorem 3.9]. 
�

Let G1 = {(x − 1)i(x + 1)j : ps ≥ i > 0 and ps ≥ j > ps−1},
G2 = {(x − 1)i(x + 1)j : ps ≥ i > ps−1 and ps ≥ j > 0}

and let g(x) be any element of G1 ∪ G2 \ {(x − 1)ps

(x + 1)ps}. By Lemma
4, ord(g(x)) = 2ps. Therefore we can use the results of [1] to determine the
minimum Hamming distance of 〈g(x)〉.

Let 0 ≤ t ≤ ps−1 be an integer. For g(x) = (x−1)i(x+1)j ∈ G1∪G2 \ {(x−
1)ps

(x + 1)ps}, we define C = 〈g(x)〉,

ei,t =
{

1, if i > t,
0, otherwise, and ej,t =

{
1, if j > t,
0, otherwise.

Let ḡt(x) = (x − 1)ei,t(x + 1)ej,t and let C̄t = 〈ḡt(x)〉 ⊂ Fq[x]/〈x2 − 1〉 be the
simple-root cyclic code depending on C and t. Following the conventions of [1],
we set

dH(C̄t) =

⎧⎨
⎩

2, if ḡt(x) = x − 1 or ḡt(x) = x + 1,
1, if ḡt(x) = 1,
∞, if ḡt(x) = x2 − 1.
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Then we have the following cases.

If i ≥ j > t or j ≥ i > t, then ḡt(x) = x2 − 1
and therefore dH(C̄t) = ∞.

(1)

If i > t ≥ j or j > t ≥ i, then ḡt(x) = x − 1 or
ḡt(x) = x + 1, respectively, and therefore dH(C̄t) = 2.

(2)

If t ≥ i ≥ j or t ≥ j ≥ i, then ḡt(x) = 1
and therefore dH(C̄t) = 1.

(3)

For 0 ≤ t ≤ ps − 1, let 0 ≤ t0, t1, . . . , ts−1 ≤ p − 1 be the uniquely determined
integers such that t = t0 + t1p + · · · + ts−1p

s−1, and Pt be the positive integer
given by

Pt =
s−1∏
m=0

(tm + 1) ∈ Z.

We define (cf. [1, page 339]) the set T = {t : t = (p − 1)ps−1 + (p − 1)ps−2 +
· · · + (p − 1)ps−(j−1) + rps−j , 1 ≤ j ≤ s, 1 ≤ r ≤ p − 1} ∪ {0}.

In [1], it has been shown that we can express the minimum Hamming distance
of C in terms of dH(C̄t) and Pt.

Lemma 5 ([1, Lemma 1]). Let C, C̄t and Pt be as above. The minimum
Hamming distance of C satisfies dH(C) ≤ PtdH(C̄t) for all t ∈ {0, 1, . . . , ps−1}.
Theorem 1 ([1, Theorem 1]). Let C, C̄t and Pt be as above. Then dH(C) =
PtdH(C̄t) for some t ∈ T .

Combining Lemma 5 and Theorem 1, we obtain

dH(C) = min{PtdH(C̄t) : t ∈ T }. (4)

Clearly, (1) implies that dH(C) = PtdH(C̄t) is impossible for i ≥ j > t and
j ≥ i > t. So we will consider only the cases (2) and (3) in our computations.

The following proposition is a useful tool for our computations.

Proposition 1. Let t, t
′ ∈ T , then t < t

′
if and only if Pt < Pt′ .

Proof. We have

t = (p − 1)ps−1 + (p − 1)ps−2 + · · · + (p − 1)ps−(e−1) + rps−e and

t
′
= (p − 1)ps−1 + (p − 1)ps−2 + · · · + (p − 1)ps−(e

′−1) + r
′
ps−e

′

for some 1 ≤ e, e
′ ≤ s and 1 ≤ r, r

′ ≤ p − 1 as t, t
′ ∈ T . First assume that

t > t
′
. Then either e > e

′
, or e = e

′
and r > r

′
. If e > e

′
, then pe−e

′ ≥ p

so pe−e
′
(r + 1) ≥ 2p. Moreover r

′ ≤ p − 1 implies r
′
+ 1 ≤ p. So we get

pe−e
′
(r + 1) − (r

′
+ 1) ≥ p. Therefore

Pt − Pt′ = pe
′
(pe−e

′
(r + 1) − (r

′
+ 1)) ≥ pe

′
p > 0.
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Hence Pt > Pt′ . If e = e
′

and r > r
′
, then Pt − Pt′ = pe((r + 1) − (r

′
+ 1)) =

pe(r − r
′
) > 0 and hence Pt > Pt′ . Using similar arguments, we obtain that if

Pt > Pt′ , then t > t
′
. This completes the proof. 
�

As an immediate consequence of Proposition 1, we have

min{Pt : t ∈ T , t ≥ j} = min{Pt : t ∈ T , i > t ≥ j}, (5)

provided that these sets are nonempty. We use (5) from Lemma 8 on.
The minimum value of Pt is given in the following two lemmas, as t runs

through certain sets. These sets are determined from the ranges of i and j in the
definition of cyclic codes.

Note that if i is an integer satisfying 1 ≤ i ≤ (p − 1)ps−1, then there exists
a uniquely determined integer β such that 0 ≤ β ≤ p − 2 and βps−1 + 1 ≤ i ≤
(β + 1)ps−1.

Lemma 6. Let � be an integer such that βps−1 + 1 ≤ � ≤ (β + 1)ps−1, where β
is an integer with 0 ≤ β ≤ p− 2. Then min{Pt : t ≥ � and t ∈ T } = β + 2.

Proof. If t ≥ � and t ∈ T , then t ≥ (β + 1)ps−1. So we get min{t ∈ T : t ≥
�} = (β + 1)ps−1. Using Proposition 1, we obtain min{Pt : t ≥ � and t ∈
T } = β + 2. 
�
Note that ps −ps−1 < ps −ps−2 < · · · < ps −ps−s = ps −1. Hence for an integer
i satisfying (p− 1)ps−1 + 1 = ps − ps−1 + 1 ≤ i ≤ ps − 1, there exists a uniquely
determined integer k such that 1 ≤ k ≤ s−1 and ps−ps−k+1 ≤ i ≤ ps−ps−k−1.
Moreover we have ps−ps−k < ps−ps−k +ps−k−1 < ps−ps−k +2ps−k−1 < · · · <
ps−ps−k +(p−1)ps−k−1 and ps−ps−k +(p−1)ps−k−1 = ps−ps−k−1. Therefore
for such integers i and k, there exists a uniquely determined integer τ with
1 ≤ τ ≤ p−1 such that ps−ps−k +(τ −1)ps−k−1 +1 ≤ i ≤ ps−ps−k + τps−k−1.

Lemma 7. Let τ and k be integers with 1 ≤ τ ≤ p − 1 and 1 ≤ k ≤ s − 1. If
� is an integer with ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ � ≤ ps − ps−k + τps−k−1,
then min{Pt : t ≥ � and t ∈ T } = (τ + 1)pk.

Proof. For 0 ≤ α ≤ p − 1, we have ps − ps−k + αps−k−1 = (p − 1)ps−1 + (p −
1)ps−2 + · · · + (p − 1)ps−k + αps−k−1. So we get

(p − 1)ps−1 + (p − 1)ps−2 + · · · + (p − 1)ps−k + (τ − 1)ps−k−1 + 1 ≤ �

≤ (p − 1)ps−1 + (p − 1)ps−2 + · · · + (p − 1)ps−k + τps−k−1.

Now t ≥ � and t ∈ T implies t ≥ (p− 1)ps−1 + (p− 1)ps−2 + · · ·+ (p− 1)ps−k +
τps−k−1. Thus min{t ∈ T : t ≥ �} = (p − 1)ps−1 + (p − 1)ps−2 + · · · +
(p − 1)ps−k + τps−k−1. Hence, using Proposition 1, we obtain min{Pt : t ∈
T and t ≥ �} = (τ + 1)ps−k. 
�
Now we are ready to obtain the minimum Hamming distance of the cyclic codes
when 0 < j ≤ ps−1 < i < ps in the following two lemmas. Recall that from
Lemma 8 till Theorem 2 we state the results when j ≤ i only. For j > i, the
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analogous results are obtained by the same method, and their statements are
included in Theorem 2.

Lemma 8. Let C = 〈(x − 1)i(x + 1)j〉, where 2ps−1 ≥ i > ps−1 ≥ j > 0. Then
dH(C) = 3.

Proof. Note that ps−1 ∈ T and i > ps−1 ≥ j. Hence the set {Pt : t ∈
T and i > t ≥ j} is nonempty. So, by Lemma 6, we get min{Pt : t ∈
T and i > t ≥ j} = 2. If i > t ≥ j, then dH(C̄t) = 2 by (2), thus

min{PtdH(C̄t) : t ∈ T and i > t ≥ j} = 4. (6)

If t ≥ i > j and 2ps−1 ≥ i > ps−1, then, by Lemma 6, we get min{Pt : t ∈
T and t ≥ i > j} = 3. Note that dH(C̄t) = 1 by (3), so

min{PtdH(C̄t) : t ∈ T and t ≥ i > j} = 3. (7)

Using (4), (6) and (7), we conclude dH(C) = 3. 
�
Lemma 9. Let C = 〈(x− 1)i(x+ 1)j〉, where ps > i > 2ps−1 and ps−1 ≥ j > 0.
Then dH(C) = 4.

Proof. By Lemma 6, (2) and (3) we get

min{PtdH(C̄t) : t ∈ T and i > t ≥ j} = 4, (8)
min{dH(C̄t)Pt : t ∈ T and t ≥ i > j} ≥ 4. (9)

Using (4), (8) and (9), we obtain dH(C) = 4. 
�
We consider the case ps−1 + 1 ≤ j ≤ i ≤ (p − 1)ps−1 in the following lemma.

Lemma 10. Let j ≤ i, 1 ≤ β
′ ≤ β ≤ p − 2 be integers with βps−1 + 1 ≤ i ≤

(β + 1)ps−1 and β
′
ps−1 + 1 ≤ j ≤ (β

′
+ 1)ps−1. Let C = 〈(x− 1)i(x + 1)j〉, then

dH(C) = min{β + 2, 2(β
′
+ 2)}.

Proof. First suppose that β = β
′
. Note that if i > t ≥ j, then t �∈ T . For t ≥ i ≥

j, by Lemma 6, we get min{Pt : t ∈ T and t ≥ i ≥ j} = β + 2 = β
′
+ 2.

For t ≥ i ≥ j, dH(C̄t) = 1 by (3). So we have

min{PtdH(C̄t) : t ∈ T and t ≥ i ≥ j} = β + 2 = β
′
+ 2. (10)

Nextwe assumeβ
′
< β. Then, usingLemma6,we getmin{Pt : t ∈ T and i >

t ≥ j} = (β
′
+ 2). Since i > t ≥ j, dH(C̄t) = 2 by (2), therefore

min{PtdH(C̄t) : t ∈ T and i > t ≥ j} = 2(β
′
+ 2). (11)

For t ≥ i ≥ j, using Lemma 6, we get min{Pt : t ∈ T and t ≥ i ≥ j} =
(β + 2). Since t ≥ i ≥ j, dH(C̄t) = 1 by (3), thus

min{PtdH(C̄t) : t ∈ T and t ≥ i ≥ j} = β + 2. (12)

Using (4), (10), (11) and (12), we obtain dH(C) = min{2(β
′
+ 2), β + 2}. 
�
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The following lemma deals with the case ps−1 +1 ≤ j < (p−1)ps−1 < i ≤ ps−1.

Lemma 11. Let i, j, 1 ≤ τ ≤ p − 1, 1 ≤ β ≤ p − 2 and 1 ≤ k ≤ s − 1 be
integers such that ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1 and
βps−1 +1 ≤ j ≤ (β +1)ps−1. Let C = 〈(x−1)i(x+1)j〉, then dH(C) = 2(β +2).

Proof. By Lemma 6, (2), Lemma 7 and (3), we get

min{PtdH(C̄t) : t ∈ T and i > t ≥ j} = 2(β + 2), (13)
min{PtdH(C̄t) : t ∈ T and t ≥ i > j} = (τ + 1)pk. (14)

It follows from β ≤ p − 2, 1 ≤ τ and 1 ≤ k that 2(β + 2) ≤ 2p ≤ (τ + 1)pk. So,
using (4), (13) and (14), we obtain dH(C) = 2(β + 2).. 
�
In the following two lemmas, we obtain the minimum Hamming distance when
(p − 1)ps−1 + 1 ≤ j ≤ i ≤ ps − 1.

Lemma 12. Let j ≤ i, 1 ≤ k ≤ s − 1, 1 ≤ τ
′ ≤ τ ≤ p − 1 be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1 and
ps − ps−k + (τ

′ − 1)ps−k−1 + 1 ≤ j ≤ ps − ps−k + τ
′
ps−k−1.

Let C = 〈(x − 1)i(x + 1)j〉, then dH(C) = min{2(τ
′
+ 1)pk, (τ + 1)pk}.

Proof. First suppose that τ = τ
′
. Obviously, there exists no t ∈ T with i > t ≥ j.

So we consider t ≥ i ≥ j. By Lemma 7 and (3) we get

min{PtdH(C̄t) : t ∈ T and t ≥ j ≥ i} = (τ + 1)pk. (15)

Next suppose that τ
′
< τ . By Lemma 7, (2) and (3) we get

min{PtdH(C̄t) : t ∈ T and i > t ≥ j} = 2(τ
′
+ 1)pk, (16)

min{PtdH(C̄t) : t ∈ T and t ≥ i ≥ j} = (τ + 1)pk. (17)

Using (4), (15), (16) and (17), we obtain dH(C) = min{2(τ
′
+ 1)pk, (τ + 1)pk}.


�
Lemma 13. Let i, j, 1 ≤ k

′
< k ≤ s− 1, 1 ≤ τ

′
, τ ≤ p− 1 be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1 and ps − ps−k
′
+

(τ
′ − 1)ps−k

′−1 + 1 ≤ j ≤ ps − ps−k
′
+ τ

′
ps−k

′−1. Let C = 〈(x − 1)i(x + 1)j〉,
then dH(C) = 2(τ

′
+ 1)pk

′
.

Proof. By Lemma 7, (2) and (3) we get

min{PtdH(C̄t) : t ∈ T and i > t ≥ j} = 2(τ
′
+ 1)pk

′
, (18)

min{PtdH(C̄t) : t ∈ T and t ≥ i > i} = (τ + 1)pk. (19)

It follows from k > k
′
, τ + 1 ≥ 2 and τ

′
+ 1 ≤ p that pk(τ + 1) ≥ 2pk

′
(τ

′
+ 1).

So, using (4), (18) and (19) we obtain dH(C) = min{2(τ
′
+ 1)pk

′
, (τ + 1)pk} =

2(τ
′
+ 1)pk

′
. 
�



The Minimum Hamming Distance of Cyclic Codes of Length 2ps 99

Finally it remains to consider the cases i = ps and 0 < j ≤ ps − 1. Clearly, for
i = ps and 0 < j ≤ ps − 1, there is no t ∈ T with t ≥ i ≥ j, so we only consider
i > t ≥ j in the following three lemmas. Their proofs follow from Lemma 6,
Lemma 7, (2), (4) and similar arguments as above.

Lemma 14. Let 0 < j ≤ ps−1 be an integer and let C = 〈(x − 1)ps

(x + 1)j〉.
Then dH(C) = 4.

Lemma 15. Let 1 ≤ β ≤ p − 2, βps−1 + 1 ≤ j ≤ (β + 1)ps−1 be integers. Let
C = 〈(x − 1)ps

(x + 1)j〉, then dH(C) = 2(β + 2).

Lemma 16. Let 1 ≤ τ ≤ p − 1, 1 ≤ k ≤ s − 1, j be integers such that ps −
ps−k +(τ −1)ps−k−1 +1 ≤ j ≤ ps−ps−k + τps−k−1. Let C = 〈(x−1)ps

(x+1)j〉,
then dH(C) = 2(τ + 1)pk.

We summarize our results in the following theorem (see Table 1 also).

Theorem 2. Let p be an odd prime and let a, s be arbitrary positive integers. For
q = pa, all cyclic codes of length 2ps over Fq are of the form 〈(x−1)i(x+1)j〉 ⊂
Fq[x]/〈x2ps −1〉 with 0 ≤ i, j ≤ ps. Let C = 〈(x−1)i(x+1)j〉 ⊂ Fq[x]/〈x2ps −1〉.

Table 1. The minimum Hamming distance of all non-trivial cyclic codes, of the form
〈(x − 1)i(x + 1)j〉, of length 2ps over Fq. The parameters 1 ≤ β

′ ≤ β ≤ p − 2,

1 ≤ τ (2) < τ (1) ≤ p − 1, 1 ≤ τ, τ (3), τ (4) ≤ p − 1 , 1 ≤ k ≤ s − 1, 1 ≤ k
′′

< k
′ ≤ s − 1

are integers. The cases with i ≥ j are given. For the cases with i ≤ j, see Remark 1.

Case i j dH(C)

1 0 < i ≤ ps j = 0 2

2 0 ≤ i ≤ ps−1 0 ≤ j ≤ ps−1 2

3 ps−1 < i ≤ 2ps−1 0 < j ≤ ps−1 3

4 2ps−1 < i ≤ ps 0 < j ≤ ps−1 4

5 βps−1 + 1 ≤ i ≤ (β + 1)ps−1 β
′
ps−1 + 1 ≤ j ≤ (β

′
+ 1)ps−1 min{β + 2,

2(β
′
+ 2)}

6
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ i ≤ ps − ps−k + τps−k−1 βps−1 + 1 ≤ j ≤ (β + 1)ps−1 2(β + 2)

7
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ i ≤ ps − ps−k + τps−k−1
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ j ≤ ps − ps−k + τps−k−1 (τ + 1)pk

8
ps − ps−k + (τ (1) − 1)ps−k−1

+1 ≤ i ≤ ps − ps−k

+τ (1)ps−k−1

ps − ps−k + (τ (2) − 1)ps−k−1

+1 ≤ j ≤ ps − ps−k

+τ (2)ps−k−1

min{
2(τ (2) + 1)pk,

(τ (1) + 1)pk}

9

ps − ps−k
′
+ (τ (3) − 1)ps−k

′−1

+1 ≤ i ≤ ps − ps−k
′

+τ (3)ps−k
′−1

ps − ps−k
′′

+ (τ (4) − 1)ps−k
′′−1

+1 ≤ j ≤ ps − ps−k
′′

+τ (4)ps−k
′′−1

2(τ (4) + 1)pk
′′

10 i = ps βps−1 + 1 ≤ j ≤ (β + 1)ps−1 2(β + 2)

11 i = ps
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ j ≤ ps − ps−k

+τps−k−1

2(τ + 1)pk
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If (i, j) = (0, 0), then C is the whole space F
2ps

q , and if (i, j) = (ps, ps), then C
is the zero space {0}. For the remaining values of (i, j), the minimum Hamming
distance of the cyclic code C is given in Table 1.

Remark 1. We simplified Table 1 by giving the cases only with i ≥ j for some
ranges of i and j. The corresponding case with j ≥ i have the same minimum
Hamming distance by symmetry. For example in Case 1, the corresponding case
is i = 0 and 0 ≤ j ≤ ps, and the minimum Hamming distance is 2.
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There Are Not Non-obvious Cyclic

Affine-invariant Codes�
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Abstract. We show that an affine-invariant code C of length pm is
not permutation equivalent to a cyclic code except in the obvious cases:
m = 1 or C is either {0}, the repetition code or its dual.

Affine-invariant codes were firstly introduced by Kasami, Lin and Peterson [KLP2]
as a generalization of Reed-Muller codes. This class of codes has received the at-
tention of several authors because of its good algebraic and decoding properties
[D, BCh, ChL, Ho, Hu]. It is well known that every affine-invariant code can be
seen as an ideal of the group algebra of an elementary abelian group in which the
group is identified with the standard base of the ambient space. In particular, if C
is a code of prime length then C is permutation equivalent to a cyclic code. Other
obvious affine-invariant cyclic codes are the trivial code, {0}, the repetition code
and the code form by all the even-like words, provided its length is a prime power.
In this paper we prove that these are the only affine-invariant codes which are per-
mutation equivalent to a cyclic code.

Our main tools are an intrinsical characterization of group codes obtained
in [BRS] and a description of the group of permutation automorphisms of non-
trivial affine-invariant codes given in [BCh]. These results are reviewed in Section
1, where we also recall the definition and main properties of affine-invariant
codes. In Section 2 we prove the main result of the paper.

1 Preliminaries

In this section we recall the definition of (left) group code and the intrinsical
characterization given in [BRS]. We also recall the definition of affine-invariant
code and the description of its group of permutation automorphisms given in
[BCh].

All throughout F is a field of order a power of p, where p is a prime number.
The finite field with ps elements is denoted by Fps . For a group G, we denote by
FG the group ring of G with coefficients in F. All the group theoretical notions
used in this paper can be easily founded in [R].

Definition 1. If E is the standard basis of F
n, C ⊆ F

n is a linear code and G
is a group (of order n) then we say that C is a G-code if there is a bijection

� Research supported by D.G.I. of Spain and Fundación Séneca of Murcia.

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 101–106, 2009.
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φ : E → G such that the linear extension of φ to an isomorphism φ : F
n → FG

maps C to an ideal of FG.
A group code is a linear code which is a G-code for some group G.
A cyclic group code (respectively, abelian group code, solvable group code, etc)

is a linear code which is G-code for some cyclic group G (respectively, abelian
group, solvable group, etc).

Let Sn denote the group of permutations of n symbols. Every σ ∈ Sn defines an au-
tomorphism of F

n in the obvious way, i.e. σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)).
By definition, the group of permutation automorphisms of a linear codeC of length
n is

PAut(C) = {σ ∈ Sn : σ(C) = C}.
An intrinsical characterization of group codes C in terms of PAut(C) has been
obtained in [BRS]. Four our purposes we only need to consider abelian groups.
So we record in the following theorem the specialization of [BRS, Theorem 1.2]
to abelian groups.

Theorem 1. [BRS] Let C be a linear code of length n over a field F and G a
finite abelian group of order n. Then C is a G-code if and only if G is isomorphic
to a transitive subgroup H of Sn.

In the remainder of the paper we assume that I = Fpm . Often we will be only us-
ing the underlying additive structure of I; for example, FI is the group algebra of
this additive group with coefficients in F. Let S(I) denote the group of permuta-
tions of I. Every element of S(I) induces a unique F-linear bijection of the group
algebra FI. For an F-subspace C of FI, let PAut(C) = {σ ∈ S(I) : σ(C) = C}.

An affine-invariant code is an F-subspace C of FI formed by even-like words
such that PAut(C) contains the maps of the form x ∈ I �→ αx + β, with α ∈
I∗ = {a ∈ I : a �= 0} and β ∈ I. These maps are called affine transformations
of I.

Observe that if F
pm

is identified with FI via some bijection from {1, . . . , pm}
to I, then the linear codes of length pm correspond to subspaces of FI in such a
way that the groups of permutations automorphisms agree. Therefore if C is a
subspace of FI and G is a group then C is a left G-code if and only if PAut(C)
contains a regular subgroup H of S(I) isomorphic to G and it is a G-code if H
can be selected such that CS(I)(H) ⊆ PAut(C).

Affine-invariant codes can be seen as extended cyclic codes. Recall that a
cyclic code C of length n over F is a subspace of F

n which is closed under
cyclic permutations, that is if (x1, x2, . . . , xn−1, xn) is an element of C then so
is (xn, x1, x2, . . . , xn−1). Cyclic codes are cyclic group codes via the bijection
φ : E → G given by φ(ei) = gi−1, where E = {e1, . . . , en} is the standard basis
of F

n and G is a cyclic group of order n generated by g. Conversely, any ideal of
the group algebra FG, with G a cyclic group of order n can be seen as a cyclic
code with a suitable identification of the elements of G with the coordinates.

The zeroes of a cyclic code C of length n are the n-th roots of unity α such
that x0 + x1α + x2α

2 + · · · + xn−1α
n−1 = 0, for every (x0, x1, . . . , xn−1) ∈ C.
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It is well known that every cyclic code is uniquely determined by its zeroes and
conversely, if ζ is a primitive n-th root of unity and D is a union of q-cyclotomic
classes modulo n then there is a unique q-ary cyclic code of length n whose set
of zeroes is {ζi : i ∈ D}.

Let C ⊆ FI be an affine-invariant code and let C∗ denote the code obtained
by puncturing C at the coordinate labelled by 0. The permutation automor-
phisms of C which fix 0 induces permutation automorphisms of C∗. In partic-
ular, PAut(C∗) contains the maps of the form x → αx, for α ∈ I∗. This maps
form a cyclic group isomorphic to the group of units of the field I. So, C∗ is a
cyclic group code and C is the extended code obtained by adding a parity check
coordinate.

However not every code obtained by extending a cyclic code of length pm − 1
is affine-invariant. We recall a characterization of Kasami, Lin and Peterson of
the extended cyclic codes which are affine-invariant in terms of the roots of the
cyclic code [KLP1].

Thep-adic expansionof anon-negative integerx is the list of integers (x0, x1, . . . )
with 0 ≤ xi < p and x =

∑
i≥0 xip

i. The p-adic expansion yields a partial ordering
in the set of positive integers by setting x � y if xi ≤ yi, for every i, where (xi) and
(yi) are the p-adic expansions of x and y, respectively.

Let n = pm − 1 and let α be a primitive element of I, i.e. a generator of
I∗. Identify the standard basis of F

n, E = {e1, . . . , en}, with I∗ via the map
ei �→ αi−1. A cyclic code C∗ of length n is determined by the following set

DC∗ = {i : 0 ≤ i < n, αi is a zero of C∗}.

Since C∗ is a q-ary cyclic code, with q = pr, the set DC∗ is invariant under
multiplication by q modulo n, that is, DC∗ is a union of q-cyclotomic classes
modulo n. Conversely, every union D of q-cyclotomic classes modulo n, yields
to a uniquely defined cyclic code C∗ of length n with D = DC∗ . If C∗ is a cyclic
code and C is its corresponding extended code then the defining set of C is by
definition DC = DC∗ ∪ {0} if 0 �∈ DC , and DC = DC∗ ∪ {n} if 0 ∈ DC∗ .

Proposition 1. [KLP1][Hu, Corollary 3.5] Let C∗ be a cyclic code of length
n = pm − 1 and C the extended code of C∗. Then C is affine-invariant if and
only if DC satisfy the following condition for every 1 ≤ s, t ≤ n:

s � t and t ∈ DC ⇒ s ∈ DC . (1)

The trivial code and the repetition code of length n are cyclic with defining sets
{0, 1, 2, . . . , n− 1} and {1, 2, . . . , n− 1} respectively. Their duals, i.e. F

n and the
space of all the even-like words, are also cyclic with defining sets ∅ and {0}.
Recall that a word (x1, . . . , xn) is even-like if

∑n
i=1 xi = 0. When n = pm − 1,

except for the last one, all the others give rise to affine-invariant codes of length
pm: the trivial code, the repetition code and the code formed by the even-like
words. These three codes are known as the trivial affine-invariant codes.

For future use we describe the affine-invariant codes of length 4.
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Example 1 (Affine-invariant codes of length 4). Let D be the defining set of
an affine-invariant code C of length 4 over F2r . Then C is trivial as an affine-
invariant code if and only if D is either {0}, {0, 1, 2} or {0, 1, 2, 3}. Since D is
invariant by multiplication by 2r modulo 3 and satisfies condition (1), if r is
odd then there are not non trivial affine-invariant codes. However, if r is even
then there are two non-trivial affine-invariant codes with defining sets {0, 1} and
{0, 2} respectively.

If C is a trivial affine-invariant code then PAut(C) = Sn, and therefore C is
G-code for every group G of order pm. So to avoid trivialities, in the remainder
of the paper all the affine-invariant codes are suppose to be non-trivial. The
group of permutations of a (non-trivial) affine-invariant code has been described
by Berger and Charpin [BCh]. In order to present their description we need to
introduce some notation.

We use the notation N � G to represent a semidirect product of N by G
via some action of G on N , which is going to be clear from the context. That
is, N and G are groups and there is a group homomorphism σ : G → Aut(N)
associating g ∈ G to σg. The underlying set of N �G is the direct product N ×G
and the product is given by (n1, g1)(n2, g2) = (n1σg1 (n2), g1g2).

For every d|m let GL(IF
pd

) and Affd(I) denote the groups of linear and affine
transformations of I as vector space over Fpd . The group of Fpd-automorphisms
of the field I is denoted by Gal(I/Fpd). We identify every element y ∈ I with
the translation x �→ x + y. Then Affd(I) = I � GL(IF

pd
).

Given two divisors a and b of m with b|a, let

Ga,b = {f ∈ GL(IF
pb

) : f is τ − semilinear for some τ ∈ Gal(Fpa/Fpb)}.
We claim that Ga,b = 〈GL(IFpa ), Gal(I/Fpb)〉. Indeed, if f is τ -semilinear with
τ ∈ Gal(Fpa/Fpb) then τ is the restriction of σ for some σ ∈ Gal(I/Fpb) and
fσ−1 ∈ GL(IFpa ).

Theorem 2. [BCh, Corollary 2] Let C be a non-trivial affine-invariant code of
length pm over Fq, with q = pr. Let

a = a(C) = min{d|m : Affd(I) ⊆ PAut(C)},
b = b(C) = min{d ≥ 1 : pdDC = DC}

Then b|r, b|a|m and

PAut(C) = 〈Affa(I), Gal(I/Fpb)〉 = I � Ga,b.

A method to compute a(C) and b(C) was firstly obtained by Delsarte [D]. Later,
Berger and Charpin founded two alternative methods to calculate a(C) and b(C)
which are sometimes computationally simpler [BCh].

2 Affine-invariant Cyclic Group Codes

Let C be an affine-invariant code. Then C is an I-code, since the group of trans-
lations of I (which we have identified with the additive group I) is a transitive
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subgroup of S(I) contained in PAut(C). So every affine-invariant code is an ele-
mentary abelian group code. In particular, if the length of C is prime then C is a
cyclic group code. Next result shows that this one is the only type of non-trivial
affine-invariant cyclic group codes.

Theorem 3. A non-trivial affine-invariant code is permutation equivalent to a
cyclic code if and only if it has prime length.

Proof. Assume that C is a non trivial affine-invariant code of length pm which
is permutation equivalent to a cyclic code. Then C is a cyclic group code. By
Theorem 1, this implies that G = PAut(C) contains a cyclic subgroup of order
pm or equivalently G contains an element of order pm. Let a = a(C), b = b(C),
as in Theorem 2 and h = m/a. Let pt be the maximum p-th power dividing a/b,
and pu the minimum p-th power greater or equal than h. We first show that the
existence of an element g of order pm in G implies a strong relation on these
parameters which reduces to some few cases.

By Theorem 2, G = I � Ga,b. Furthermore H = I � GL(IFpa ) is a normal
subgroup of index a/b in G. Since the order of G is a p-th power and pt is
the maximum p-th power dividing a/b, gpt

is an element of order pm−t in H .
Furthermore, H is isomorphic to F

h
pa � GLh(Fpa), where GLh(Fpa) is the group

of invertible h × h matrices with entries in Fpa . Therefore there is an element
(x, A) ∈ F

h
pa � GLh(Fpa) of order pm−t. This implies that A has order pk with

m− t−1 ≤ k. Since the order of A is a power of p, and the fields of characteristic
p do not have elements of orden p, the only eigenvalue of A is 1. We may assume
that A is given in Jordan form and hence A = I + N where N is an upper
triangular matrix with zeroes in the diagonal. Then Npu

= 0 and therefore
Apu

= I. Thus m − t − 1 ≤ k ≤ u = �logp(h)� and we conclude that

m ≤ 1 + t + �logp(h)� < 2 + logp(a) + logp(h) = 2 + logp(m). (2)

We have to prove that m = 1. Otherwise, (2) implies that either m = 2 or m = 3
and p = 2.

Case 1: m = 2. We claim that in this case p = 2. Indeed, if p > 2 then 0 <
logp(2) < 1 and t = 0, since pt divides m = 2. Hence 2 = m ≤ 1 + �logp(h)� ≤
1 + �logp(m)� = 2 and so h = 2.

Hence (x, A) is an element of order p2 in F
2
p � GL2(Fp). Thus there are

x1, x2, y ∈ Fp such that ((x1, x2), A)p �= (0, 1), where A =
(

1 y
0 1

)

. However

((x1, x2), A)p =
((∑p−1

i=0 (x1 + iyx2), py
)

, Ap
)

=
((

p(p−1)
2 yx2, 0

)
, 1

)
= (0, 1),

which is the desired contradiction.
Hence p = 2 and so C has length 4. Since C is non-trivial as affine-invariant

code, by Example 1, r is even and DC = {0, 1} or {0, 2}. By the definition of
b(C) we have b = 2 and hence a = 2. We deduce that PAut(C) = I � F

∗
4. Hence
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I � F
2
p is the only subgroup of order 4 of PAut(C) and we conclude that C is

not cyclic group code.

Case 2: m = 3 and p = 2. Then t = 0 and 3 ≤ 1+�log2(h)� ≤ 1+�log2(m)� = 3,
by (2). Thus h = 3, or equivalently a = 1 and hence b = 1. Thus (x, A) is an
element of order 8 in F

3
2 � GL3(F2). Then u = �log2(3)� = 2 and so A4 = 1. If

A2 = 1 then x4 = 1, a contradiction. Therefore A is a Jordan matrix of order 4
and thus

A =

⎛

⎝
1 1 0
0 1 1
0 0 1

⎞

⎠

However I +A+A2 +A3 = 0. Then (x, A)4 = ((I +A+A2 +A3)x, A4) = (0, 1),
a contradiction. ��
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Abstract. In this paper, we look at self-dual codes over the ring Z16

of integers modulo 16. From any doubly even self-dual binary code, we
construct codes over Z16 and give a necessary and sufficient condition for
the self-duality of induced codes. We then give an inductive algorithm for
constructing all self-dual codes over Z16, and establish the mass formula,
which counts the number of such codes.

Keywords: Self-dual codes, Doubly even codes, Finite rings, Mass
formula.

1 Introduction

There has been much interest in codes over the ring Zm of integers modulo
m and finite rings in general, since the discovery [5] of a relationship between
non-linear binary codes and linear quaternary codes. By applying the Chinese
Remainder Theorem [2] to self-dual codes over Zm, it suffices to look at codes
over integers modulo prime powers.

We consider the problem of finding the mass formula, which counts the number
of self-dual codes of given length. In [4], Gaborit gave a mass formula for self-
dual quaternary codes. This was generalized in [1] to the ring Zp2 and in [6]
to Zp3 for all primes p. In [7], we gave a mass formula over Zps in [7] for any
odd prime p and any integer s ≥ 4. In this paper, we will give an inductive
algorithm for constructing self-dual codes over Z16 from a given binary code. As
a consequence, we obtain a mass formula for such codes.

A code of length n over a finite ring R is an R-submodule of Rn. Elements
of codes are called codewords. Associated to a code C is a generator matrix,
whose rows span C and are linearly independent in binary case. Two codewords
x = (x1, . . . , xn) and y = (y1, . . . , yn) (considered as vectors) are orthogonal if
their Euclidean inner product x · y =

∑
i xiyi is zero. The dual C⊥ of a code

C over a ring R consists of all vectors of Rn which are orthogonal to every
codeword in C. A code C is said to be self-dual (resp. self-orthogonal) if C = C⊥
(resp. C ⊆ C⊥).
� Corresponding author.

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 107–116, 2009.
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2 Construction of Self-dual Codes over Z16

Every code C of length n over Z16 has a generator matrix which, after a suitable
permutation of coordinates, can be written as

C =

⎡

⎢
⎢
⎣

T1

2T2

22T3

23T4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

Ik1 A11 A12 A13 A14

0 2Ik2 2A22 2A23 2A24

0 0 22Ik3 22A33 22A34

0 0 0 23Ik4 23A44

⎤

⎥
⎥
⎦ ,

where Iki is the ki × ki identity matrix, and the other matrices Aij ’s (1 ≤ i ≤
j ≤ 4) are considered modulo 2j−i+1. The columns are grouped in blocks of sizes
k1, k2, k3, k4 and k5, with n = k1 + k2 + k3 + k4 + k5. In [7] we showed that C
is self-dual if and only if k1 = k5, k2 = k4 and TiT

t
j ≡ 0 (mod 26−i−j) for i and

j such that 1 ≤ i ≤ j ≤ 4 and i + j ≤ 5.
We showed in [7] that self-dual codes over the ring Zps are induced from codes

over the ring Zps−2 , for any odd prime p and integer s ≥ 4. In this paper we
look at the case when p = 2 and show that self-dual codes over Z24 can be
constructed from a code over Z22 represented by a generator matrix

⎡

⎣
T1

T2

2T3

⎤

⎦ (mod 22),

where T1 has some generator vectors t1, ..., tk1 such that ti ·ti ≡ 0 (mod 23) for
all i = 1, ..., k1. Such a representation of a quaternary code is called T1-doubly
even. We thus construct self-dual codes over Z24 from doubly even self-dual
binary codes via the following constructive scheme diagram

⎡

⎢
⎢
⎣

T1

2T2

22T3

23T4

⎤

⎥
⎥
⎦ (mod 24)←

⎡

⎣
T1

T2

2T3

⎤

⎦ (mod 22)←
[
T1

T2

]

(mod 2),

where Ti’s are composed of linearly independent binary codewords as row vectors
and [Ti] denotes the code generated by Ti. In the right of the diagram above,
the boldface symbols denote doubly even binary codes. The boldface part in the
middle of the diagram, T1, denotes the T1-doubly even representation.

In [4] Gaborit gave the number of doubly even self-dual binary codes of size
n and dimension k1 + k2, and from this we obtain a mass formula for counting
the number of T1-doubly even representations of quaternary codes induced from
a given doubly even self-dual binary code.

We start with a doubly even self-dual binary code C0 of size n and of dimension
k1 + k2, and divide it into two subspaces of dimension k1 and k2. The number

of such divisions is ρ(k1 + k2, k1) =
k1−1∏

i=0

2k1+k2−i − 1
2k1−i − 1

. The code C0 can be

represented as
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C0 =

[
T

(0)
1

T
(0)
2

]

=

[
Ik1 A

(0)
11 A

(0)
12 A

(0)
13 A

(0)
14

0 Ik2 A
(0)
22 A

(0)
23 A

(0)
24

]

,

where the A
(0)
∗ are considered modulo 2.

Though A
(0)
11 is supposed to be 0 in a usual binary code basis expression, we

should remark that some A
(0)
11 is necessary, since we consider it mod 2 in the

lifted quaternary expression. These differences are counted in ρ(k1 + k2, k1). By
a suitable permutation of columns, we can assume that the binary square matrix
(

A
(0)
13 A

(0)
14

A
(0)
23 A

(0)
24

)

and A
(0)
14 are invertible.

Next we construct a quaternary code C1, represented by

C1 =

⎡

⎣
T1

T2

2T3

⎤

⎦ =

⎡

⎢
⎣

Ik1 A
(0)
11 A

(0)
12 + 2A

(1)
12 A

(0)
13 + 2A

(1)
13 A

(0)
14 + 2A

(1)
14

0 Ik2 A
(0)
22 A

(0)
23 + 2A

(1)
23 A

(0)
24 + 2A

(1)
24

0 0 2Ik3 2A
(0)
33 2A

(0)
34

⎤

⎥
⎦ .

Here we notice that A
(1)
12 is necessary, since 2Ik3 becomes 22Ik3 in the extended

code over Z24 .
There are two conditions for C1 to be self-dual, and the first is

[
T1

T2

]

T t
3 ≡ 0 (mod 2).

This implies that

(
A

(0)
12

A
(0)
22

)

Ik3 ≡
(

A
(0)
13 A

(0)
14

A
(0)
23 A

(0)
24

)
(

A
(0)
33 A

(0)
34

)t

(mod 2), thus

(
A

(0)
33 A

(0)
34

)
is uniquely determined as

⎛

⎝

(
A

(0)
13 A

(0)
14

A
(0)
23 A

(0)
24

)−1(
A

(0)
12

A
(0)
22

)⎞

⎠

t

.

Let
[

T1

T2

]

=

[
T

(0)
1

T
(0)
2

]

+2

[
T

(1)
1

T
(1)
2

]

where

[
T

(0)
1

T
(0)
2

]

is a given doubly even self-dual

binary code and

[
T

(1)
1

T
(1)
2

]

=

[
0 0 A

(1)
12 A

(1)
13 A

(1)
14

0 0 0 A
(1)
23 A

(1)
24

]

is a binary code.

Then the self-dual quaternary code has a T1-doubly even representation if

[
T

(0)
1

T
(0)
2

][
T

(0)
1

T
(0)
2

]t

+ 2
˜

[
T

(0)
1

T
(0)
2

][
T

(1)
1

T
(1)
2

]t

+ 22

[
T

(1)
1

T
(1)
2

] [
T

(1)
1

T
(1)
2

]t

≡ 0 (1)

where X̃ := X + Xt and the modulus of congruence is 8 only for the diagonal
entries and 4 otherwise.
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We describe some parts of T
(j)
i ’s using binary row vectors such as

(
A

(0)
12 A

(0)
13 A

(0)
14

A
(0)
22 A

(0)
23 A

(0)
24

)

=

⎛

⎜
⎝

a1

...
ak′

⎞

⎟
⎠ =

⎛

⎜
⎝

∗ a′
1

...
...

∗ a′
k′

⎞

⎟
⎠ ,

(
A

(1)
12 A

(1)
13 A

(1)
14

0 A
(1)
23 A

(1)
24

)

=

⎛

⎜
⎝

x1

...
xk′

⎞

⎟
⎠ ,

where a’s and x’s are of size k3 + k2 + k1 = k3 + k′, a′’s are of size k2 + k1 = k′.
Put xi = (0 x′

i) for k1 + 1 ≤ i ≤ k′ with x′
i of size k′.

Dividing the left hand side of congruence (1) by 2, we get

(fij) + (ai · xj + aj · xi) + 2(xi · xj),

with

(
T

(0)
1

T
(0)
2

)(
T

(0)
1

T
(0)
2

)t

= (2fij). Thus the self-dual quaternary code C1 has a

T1-doubly even representation if

{
fij ≡ ai · xj + aj · xi (i < j)
1
2fii ≡ ai · xi + xi · xi = (ai + 1) · xi (i = 1, ..., k1)

where the congruence modulus is 2, and 1 = 1k3+k′ denotes the all-1 vector of
size k3 + k′. The first condition together with the doubly even assumption for
C0 is a necessary and sufficient condition for the self-duality of the quaternary
code C1, while the second condition is for the T1-doubly even presentation of C1.

We now consider the equation in the following matrix representation. To illus-
trate, we give such matrix representation for the case when k1 = 2 and k2 = 1.
We have

⎛

⎜
⎜
⎜
⎝

a1 + 1
a2 + 1

a2 a1

a3 a′
1

a3 a′
2

⎞

⎟
⎟
⎟
⎠

⎛

⎝
xt

1
xt

2

x′t
3

⎞

⎠ ≡

⎛

⎜
⎜
⎜
⎝

g1

g2

f12

f13

f23

⎞

⎟
⎟
⎟
⎠

,

where gi := 1
2fii (i = 1, 2) and the modulus of congruence is 2.

In general, if M is the coefficient matrix in the equation, then the number
of row vectors in M is 1

2k′(k′ − 1) + k1 with the size of each row equal to
(k′ + k3)× k1 + k′ × k2 = k′2 + k1k3.

We compute the rank of M . From the definition, the ranks of (a′
i) and (ai)

are both equal to k′. Any linearly dependent equation of row vectors in M must
not contain any a′

i’s and must contain at least one ai + 1. Thus we can assume
that

ai1 + · · ·+ aim ≡ 1 (mod 2)

for some 1 ≤ i1 < · · · < im ≤ k1.
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Going back to the starting code C0, we write it as

C0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ik1 A
(0)
11

a1

...
ak1

0 Ik2

ak1+1

...
ak′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1 a
(0)
1 a1

...
...

...
ek1 a

(0)
k1

ak1

0 e1 ak1+1

...
...

...
0 ek2 ak′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The self-duality of this code implies that for any j (1 ≤ j ≤ k2)

0 ≡ ((a(0)
i1

ai1) + · · ·+ (a(0)
im

aim)) · (ej ak1+j) ≡ (a(0)
i1

+ · · ·+ a
(0)
im

) · ej + 1

using the equation 0 ≡ (e(0)
j ak1+j) · (e(0)

j ak1+j) = 1 + ak1+j · ak1+j . As the
index j ranges from 1 to k2, we have

a
(0)
i1

+ · · ·+ a
(0)
im
≡ 1k2

,

and
(a(0)

i1
ai1) + · · ·+ (a(0)

im
ais) ≡ 1k2+(k3+k′) .

Again from the self-duality of C0, we have for any j (1 ≤ j ≤ k1)

0 ≡ ((ei1 a
(0)
i1

ai1) + · · ·+ (eim a
(0)
im

aim)) · (ej a
(0)
j aj)

≡ (ei1 + · · ·+ eim) · ej + 1.

For the second congruence, we used 0 ≡ (ej a
(0)
j aj)·(ej a

(0)
j aj) = 1+(a(0)

j aj)·
(a(0)

j aj). As the index j ranges from 1 to k1, we have

ei1 + · · ·+ eim ≡ 1k1 .

Therefore we see that {i1, ..., im} = {1, ..., k1} and there is one possible linearly
dependent equation in M only when

(e1 a
(0)
1 a1) + · · ·+ (ek1 a

(0)
k1

ak1) = 1n,

which is equivalent to 1n ∈ T
(0)
1 . So the rank of M is 1

2k′(k′ − 1) + k1 − ε with

ε =
{

1 if 1 ∈ T
(0)
1

0 otherwise.
(2)

In the case when ε = 1, the doubly even quaternary code T1 contains 1+2x and

0 ≡ (1 + 2x) · (1 + 2x) = n + 4(1 · x + x · x) = n + 8x · x ≡ n (mod 8).

We need to check whether the simultaneous congruent equations represented
in the matrix have a solution or not. We do this by computing the sum of
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constants in the right-hand side corresponding to the rows in M which contain,
for i = 1, ..., k1, either ai + 1 or ai:

k1∑

i=1

gi +
k1−1∑

i=1

k1∑

j=i+1

fij

≡ 1
4

⎛

⎝
k1∑

i=1

(ei a
(0)
i ai) · (ei a

(0)
i ai) + 2

∑

1≤i<j≤k1

a
(0)
i · a(0)

j + 2
∑

1≤i<j≤k1

ai · aj

⎞

⎠

≡ 1
4

k1∑

i=1

(ei a
(0)
i ai) ·

k1∑

i=1

(ei a
(0)
i ai) ≡ 1

4
1n · 1n ≡ 1

4
n ≡ 0 (mod 2).

We now have the following proposition.

Proposition 2.1. Let C0 be a doubly even self-dual binary code with the follow-
ing representation

C0 =

[
T

(0)
1

T
(0)
2

]

=

[
Ik1 A

(0)
11 A

(0)
12 A

(0)
13 A

(0)
14

0 Ik2 A
(0)
22 A

(0)
23 A

(0)
24

]

.

If λ(k1, k2, k3) denotes the number of T1-doubly even self-dual quaternary codes
with representation

C1 =

⎡

⎣
T1

T2

2T3

⎤

⎦ =

⎡

⎢
⎣

Ik1 A
(0)
11 A

(0)
12 + 2A

(1)
12 A

(0)
13 + 2A

(1)
13 A

(0)
14 + 2A

(1)
14

0 Ik2 A
(0)
22 A

(0)
23 + 2A

(1)
23 A

(0)
24 + 2A

(1)
24

0 0 2Ik3 2A
(0)
33 2A

(0)
34

⎤

⎥
⎦ (3)

then

λ(k1, k2, k3) =

{
0 if 1 ∈ T

(0)
1 and 8 	 |n

2
1
2k′(k′+1)−k1+k1k3+ε otherwise

,

where ε is defined as in (2).

Proof. If 1 ∈ T
(0)
1 and 8 	 |n then there are no solutions to the matrix con-

gruent equation. Otherwise, we are free to choose binary values for the entries
in the solution column (xt

i). If w denotes the size of matrix M minus the rank
of M , then w = (k′2+k1k3)−(1

2k′(k′−1)+k1−ε) = 1
2k′(k′+1)−k1+k1k3+ε. �

Once a T1-doubly even self-dual quaternary code described in (3) is given, we
can construct all the self-dual codes C = [2iTi]i=1,...,4 over Z24 , where T1 =
T(1)

1 +22(0 0 0 A
(2)
13 A

(2)
14 )+23(0 0 0 0 A

(3)
14 ) Ti = T

(1)
i +24−i(0 0 0 0 A

(4−i)
i4 ) for i = 2

and 3, T4 = (0 0 0 Ik1A44), the A∗’s are binary matrices and the T
(1)
∗ ’s represent

T∗’s in (3). From the self-duality of C, we have At
44 = A

(0)−1
14 A

(0)
13 , A

(1)t
34 =

A
(0)−1
14 (2−1T(1)

1 T
(1)t
3 ) and A

(2)t
24 = A

(0)−1
14 (2−2T(1)

1 T
(1)t
2 + A

(2)
13 A

(0)t
23 + A

(2)
14 A

(0)t
24 ).
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In the third equation A
(2)
13 and A

(2)
14 appear but these have not yet been given.

We will consider the condition for them and for A
(3)
14 such as

1
22

T(1)
1 T(1)t

1 + ˜

A′
13A

(2)t
13 + ˜

A′
14A

(2)t
14 + 2 ˜

A
(0)
14 A

(3)t
14 ≡ 0 mod 22,

where A′
13 = A

(0)
13 + 2A

(1)
13 and A′

14 = A
(0)
14 + 2A

(1)
14 .

Now we put (dij) = 1
22 T

(1)
1 T(1)t

1 + ˜

A
(0)
13 A

(2)t
13 for any k1 × k2 matrix A

(2)
13 and

(xij) = A
(0)
14 A

(2)t
14 . Then A

(2)t
14 is uniquely determined by A

(0)−1
14 (xij) such that

xji ≡ dij − xij mod 2 for i < j and xii ≡ 1
2dii (mod 2) . For i > j, the number

of free binary values for xij is 1
2k1(k1 − 1).

Next we put (fij) ≡ 1
2

(
1
22 T

(1)
1 T(1)t

1 + ˜

A′
13A

(2)t
13 + ˜

A′
14A

(2)t
14

)

mod 2 and

(yij) = A
(0)
14 A

(3)t
14 . Then A

(3)t
14 is uniquely determined by A

(0)−1
14 (yij) where yji =

fij − yij for i < j and 1
2k1(k1 + 1) is the number of freely chosen binary values

for yij (i ≥ j).
Therefore we have the following proposition.

Proposition 2.2. For a fixed T1-doubly even self-dual quaternary code described
in (3), the number of induced codes over Z24 is

2k1(k1+k2).

3 Mass Formula for Self-dual Code over Z16

Now we establish the mass formula.

Theorem 3.1. Let N16(n) denote the number of distinct self-dual codes over
Z16 of length n.

1. If n is odd, then

N16(n) =

n−1
2∑

k′=0

2
1
2k′(k′+1)

k′−1∏

i=0

2n−2i−2 + (−1)δ2
n−1

2 −i−1 − 1
2i+1 − 1

ρ(k′),

where

δ =
{

0 n ≡ 1, 7
1 n ≡ 3, 5 (mod 8).

2. If n ≡ 2, 6 (mod 8), then

N16(n) =

n
2 −1∑

k′=0

2
1
2k′(k′+1)

k′−1∏

i=0

2n−2i−2 − 1
2i+1 − 1

ρ(k′).
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3. If n ≡ 4 (mod 8), then

N16(n) =

n
2 −2∑

k′=0

2
1
2k′(k′+1)

k′−1∏

i=0

2n−2i−2 − 2
n
2 −i−1 − 2

2i+1 − 1
ρ(k′).

4. If n ≡ 0 (mod 8), then

N16(n) =

n
2 −1∑

k′=0

2
1
2k′(k′+1)

k′−1∏

i=0

2n−2i−2 + 2
n
2 −i−1 − 2

2i+1 − 1
ρ(k′)

+

n
2∑

k′=0

2
1
2 k′(k′−1)

k′−2∏

i=0

2n−2i−2 + 2
n
2 −i−1 − 2

2i+1 − 1
ρ′(k′).

Here

ρ(k′) =
k′
∑

k1=0

2(n−k′−1)k1ρ(k′, k1), and ρ′(k′) =
k′
∑

k1=0

2(n−k′−1)k1
2k1 − 1
2k′ − 1

ρ(k′, k1),

with ρ(k′, k1) =
k1−1∏

i=0

2k′−i − 1
2k1−i − 1

.

In the formulas above, we take the value of a product to be 1 whenever the
starting index is greater than the limit.

Proof. First note that the length n is a multiple of 4 whenever a doubly even
binary code containing 1n exists.

The number σ1(n, k) of distinct doubly even self-orthogonal binary codes of
length n and dimension k containing 1n as well as the number σ2(n, k) of those
which do not contain 1n are explicitly given in the proof of the Theorem 4.1 in
[6]. We note that σ2(n, n

2 ) = 0 for any even n and σ2(n, n
2 − 1) = 0 for n ≡ 4

(mod 8). For each binary code C0 of size n and the dimension k′, the number of
partitions [Ti] is ρ(k′, k1) if 1 	∈ T1 and ρ(k′ − 1, k1 − 1) otherwise.

Over each binary code with a given partition, there exist λ(k1, k2, k3) T1-
doubly even representations for quaternary code C1. And from each such code,
we can construct 2k1k′

distinct self-dual codes (Proposition 2.2). Thus if 8|n, the
number of distinct self-dual codes of type (k1, k2, k3) as described in the left part
of the scheme diagram in Section 2 is

(σ2(n, k′)ρ(k′, k1) + 2σ1(n, k′)ρ(k′ − 1, k1 − 1))λε=0(k1, k2, k3)× 2k1k′
.

Otherwise, the number of such codes is σ2(n, k′)ρ(k′, k1)λε=0(k1, k2, k3)× 2k1k′
.

This is because σ1(n, k′)λε=0(k1, k2, k3) = 0 if 8 	 |n, and λε=1(k1, k2, k3) =
2λε=0(k1, k2, k3) if it is not 0. Except for the case of λ = 0, λε=0(k1, k2, k3) =
2

1
2 k′(k′+1)−k1+k1k3 from Proposition 2.1. Then the calculation −k1 + k1k3 + k1k

′

= (k3 + k′ − l)k1 = (n− k′ − 1)k1 gives us the mass formulas. �
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4 Example for n = 8, k1 = 4, and k2 = k3 = 0

Let C0 =
[
I4 A

(0)
14

]
with A

(0)
14 =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ . Then C0 is a doubly even self-dual

binary code with d(C0) = 4 and C0 
 18.
We then have C1 =

[
I4 A

(0)
14 + 2A

(1)
14

]
with A

(1)
14 equal to

⎛

⎜
⎜
⎝

1 α1 + α3 + α4 + 1 α1 + α3 + α4 + α6 + α7 α1

α2 + α3 + α4 + α5 + α6 1 α2 + α3 + α4 + α6 + α7 + 1 α2

α3 + α5 + α6 + 1 α3 1 α4

α5 α6 α7 1

⎞

⎟
⎟
⎠,

where α∗ can be any binary value.
For instance, setting α1 = α2 = α4 = α5 = α6 = α7 = 0 and α3 = 1, we have

C1 with A
(0)
14 +2A

(1)
14 =

⎛

⎜
⎜
⎝

2 1 3 1
3 2 1 1
1 3 2 1
1 1 1 2

⎞

⎟
⎟
⎠, a doubly even self-dual quaternary code with

Lee distance dL(C1) = 6.

Computing (dij) =

⎛

⎜
⎜
⎝

4 3 3 2
3 4 3 2
3 3 4 2
2 2 2 2

⎞

⎟
⎟
⎠, we have

A
(2)t
14 = A

(0)−1
14

⎛

⎜
⎜
⎝

0 x12 x13 x14

x12 0 x23 x24

x13 x23 0 x34

−x14 −x24 −x34 1

⎞

⎟
⎟
⎠, where x = 1− x.

From (fij) ≡

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎞

⎟
⎟
⎠, we obtain the induced code C over Z16 :

C =
[
I4A

(0)
14 + 2A

(1)
14 + 22A

(2)
14 + 23A

(3)
14

]

with A
(3)t
14 = A

(0)−1
14

⎛

⎜
⎜
⎝

y11 y12 y13 y14

y12 y22 y23 y24

y13 y23 y33 y34

y14 y24 y34 y44

⎞

⎟
⎟
⎠.
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Abstract. The aim of this article is twofold. In the first place, we de-
scribe a special non-abelian group of block upper triangular matrices,
and verify that choosing properly certain parameters, the order of the
subgroup generated by one of these matrices can be as large as needed.
Secondly, we propose and implement a new key exchange scheme based
on these primitives. The security of the proposed system is based on
discrete logarithm problem although a non-abelian group of matrices is
used. The primary advantadge of this scheme is that no prime numbers
are used and the efficiency is guaranteed by the use of a quick exponen-
tiation algorithm for this group of matrices.

Keywords: Polynomial matrices, Block matrices, Quick exponentiation,
Cryptography, Public Key.

1 Introduction

A lot of popular public-key encryption systems are based on number theory
problems such as factoring integers or finding discrete logarithms. The underly-
ing algebraic structures are, very often, abelian groups, as we can see in [3,4,16];
this is especially true in the case of the Diffie-Hellman method (DH), that was the
first practical public key technique and introduced in 1976 (see [8]). In Crypto
2000 [12], Ko et al. proposed a new public cryptosystem based on Braid groups,
which are non abelian groups, and it was the first practical public key cryptosys-
tem based on non abelian groups.

The Discrete Logarithm Problem (DLP, see [7, 15, 20]) is, together with the
Integer Factoring Problem (IFP, see [8]), one of the main problems upon which
public-key cryptosystems are built. Thus, efficiently computable groups where
the DLP is hard to break are very important in cryptography.

The purpose of this proposal is the analysis and implementation of a key
exchange scheme based on a special non-abelian group of block upper triangular
matrices. The main idea of this paper is to study the cryptographic behavior

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 117–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of products of the type Mv
1 Mw

2 , with v, w integers and M1, M2 elements of the
group of matrices previously mentioned.

The paper is organized as follows: in Section 2 we present some properties
concerning block upper triangular matrices defined over Zp. We will show that
they can generate sets of large and known order if parameters are chosen ade-
quately; due to this we study the order of the subgroup generated by a special
matrix M ; in Section 3 we describe the design of a key exchange scheme based
on the non-abelian group of triangular matrices, for this, we use a especial quick
exponentiation method; finally, some conclusions are given.

2 Preliminaries

Given p a prime number and r, s ∈ N ,we denote by Matr×s(Zp) the matrices
of size r × s with elements in Zp, and by GLr(Zp) and GLs(Zp), the invertible
matrices of size r × r and s × s respectively.

We define

Θ =
{[

A X
O B

]
, A ∈ GLr(Zp), B ∈ GLs(Zp), X ∈ Matr×s(Zp)

}

Theorem 1. The set Θ has a structure of non-abelian group for the product of
matrices.

The theorem that follows gives us a method for calculating the powers of this
kind of matrices (for details see [6]).

Theorem 2. Let M =
[

A X
O B

]
be an element of the set Θ, we consider the

subgroup generated by the different powers of M .
Taking h as a non negative integer then

Mh =
[

Ah X(h)

O Bh

]
, (1)

where

X(h) =
{

0 if h = 0∑h
i=1 Ah−iXBi−1 if h ≥ 1

(2)

Also, if 0 ≤ t ≤ h then

X(h) = AtX(h−t) + X(t)Bh−t (3)

X(h) = A(h−t)X(h) + X(h−t)Bt . (4)

As a consequence, in the case t = 1 we have

X(h) = AX(h−1) + XBh−1 or X(h) = Ah−1X + X(h−1)B
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And, taking a, b non negative integers such as a + b ≥ 0, we have

X(a+b) = AaX(b) + X(a)Bb (5)

It is very important to achieve a high order of the group. With this aim, the
following construction (see [11, 13]) guarantees a certain order.

Let f(x) = a0 +a1x+ · · ·+an−1x
n−1 +xn a monic polynomial in Zp[x], whose

companion n × n matrix is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

−a0 −a1 −a2 . . . −an−2 −an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

If f is an irreducible polynomial in Zp[x], then the order of the matrix A is equal
to the order of any root of f in Fpn and the order of A divides pn − 1 (see [14]).
Moreover, assuming that f is a primitive polynomial in Zp[x], the order of A is
exactly pn − 1.

Odoni, Varadharajan and Sanders [19] propose an extended scheme based on
the construction of block matrices like this

A =

⎡
⎢⎢⎢⎣

A1 0 . . . 0
0 A2 . . . 0
...

... . . .
...

0 0 . . . Ak

⎤
⎥⎥⎥⎦ ,

where Ai is the companion matrix of fi, and fi, for i = 1, 2, . . . , k, are different
primitive polynomials in Zp[x] of degree ni, for i = 1, 2, . . . , k, respectively.
The order of Ai is pni − 1, for i = 1, 2, . . . , k. Therefore, the order of A is
lcm(pn1 − 1, pn2 − 1, . . . , pnk − 1).

With the aim of using this type of matrix in a public key cryptosystem, Odoni,
Varadharajan and Sanders conjugate this matrix A with an invertible matrix P
of size n× n, with n = n1 + n2 + . . . + nk, obtaining a new matrix A = PAP−1

that has the same order as A. If we construct the blocks A and B of M ∈ Θ
using primitive polynomials, we can guarantee a very high order.

Let f(x) = a0+a1x+ · · ·+ar−1x
r−1+xr, g(x) = b0+b1x+ · · ·+bs−1x

s−1 +xs

be two primitive polynomials in Zp[x] and A, B the corresponding companion
matrices. Let P and Q be two invertible matrices, such that A = PAP−1 and
B = QBQ−1. With this construction, the order of M is lcm(pr − 1, ps − 1).

Using cyclotomic fields theory we know that the polynomial xn − 1 is divided
by xd − 1 if d|n; therefore, if we choose r and s such that they are relatively
prime, the number of common divisors is diminished and the lcm(pr − 1, ps − 1)
will be maximum.

Table 1 shows a comparison of the variation of the order of M depending on
the value of p, r and s, where r and s are the sizes of blocks A and B respectively.
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Table 1. Order of M depending of r, s and p

r s p Order of M

2 3 2200 2800

3 4 2200 21200

3 5 2200 21400

4 5 2200 21600

5 6 2200 22000

31 32 29 2302

47 48 29 2457

60 61 29 2584

130 131 29 21264

216 217 29 22099

Given the excellent cryptographic properties of block upper triangular matri-
ces, we will see an aplication of this set to public key cryptography.

3 Cryptographic Application: A Key Exchange Scheme

The DLP ( [17]) for a set G is finding, given α, β ∈ G, a nonnegative integer x
(if it exists) such that β = αx. The smallest such integer x is called the discrete
logarithm of β to the base α, and is written x = logα β. Clearly, the discrete
logarithm problem for a general group G is exactly the problem of inverting the
exponentiation function (see [18] for more information).

This is especially true for the Diffie-Hellman method ( [8]), that was the first
practical public key technique to be published. The security of this method for
key exchanges, is based on the discrete logarithm problem, and it uses a prime
number p and a primitive element r ∈ Zp.

Privacy or security of messages is not the only problem area in cryptology. It
is also important that user identity can be authenticated. Digital signature is a
property of asymmetric cryptography, that allows authentication. It consists of
two processes: signing a message and verifying a message signature; and it must
depend on the message to be signed.

The method presented in this section uses a non-abelian group based on the
powers of a block upper triangular matrix, which is a very flexible technique.

Let M1 =
[
A1 X1

0 B1

]
and M2 =

[
A2 X2

0 B2

]
be two elements of the set Θ with

orders m1 and m2 respectively.
We define the following notation for a pair of numbers x, y ∈ N:

Axy = Ax
1Ay

2 ,

Bxy = Bx
1 By

2

and
Cxy = Ax

1X
(y)
2 + X

(x)
1 By

2 .
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If two users U and V wish to exchange a key, they may execute the following
steps:

1. U and V agree on p ∈ N and M1, M2 ∈ Θ, with m1, m2 the orders of M1

and M2, respectively.
2. U generates two random private keys r, s ∈ N such that

1 ≤ r ≤ m1 − 1, 1 ≤ s ≤ m2 − 1,

and computes Ars, Brs, Crs constructing

C =
[
Ars Crs

0 Brs

]
.

3. U sends C to V .
4. V generates two random private keys v, w ∈ N such that

1 ≤ v ≤ m1 − 1, 1 ≤ w ≤ m2 − 1,

and computes Avw, Bvw, Cvw constructing

D =
[
Avw Cvw

0 Bvw

]
.

5. V sends D to U .
6. The public keys of U and V are respectively the matrices C and D.
7. U computes

Ku = Ar
1AvwX

(s)
2 + Ar

1CvwBs
2 + X

(r)
1 BvwBs

2 .

8. V computes

Kv = Av
1ArsX

(w)
2 + Av

1CrsB
w
2 + X

(v)
1 BrsB

w
2 .

The following theorem shows that Ku = Kv.

Theorem 3. If Ku = Ar
1AvwX

(s)
2 + Ar

1CvwBs
2 + X

(r)
1 BvwBs

2

and Kv = Av
1ArsX

(w)
2 + Av

1CrsB
w
2 + X

(v)
1 BrsB

w
2 , then Ku = Kv.

Proof 1. We have

C =
[
Ars Crs

0 Brs

]
= M r

1M s
2 , D =

[
Avw Cvw

0 Bvw

]
= Mv

1 Mw
2 ,

M r
1 =

[
Ar

1 X
(r)
1

0 Br
1

]
, Mv

1 =
[

Av
1 X

(v)
1

0 Bv
1

]
,

M s
2 =

[
As

2 X
(s)
2

0 Bs
2

]
and Mw

2 =
[
Aw

2 X
(w)
2

0 Bw
2

]
.
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Let

Mu = M r
1DM s

2 =
[
Au Ku

0 Bu

]

and

Mv = Mv
1 CMw

2 =
[
Av Kv

0 Bv

]
.

Then

Mu = M r
1DM s

2 = M r
1Mv

1 Mw
2 M s

2 = Mv
1 M r

1M s
2Mw

2 = Mv
1 CMw

2 = Mv

and, consequently, Ku = Kv.

As we have demonstrated in this theorem, now both U and V share a common
and secret key,

Ku = Kv = P.

The private keys are r, s and v, w, respectively. These keys do not have to be
prime numbers (we avoid primality tests).

In our key exchange scheme based on block upper triangular matrices, the
usage of big powers of matrices is required (see [1]); so the implementation of
an efficient and trustworthy quick exponentiation algorithm (see [2, 9, 10, 21])
becomes necessary for the accomplishment of this task.

Given n ∈ N, then a ordered set of indices exist

I = {i1, i2, i3, i4, . . . , iq}
so that n = 2i1 + 2i2 + 2i3 + . . . + 2iq .

In order to compute the powers of A and B,

An = A2i1+2i2+...+2iq
= A2i1

A2i2
. . . A2iq

Bn = B2i1+2i2+...+2iq
= B2i1

B2i2
. . . B2iq

,

we use
A20

= A = A0

A21
= AA = A1

A22
= A2A2 = A2

. . . . . .
A2e

= A2e−1
A2e−1

= Ae

That is to say, computing big powers of the blocks A, B of matrices M , is
reduced to multiplying matrices quickly. So, for block X we have the following
theorem.

Theorem 4. Given an integer number n, whose binary decomposition is

n =
q∑

j=1

2ij ,
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and a set of indices I = {i1, i2, i3, i4, . . . , iq}, we have:

X(n) =
q∑

k=1

An
(k)
1 X(n

(k)
2 )Bn

(k)
3 (6)

Where

n
(k)
1 =

q−k∑
j=1

2ij , for k = 1, 2, 3, . . . q − 1, and n
(q)
1 = 0;

n
(k)
2 = 2iq−k+1 for k = 1, 2, 3, . . . q ;

n
(k)
3 =

q∑
j=q−k+2

2ij for k = 2, 3, . . . q, and n
(1)
3 = 0.

In Alvarez et al. (see [2]) we prove this theorem and we show some examples of
its use.

4 Security Analysis

Brute force attacks are infeasible if a sufficiently big order for M1 and M2 is
chosen as, for example, 1024 bits. In the same way, we use big values for the
private keys r, s, v, w (about 1024 bits) and due to this, we can avoid Meet-in-
the-Middle-Attacks.

A widely used algorithm for the cryptanalysis of public key schemes based
on matrix powers is due to Menezes and Wu (see [18]). It, basically, establishes
the possibility of reducing the full discrete logarithm problem to a series of
smaller discrete logarithms over finite fields. This algorithm is not viable for the
presented scheme since no matrix powers are published.

Another technique for effectively cryptanalyzing some schemes based on block
upper triangularmatrices, has beendevelopedbyCliment,Gorla and Rosenthal [5]
and is based on the Cayley-Hamilton theorem.

Theorem 5. (Cayley-Hamilton Theorem). Let a matrix M ∈ GLn(Zp) and its
characteristic equation

qM (λ) = det(λIn − M) = a0 + a1λ + a2λ
2 + . . . + an−1λ

n−1 + λn.

Then

qM (M) = a0 + a1M + a2M
2 + . . . + an−1M

n−1 + Mn = 0n,

where In is the identity matrix of size n and 0n the null matrix of the same size.
This attack is not viable either, since two different matrices with different

characteristic equations are employed. Let us analyze the inefficiency of this
type of attack.
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Consider

M1 =
[

A1 X1

0 B1

]
∈ Θ , M2 =

[
A2 X2

0 B2

]
∈ Θ,

be two matrices of sizes n = r + s, and assume that

det(λI − M1) �= 0 and det(λI − M2) �= 0,

then

qM1(λ) = det
([

λI − A1 −X1

0 λI − B1

])

= det(λI − A1) · det(λI − B1)
= qA1(λ) · qB1(λ)
= a0 + a1λ + a2λ

2 + . . . + an−1λ
n−1 + λn,

qM2(λ) = det
([

λI − A2 −X2

0 λI − B2

])

= det(λI − A2) · det(λI − B2)
= qA2(λ) · qB2(λ)
= b0 + b1λ + b2λ

2 + . . . + bn−1λ
n−1 + λn

with qM1(λ) �= qM2(λ).
The Cayley-Hamilton theorem guarantees that qM1(M1) = qM2(M2) = 0, so

a0I + a1M1 + a2M
2
1 + . . . + an−1M

n−1
1 + Mn

1 = 0,

a0I + a1M1 + a2M
2
1 + . . . + an−1M

n−1
1 = −Mn

1 ,

multiplying by M1

a0M1 + a1M
2
1 + a2M

3
1 + . . . + an−1M

n
1 = −Mn+1

1 .

Replacing the value of Mn
1

a0M1 + a1M
2
1 + a2M

3
1 + . . . + an−1(−a0I − a1M1 − a2M

2
1 − . . . − an−1M

n−1
1 )

= −Mn+1
1 ,

and grouping terms we obtain

Mn+1
1 = b0I + b1M1 + b2M

2
1 + . . . + bn−1M

n−1
1 .

with b0 = a0an−1 and bi = an−1ai − ai−1 for i = 1, . . . , n − 1
Following this process for a certain p ≥ n, we have

Mp
1 = c0I + c1M1 + c2M

2
1 + . . . + cn−1M

n−1
1 , (7)
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then

Mp
1 =

[
Ap

1 X
(p)
1

0 Bp
1

]

= c0

[
I 0
0 I

]
+ c1

[
A1 X1

0 B1

]
+ . . . + cn−1

[
An−1

1 X
(n−1)
1

0 Bn−1
1

]
.

Consequently,

Ap
1 = c0I + c1A1 + c2A

2
1 + . . . + cn−1A

n−1
1 ,

X
(p)
1 = c1X1 + c2X

(2)
1 + . . . + cn−1X

(n−1)
1 ,

Bp
1 = c0I + c1B1 + c2B

2
1 + . . . + cn−1B

n−1
1 .

If we proceed like in expression (7), we obtain

Mp
2 = d0I + d1M2 + d2M

2
2 + . . . + dn−1M

n−1
2 .

In the scheme that we are analyzing, we know M1 and M2 so we can set up the
following linear system

M r
1 = e1M1 + e2M

2
1 + . . . + en−1M

n−1
1 ,

Mv
2 = f1M2 + f2M

2
2 + . . . + fn−1M

n−1
2 .

Since r and s are private keys, coefficients e1, e2, . . . , en−1 and f1, f2, . . . , fn−1,
as well as the matrices M r

1 and Mv
2 are unknown, rendering the system unsolv-

able. Therefore, the Climent, Gorla and Rosenthal technique (see [5]), based on
the Cayley Hamilton theorem, cannot be used to obtain a system suitable for
cryptanalysis. In order to cryptanalyze this scheme, we must apply square root
algorithms to the calculation of discrete logarithms. We can choose the blocks
A1, A2, B1 and B2 so that the inefficiency of this type of attack is guaranteed.

5 Conclusions

We propose a key exchange scheme, based on the behavior of matrix products
of the type Mv

1 Mw
2 , where M1, M2 are elements of a non-abelian group of block

upper triangular matrices with a big enough order, being v, w integers. One of
the main advantages of this scheme is the absence of big prime numbers, avoiding
the need for primality tests. Moreover, the proposed scheme is very efficient since
it employs fast exponentiation algorithms for such type of matrices.

The presented algebraic structure can be applied to other cryptographic appli-
cations in addition to the proposal. It is based on the discrete logarithm problem
for matrices and presents the advantage of reducing the required key length for
a given level of security. Another advantage is the use of non-prime numbers,
which prevents the primality tests that slow cryptographic protocols down.
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Abstract. Bit oriented cascade jump registers were recently proposed as
building blocks for stream cipher. They are hardware oriented designed
hence inefficient in software. In this paper word oriented cascade jump
registers are presented based on the design idea of bit oriented cascade
jump registers. Their constructions make use of special word oriented
σ−LFSRs, which can be efficiently implemented on modern CPU and
only require few memory. Experimental results show that one type of
efficient word oriented cascade jump σ−LFSRs can be used as building
blocks for software oriented stream cipher.

Keywords: Stream Cipher, Linear Feedback Shift Register(LFSR), Cas-
cade Jump LFSR, σ−LFSR, Fast Software Encryption.

1 Introduction

Today stream ciphers are widely used in areas where the combination of security,
performance and implementation complexity are of importance. One such area
is wireless communication (GSM, 3G, IEEE802.11), where a low gate count in
hardware implementation requirements prevail. Another area is efficient software
encryption with speed about tens of gigabits per second. This opinion is sup-
ported by the eSTREAM project [1], which is an effort to identify new stream
ciphers that might be interesting for widespread adoption.

LFSR is known to allow fast hardware implementation and produces sequences
with a large period and good statistical properties. But the inherent linearity
of these sequences results in susceptibility to algebraic attacks [2,3]. A well-
known method to resist that is clock control. Due to the traditional clock control
mechanism that either controls the LFSR irregularly clocking or shrinks or thins
the output, clock controlled LFSRs have decreased rate of sequence generation
since such LFSRs are usually stepped a few times to produce just one bit. A
more effective method is dynamic feedback control, which is used in stream
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cipher Pomaranch [4]. Pomaranch is a hardware oriented stream cipher and the
core part is made of several bit oriented cascade jump registers [5], which was
presented at SASC2004 Workshop. The main idea of cascade jump register [6]
is to move the state of LFSR to another one over more than one step without
having to step through all the intermediate states.

The nature of cascade jump register is bit oriented design, so it is suitable for
hardware implementation while its software implementation is inefficient. The
recent trend in software oriented stream cipher is towards word oriented design
such as Sober [7], Snow [8], Sosemanuk [9] and etc. This allows them not only
to be efficiently implemented in software but also to increase the throughput
since words instead of bits output. σ−LFSRs [10,11] are one type of efficient
word oriented LFSRs, which are constructed by few fundamental instructions of
modern processor and hence have high software efficiency.

Combining the design ideas of bit oriented cascade jump register and word
oriented σ−LFSR, we propose a cascade jump σ−LFSR. We examine one type
of cascade jump σ−LFSRs on modern CPU architecture and make suggestions
for design practices to maximize the speed, the security and decrease the im-
plementation complexity of general cascade jump σ−LFSR. Finally, we give the
jump index of our examples using Pollard Rho method.

2 Cascade Jump Register and σ−LFSR

Bit Oriented Cascade Jump Register. Linear Finite State Machine (LFSM) has
been widely used in cryptography. Let F2 be the binary field and F2m be its ex-
tension field for some positive integer m. The state of the LFSM is represented
by a vector St = (rt

n−1, · · · , rt
0) ∈ F

n
2m at time t, where rt

i ∈ F2m and rt
i denotes

the content of the ith memory cell after t transitions. As the finite state machine
is linear, transitions from one state to the next can be described by a multiplica-
tion of the state vector with a transition matrix T ∈ Mmn(F2), i.e. St+1 = St ·T ,
for t ≥ 0. In practice, matrix T is generally chosen to have a special form for
convenience of implementation.

If m = 1, the main idea of bit oriented cascade jump register is to find whether
there exists an integer J , such that T J = T + I where I is a mn × mn identity
matrix. If such a power of the transition matrix does exist, then one achieves the
same effect as multiplying the state vector either by T J or by T + I. Moreover,
since changing T into T +I is generally much simpler than rewiring T into T J for
an arbitrary transition matrix T , the LFSR is easy to jump. This modification
of the transition matrix has very low complexity and is much more attractive
and efficient than the method of rewiring the LFSR. Hence bit oriented cascade
jump registers can be used as a dynamic part controlled by two-value sequence
in clock control stream cipher.

Let g(x) = det(xI + T ) be the characteristic polynomial of T and g⊥(x) =
g(x + 1) be the dual polynomial of g(x). If there exists an integer J such that
T J = T + I, the value of J is called the jump index of g. The jump index always
exists if g(x) is a primitive polynomial over F2. Pomaranch uses 6 or 9 bit oriented
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cascade jump registers for 80-bit and 128-bit key respectively. Both registers are
built on 18 bits memory cells, and have primitive characteristic polynomial, i.e.,
when only clocked by zeros or ones they have a period of 218 − 1. The transition
matrix used in Pomaranch has a very special form, namely,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0 0 0 · · · 0 1
1 d1 0 · · · 0 t1

0 1 d2
. . .

...
...

0 0
. . . . . . 0

...
...

...
. . . 1 d16 t16

0 0 · · · 0 1 d17 + t17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

The major advantage of this type of transition matrix is the efficient hardware
implementation. If wants to obtain word oriented cascade jump register, one
only need choose m ≥ 2, especially m = 32 or 64 for the word size of CPU
correspondingly. But it should be noticed that the operation of St ·T in computer
is likely to be expensive unless the matrix T has a special form. In this case,
σ−LFSRs are good choices because they are software oriented design.

Word Oriented σ−LFSR. The main idea of σ−LFSR [10,11] is to use a few
the fundamental logic instructions, arithmetic instructions, or Single Instruction
Multiple Data technique to construct high efficiency word oriented LFSR with
good cryptographic properties. Let C0, · · · , Cn−1 ∈ Mm(F2) and the state at
time t be St = (rt

n−1, · · · , rt
0), then the next state is St+1 = (rt+1

n−1, · · · , rt+1
0 ) ∈

F
n
2m where rt+1

i = rt
i+1 for 0 ≤ i ≤ n − 2 and

rt+1
n−1 = C0r

t
0 + C1r

t
1 + · · · + Cn−1r

t
n−1. (2)

The system is called σ−LFSR of order n and matrix polynomial f(x) = xn +
Cn−1x

n−1 + · · ·+C1x+C0 ∈ Mm(F2)[x] is called σ−polynomial of σ−LFSR. In
fact, σ is a circular rotation operation defined in the following. Let α0, · · · , αn−1

be a basis of F2m and for α ∈ F2m , there exists a vector (a0, a1, · · · , am−1) ∈ F
m
2

such that α =
∑m−1

i=0 aiαi. Operation σ over F2m is defined as

σ(α) � am−1α0 + a0α1 + · · · + am−2αm−1 (3)

and σ is the Frobenius automorphism over F2m when the basis is normal, namely
σ(α) = α2. It is easy to see that σ is a linear transformation on F2m/F2. From
the view of linear transformation, we can obtain a new ring A2m = F2m [σ]
with adding σ to F2m . Moreover we have A2m ∼= Mm(F2) [11]. For the sake of
obtaining fast speed implementation in software, we confine the coefficients in
several special forms as follows.

1. AND Operation, ∧V (α) = α ∧ V =
∑m−1

i=0 aiciαi, where V =
∑m−1

i=0 ciαi;
2. Circular Rotation Operation, σk(α);
3. Left Shift Operation L, L(α) =

∑m−1
i=1 aiαi−1
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4. Right Shift Operation R, R(α) =
∑m−2

i=0 aiαi+1;
5. LR Shift Combination Operation �s,t = Ls + Rt.

If the output sequences generated by one σ−LFSR attain the maximal period,
that σ−LFSR is called the primitive σ−LFSR. Suppose s∞ is the sequence gen-
erated by primitive σ−LFSR, its bit coordinate sequences are all m-sequence
with the same minimal polynomial[11]. In this case, the number of nonzero co-
efficients of the binary minimal polynomial is called the Hamming weight of
σ−LFSR. This parameter is important, the closer to the half of the degree of
its minimal polynomial, the better its properties. With these special operations
above, we could find many primitive σ−LFSRs with good cryptographic prop-
erties. The following is a primitive σ−LFSR over F216 .

� �

�⊕�

............
...................................................................................... .......... .......... ..................
....................

...................................................................................... .......... .......... ..................
........�1,1∧V

Fig. 1. σ−LFSR with σ−polynomial x8 + ∧0x3fb6x + �1,1

The minimal polynomial of its coordinate sequences is p(x) with Hamming
weight 45, where p(x) = x128 + x121 + x114 + x112 + x107 + x105 + x98 + x96 +
x91 + x75 + x73 + x72 + x68 + x66 + x65 + x64 + x61 + x59 + x58 + x57 + x56 +
x54 + x52 + x51 + x49 + x47 + x45 + x42 + x41 + x38 + x36 + x35 + x33 + x31 +
x29 + x27 + x26 + x25 + x24 + x20 + x18 + x11 + x6 + x4 + 1. Furthermore, this
σ−LFSR has extremely fast speed, output speed is about over 25 Gbits/second
on Pentium IV 3.0GHz CPU.

3 Word Oriented Cascade Jump σ−LFSR

Cascade jump register and σ−LFSR are effective methods in clock control de-
sign and word oriented LFSR design respectively. If two advantages could be
combined together, we could strengthen the security of σ−LFSR and improve
the performance of bit oriented cascade jump register. With this idea, we study
the word oriented cascade jump σ−LFSR. The transition matrix of general word
oriented cascade jump σ−LFSR is as follows.

T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 C0

I 0 0 0 C1

...
. . .

...
...

...
0 0 I 0 Cn−2

0 0 0 I Cn−1

⎞
⎟⎟⎟⎟⎟⎠

mn×mn

Only if T has maximal multiplicative order in Mmn(F2), the output sequence
generated by this σ−LFSR achieves the maximal period 2mn − 1, and in this
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case, there exists a jump index J such that T J = T + I. The following theorem
may be helpful in searching for primitive T .

Theorem 1. [10] Let σ−LFSR over F2m of order n with σ−polynomial f(x) =
xn + Cn−1x

n−1 + · · · + C1x + C0 ∈ Mm(F2)[x] where C0 ∈ GLm(F2) and Cl =
(cij

l )m×m for l = 0, 1, · · · , n − 1. Let

F (x) = (f ij(x))m×m ∈ Mm(F2[x])

be the corresponding polynomial matrix of f(x) where

f ij(x) = δijxn +
n−1∑
l=0

cij
l xl ∈ F2[x], δij =

{
1, i = j;
0, i �= j.

Then σ−LFSR has maximal period if and only if the determinant |F (x)| is a
primitive polynomial over F2 of degree mn.

A word oriented cascade jump σ−LFSR can be used under a binary control
sequence, namely changing the transition matrix from T to T + I according to
the control sequence. We should choose σ−polynomial f(x) to be primitive first,
and furthermore f⊥(x) = f(x + 1) also be primitive. If σ−polynomial f⊥ is not
primitive, its output sequences will have short period with high probability and
can not provide good properties in theory as maximal period sequence. This
weakness will make this word oriented cascade jump σ−LFSR very dangerous if
the control sequence is not balanced.

Apparently, the dual transition matrix of cascade jump σ−LFSRs will be
identical to the transition matrix except for the entries on the main diagonal.
Equivalently, adding ones to the entries on the main diagonal of the transition
matrix equals to the jump index power of that matrix. Seeking for fast efficiency,
we focus on one type of word oriented cascade σ−LFSRs with the following
σ−polynomial over Mmn(F2) as

f(x) = xn + ∧V xr + �s,t, (4)

where V ∈ F2m , 0 < s, t < m−1 and (s+ t)|m. We have made exhaustive search
for m = 16. Because of the symmetry of s, t, which means that if Eq. (4) is
primitive, then g(x) = xn +∧V x+�t,s is also primitive, hence s ≤ t is required.
Totally 6,815,744 σ−polynomials in the form of Eq. (4) are tested with n = 8.
The following table lists the number of maximal period word oriented cascade
jump σ−LFSRs.

Table 1. The Number of Primitive f and its Dual f⊥

r = 1 r = 3 r = 5 r = 7 r = 2, 4, 6

f 2510 2415 2680 5666 0

f⊥ 2974 2334 2419 3570 0

Both 1382 48 54 46 0
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Table 2. Hamming Weight of Some Good σ−polynomial

SN f(x) Weight(f) Weight(f⊥)

1 x8 + ∧0x5806x + �3,5 9 33

2 x8 + ∧0xffc0x + �1,7 9 35

3 x8 + ∧0x9239x + �1,1 35 65

4 x8 + ∧0x29d8x + �1,1 33 75

5 x8 + ∧0x2ab9x3 + �1,1 33 55

6 x8 + ∧0xdb73x3 + �1,1 31 53

7 x8 + ∧0xb036x5 + �1,3 21 57

8 x8 + ∧0xf00ex5 + �1,1 29 65

9 x8 + ∧0x4e2cx7 + �1,1 29 61

10 x8 + ∧0x623cx7 + �1,1 39 69

There are total 1530 word oriented cascade jump σ−LFSRs satisfying our
selection principle and the Hamming weight of f⊥(x) is superior to that of f(x).
In order to make the test results become visible, some examples with both f and
f⊥ primitive are listed below.

Example 1. The tenth word oriented cascade jump σ−LFSR in Table 2 has the
best Hamming weight properties. Their software implementation are both very
fast for simplicity of f and f⊥. The original σ−LFSR and the modified cascade
jump σ−LFSR are shown in Figure 2 and Figure 3 respectively.

� �

�⊕�

............
...................................................................................... .......... .......... ..................
....................

...................................................................................... .......... .......... ..................
........ �1,1∧V

Fig. 2. σ−LFSR with σ−polynomial x8 + ∧0x623cx
7 + �1,1

� �⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕� � � � � � � �

�⊕�

............
...................................................................................... .......... .......... ..................
....................

...................................................................................... .......... .......... ..................
........ �1,1∧V

Fig. 3. The Modified Cascade Jump σ−LFSR in Fig.2

Searching for good word oriented σ−LFSRs as form in Eq. (4) is a time-
consuming procedure. The following two necessary conditions may decrease the
amount of search work a little.

Theorem 2. If r is an even integer, f(x) defined in Eq. (4) cannot be primitive.
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Proof: According Theorem 1, we need to calculate |F (x)|. Since every item in
f(x) is a square item over F2[x], hence the determinant must be a square poly-
nomial, not primitive polynomial. �

Theorem 3. Polynomial f(x) in Eq. (4) cannot be primitive if s = t > 2.

Proof: Let Cm,s be the m × m matrix as following

Cm,s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 1
. . . 1

1
. . . . . .

. . .
. . .

1 xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×m

(5)

In fact, with xi = xn + cix
r for 0 ≤ i ≤ m − 1 in (5), we get f(x) defined (4) in

polynomial matrix expression. By Theorem 1, we need to calculate |f(x)| and
check whether it is a primitive polynomial. Next we will prove the determinant
of Cm,s is the multiplication of polynomials with the total number s when s ≥
2. Hence we know the determinant of f(x) must be reducible, obviously not
primitive.

For Cm,s with m ≤ 2s, we can use the last m − s rows to reduce the first
m − s rows, then use the Lapalace Theorem at first m − s columns to compute
the determinant, hence we can obtain a s × s diagonal matrix by suitable ad-
justing some columns. So the |Cm,s| is the multiplication of s polynomials. This
procedure is as follows

|Cm,s| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 x1xs+1

.. . x2xs+2

0
.. .

1 xs+1

.. .
. . .

1 xm

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
x1xs+1

x2xs+2

. ..

∣∣∣∣∣
.

Next we will adopt mathematic induction method to prove. Suppose |Cm,s| can
be transformed to s × s diagonal matrix in the case (k − 1)s < m ≤ ks with
some elementary row or column operations. Next we need to prove this is true
for ks < m ≤ (k + 1)s. In this case, we partition matrix Cm,s as following where
Cks,s is a ks × ks submatrix.

Cm,s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Cks,s
. . .

1
0 1 xm−s+1

. . .
. . .

. . .
0 1 xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠



134 G. Zeng et al.

According to our hypothesis, Cks,s can be transformed to s× s diagonal matrix
during some elementary operations. We assume the result diagonal matrix is
diag(x′

1, · · · , x′
s), hence after applying these transformations we have

|Cm,s| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x′
1 ∗

. . . . . .
x′

s ∗
1 xm−s+1

. . . . . .
1 xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Then using the similar elementary operations as that in the case of m ≤ 2s, we
can obtain another s× s diagonal matrix. Hence the determinant of Cm,s is the
multiplication of s polynomials. �

For finding other types of word oriented cascade jump σ−LFSRs, one should
choose both f(x) and f⊥(x) to be primitive. To be efficiently implemented in
software, one needs to choose special matrix, which can be fast implemented on
CPU. In the search procedure, one needs to carefully observe the test results
to find some necessary condition for decreasing the search time. Finally, for the
security aspect, one needs to pick out those whose Hamming weight are as large
as possible.

4 Jump Index Calculation

The determination of the jump index of a given irreducible polynomial is a
challenging task, especially for high degree polynomials, as it comes to finding
the discrete logarithm in a large finite extension field. By employing a small
amount of theory and a huge amount of computing power at the present time it
is easy to determine the jump index of our examples as above.

Let f(x) be the primitive σ−polynomial defined in Eq. (4), we briefly outline
how we use the methods of Pohlig-Hellman and Pollard to compute d = logx(x+
1) in finite field F = F2128 . First we use the Pohlig-Hellman method [12] to
reduce the DLP in F

∗ to the DLP in groups of prime group of order p, with
p dividing |F∗| = 2128 − 1. There are totally 9 subgroups due to 2128 − 1 =
3 ∗ 5 ∗ 17 ∗ 257 ∗ 641 ∗ 65537 ∗ 274177 ∗ 6700417 ∗ 67280421310721. For each p
dividing |F∗|, we compute d mod p as

(x + 1)|F
∗|/p = (x|F∗|/p)d mod p.

Each of these equations represents a DLP in the group of order p generated by
x|F∗|/p. Having computed d mod p for all prime factors p, we use the Chinese
Remainder Theorem to determine d. To find d mod p in subgroup we use the
Pollard’s Rho Method [13]. Assuming that G has group order |G| = p with p
prime, we divide G into four pairwise disjoint sets T1, T2, T3, T4 according to the
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Table 3. Jump Indexes Result of Our Examples in Table 2

SN 1 229293628387587534271494079939876772168

dual of SN 1 171093700099261338188907767079510869762

SN 2 336329875434468839552512651424276600321

dual of SN 2 221670400420824361821529547693718365366

SN 3 132704672458331951512744918391743389836

dual of SN 3 63484811825393477931744641796814909436

SN 4 242693385714521507540553960871504133333

dual of SN 4 242175253972759543846615773932946320432

SN 5 302663685763979419983753102844986248754

dual of SN 5 30363583456125956220431035122577343503

SN 6 38103675587383110403116109629553749812

dual of SN 6 21701473805279016312844913568808878794

SN 7 294387267487675766095140689863605610440

dual of SN 7 337929409571672598321702082033778437886

SN 8 196365381069874425320432318291992328986

dual of SN 8 106083960323802987776388354828025397851

SN 9 333320604818996548962247785769086115220

dual of SN 9 38808670205409475437208962295677546997

SN 10 199203367905034120698612111405886013754

dual of SN 10 258674226151357822616504808032925789541

constant and x item coefficient. Let fP : G → G as

fP (y)

⎧⎪⎪⎨
⎪⎪⎩

(x + 1) ∗ y, y ∈ T1;
y2, y ∈ T2;
x ∗ y, y ∈ T3;
x ∗ (x + 1) ∗ y, y ∈ T4.

We choose a random number α in the range {1, 2, · · · , |G|}, compute a starting
element y0 = xα, and put yi+1 = fP (yi) for i = 1, 2, · · · . This induces two
triple integer sequences and we check whether y2i matches yi. If this is the case,
we can obtain d mod p with very high probability. If not, we repeat the whole
computation with another starting value y0; but this case is very rare for large
group orders |G| = p. The expected value of iteration is about 1.229

√
π|G|/2

and it take about one minute to compute one discrete logarithm on average.
The following table is the jump index of examples in Table 2. We list the jump

index of f(x) and its dual f⊥(x). From the table, we can see the jump indexes
are extremely large, hence the cascade jump σ−LFSR is an effective method in
clock control design indeed.

5 Conclusions

Modern processors have already gained much of better performance than their pre-
decessors. This indicates the design criteria of software oriented cryptographic al-
gorithm should fully benefit from these changes. We have illustrated one type word
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oriented cascade jump σ−LFSR, which is software oriented design and hence has
fast speed. Although not shown in great detail, it should be clear that these word
oriented cascade jump σ−LFSR constructions can be used as building blocks in
software oriented clock control stream cipher in a very efficient way.
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Abstract. RC4 Key Scheduling Algorithm (KSA) uses a secret pseudo-
random index j which is dependent on the secret key. Let SN be the per-
mutation after the complete KSA of RC4. It is known that the value of
j in round y + 1 can be predicted with high probability from SN [y] for
the initial values of y and from S−1

N [y] for the final values of y. This fact
has been exploited in several recent works on secret key recovery from SN .
In this paper, we perform extensive analysis of some special sequences of
indices corresponding to the j values that leak useful information for key
recovery. We present new theoretical results on the probability and the
number of such sequences. As an application, we explain a new secret key
recovery algorithm that can recover a 16 bytes secret key with a success
probability of 0.1409. Our strategy has high time complexity at this point
and requires further improvement to be feasible in practice.

Keywords: Bias,Cryptanalysis,Filter,KeyRecovery,Permutation,RC4,
Sequence, Stream Cipher.

1 Introduction

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Security
in 1987, and was a propriety algorithm until 1994. The RC4 cipher has two com-
ponents, namely, the Key Scheduling Algorithm (KSA) and the Pseudo-Random
Generation Algorithm (PRGA). The KSA expands a secret key k[0 . . . l−1] into
an array K[0 . . .N − 1] such that K[y] = k[y mod l] for any y, 0 ≤ y ≤ N − 1.
Using this key, an identity permutation S[0 . . .N−1] of {0, 1, . . .N−1} is scram-
bled using two indices i, j. The PRGA uses this permutation to generate pseudo-
random keystream bytes z1, z2, . . ., that are bitwise XOR-ed with the plaintext
to generate the ciphertext at the sender end and bitwise XOR-ed with the ci-
phertext to get back the plaintext at the receiver end.

Any addition used related to the RC4 description is in general addition modulo
N unless specified otherwise.
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KSA(K)
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling:

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

PRGA(S)
Initialization:

i = j = 0;
Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

We use subscript r to the variables S, i and j to denote their updated values
in round r, where 1 ≤ r ≤ N . According to this notation, SN is the permutation
after the completion of the KSA. By S0 and j0, we mean the initial permutation
and the initial value of the index j respectively before the KSA begins. We
use the notation S−1 for the inverse of the permutation S, i.e., if S[y] = v, then

S−1[v] = y. By fy(K), we denote the expression y(y+1)
2 +

y∑

x=0

K[x], 0 ≤ y ≤ N−1.

RC4 is the most popular and widely deployed software stream cipher. It is used
in network protocols such as SSL, TLS, WEP and WPA, and also in Microsoft
Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL etc. The cipher is
simple in structure, easy to implement and efficient in throughput. Yet after
more than twenty years of cryptanalysis, the cipher is still not completely broken
and is of great interest to the cryptographic community. One may refer to [7,9,13]
and the references therein for a detailed exposition on RC4 cryptanalysis.

In [12], it has been argued that the most likely value of the y-th element of the
permutation after the KSA for the first few values of y is given by SN [y] = fy(K).
The experimental values of the probabilities P (SN [y] = fy(K)) for y from 0 to
47 were reported in [12] without any theoretical proof. The expressions for the
probabilities P (SN [y] = fy(K)) for all values of the index y in [0, N − 1] were
theoretically derived in [10, Section 2] and the work [11, Section 2.1] generalized
it to derive P (Sr[y] = fy(K)) for all rounds r, 1 ≤ r ≤ N .

It has been shown in [6] that the bytes SN [y], SN [SN [y]], SN [SN [SN [y]]],
and so on, are biased to fy(K). In particular, they showed that P (SN [SN [y]] =
fy(K)) decreases from 0.137 for y = 0 to 0.018 for y = 31 and then slowly settles
down to 0.0039 (beyond y = 48).

In [10, Section 3], for the first time an algorithm is presented to recover the
complete key from the final permutation after the KSA using the Roos’ biases,
without any assumption on the key or IV. The algorithm recovers some secret
key bytes by solving sets of independent equations of the form SN [y] = fy(K)
and the remaining key bytes by exhaustive search. Subsequently, the work [2]
additionally considered differences of the above equations and reported better
results. Recently, [1] has accumulated the ideas in the earlier works [2,6,10]
along with some additional new results to devise a more efficient algorithm for
key recovery. After the publication of [2,10], another work [11] which has been
performed independently and around the same time as [1] shows that each byte
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of SN actually reveals secret key information. The key recovery algorithm of [11]
sometimes outperform that of [2]. A recent work [3] starts with the equations
of [2] and considers a bit-by-bit approach to key recovery.

Getting back the secret key from the final permutation after the KSA is an
important problem in RC4 cryptanalysis. State recovery from keystream [4,8,14],
another important attack on RC4, can be turned into a key recovery attack if
key reconstruction from SN is possible in a time complexity less than that of
state recovery attacks. Moreover, in certain applications such as WEP [5], the
key and the IV are combined in such a way that the secret key can be easily
extracted from the session key. For these applications, if one can recover the
session key from the permutation then it is possible to get back the secret key.
In that case, for subsequent sessions where the same secret key would be used
with different known IV’s, the RC4 encryption would be completely insecure.

In this paper, we study sequences of jy+1 values corresponding to the rounds
y + 1 when i takes the value y, 0 ≤ y ≤ N − 1. We concentrate on a span equal
to the key length at each end of the permutation SN . Based on our sequence
analysis in Section 2, we present a novel bidirectional search algorithm for secret
key recovery in Section 3. Our algorithm can recover secret keys of length 16
bytes with a success probability of 0.1409, which is almost two times the cur-
rently best known value of 0.0745 reported in [1]. The time reported in [1] for
probability 0.0745 is 1572 seconds, but it is not clear how the complexity of [1]
would grow with increase in probability. Our analysis provides better probabil-
ity and a method to achieve that, but further tuning is required to make our
strategy feasible in practice as the time complexity is very high.

Our main idea is to guess K[0], K[1], . . . using the left end of the permutation
and guess K[l−1], K[l−2], . . . using the right end of the permutation simultane-
ously. When some key bytes are guessed, the KSA may be run (in the forward or
in the backward direction, depending on the location of the guessed key bytes)
until a known jy+1 is encountered. If this matches with the computed jy+1, then
the guessing is continued, else the partial key is discarded. Thus, the indices y
for which jy+1’s are known act as “filters” for separating out the wrong keys
from the correct candidates.

All the existing works on key recovery from the final permutation after the
KSA try to guess the entire key together. Our bidirectional key retrieval makes
use of the fact that once certain key bytes are known, the choice of possible
values of the remaining key bytes become restricted. To our knowledge, the
concept of “filtering technique” as well as the notion of bidirectional key search
is a completely different and new approach towards secret key recovery of RC4.

2 Theoretical Analysis of Sequences of Filter Indices

In this section, we study the structure and algebraic properties of the sequence
of indices that act as filters for validating the secret key guesses. For simplicity,
we restrict l to be a factor of N .



140 R. Basu et al.

The secret index j is pseudo-random and may be considered uniformly dis-
tributed in [0, N − 1]. In general, if the values for a sequence of m many j’s are
guessed randomly, the success probability is N−m. For N = 256 and m = 8, this
value turns out to be 2−64. Whereas, using our theoretical framework, we can
guess a sequence of j values with very good probability (see Table 1).

Definition 1 (Event Ay). For 0 ≤ y ≤ N − 1, event Ay occurs if and only if
the following three conditions hold.

1. Sy[y] = y and Sy[jy+1] = jy+1.
2. jy+1 ≥ y.
3. SN [y] = Sy+1[y].

Proposition 1. py = P (Ay) = (N−y
N ) · (N−2

N )y · (N−1
N )N−1−y, 0 ≤ y ≤ N − 1.

Proof. Let us analyze the conditions mentioned in the definition of Ay.

1. Sy[y] = y and Sy[jy+1] = jy+1 occur if jt /∈ {y, jy+1}, for 1 ≤ t ≤ y, the
probability of which is (N−2

N )y.
2. P (jy+1 ≥ y) = N−y

N .
3. SN [y] = Sy+1[y], if jt �= y, ∀t ∈ [y + 2, N ]. This happens with probability

(N−1
N )N−y−1.

Multiplying the above three probabilities, we get the result. ��
Note that the event Ay implies jy+1 = SN [y] and Proposition 1 is a variant
of [10, Lemma 2] that relates jy+1 and SN [y].

Definition 2 (Event By). For 0 ≤ y ≤ N − 1, event By occurs if and only if
the following three conditions hold.

1. Sy[y] = y.
2. jy+1 ≤ y.
3. SN [jy+1] = Sy+1[jy+1].

Proposition 2. p′y = P (By) = (y+1
N ) · (N−1

N )N−1, 0 ≤ y ≤ N − 1.

Proof. Let us analyze the conditions mentioned in the definition of By.

1. Sy[y] = y occurs if jt �= y for 1 ≤ t ≤ y, the probability of which is (N−1
N )y .

2. P (jy+1 ≤ y) = y+1
N .

3. SN [jy+1] = Sy+1[jy+1], if jt �= jy+1, ∀t ∈ [y + 2, N ]. This happens with
probability (N−1

N )N−y−1.

Multiplying the above three probabilities, we get the result. ��
Note that the event By implies jy+1 = S−1

N [y], 0 ≤ y ≤ N − 1. By is the same as
the event E1(y) defined in [11] and the proof of Proposition 2 has been presented
as part of the proof of [11, Theorem 3].
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Definition 3 (Filter). An index y in [0, N − 1] is called a filter if either of the
following two holds.

1. 0 ≤ y ≤ N
2 − 1 and event Ay occurs.

2. N
2 ≤ y ≤ N − 2 and event By occurs.

Definition 4 (Bisequence). Suppose jN is known. Then a sequence of at least
(t+t′+1) many filters is called a (t, t′)-bisequence if the following three conditions
hold.

1. Exactly t many filters 0 ≤ i1 < i2 < . . . < it ≤ l
2 − 1 exist in the interval

[0, l
2 − 1].

2. Exactly t′ many filters N − 1 − l
2 ≤ i′t′ < . . . < i′1 ≤ N − 2 exist in the

interval [N − 1 − l
2 , N − 2].

3. Either a filter it+1 exist in the interval [ l
2 , l − 1] or a filter i′t′+1 exist in the

interval [N − 1 − l, N − 2 − l
2 ].

Lemma 1. Given a set Ft of t many indices in [0, l
2 − 1], a set Bt′ of t′ many

indices in [N − 1− l
2 , N − 2] and an index x in [ l

2 , l − 1]∪ [N − 1− l, N − 2− l
2 ],

the probability of the sequence of indices Ft ∪Bt′ ∪ {x} to be a (t, t′)-bisequence is
⎛

⎝
∏

iu∈Ft

piu

∏

iv∈[0,l−1]\(Ft∪{x})
qiv

∏

i′
u′∈Bt′

p′i′
u′

∏

i′
v′∈[N−1−l,N−2]\(Bt′∪{x})

q′i′
v′

⎞

⎠ p̃x,

where qy = 1 − py, q′y = 1 − p′y for 0 ≤ y ≤ N − 1 and p̃x = px or p′x according
as x ∈ [ l

2 , l − 1] or [N − 1 − l, N − 2 − l
2 ] respectively.

Proof. According to Definition 4, Ft ∪ Bt′ ∪ {x} would be an (t, t′)-bisequence,
if the indices in Ft and Bt′ and the index x are filters and the indices in ([0, l −
1]∪ [N − 1− l, N − 2]) \ (Ft ∪Bt′ ∪{x}) are non-filters. Hence, the result follows
from Propositions 1 and 2. ��
Definition 5 (Critical Filters). The last filter it within the first l

2 indices and
the first filter i′t within the last l

2 indices for an (t, t′)-bisequence are called the
left critical and the right critical filters respectively. Together, they are called the
critical filters.

Definition 6 (Favourable Bisequence). A (t, t′)-bisequence is called
d-favourable, d ≤ l

2 , if the following seven conditions hold.

1. i1 + 1 ≤ d.
2. iu+1 − iu ≤ d, ∀u ∈ [1, t − 1].
3. l

2 − 1 − it ≤ d.
4. N − 1 − i′1 ≤ d.
5. i′v − i′v+1 ≤ d, ∀v ∈ [1, t′ − 1].
6. i′t′ − (N − 1 − l

2 ) ≤ d.
7. it+1 − it ≤ d or i′t′ − i′t′+1 ≤ d.
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Let us interpret the conditions mentioned in Definition 6. For ease of reference,
we introduce a dummy index −1 to the left of index 0. Conditions 1 and 4 ensure
that the first filter to the right of index −1 and the first filter to the left of index
N − 1 are at most at a distance d from indices −1 and N − 1 respectively.
Conditions 2 and 5 ensure that the distance between any two consecutive filters
to the left of left critical filter and to the right of right critical filter is at most d.
Conditions 3 and 6 ensure that the left and right critical filters are at most at a
distance d from indices l

2 − 1 and N − 1− l
2 respectively. Consider the first filter

it+1 to the right of the left critical filter and the first filter i′t′+1 to the left of the
right critical filter. For a (t, t′)-bisequence, at least one of it+1 and i′t′+1 must
exist. Condition 7 ensures that whichever exist (and at least one of the two, if
both exist) is located at most at a distance d from the corresponding critical
filter.

Lemma 2. The number of distinct sequences of indices in [0, l
2 − 1] ∪

[N − 1 − l
2 , N − 2] satisfying the conditions 1 through 6 of Definition 6 is∑

δ≤d,δ′≤d

∑
t≤ l

2−δ,t′≤ l
2−δ′ c(δ, t)c(δ′, t′), where δ = l

2 − 1 − it, δ′ = i′t′ −
(N − 1 − l

2 ), and c(δ, t) is the coefficient of x
l
2−δ−t in (1 + x + . . . + xd−1)t.

Proof. Let x1 = i1, xu = iu − iu−1−1 for 2 ≤ u ≤ t be the number of non-filters
between two consecutive filters in [0, it]. The total number of non-filters in the
interval [0, it] is it − (t − 1) = ( l

2 − 1 − δ) − (t − 1) = l
2 − δ − t. Thus, the

number of distinct sequences of indices in [0, l
2 −1] satisfying conditions 1, 2 and

3 of Definition 6 is the same as the number of non-negative integral solutions of
x1 + x2 + . . . + xt = l

2 − δ − t, where 0 ≤ xu ≤ d − 1, ∀u ∈ [1, t]. The number of
solutions is given by c(δ, t). Similarly, the number of distinct sequences of indices
in [N − 1 − l

2 , N − 2] satisfying conditions 4, 5 and 6 of Definition 6 is c(δ′, t′).
Hence, the number of distinct sequences of indices in [0, l

2 −1]∪ [N−1− l
2 , N−2]

satisfying the conditions 1 through 6 is
∑

δ≤d,δ′≤d

∑
t≤ l

2−δ,t′≤ l
2−δ′ c(δ, t)c(δ′, t′).

��
Theorem 1. The probability of existence of a d-favourable (t, t′)-bisequence in
[0, l − 1] ∪ [N − 1 − l, N − 2] is
πd =

∑

t,t′

∑

Ft,Bt′

∏

iu∈Ft

piu

∏

iv∈[0, l
2−1]\Ft

qiv

∏

i′
u′∈Bt′

p′i′
u′

∏

i′
v′∈[N−1− l

2 ,N−2]\Bt′

q′i′
v′

(1 −
∏

y∈[ l
2 ,it+d]∪

[it′−d,N−2− l
2 ]

q̃y),

where the sum is over all t, t′, Ft, Bt′ such that the sequence of indices Ft ∪ Bt′

satisfy the conditions 1 through 6 in Definition 6 and q̃y = qy or q′y according as
y ∈ [ l

2 , it + d] or [it′ − d, N − 2 − l
2 ] respectively.

Proof. Immediately follows from Lemma 1. The term (1 − ∏
y∈[it+1,it+d]∪

[it′ − d, it′ − 1]q̃y) accounts for condition 7 of Definition 6. ��
Using the definitions of c(δ, t), c(δ′, t′) introduced in Theorem 2, we can approx-
imate the probability expression presented in Theorem 1 as follows.
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Corollary 1. If l ≤ 16 (i.e., the key length is small), then we have

πd ≈
∑

δ≤d,δ′≤d

∑

t≤ l
2−δ,t′≤ l

2−δ′

c(δ, t)ptq
l
2−tc(δ′, t′)p′t

′
q′

l′
2 −t′(1 − qd−δq′d−δ′

),

where p = 2
l

∑ l
2−1
y=0 py, p′ = 2

l

∑N−2
y=N−1− l

2
p′y, q = 1 − p, q′ = 1 − p′.

Proof. Approximating each py in the left half by the average p of the first l
2

many py’s and each p′y in the right half by the average p′ of the last l
2 many

p′y’s, we get the result. The ranges of the variables in the summation account
for conditions 3 and 6 of Definition 6. The term c(δ, t)ptq

l
2−t accounts for the

conditions 1 and 2, the term c(δ′, t′)p′tq′
l′
2 −t′ accounts for the conditions 4 and

5, and the term (1− qd−δq′d−δ′
) accounts for the condition 7 of Definition 6. ��

In Table 1, we compare the theoretical estimates of πd from Corollary 1 with the
experimental values obtained by running the RC4 KSA with 10 million randomly
generated secret keys of length 16 bytes.

Table 1. Theoretical and experimental values of πd vs. d with l = 16

d 2 3 4 5 6

Theoretical 0.0055 0.1120 0.3674 0.6194 0.7939

Experimental 0.0052 0.1090 0.3626 0.6152 0.7909

The results indicate that our theoretical values match closely with the exper-
imental values.

Theorem 2. The number of distinct d-favourable (t, t′)-bisequences containing
exactly f ≤ 2l filters is

∑

δ≤d,δ′≤d

∑

t≤ l
2−δ,t′≤ l

2−δ′

c(δ, t)c(δ′, t′)
2d−δ−δ′∑

s=1

(
2d − δ − δ′

s

)(
l − 2d + δ + δ′

f − t − t′ − s

)
.

Proof. By Lemma 2, the number of distinct sequences of indices in [0, l
2 − 1] ∪

[N − 1 − l
2 , N − 2] satisfying the conditions 1 through 6 of Definition 6 is∑

δ≤d,δ′≤d

∑
t≤ l

2−δ,t′≤ l
2−δ′ c(δ, t)c(δ′, t′). The justification for the two binomial

coefficients with a sum over s is as follows. For condition 7 to be satisfied, at least
one out of 2d−δ−δ′ indices in [ l

2 , l
2 −1+d−δ]∪ [N −1− l

2 − (d−δ′), N −2− l
2 ]

must be a filter. Let the number of filters in this interval be s ≥ 1. So the re-
maining f − t− t′ − s many filters must be amongst the remaining l−2d+ δ + δ′

many indices in [ l
2 + d − δ, l − 1] ∪ [N − 1 − l, N − 2 − l

2 − (d − δ′)] ��
Corollary 2. The number of distinct d-favourable (t, t′)-bisequences containing
at most F ≤ 2l filters is
Cd,F =

∑

δ≤d,δ′≤d

∑

t≤ l
2−δ,t′≤ l

2−δ′

c(δ, t)c(δ′, t′)
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2d−δ−δ′∑

s=1

(
2d − δ − δ′

s

) F−t−t′−s∑

r=0

(
l − 2d + δ + δ′

r

)
.

Proof. In addition to s ≥ 1 filters in [ l
2 , l

2−1+d−δ]∪[N−1− l
2−(d−δ′), N−2− l

2 ],
we need r more filters in [ l

2 + d − δ, l − 1] ∪ [N − 1 − l, N − 2 − l
2 − (d − δ′)],

where t + t′ + s + r ≤ F . ��
Corollary 3. The number of distinct d-favourable (t, t′)-bisequences in [0, l −
1] ∪ [N − 1 − l, N − 2] (containing at most 2l filters) is

Cd,2l =
∑

δ≤d,δ′≤d

∑

t≤ l
2−δ,t′≤ l

2−δ′

c(δ, t)c(δ′, t′)(1 − 2−2d+δ+δ′
)2l.

Proof. Substitute F = 2l in Corollary 2 and simplify.
Alternatively, the number of distinct sequences satisfying the conditions 1

through 6 is
∑

δ,δ′
∑

t,t′ c(δ, t)c(δ′, t′)2l and out of these the number of sequences
violating the condition 7 is

∑
δ,δ′

∑
t,t′ c(δ, t)c(δ′, t′)2l−2d+δ+δ′

. Subtracting, we
get the result. Note that the term 2r stands for the number of ways in which a
set of r indices may be a filter or a non-filter. ��
As an illustration, we present Cd,F for different d and F values with l = 16 in
Table 2.

Table 2. Cd,F for different F and d values with l = 16

F 32 20 16 12 8

d = 2 227.81 227.31 224.72 218.11 23.58

d = 3 230.56 230.38 229.02 224.86 215.95

d = 4 231.47 231.35 230.38 227.17 220.14

Though we have assumed that l divides N in our analysis, the same idea
works when l is not a factor of N . One only needs to map the indices from the
right end of the permutation to the appropriate key bytes.

3 Application of Filter Sequences in Bidirectional Key
Search

Here, we demonstrate how the theoretical framework of filter sequences devel-
oped in the previous section can be used to devise a novel key retrieval algorithm.

Suppose that after the completion of the RC4 KSA, the final permutation
SN and the final value jN of the index j is known. The update rule for KSA is
jy+1 = jy + Sy[y] + K[y], 0 ≤ y ≤ N − 1. Since S0 is identity permutation and
j0 = 0, we have j1 = K[0]. Thus, if index 0 is a filter, then K[0] is known. Again,
if index N − 2 is a filter, then jN−1 is known and hence K[l − 1] = K[N − 1] =
jN − jN−1 −SN−1[N − 1] = jN − jN−1 −SN [jN ] is also known. Moreover, if two
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consecutive indices y − 1 and y are filters, 1 ≤ y ≤ N − 2, then jy and jy+1 are
known and Sy[y] = y from the definition of filters. Thus, the correct value of the
key byte K[y mod l] can be derived as K[y mod l] = jy+1 − jy − y.

For full key recovery, apart from the knowledge of the final permutation SN

and the final value jN of the index j, we also need to assume that a d-favourable
(t, t′)-bisequence exist. Given such a sequence, our algorithm does not require to
guess more than d many key bytes at a time. For faster performance, we like to
keep d small (typically, 4).

Our basic strategy for full key recovery is as follows. First, we perform a partial
key recovery using filters in the interval [0, M − 1] ∪ [N − 1 − M, N − 2], where
l ≤ M ≤ 2l, such that the correct values of at least ncorr out of l key bytes are
uniquely determined and at least nin out of ncorr are found from the filters in
[0, l − 1] ∪ [N − 1 − l, N − 2]. Let P be the set of partially recovered key bytes,
each of which is associated with a single value, namely, the correct value of itself.

Next, we build a frequency table for the l − ncorr many unknown key bytes
as follows. We guess one jy+1 from the 8 values

SN [y], S−1
N [y], SN [SN [[y]], S−1

N [S−1
N [y]], SN [SN [SN [y]]],

S−1
N [S−1

N [S−1
N [y]]], SN [SN [SN [SN [y]]]] and S−1

N [S−1
N [S−1

N [S−1
N [y]]]]. From two

successive j values jy and jy+1, 8 × 8 = 64 candidates for the key byte K[y]
are obtained. This part is similar to the 6 × 6 = 36 candidate keys from up to
three levels of nested indexing of SN and S−1

N as in [1]. These candidates are
weighted according to their probabilities. We split the 256 possible values of each
unknown key byte K[y] into 4 sets of size 64 each. Let Gy be the set of values
obtained from the above frequency table and let H1,y, H2,y, H3,y be the other
sets, called bad sets. For 0 ≤ y ≤ l − 1, let gy = P (K[y] ∈ Gy). Since empirical
results show that gy is almost the same for each y, we would be using the average
g = 1

l

∑l−1
y=0 gy in place of each gy.

After this, we perform a bidirectional search from both ends several times, each
time with exactly one of the sets {Gy, H1,y, H2,y, H3,y} for each unknown key byte.
We decide to use the bad sets for at most b of the unknown key bytes. The search
algorithm, called BidirKeySearch, takes as inputs the final permutation SN , the
final value jN , the partially recovered key setP , a set S of l−ncorr many candidate
sets each of size 64 and a d-favourable (t, t′)-bisequence B.

For the left end, first we guess the key bytes K[0], . . . , K[i1] except those in P .
Starting with S0 and j0, we run the KSA until we obtain Si1+1 and ji1+1. Since
the correct value of ji1+1 is known, the tuples leading to the correct ji1+1 form
a set Ti1 of candidate solutions for K[0 . . . i1]. These tuples are said to “pass the
filter” i1. Similarly, starting with ji1+1 and each state Si1+1 associated with each
tuple in Ti1 , we guess K[i1 + 1], . . . , K[i2] except those in P . Thus, we obtain a
set Ti2 of candidate solutions for K[0 . . . i2] passing the filter i2, and so on until
we reach a stage where we have a set Tit of candidate solutions for K[0 . . . it]
passing the left critical filter it. In the same manner, we start with SN and jN
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and run the KSA backwards until we reach a stage where we have a set Ti′t of
candidate solutions for K[i′t′ + 1 . . . l − 1] passing the right critical filter i′t′ .

Among the set of remaining key bytes L = {K[it +1], . . . , K[it+1]} \P on the
left and the set of remaining key bytes R = {K[i′t′+1 + 1], . . . , K[i′t′]} \ P on the
right, some bytes are common. We first guess the smaller of these two sets and
then guess only those key bytes from the larger set that are needed to complete
the whole key. We can reduce the candidate keys by filtering the left half of the
key using the right filters and the right half of the key using the left filters.

In the BidirKeySearch algorithm description, i0 and i′0 denote the two default
filters −1 (a dummy filter) and N − 1 respectively.

BidirKeySearch (SN , jN , P, S, B)
Guess the Left Half-Key:

1. For u = 1 to t do
1.1. Iteratively guess {K[iu−1 + 1], . . . , K[iu]} \ P .
1.2. Tiu ←

{{K[0], . . . , K[iu]} : the tuple pass the filter iu
}
.

Guess the Right Half-Key:
2. For v =1 to t′ do

2.1. Iteratively guess {K[i′v + 1], . . . , K[i′v−1]} \ P .
2.2. Tiv ←

{{K[i′v + 1], . . . , K[l − 1]} : the tuple pass the filter iv
}
.

Merge to Get the Full Key:
3. L← {K[it + 1], . . . , K[it+1]} \ P and R← {K[i′t′+1 + 1], . . . , K[i′t′ ]} \ P .
4. If |L| < |R| then do

4.1. Guess L.
4.2. Tit+1 ←

{{K[0], . . . , K[it+1]} : the tuple pass the filter it+1

}
.

4.3. Guess R \ Tit+1 using the filter i′t′+1.
5. Else

5.1. Guess R.
5.2. Ti′

t′+1
← {{K[i′t′ + 1], . . . , K[l − 1]} : the tuple pass the filter iv

}
.

5.3. Guess L \ Ti′
t′+1

using the filter it+1.

Cross-Filtration:
6. If K[0 . . . m− 1] is guessed from the left filters and

K[m . . . l − 1] is guessed from the right filters,
then validate K[m . . . l − 1] using the left filters up to l − 1 and
validate K[0 . . . m− 1] using the right filters up to N − 1− l.

Let m1 be the complexity and α be the probability of obtaining a d-favourable
(t, t′) bisequence along with the partially recovered key set P , satisfying the
input requirements of BidirKeySearch. We require a search complexity of m2 =(

2(M−l)
ncorr−nin

)
for locating the ncorr−nin many correct key bytes from the filters in

[l, l+M−1]∪[N−1−l, N−2−M ]. We need to run the BidirKeySearch algorithm
a total of m3 =

∑b
r=0

(
n−ncorr

r

)
3r times and this gives a success probability

β =
∑n−ncorr

r=n−ncorr−b

(
n−ncorr

r

)
gr(1−g)n−ncorr−r. If each run of the BidirKeySearch

algorithm consumes τ time, the overall complexity for the full key recovery is
m1m2m3τ28 and the success probability is αβ. The term 28 comes for guessing
the correct value of jN .
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For l = 16, d = 4, M = 20, ncorr = 6, nin = 4, our experiments with 10
million randomly generated secret keys reveal that α ≈ 0.1537 and g ≈ 0.8928.
Also, m1 ≈ 231 (see Table 2) and m2 ≈ 25. With b = 2, β and m3 turn out to be
0.9169 and 29 (approx.) respectively. Thus, the success probability is αβ ≈ 0.1409
and the complexity is approximately 231+5+9+8τ = 253τ . Though the the exact
estimation of τ is not feasible at this point, τ is expected to be small, since for
wrong filter sequences the search is likely to terminate in a negligible amount of
time. So far, the best known success probability for recovering a 16 bytes secret
key has been 0.0745 [1]. The time reported in [1] for this probability is 1572
seconds, but it is not clear how the complexity of [1] would grow with increase
in probability. We present better probability (almost two times that of [1]), but
with very high time complexity, which is infeasible in practice unless further
improvement is made.

4 Conclusion

In this paper, we have performed a detailed theoretical study on sequences of j
indices in RC4 KSA. We have also demonstrated an application of our sequence
analysis in secret key recovery from the final permutation after the KSA. Though
our key retrieval algorithm has good success probability, it has high time com-
plexity. Currently, we are working on some more special sequences to reduce the
complexity parts from those reported in Table 2 and thereby improve the overall
time complexity for key recovery.

References

1. Akgün, M., Kavak, P., Demirci, H.: New Results on the Key Scheduling Algo-
rithm of RC4. In: Chowdhury, D.R., Rijmen, V. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 40–52. Springer, Heidelberg (2008)

2. Biham, E., Carmeli, Y.: Efficient Reconstruction of RC4 Keys from Internal States.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg
(2008)

3. Khazaei, S., Meier, W.: On Reconstruction of RC4 Keys from Internal States. In:
Calmet, J., Geiselmann, W., Müller-Quade, J. (eds.) Mathematical Methods in
Computer Science (MMICS). LNCS, vol. 5393, pp. 179–189. Springer, Heidelberg
(2008)

4. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

5. LAN/MAN Standard Committee. Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications, 1999 edition. IEEE standard 802.11 (1999)

6. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage
in Keystream Bytes of RC4. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 253–269. Springer, Heidelberg (2008); A revised and extended version with the
same title is available at the IACR Eprint Server, eprint.iacr.org, number 2007/261
(January 9, 2009)



148 R. Basu et al.

7. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel (2001)

8. Maximov, A., Khovratovich, D.: New State Recovering Attack on RC4. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

9. McKague, M.E.: Design and Analysis of RC4-like Stream Ciphers. Master’s Thesis,
University of Waterloo, Canada (2005)

10. Paul, G., Maitra, S.: Permutation after RC4 Key Scheduling Reveals the Secret
Key. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp.
360–377. Springer, Heidelberg (2007)

11. Paul, G., Maitra, S.: RC4 State Information at Any Stage Reveals the Secret Key.
IACR Eprint Server, eprint.iacr.org, number 2007/2008 (January 9, 2009); This is
an extended version of [10]

12. Roos, A.: A class of weak keys in the RC4 stream cipher. Two posts in sci.crypt,
message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za (1995)

13. Tews, E.: Attacks on the WEP protocol. IACR Eprint Server, eprint.iacr.org, num-
ber 2007/471, December 15 (2007)

14. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Information Sciences 177, 1715–1727 (2007)



Very-Efficient Anonymous

Password-Authenticated Key Exchange and
Its Extensions

SeongHan Shin1,2, Kazukuni Kobara1,2, and Hideki Imai2,1

1 Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST),

1-18-13, Sotokanda, Chiyoda-ku, Tokyo, 101-0021 Japan
seonghan.shin@aist.go.jp

2 Chuo University,
1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan

Abstract. An anonymous password-authenticated key exchange
(anonymous PAKE) protocol is designed to provide both password-only
authentication and user anonymity. In this paper, we propose a very-
efficient anonymous PAKE (called, VEAP) protocol that provides the
most efficiency among their kinds in terms of computation and communi-
cation costs. The VEAP protocol guarantees semantic security of session
keys in the random oracle model under the chosen target CDH problem,
and unconditional user anonymity against a semi-honest server. If the
pre-computation is allowed, the computation cost of the VEAP protocol
is the same as the well-known Diffie-Hellman protocol! In addition, we
extend the VEAP protocol in two ways.

1 Introduction

Since the Diffie-Hellman protocol [8], many researchers have tried to design se-
cure cryptographic algorithms/protocols for realizing secure channels. These al-
gorithms/protocols are necessary because application-oriented protocols (e.g.,
web-mail, Internet banking/shopping, ftp) are frequently developed assuming
the existence of such secure channels. The latter can be achieved by an authen-
ticated key exchange (AKE) protocol at the end of which the involving parties
authenticate and share a common session key to be used for subsequent crypto-
graphic algorithms. For authentication, human-memorable passwords are com-
monly used rather than high-entropy keys because of their convenience. Many
password-based AKE protocols (see [10]) have been extensively investigated so
far. However, one should be very careful about two major attacks on passwords:
on-line and off-line dictionary attacks. While on-line attacks are applicable to
all of the password-based protocols equally, they can be prevented by having a
server take appropriate countermeasures (e.g., lock-up accounts after consecutive
failures of passwords). But, we cannot avoid off-line attacks by such countermea-
sures mainly because these attacks can be done off-line and independently of the
party.
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c© Springer-Verlag Berlin Heidelberg 2009



150 S. Shin, K. Kobara, and H. Imai

1.1 Anonymous Password-Authenticated Key Exchange

A password-authenticated key exchange (PAKE) protocol allows a user, who re-
members his/her password only, to authenticate with the counterpart server that
holds the password or its verification data. In PAKE protocols (see [9]), a user
should send his/her identity clearly in order to share an authenticated session
key. Let us suppose an adversary who fully controls the networks. Though the
adversary cannot impersonate any party in PAKE protocols, it is easy to collect
a user’s personal information about the communication history itself. For this
problem, Viet et al., [15] proposed an anonymous PAKE protocol and its thresh-
old construction1 both of which simply combine a PAKE protocol [1] with an
oblivious transfer (OT) protocol [7,14] for user’s anonymity. The user anonymity
is guaranteed against an outside adversary as well as a passive server, who fol-
lows the protocol honestly. Later, Shin et al., [13] proposed an anonymous PAKE
protocol that is only based on the PAKE protocol [1], and showed that their pro-
tocol significantly improved the efficiency compared to [15]. Very recently, Yang
and Zhang [16] proposed a new anonymous PAKE protocol that is based on a
different PAKE (i.e., SPEKE [11,12]) protocol. The main idea of [16] is that the
user and the server share a Difffie-Hellman-like key, by using the SPEKE proto-
col [11,12], and then run a sequential Diffie-Hellman protocol partially-masked
with the shared key. To our best knowledge, all the anonymous PAKE protocols
are constructed from PAKE protocols and, among them, the construction of [16]
seems the most efficient in terms of computation and communication costs.

1.2 Our Contributions

In this paper, we propose a very-efficient anonymous PAKE (called, VEAP) proto-
col whose core part is based on the blind signature scheme [5]. The VEAP
protocol guarantees semantic security of session keys in the random oracle model
under the chosen target CDH problem, and unconditional user anonymity against
a semi-honest server. In the VEAP protocol, the user and the server are required to
compute only one modular exponentiation, respectively, if the pre-computation is
allowed. Surprisingly, this is the same computation cost of the well-known Diffie-
Hellman protocol [8] which does not provide authentication at all. Also, we extend
the VEAP protocol in two ways: the first is designed to reduce the communication
cost of the VEAP protocol and the second shows that stripping off anonymity parts
from the VEAP protocol results in a new PAKE protocol.

Organization. In the next section, we explain some preliminaries to be used
throughout this paper. In Section 3, we propose a very-efficient anonymous
PAKE (called, VEAP) protocol with security proof and efficiency comparison.
In Section 4, we extend the VEAP protocol in two ways.

1 In their threshold construction, the ”threshold” number of users should collaborate
one another in order to be authenticated by the server. In this paper, we only focus
on an anonymous PAKE protocol where the threshold t = 1.
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2 Preliminary

2.1 Notation

Here, we explain some notation. Let G be a finite, cyclic group of prime order p
and g be a generator of G. The parameter (G, p, g) is public to everyone. In the
aftermath, all the subsequent arithmetic operations are performed in modulo p
unless otherwise stated. Let l and κ be the security parameters for hash functions
(i.e., the size of the hashed value) and a symmetric-key encryption scheme (i.e.,
the length of the key), respectively. Let {0, 1}∗ be the set of finite binary strings
and {0, 1}l be the set of binary strings of length l. Let ”‖” be the concatenation
of bit strings in {0, 1}�. Let us denote G∗ = G\{1} where 1 is the identity
element of G. The G is a full-domain hash (FDH) function that maps {0, 1}� to
the elements of G∗. While F : {0, 1}� → {0, 1}κ, the other hash functions are
denoted Hk : {0, 1}� → {0, 1}lk , for k = 1, 2, 3. Let U = {U1, · · · , Un} and S be
the identities of a group of n users and server, respectively.

2.2 Formal Model

In this subsection, we introduce an extended model, built upon [4,2], and security
notions for anonymous PAKE.

Model. In an anonymous PAKE protocol P , there are two parties Ui (∈ U)
and S where a pair of user Ui and server S share a low-entropy password pwi,
chosen from a small dictionary Dpassword, for i (1 ≤ i ≤ n). Each of Ui and S may
have several instances, called oracles involved in distinct, possibly concurrent,
executions of P . We denote Ui (resp., S) instances by Uμ

i (resp., Sν) where μ, ν ∈
N, or by I in case of any instance. During the protocol execution, an adversaryA
has the entire control of networks whose capability can be represented as follows:

– Execute(Uμ
i , Sν): This query models passive attacks, where the adversary

gets access to honest executions of P between Uμ
i and Sν .

– Send(I, m): This query models active attacks by having A send a message
m to an instance I. The adversary A gets back the response I generates in
processing m according to the protocol P .

– Reveal(I): This query handles misuse of the session key by any instance I.
The query is only available to A, if the instance actually holds a session key,
and at that case the key is released to A.

– RegisterUser(Uj , pwj): This query handles inside attacks by havingA register
a user Uj to server S with a password pwj (i.e., Uj ∈ U).

– Test(I): This query is used to measure how much the adversary can obtain
information about the session key. The Test-query can be asked at most once
by the adversary A and is only available to A if the instance I is fresh2.

2 We consider an instance I that has accepted (holding a session key SK). Let I ′ be
a partnered instance of I (refer to [4]). The instance I is fresh unless the following
conditions are satisfied: (1) either Reveal(I) or Reveal(I ′) is asked by A at some
point; or (2) RegisterUser(I, �) is asked by A when I = Ui for any i.
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This query is answered as follows: one flips a private coin b ∈ {0, 1}, and
forwards the corresponding session key SK (Reveal(I) would output), if b =
1, or a random value with the same size except the session key, if b = 0.

Security Notions. The adversaryA is provided with random coin tosses, some
oracles and then is allowed to invoke any number of queries as described above,
in any order. The AKE security is defined by the game Gameake(A, P ) where
the goal of the adversary is to guess the bit b, involved in the Test-query, by
outputting this guess b′. We denote the AKE advantage, by Advake

P (A) = 2 Pr[b =
b′]−1, as the probability that A can correctly guess the value of b. The protocol
P is said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any
adversary A running time t.

As [15], we consider a semi-honest server S, who honestly follows the protocol
P , but it is curious about the involved user’s identity. The user anonymity is
defined by the probability distribution of messages in P . Let P (Ui, S) (resp.,
P (Uj , S)) be the transcript of P between Ui (resp., Uj) and S. We can say that
the protocol P is anonymous if, for any two users Ui, Uj ∈ U , Dist[P (Ui, S)] =
Dist[P (Uj , S)] where Dist[c] denotes c’s probability distribution. This security
notion means that the server S gets no information about the user’s identity.

2.3 Computational Assumptions

Chosen Target CDH (CT-CDH) Problem [3,5]. Let G = 〈g〉 be a finite
cyclic group of prime order p with g as a generator. Let x be a random element
of Z�

p and let X ≡ gx. A (t, ε)-CT-CDHg,G attacker is a probabilistic polynomial
time (PPT) machine B that is given X and has access to the target oracle TG,
returning random points Wi in G

∗, as well as the helper oracle (·)x. Let qT (resp.,
qH) be the number of queries B made to the target (resp., helper) oracles. The
success probability Succct−cdh

g,G (B) of B attacking the chosen-target CDH problem
is defined as the probability to output a set of m pairs ((j1, K1), · · · , (jm, Km))
where, for all i (1 ≤ i ≤ m), ∃ji (1 ≤ ji ≤ qT ) such that Ki ≡ W x

ji
, all Ki are

distinct and qH < qT . We denote by Succct−cdh
g,G (t) the maximal success proba-

bility over every adversaries, running within time t. The CT-CDH-Assumption
states that Succct−cdh

g,G (t) ≤ ε for any t/ε not too large. Note that, if B makes one
query to the target oracle, then the chosen-target CDH assumption is equivalent
to the computational Diffie-Hellman assumption.

A Symmetric-Key Encryption Scheme. A symmetric-key encryption
scheme SE consists of the following two algorithms (E ,D), with a symmetric-
key K uniformly distributed in {0, 1}κ: (1) Given a message M and a key K,
E produces a ciphertext C = EK(M); and (2) Given a ciphertext C and a key
K, D recovers a message M = DK(C). The semantic security for SE is that
it is infeasible for an adversary to distinguish the encryptions of two messages
M0 and M1 (of the same length), even though the adversary has access to the
en/decryption oracles. We denote by Succss

SE(t, q) the maximal success probabil-
ity of a distinguisher, running within time t and making at most q queries to the
E and D oracles.
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User Ui (pwi) Server S ((Uj , pwj) , 1 ≤ j ≤ n)

[Pre-computation]

x
R← Z

�
p, X ≡ gx, MS

R← {0, 1}l
For j = 1 to n,

Wj ← G(Uj , pwj), Kj ≡ (Wj)
x,

Kj ← F(Uj , X, Wj , Kj),

and Cj = EKj (MS).

a
R← Z

�
p, Wi ← G(Ui, pwi),

A ≡Wi × ga U, A �
Compute Ax

VS ←H1(U‖S‖trans‖MS)S, X, Ax, {Cj}1≤j≤n, VS�Ki ≡ Ax/Xa,

Ki ← F(Ui, X, Wi, Ki),

For i = j, MS′ = DKi (Ci).

If VS �= H1(U‖S‖trans‖MS′), reject.

Otherwise, VUi ←H2(U‖S‖trans‖MS′)
SK ←H3(U‖S‖trans‖MS′)
and accept.

VUi�
If VUi �= H2(U‖S‖trans‖MS), reject.

Otherwise, SK ←H3(U‖S‖trans‖MS)

and accept.

Fig. 1. The VEAP protocol where trans = A‖Ax‖X‖{Cj}1≤j≤n

3 A Very-Efficient Anonymous PAKE Protocol

In this section, we propose a very-efficient anonymous PAKE (for short, VEAP)
protocol that provides the most efficiency among their kinds in terms of computa-
tion and communication costs. We also show that the VEAP protocol guarantees
not only AKE security against an active adversary but also unconditional user
anonymity against a semi-honest server, who honestly follows the protocol.

3.1 The VEAP Protocol

We assume that each user Ui of the group U = {U1, · · · , Un} has registered
his/her password pwi to server S. For simplicity, we assign the users consecutive
integer i (1 ≤ i ≤ n) so that Ui can be regarded as the i-th user of U . In the
VEAP protocol, any user Ui can share an authenticated session key with server
S anonymously (see Fig. 1).

Step 0 (Pre-computation of server S): At first, server S chooses a random
number x from Z�

p and a random master secret MS from {0, 1}l, and com-
putes its Diffie-Hellman public value X ≡ gx. Then, the server repeats the
followings for all users Uj (1 ≤ j ≤ n): 1) it computes Wj ← G(Uj , pwj); 2) it
computes Kj ≡ (Wj)

x and derives a symmetric-key Kj ← F(Uj , X, Wj , Kj);
and 3) it generates a ciphertext Cj = EKj (MS) for the master secret MS.

Step 1: The user Ui chooses a random number a from Z�
p and computes

Wi ← G(Ui, pwi). The Wi is masked with ga so that the resultant value
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A is computed in a way of A ≡Wi × ga. The user sends A and the group U
of users’ identities to server S.

Step 2: For the received value A, server S computes Ax with the exponent
x. Also, the server generates an authenticator VS ← H1(U‖S‖trans‖MS).
Then, server S sends its identity S, X , Ax, {Cj}1≤j≤n and VS to user Ui.

Step 3: After receiving the message from server S, user Ui first computes
Ki ≡ Ax/Xa and Ki ← F(Ui, X, Wi, Ki). With Ki, the user decrypts
the i-th ciphertext Ci=j as follows: MS′ = DKi (Ci). If the received VS is
not valid, user Ui terminates the protocol. Otherwise, the user generates
an authenticator VUi ← H2(U‖S‖trans‖MS′) and a session key SK ←
H3(U‖S‖trans‖MS′). The authenticator VUi is sent to server S.

Step 4: If the received VUi is not valid, server S terminates the protocol.
Otherwise, the server generates a session key SK ← H3(U‖S‖trans‖MS).

Rationale. Unlike [13,15,16], the novelty of the VEAP protocol is that it does
not use the existing PAKE protocols [9,10] at all. In order to provide the most
efficiency, the VEAP protocol has the following rationale: 1) Instead of unmasking
A, server S sends X and Ax which can be used to derive Ki=j if user Ui has
computed Wi with the correct Ui and pwi. Importantly, this procedure makes
it possible for server S to pre-compute Kj for all users Uj (1 ≤ j ≤ n); 2) The
server S generates only one Diffie-Hellman public value X and its exponent is
used to compute all of the Kj’s; 3) The server S sends {Cj}1≤j≤n by encrypting
the master secret MS with Kj . This is enough to guarantee unconditional user
anonymity against a semi-honest server; and 4) Both Ui and pwi are used to
compute the verification data Wi. This is crucial since an adversary is enforced
to make an on-line dictionary attack on a specific user, not the others.

3.2 Security

In this subsection, we prove that the VEAP protocol is AKE-secure under the
chosen target CDH problem in the random oracle model [6] and provides uncon-
ditional user anonymity against a semi-honest server.

Theorem 1 (AKE Security). Let P be the VEAP protocol where passwords
are independently chosen from a dictionary of size N . For any adversary A
within a polynomial time t, with less than qsend active interactions with the par-
ties (Send-queries), qexecute passive eavesdroppings (Execute-queries) and asking
qhashF, qhashG, qhashH hash queries to F , G, any Hk, for k = 1, 2, 3, respectively,

Advake
P (A) ≤ 2nqsendS × Succss

SE(t1, q1) + 16qsendS × Succct−cdh
g,G (t2 + qhashG · τe)

+
6(qsendU + qsendS)

N
+

2Q2

|G| +
q2
hashF

2κ
+

q2
hashH

2l
+

2qsendU

2l1
+

2qsendS

2l2
(1)

where (1) qsendU (resp., qsendS) is the number of Send-queries to Ui (resp., S)
instance, (2) Q = qexecute + qsend and qsend ≤ qsendU + qsendS, (3) l1 and l2 are the
output sizes of hash function H1 and H2, respectively, and (4) τe denotes the
computational time for an exponentiation in G.
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The main proof strategy is as follows. In order to ”embed” X of the CT-CDH
problem, the simulator selects a random value s in the set {1, · · · , qsendS} where
qsendS is the number of Send-queries to S instance. If this is the s-th instance
of party S, the simulator uses the X and forwards A to the helper oracle (·)x,
and then returns the received Ax. Let qT1 and qT2 be the first and the second
G-query, respectively. The simulator forwards qT1 and qT2 to the target oracle TG

and returns the received WT1 and WT2 , respectively. For u (3 ≤ u ≤ hashG) in the
{qT3 , · · · , qThashG

} where hashG is the number of G-queries, the simulator chooses
a random number wu from Z�

p and returns WTu ≡ Wwu

T1
, if u ≡ 1 mod 2, or

WTu ≡Wwu

T2
, if u ≡ 0 mod 2. That is, we simulate G oracle by answering with a

randomized WT1 , for half of G-queries, and WT2 , for the remaining queries. Note
that qT = 2 and qH = 1. Whenever there is a collision on Wji , the simulator can
find the solution to the CT-CDH problem with the probability 1/2qsendS.

Theorem 2 (Anonymity). The VEAP protocol provides unconditional user
anonymity against a semi-honest server.

Proof. Consider server S who honestly follows the VEAP protocol. It is obvious
that server S cannot get any information about the user’s identity since the A
has a unique discrete logarithm of g and, with the randomly-chosen number a,
it is the uniform distribution over G∗. This also implies that the server cannot
distinguish Ai (of user Ui) from Aj (of Uj �=i) because they are completely inde-
pendent each other. In addition, even if server S receives the authenticator VUi

the A does not reveal any information about the user’s identity since the proba-
bility, for all users, to get MS is equal. Therefore, Dist[P (Ui, S)] = Dist[P (Uj , S)]
for any two users {Ui, Uj} ∈ U . �

Remark 1. In [16], they discussed user anonymity against a malicious server
who does not follow the protocol. However, the NAPAKE protocol [16] does not
provide user anonymity against such type of attacks because, if there are only
two users in the group, the malicious server can always determine which user is
the one, with probability 1/2, by using different random values for the users.

3.3 Efficiency Comparison

This subsection shows efficiency comparison of the VEAP protocol and the pre-
vious anonymous PAKE protocols [15,13,16] (see Table 1). With respect to
computation costs, we count the number of modular exponentiations of user
Ui and server S. In Table 1, ”Total” means the total number of modular ex-
ponentiations and ”T−P” is the remaining number of modular exponentiations
after excluding those that are pre-computable. With respect to communication
costs, we measure the bit-length of messages where | · | indicate the bit-length.

As for computation cost of the VEAP protocol, user Ui (resp., server S)
is required to compute 2 (resp., n + 2) modular exponentiations. When pre-
computation is allowed, the remaining costs of user Ui (resp., server S) are only
1 (resp., 1) modular exponentiation. Note that this is the same computation cost
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Table 1. Efficiency comparison of anonymous PAKE protocols in terms of computation
and communication costs where n is the number of users

Number of modular exponentiations
Protocols User Ui Server S Communication costs ∗1

Total T−P Total T−P

APAKE [15] 6 4 4n + 2 3n + 1 (n + 2)|p|+ (n + 1)|H|
TAP [13] 3 2 n + 1 n 2|p|+ (n + 1)|H|
NAPAKE [16] 4 3 ∗2 n + 3 2 (n + 3)|p|+ |H| ∗2
VEAP 2 1 n + 2 1 3|p|+ 2|H|+ n|E|
*1: The bit-length of identities is excluded
*2: In [16], they incorrectly estimated the efficiency of the NAPAKE protocol

of the Diffie-Hellman protocol [8]. One can easily see that the VEAP protocol
is the most efficient in the number of modular exponentiations for both user
and server. As for communication cost, the VEAP protocol requires a bandwidth
of (3|p|+ 2|H|+ n|E|)-bits, except the length of identities U and S, where the
bandwidth for |H| and the modulus size |p| are independent from the number of
users. If we consider the minimum security parameters (|p| = 1024, |H| = 160
and |E| = 128), the gap of communication costs between the VEAP protocol and
the others [15,13,16] becomes larger as the number of users increases.

4 Its Extensions

4.1 Reducing Communication Cost of the VEAP Protocol

In this subsection, we show how to reduce the communication cost of the VEAP
protocol, such that it is independent of the number of users, at the expense of
slight increase of the computation cost (see Fig. 2). The main difference from
the VEAP protocol is that server S fixes the values X and {Cj}1≤j≤n for a time
period t. This obviously reduces the communication cost to be independent of
the number of users. Instead, user Ui has to read a necessary information from
server S’s public bulletin board. Note that, if an adversary changes these values,
this extended protocol results in ”failure”. However, one should be careful about
the following problems: 1) session key privacy against other legitimate users;
and 2) forward secrecy. In fact, the values Bx ≡ Xb and By ≡ Y b in the hash
functions play an important role to solve the above problems in the extended
protocol.

4.2 A New PAKE Protocol

Here, we show that stripping off anonymity parts from the VEAP protocol is
a new kind of PAKE protocol (see Fig. 3). To our best knowledge, this PAKE
protocol is the first construction built from the blind signature scheme [5].
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Server S ((Uj , pwj) , 1 ≤ j ≤ n)

[Publication of temporarily-fixed values]

x
R← Z

�
p, X ≡ gx, MS

R← {0, 1}l
For j = 1 to n,

Wj ← G(Uj , pwj), Kj ≡ (Wj)
x,

Kj ← F(Uj , X, Wj , Kj),

and Cj = EKj (MS).

Server S’s public bulletin board

Posted time Users U Values Valid period t

2009/01/18 {Uj}1≤j≤n X, {Cj}1≤j≤n 2009/02/17
����� ����read

[Protocol execution up to t]

x, X, (Kj , Cj) , 1 ≤ j ≤ n
User Ui (pwi)

(a, b)
R← (

Z
�
p

)2
, B ≡ gb,

Wi ← G(Ui, pwi), A ≡Wi × ga U,A, B �
y

R← Z
�
p, Y ≡ gy

Compute Ax, Bx and By

VS ←H1(trans‖Bx‖By‖MS)S, Ax, Y, VS�Ki ≡ Ax/Xa,

Ki ← F(Ui, X, Wi, Ki),

For i = j, MS′ = DKi (Ci).

If VS �= H1(trans‖Xb‖Y b‖MS′), reject.

Otherwise, VUi ←H2(trans‖Xb‖Y b‖MS′)

SK ←H3(trans‖Xb‖Y b‖MS′)
and accept.

VUi�
If VUi �= H2(trans‖Bx‖By‖MS), reject.

Otherwise, SK ←H3(trans‖Bx‖By‖MS)

and accept.

Fig. 2. An extended VEAP protocol where trans = U‖S‖A‖Ax‖X‖B‖Y ‖{Cj}1≤j≤n

User Ui (pwi)

a
R← Z

�
p, Wi ← G(Ui, pwi),

A ≡Wi × ga
Ui, A�

Server S ((Uj , pwj) , 1 ≤ j ≤ n)

x
R← Z

�
p, X ≡ gx, Ax

For i = j,

Wj ← G(Uj , pwj) and Kj ≡ (Wj)
x.

VS ←H1(Ui‖trans‖Wj‖Kj)S, X, Ax, VS�
Ki ≡ Ax/Xa,

If VS �= H1(Ui‖trans‖Wi‖Ki), reject.

Otherwise, VUi ←H2(Ui‖trans‖Wi‖Ki)

SK ←H3(Ui‖trans‖Wi‖Ki)

and accept.

VUi�
If VUi �= H2(Ui‖trans‖Wj‖Kj), reject.

Otherwise, SK ←H3(Ui‖trans‖Wj‖Kj)

and accept.

Fig. 3. A new PAKE protocol from the VEAP protocol where trans = S‖A‖Ax‖X
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Abstract. We build on the new security notion for deterministic en-
cryption (PRIV) and the PRIV-secure schemes presented by Bellare et
al at Crypto’07. Our work introduces: 1) A generic and efficient con-
struction of deterministic length-preserving hybrid encryption, which is
an improvement on the scheme sketched in the above paper; to our best
knowledge, this is the first example of length-preserving hybrid encryp-
tion; 2) postquantum deterministic encryption (using the IND-CPA vari-
ant of code-based McEliece PKE) which enjoys a simplified construction,
where the public key is re-used as a hash function.

Keywords: Deterministic encryption, hybrid encryption, code-based en-
cryption, searchable encryption, database security.

1 Introduction

Background. The notion of security against privacy adversary (denoted as
PRIV) for deterministic encryption was pioneered by Bellare et al [2] featur-
ing an upgrade from the standard onewayness property. Instead of not leaking
the whole plaintext, the ciphertext was demanded to leak, roughly speaking,
no more than the plaintext statistics does. In other words, the PRIV-security
definition (formulated in a manner similar to the semantic security definition
of [7]) requires that a ciphertext must be essentially useless for adversary who
is to compute some predicate on the corresponding plaintext. Achieving PRIV-
security demands two important assumptions: 1) the plaintext space must be
large enough and have a smooth (i.e. high min-entropy) distribution; 2) the
plaintext and the predicate are independent of the public key.

Constructions satisfying two flavors of PRIV-security are presented in [2]:
against chosen-plaintext (CPA) and chosen-ciphertext (CCA) attacks. The fol-
lowing three PRIV-CPA constructions are introduced in the random oracle (RO)
model. The generic Encrypt-with-Hash (EwH) primitive features replacing of
the coins used by the randomized encryption scheme with a hash of the pub-
lic key concatenated with the message. The RSA deterministic OAEP (RSA-
DOAEP) scheme provides us with length-preserving deterministic encryption.

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 159–168, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the generic Encrypt-and-Hash (EaH) primitive, a ”tag” in the form of the
plaintext’s hash is attached to the ciphertext of a randomized encryption scheme.

These results were extended by Boldyreva et al [4] and Bellare et al [3] present-
ing new extended definitions, proving relations between them, and introducing,
among others, new constructions without random oracles.
Applications. The original motivation for this research comes from the demand
on efficiently searchable encryption (ESE) in the database applications. Length-
preserving schemes can also be used for encryption of legacy code and in the
bandwidth-limited systems. Some more applications (although irrelevant to our
work) to improving randomized encryption schemes were studied in [4, Sec. 8].
Motivation. The work [2, Sec. 5] sketches a method for encrypting long mes-
sages, but it is less efficient compared to the standard hybrid encryption, besides
it is conjectured not to be length-preserving. Also, possible emerging of quantum
computers raises demands for postquantum deterministic encryption schemes.
Our Contribution. In the random oracle model, we present a generic and
efficient construction of length-preserving deterministic hybrid encryption. In
a nutshell, we prove that the session key can be computed by concatenating
the public key with the first message block and inputting the result into key
derivation function. This is a kind of re-using the (sufficient) entropy of message,
and it is secure due to the assumption that the message is high-entropy and
independent of the key. Meanwhile, Bellare et al. employ the hybrid encryption in
a conventional way, which first encrypts a random session key to further encrypt
the data, obviously losing the length-preserving property. Hence, we show that
the claim of Bellare et al [2, Sec. 5]: “However, if using hybrid encryption, RSA-
DOAEP would no longer be length-preserving (since an encrypted symmetric key
would need to be included with the ciphertext)” is overly pessimistic. To our best
knowledge, this is the first example of length-preserving hybrid encryption.

For achieving postquantum deterministic encryption, we propose to plug in
an IND-CPA secure variant [10] of the coding theory based (or code-based)
McEliece PKE [9] into the generic constructions EaH and EwH, presented in
[2, Sec. 5]. The McEliece PKE is believed to be resistant to quantum attacks,
besides it has very fast encryption algorithm. Moreover, we point out a significant
simplification: the public key (which is a generating matrix of some linear code)
can be re-used as hash function.
Related Work. The deterministic hybrid encryption scheme is based on the
same principle as the RSA-DOAEP scheme of [2, Sec. 5], we just fill the gap
which was overlooked there.
Organization. The paper will be organized in the following way: Sec.2 provides
the security definitions of deterministic encryption. Sec.3 gives the proposed
generic and efficient construction of deterministic hybrid encryption, which leads
to the first length-preserving construction, immediately. In Sec.4, we will provide
deterministic encryption from the code-based PKE, which is postquantum secure
and efficient due to the good property of the underlying PKE scheme. Next,
in Sec.5, we further discuss how to extend the PRIV security to the chosen-
ciphertext attack (CCA) scenario.
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2 Preliminaries

Denote by “|x|” the cardinality of x. Denote by x̂ the vector and by x̂[i] the i-th
component of x̂ (1 ≤ i ≤ |x̂|). Write x̂||ŷ for concatenation of vectors x̂ and
ŷ. Let x ←R X denote the operation of picking x from the set X uniformly at
random. Denote by z ← A(x, y, ...) the operation of running algorithm A with
input (x, y, ...), to output z. Write log x as the logarithm with base 2. We also
write Pr[A(x) = y : x ←R X ] the probability that A outputs y corresponding
to input x, which is sampled from X . We say a function ε(k) is negligible, if for
any constant c, there exists k0 ∈ N, such that ε < (1/k)c for any k > k0.

A public key encryption (PKE) scheme Π consists of a triple of algorithms
(K, E ,D). The key generation algorithm K outputs a pair of public and secret
keys (pk, sk) taking on input 1k, a security parameter k in unitary notation. The
encryption algorithm E on input pk and a plaintext x̂ outputs a ciphertext c.
The decryption algorithm D takes sk and c as input and outputs the plaintext
message x̂. We require that for any key pair (pk, sk) obtained from K, and any
plaintext x̂ from the plaintext space of Π , x̂← D(sk, E(pk, x̂)).

Definition 1 (PRIV [2]). Let a probabilistic polynomial-time (PPT) adversary
ADE against the privacy of the deterministic encryption Π = (K, E ,D), be a pair
of algorithms ADE = (Af ,Ag), where Af ,Ag do not share any random coins or
state. The advantage of adversary is defined as follows,

Advpriv
Π,ADE

(k) = Pr[Exppriv−1
Π,ADE

(k) = 1]− Pr[Exppriv−0
Π,ADE

(k) = 1]

where experiments are described as:

Experiment Exppriv−1
Π,ADE

(k) : Experiment Exppriv−0
Π,ADE

(k) :

(pk, sk)←R K(1k), (pk, sk)←R K(1k),
(x̂1, t1)←R Af (1k), (x̂0, t0)←R Af (1k), (x̂1, t1)←R Af (1k),
c←R E(1k, pk, x̂1), c←R E(1k, pk, x̂0),
g ←R Ag(1k, pk, c); g ←R Ag(1k, pk, c);
return 1 if g = t1, else return 0 return 1 if g = t1, else return 0

We say that Π is PRIV secure, if Advpriv
Π,ADE

(k) is negligible, for any PPT
ADE with high min-entropy, where ADE has a high min-entropy μ(k) means
that μ(k) ∈ ω(log(k)), and Pr[x̂[i] = x : (x̂, t) ←R Am(1k)] ≤ 2−μ(k) for all k,
all 1 ≤ i ≤ |x̂|, and any x ∈ {0, 1}∗.
In the underlying definition, the advantage of privacy adversary could be also
written as

Advpriv
Π,ADE

(k) = 2 Pr[Exppriv−b
Π,ADE

(k) = b]− 1

where b ∈ {0, 1} and probability is taken over the choice of all of the random
coins in the experiments.
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Remarks. 1) The encryption algorithm Π need not be deterministic per se. For
example, in a randomized encryption scheme, the random coins can be fixed in
an appropriate way to yield a deterministic scheme (as explained in Sec.4);
2) As argued in [2], Af has no access to the pk and Ag does not know the
chosen plaintext input to encryption oracle by Af . This is required because
the public key itself carries some non-trivial information about the plaintext if
the encryption is deterministic.1 Thus, equipping either Af or Ag with both
the public key and free choice of an input plaintext in the way of conventional
indistinguishability notion [7] of PKE, the PRIV security cannot be achieved.

It is possible to build PRIV security from indistinguishability (IND) security,
as observed in [2]. In the following, we recall the notion of IND security.

Definition 2 (IND-CPA). We say a scheme Π = (K, E ,D) is IND-CPA se-
cure, if the advantage Advind

Π,A of any PPT adversary A = (A1,A2) is negligible,
(let s be the state information of A1, and b̂ ∈ {0, 1}):

Advind
Π ,A(k) = 2 · Pr

⎡
⎢⎢⎣
b̂ = b : (pk, sk)←R K(1k),
(x0, x1, s)←R A1(1k, pk),
b←R {0, 1}, c←R E(1k, pk, xb),
b̂←R A2(1k, c, s)

⎤
⎥⎥⎦− 1

Remark. IND security is required by a variety of cryptographic primitives. How-
ever, for an efficiently searchable encryption used in database applications, IND
secure encryption may be considered as overkill. For such a strong encryption, it
is not known how to arrange fast (i.e. logarithmic in the database size) search.

IND secure symmetric key encryption (SKE) has been carefully discussed in
the literature, such as [6, Sec.7.2]. Given a key K ∈ {0, 1}k and message m, an
encryption algorithm outputs a ciphertext χ. Provided χ and K, a decryption
algorithm outputs the message m uniquely. Note that for a secure SKE, outputs
of the encryption algorithm could be considered uniformly distributed in the
range, when encrypted under independent session keys. Besides, it is easy to
build IND secure SKE.

Definition 3 (IND-CPA SKE). A symmetric key encryption (SKE) scheme
Λ = (KSK , ESK ,DSK) with key space {0, 1}k, is indistinguishable against cho-
sen plaintext attack (IND-CPA) if the advantage of any PPT adversary B,
Advind−cpa

Λ,B is negligible, where

Advind−cpa
Λ,B (k) = 2 · Pr

[
b̂ = b : K ←R {0, 1}k, b←R {0, 1},
b̂←R BLOR(K,·,·,b)(1k)

]
− 1,

where a left-or-right oracle LOR(K,M0,M1, b) returns χ ←R ESK(K,Mb). Ad-
versary B is allowed to ask LOR oracle, with two chosen message M0, M1

(M0 �= M1, |M0| = |M1|).
1 In other words, suppose that in Def. 1, Af knows pk. Then, Af can assign t1 to be

the ciphertext c, and hence Ag always wins the game (returns 1). Put it differently,
although Af and Ag are not allowed to share a state, knowledge of pk can help them
to share it anyway.
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Hybrid Encryption. In the seminal paper by Cramer and Shoup [6], the idea
of hybrid encryption is rigorously studied. Note that typically, PKE is applied
in key distribution process due to its expensive computational cost, while SKE
is typically used for encrypting massive data flow using a freshly generated key
for each new session. In hybrid encryption, PKE and SKE work in tandem: a
randomly generated session key is first encrypted by PKE, then the plaintext
is further encrypted on the session key by SKE. Hybrid encryption is more
commonly used in practice than a sole PKE, since encryption/decryption of the
former is substantially faster for long messages.

McEliece PKE. (denoted ΠM ) Consists of the following triple of algorithms
(KM , EM ,DM ).

1. Key generation KM : On input λ, output (pk, sk). n, t ∈ N, t� n

– sk (Private Key): (S, ϕ, P )
G′: l×n generating matrix of a binary irreducible [n, l] Goppa code which
can correct a maximum of t errors. ϕ is an efficient bounded distance
decoding algorithm of the underlying code, S: l× l non-singular matrix,
P: n× n permutation matrix, chosen at random.

– pk (Public Key): (G, t)
G: l × n matrix given by a product of three matrices SG′P .

2. Encryption EM : Given pk and an l-bit plaintext m, randomly generate n-bit
e with Hamming weight t, output ciphertext c = mG⊕ e.

3. Decryption DM : On input c, output m with private key sk.
– Compute cP−1 = (mS)G′⊕ eP−1, where P−1 is an inverse matrix of P .
– Error correcting algorithm ϕ corresponding to G′ applies to compute
mS = ϕ(cP−1).

– Compute the plaintext m = (mS)S−1.

IND-CPA security of the McEliece PKE can be achieved by padding the plaintext
with a random bit-string r, |r| = �a · l	 for some 0 < a < 1. We refer to [10] for
details.

3 Secure Deterministic Hybrid Encryption

In this section, we will present a generic composition of PKE and SKE to obtain
deterministic hybrid encryption. Interestingly, the situation is different from con-
ventional hybrid encryption. In that case, the overhead of communication cost
includes at least the size of the session key, even if we pick the PKE scheme
being a (length-preserving) one-way trapdoor permutation, e.g. RSA.

However, we notice that in PRIV security definition, both of public key and
plaintext are not simultaneously known by Af or Ag. Hence, one can save on
generating and encrypting a random session key. Instead, the secret session key
could be extracted from the combination of public key and plaintext which are
available to a legal user contrary to the adversary. As we show next, such an
approach may need a little higher min-entropy, but it works in principle.
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3.1 Generic Composition of PRIV-Secure PKE and IND-CPA
Symmetric Key Encryption

Given a PRIV secure PKE scheme Π = (K, E ,D), and an IND-CPA secure SKE
scheme Λ = (KSK , ESK ,DSK), we can achieve a deterministic hybrid encryption
HE = (KH , EH ,DH). In the following, H : {0, 1}∗ 
→ {0, 1}k is a key derivation
function (KDF), modeled as a random oracle. In the following section, we simply
write input vector x̂ as x with length of |x̂| = v. Wlog, parse x = x̄||x, where
the |x̄| and |x| are equivalent to the input domain of Π and Λ, respectively.

Table 1. Generic Construction of Deterministic Hybrid Encryption

KH(1k):

(pk, sk)←R K(1k)
Return (pk, sk)

EH(pk, x):
Parses x to x̄||x
ψ ←R E(1k, pk, x̄)
K ← H(pk||x̄)
χ←R ESK(K,x)
Return c = ψ||χ

DH(sk, c):
Parse c to ψ||χ
x̄← D(sk, ψ)
K ← H(pk||x̄)
x← DSK(K,χ)
Return x = x̄||x

In the Table 1, the proposed construction is simple, efficient, and can be
generically built from any PRIV PKE and IND-CPA SKE. Note that the secret
session key is required to have high min-entropy in order to deny a brute-force
attack to SKE. However, thanks to the PRIV security, the high min-entropy
requirement is inherently fulfilled for any PPT privacy adversary, so that we can
build a reduction of security of the deterministic hybrid encryption to security
of deterministic PKE. Next, we will provide a sketch of our proof.

3.2 Security Proof

Theorem 1. In the random oracle model, given a PRIV PKE scheme Π =
(K, E ,D), and an IND-CPA SKE scheme Λ = (KSK , ESK ,DSK), if there is a
PRIV adversary AH against the hybrid encryption HE = (KH , EH ,DH), then
there exists PRIV adversary A or IND-CPA adversary B, s.t.

Advpriv
HE,AH

(k) ≤ Advpriv
Π,A(k) + Advind−cpa

Λ,B (k) + qhv/2μ

where qh is an upper bound on the number of queries to random oracle H, v is
the plaintext size of Π, μ is defined by high min-entropy of PRIV security of Π.

Proof. Since we assume a PPT adversary AH = (Af ,Ag) against the HE
scheme, according to the definition of PRIV, there must be a non-negligible
advantage in the following experiments.

More precisely, if a successful adversary exists, then

Advpriv
HE,AH

(k) = Pr[Exppriv−1
HE,AH

(k) = 1]− Pr[Exppriv−0
HE,AH

(k) = 1]
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Experiment Exppriv−1
HE,AH

(k): Experiment Exppriv−0
HE,AH

(k):
(pk, sk)←R K(1k); (pk, sk)←R K(1k);
(x1, t1)←R Af (1k); (x0, t0)←R Af (1k), (x1, t1)←R Af (1k);
Parse x1 to x̄1||x1; Parse x0 to x̄0||x0;
ψ ←R E(1k, pk, x̄1); ψ′ ←R E(1k, pk, x̄0);
K ← H(pk||x̄1); K ′ ← H(pk||x̄0);
χ←R ESK(K,x1); χ′ ←R ESK(K ′, x0);
c← ψ||χ; c′ ← ψ′||χ′;
g ←R Ag(1k, pk, c); g ←R Ag(1k, pk, c′);
return 1 if g = t1, return 1 if g = t1,
else return 0 else return 0

is non-negligible for someAH . Next we present a simulator which gradually mod-
ifies the above experiments such that the adversary does not notice it. Our goal
is to show that Advpriv

HE,AH
(k) is almost as big as the corresponding advantages

defined for PRIV security of the PKE scheme and IND-CPA security of the SKE
scheme, which are assumed negligible.

Because of the high min-entropy requirement of PRIV adversary, it is easy to
see that x0 �= x1, except with negligible probability. Thus, there must be x̄0 �= x̄1

or x0 �= x1, or both. Hence, we need to consider the following cases.

Case [x̄0 �= x̄1 ] Since x0 �= x1 and x̄0 �= x̄1, the right part of xb (b ∈ {0, 1}),
could be equal or not.
– When x0 = x1, the adversary has two targets, such as Π and Λ in two

experiments. First look at the SKE scheme Λ. In this case, the inputs
to Λ in two experiments are the same, but still unknown to Ag. The
key derivation function H outputs K ← H(pk||x̄1) and K ′ ← H(pk||x̄0).
Since x̄0 �= x̄1, we have K �= K ′. Note that Ag does not know x0 nor x1,
thus does not know K,K ′, either. Then, Ag must tell which of χ, χ′ is
the corresponding encryption under the unknown keys without knowing
x0, x1(x0 = x1), which is harder than breaking IND-CPA security and
that could be bounded by Advind−cpa

Λ,B (k).
On the other hand, the adversary can also challenge the PKE scheme Π
to distinguish two experiments, but it will break the PRIV security. More
precisely, the advantage in distinguishing ψ, ψ′ with certain K,K ′ is at
most Advpriv

Π,A(k), since K,K ′ are not output explicitly and unavailable
to adversary.

– when x0 �= x1, this case is similar to the above, except that the inputs to
Λ are different. Ag can do nothing given χ, χ′ only, hence Ag’s possible
attack must be focused on Π , and its advantage can be bounded by
Advpriv

Π,A(k).
Case [x0 �= x1 ] Similarly, there must be either x̄0 �= x̄1 or x̄0 = x̄1.

– when x̄0 = x̄1, the same session key K ← H(pk||x̄b) (b ∈ {0, 1}) is
used for Λ. In this case, the ciphertexts ψ, ψ′ are the same, adversary
will focus on distinguishing the χ, χ′. Note that Af cannot compute K
even though he knows the x̄0 = x̄1, because pk is not known to him
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(otherwise, it will break the PRIV security of Π immediately!). Thus,
the successful distinguishing requires Ag to choose the same x̄0 = x̄1

when querying to the random oracle. Then, Ag has a harder game than
IND-CPA (because it does not know x0, x1), whose advantage is bounded
by Advind−cpa

Λ,B (k).
In order to be sure that adversary (Af ,Ag) mounting a brute-force attack
to find out the session key of Λ cannot succeed, the probability to find
the key in searching all the random oracle queries should be taken into
account as well. Suppose that adversary makes at most qh queries to its
random oracle, and the Π ’s plaintext size is v. Then, this probability
could be upper bounded by qhv/2μ (Note that this bound is in nature
similar to that in [2, Sec.6.1]).

– when x̄0 �= x̄1, as we have discussed above, this will break the PRIV secu-
rity of Π , and advantage of adversary could be bounded by Advpriv

Π,A(k).

Summarizing, we conclude that in all cases when (Af ,Ag) intends to break the
PRIV security of our HE scheme, its advantage of distinguishing two experiments
is bounded by the sum of Advpriv

Π,A(k), qhv/2μ and Advind−cpa
Λ,B (k). �


Length-preserving Deterministic Hybrid Encryption. The first length-
preserving PRIV PKE scheme is RSA-DOAEP due to [2]. The length-preserving
property is important in practical use, such as bandwidth-restricted applications.
RSA-DOAEP makes use of the RSA trapdoor permutation and with a modified
3-round Feistel network achieves the same sizes of input and output. As we have
proved in Theorem 1, a construction proposed in Table 1 leads to a deterministic
hybrid encryption.

In particular, RSA-DOAEP + IND-CPA SKE ⇒ a length-preserving deter-
ministic hybrid encryption, because both RSA-DOAEP and IND-CPA SKE are
length-preserving. Note that in [2, Sec.5.2], it is argued that RSA-DOAEP based
hybrid encryption scheme cannot be length-preserving any more, because a ran-
dom session key has to be embedded in RSA-DOAEP. However, by re-using
the knowledge of public key pk and a part of the message, we can indeed build
the first length-preserving deterministic hybrid encryption, which is not only
convenient in practice, but also meaningful in theory.

4 Deterministic Encryption from Code-Based PKE

From a postquantum point of view, it is desirable to obtain deterministic encryp-
tion based on assumptions other than RSA or discrete log. Code-based PKE,
such as McEliece PKE [9] is considered a promising candidate after being care-
fully studied for over thirty years.

To our surprise, it is not the only motivation to achieve deterministic encryp-
tion from code-based PKE. Another good property of the McEliece PKE and
its variants is that its public key could be used as a hash function to digest the
message, which is originally noted in Stern’s paper [11], and recently designed
by [1,8]. The advantage that public key itself is able to work as a hash function,
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Table 2. Construction of EwH Deterministic Encryption

K(1k):

(pk, sk)←R KM (1k)

HM ←H(1k, pk)
Return (pk,HM , sk)

E(pk,HN , x):
R← HM (x)
Parse R to r||re

Encode re to e
c← EM (pk, r||x; e)
Return c

D(sk,HM , c):
x, r′, e← DM (sk, c)
Decode e to r′e
R′ ← r′||r′e, R← HM (x)
Return x if R = R′

Otherwise, return ⊥

Table 3. Construction of EaH Deterministic Encryption

K(1k):

(pk, sk)←R KM (1k)
HN ← H(1k, pk)
Return (pk, HM , sk)

E(pk,HM , x):
T ← HN(x)

r ←R {0, 1}lp
e←R {0, 1}n, s.t. Hw(e) = t
c← EM (pk, r||x; e)
Return c||T

D(sk,HM , c||T ):
x, r, e← DM (sk, c)
T ′ ← HN(x)
Return x if T = T ′

Otherwise, return ⊥

can do us a favor to build efficient postquantum deterministic encryption. We
call this Hidden Hash (HH) property of McEliece PKE. Henceforth, we assume
that this function behaves as a random oracle.

In [2], two constructions satisfying PRIV security have been proposed: Enc-
rypt-with-Hash (EwH) and Encrypt-and-Hash (EaH). Adapting the HH prop-
erty of the McEliece PKE to the both constructions, we can achieve PRIV secure
deterministic encryption. For proving PRIV security, we require the McEliece
PKE to be IND-CPA secure, which has been proposed in [10]. (The proofs are
deferred to the full version of this paper).

Construction of EwH. Let ΠM = (KM , EM ,DM ) be the IND-CPA McEliece
PKE as described in Section 2, based on [n, l, 2t+1] Goppa code family, with lp-
bit padding where lp = �a·l	 for some 0 < a < 1, and plaintext length lm = l−lp.
Let H be a hash family defined over a set of public keys of the McEliece PKE.
HM : {0, 1}lm 
→ {0, 1}lp+log

∑ t
i=1 (n

t) and HN : {0, 1}lm 
→ {0, 1}2k are uniquely
defined by 1k and pk. Without knowledge of pk, there is no way to compute HM

or HN (refer to [1,8] for details). e is an error vector, s.t. |e| = n with Hamming
weight Hw(e) = t. According to Cover’s paper [5], it is quite efficient to find an
injective mapping to encode the (short) bit string re into e, and vice versa.

Our EwH scheme is presented in Table 2.
Note that compared with the EwH scheme proposed by Bellare et al. [2], our

scheme does not need to include pk into the hash, because hash function HM

itself is made of pk. Public key pk could be considered as a part of the algorithm
of the hash function, as well. When we model HM as a random oracle, we can
easily prove the PRIV security in a similar way as Bellare et al’s EwH.

A more favorable, efficiently searchable encryption (ESE) with PRIV security
is EaH. EaH aims to model the practical scenario in database security, where
a deterministic encryption of some keywords works as a tag attached to the
encrypted data. To search the target data, it is only required to compute the
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deterministic tag and compare it within the database, achieving a search time
which is logarithmic in database size.
Construction of EaH. The description of McEliece PKE is similar to the
above. EaH scheme is described in Table 3. The HH property is employed in
order to achieve PRIV secure efficiently searchable encryption.

5 Concluding Remarks

Extension to Chosen-Ciphertext Security. Above, we have proposed sev-
eral PRIV secure deterministic encryption schemes, in CPA case. A stronger at-
tack scenario, CCA, requires a little more care. As commented in [2], PRIV-CCA
could be obtained from PRIV-CPA scheme with some additional cost, such as
one-time signatures or other authentication techniques to deny a CCA attacker.
We can employ those techniques to lift up CPA to CCA. The important issue
is that we have achieved very efficient PRIV-CPA secure building blocks which
enjoy some advantages over previous works.
Open Question. Proving our constructions secure in the standard model is an
open question and the topic of our future work.

References

1. Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Crypto-
graphic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 64–83. Springer, Heidelberg (2005)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption:
Definitional Equivalences and Constructions without Random Oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

4. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic En-
cryption, and Efficient Constructions without Random Oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

5. Cover, T.: Enumerative source encoding. IEEE IT 19(1), 73–77 (1973)
6. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

7. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

8. Finiasz, M.: Syndrome Based Collision Resistant Hashing. In: Buchmann, J., Ding,
J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 137–147. Springer, Heidelberg
(2008)

9. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Rep. 42-44, 114–116 (1978)

10. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic Security for the McEliece
Cryptosystem without Random Oracles. Designs, Codes and Cryptography 49(1-
3), 289–305 (2008)

11. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)



Noisy Interpolation of Multivariate Sparse

Polynomials in Finite Fields
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Abstract. We consider the problem of recovering an unknown sparse
multivariate polynomial f ∈ Fp[X1, . . . , Xm] over a finite field Fp of
prime order p from approximate values of f(t1, . . . , tm) at polynomially
many points (t1, . . . , tm) ∈ F

m
p selected uniformly at random. Our result

is based on a combination of bounds on exponential sums with the lattice
reduction technique.

Keywords: Noisy interpolation, Sparse polynomials, Hidden number
problem, Lattice reduction, Exponential sums.

1 Introduction

Let p be a prime. We will use the notation Fp for the finite field of p elements
and identify it with the integers in the range {0, . . . , p− 1}. For an integer s we
denote by �s�p the remainder of s on division by p.

For a positive integer m we consider the problem of finding an unknown
multivariate nonconstant polynomial f ∈ Fp[X1, . . . , Xm] of weight at most
w from approximate values of �f(t1, . . . , tm)�p at polynomially many points
(t1, . . . , tm) ∈ F

m
p . More precisely, using the abbreviations X = (X1, . . . , Xm)

and Xej = X
ej,1
1 · · ·Xej,m

m if ej = ej,1 + ej,2p + · · · + ej,mpm−1 with 0 ≤
ej,1, ej,2, . . . , ej,m < p, the polynomial f = f(X) is of the form

f(X) =
w∑

j=1

αjXej , (1)

where 1 ≤ e1 < e2 < · · · < ew < pm.
A polynomial time algorithm to recover a univariate sparse polynomial f ∈

Fp[X ] from approximations to �f(j)�p at random j was introduced and inves-
tigated in [3,4]. The case of a univariate polynomial f(X) = αX corresponds
to the hidden number problem, see [2,5,6] and references therein. In the present
paper we present an algorithm for arbitrary m.

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 169–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The algorithm is based on the lattice reduction technique. To be more precise,
a certain lattice is constructed which contains a vector, associated with the
coefficients of f , and which is close to a certain known vector. Using the lattice
reduction technique one can hope to recover this vector. Then, in order to make
these arguments rigorous, that is, to show that there are no other lattice vectors
which are close enough to the known “target” vector, we need a certain uniform
distribution property of f which is only guaranteed if the total degree of f is
small enough. However, using a weaker uniform distribution property of f and
ideas reminiscent to Waring’s problem in a finite field, see for example [7], we
can adapt the algorithm to polynomials of much larger degree.

We use log z to denote the binary logarithm of z > 0. For a prime p and
τ ≥ 0 we denote by MSBτ,p(x) any integer u such that |�x�p − u| ≤ p/2τ+1.
Roughly speaking, MSBτ,p(x) gives the τ most significant bits of x, however this
definition is more flexible and suits better our purposes. In particular we remark
that τ need not be an integer. We use bold lowercase letters to denote vectors in
F

m
p and use the analogue notation to Xe: x = (x1, . . . , xm) and xe = xe1

1 · · ·xem
m

if e = e1 + e2p + · · · + empm−1 with 0 ≤ e1, . . . , em < p.

2 Preliminaries

For a prime p we denote ep(z) = exp(2πiz/p). The following bound on exponen-
tial sums of a univariate polynomial is given in [1, Corollary 1.1]. It is nontrivial
for polynomials of very large degree relative to p.

Lemma 1. Let F ∈ Fp[X ] be a nonconstant polynomial of degree D and weight
w. For any ε ∈ (0, 1), if D ≤ p(log(w log p))1−ε

log p , the following bound holds provided
that p is large enough:

∣∣∣∣∣∣

∑

x∈Fp

ep(F (x))

∣∣∣∣∣∣
≤ p

(
1 − 1

(w log p)1+ε

)
.

The following result extends this bound to exponential sums of a multivariate
polynomial.

Lemma 2. Let F ∈ Fp[X] be a nonconstant multivariate polynomial of total
degree D and weight at most w. For any ε ∈ (0, 1) and 0 < c < 1 with

min
i=1,...,m

degXi
(F )>0

degXi
(F ) ≤ p(log log p)1−ε

log p
and D ≤ cp, (2)

the following bound holds provided that p is large enough:
∣∣∣∣∣∣

∑

x∈Fm
p

ep(F (x))

∣∣∣∣∣∣
≤ pm

(
1 − 1

(w log p)1+ε

)
.
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Proof. We may assume that degXm
(F ) = min

i=1,...,m
degXi

(F ) > 0 and

F (X) =
w0∑

i=1

ai(X1, . . . , Xm−1)X
eji
m

for some w0 ≤ w and polynomials a1, . . . , aw0 ∈ Fp[X1, . . . , Xm−1] not identically

zero. Put S =
∣∣∣
∑

x∈Fm
p

ep(F (x))
∣∣∣. We have

S ≤
∑

x1,...,xm−1∈Fp

∣∣∣∣∣∣

∑

xm∈Fp

ep

(
w0∑

i=1

ai(x1, . . . , xm−1)x
eji
m

)∣∣∣∣∣∣
.

The polynomial aw0 has at most pm−2D zeros and therefore, the univariate
polynomials F (x1, . . . , xm−1, Xm) are constant for at most pm−2D choices of
the values x1, . . . , xm−1. Using Lemma 1 with a certain ε′ < ε for the rest, we
get

S

pm−1
≤ D + (p − D)

(
1 − 1

(w0 log p)1+ε′

)
≤ p

(
1 − 1 − c

(w0 log p)1+ε′

)
,

and the result follows. �

For small total degree D we also use the Weil bound
∣∣∣∣∣∣

∑

x∈Fp

ep(F (x))

∣∣∣∣∣∣
< Dpm−1/2. (3)

Let S ⊆ F
m
p be a subset of cardinality s. For integers h, k ≥ 1, r, and a polyno-

mial f(X) =
∑w

i=1 αiXei ∈ Fp[X], we denote by N(S, k, f, h, r) the number of
solutions in Sk of the “Waring-like” equation:

f(x1) + · · · + f(xk) ≡ t mod p, r + 1 ≤ t ≤ r + h.

Let Pf be the set of polynomials
∑w

i=1 βiXei which are distinct to f . We say
that the set S is (Δ, k, f)-homogeneously distributed modulo p if for every g ∈ Pf

max
1≤h,r≤p

∣∣N(S, k, f − g, h, r) − hskp−1
∣∣ ≤ Δsk.

Lemma 3. Let f ∈ Fp[X] such that
∣∣∣∣∣∣

∑

x∈Fm
p

ep(a(f(x) − g(x)))

∣∣∣∣∣∣
≤ Bpm,

for all g ∈ Pf and a ∈ F
∗
p. Then, for every integer k ≥ 1, F

m
p is (Bk log p, k, f)-

homogeneously distributed modulo p.
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Proof. By the well-known identity
p−1∑
a=0

ep(au) =
{

0, if u 	≡ 0 mod p,
p, if u ≡ 0 mod p,

we have

N(Fm
p , k, f − g, h, r)

=
r+h∑

t=r+1

∑

x1,...,xk∈Fm
p

1
p

p−1∑

a=0

ep(a(f(x1) − g(x1) + · · · + f(xk) − g(xk) − t))

=
1
p

p−1∑

a=0

(
r+h∑

t=r+1

ep(−at)

)⎛

⎝
∑

x∈Fm
p

ep(a(f(x) − g(x)))

⎞

⎠
k

.

The term corresponding to a = 0 is hpmk−1. Applying the estimate

max
1≤h≤p

p−1∑

a=1

∣∣∣∣∣

r+h∑

t=r+1

ep(at)

∣∣∣∣∣ ≤ p log p

to other terms we obtain the result. �

As in [3,4], the presented method uses lattice basis reduction techniques. We
briefly review a result on lattices. Let {b1, . . . ,bs} be a set of linearly indepen-
dent vectors in R

r. The set

L = {c1b1 + · · · + csbs | c1, . . . , cs ∈ Z}

is called an s-dimensional lattice, and the set {b1, . . . ,bs} is called a basis of L.
The search of elements in a lattice with small norm or close to a given one is a
widely investigated problem. As in [3,4], we use the following result.

Lemma 4. There exists a deterministic polynomial time algorithm which, for
a given lattice L ⊂ R

s and vector r = (r1, . . . , rs) ∈ R
s, finds a lattice vector

v = (v1, . . . , vs) satisfying the inequality

s∑

i=1

(vi − ri)2 ≤ exp
(

O

(
s log2 log s

log s

))

×min

{
s∑

i=1

(zi − ri)2, z = (z1, . . . , zs) ∈ L
}

.

3 General Interpolation Result

Let τ > 0 be a real number and e = (e1, . . . , ew) a vector of integers such that
1 ≤ e1 < · · · < ew < pm. For t1,1, . . . , t1,k; . . . ; td,1, . . . , td,k ∈ F

m
p we denote by

Lτ,e,p(t1,1, . . . , td,k) the (d+w)-dimensional lattice generated by the rows of the
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following matrix:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

te1
1,1 + · · · + te1

1,k · · · te1
d,1 + · · · + te1

d,k 1/2τ+1 · · · 0
...

...
...

. . .
...

tew
1,1 + · · · + tew

1,k · · · tew

d,1 + · · · + tew

d,k 0 · · · 1/2τ+1

p · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · p 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Lemma 5. Let p be a sufficiently large n-bit prime and let w ≥ 1 be an integer.
We define

d = 2
⌈
(nw)1/2

⌉
and η = 0.5(nw)1/2 + 3.

Let f ∈ Fp[X] be defined by (1) and k be a positive integer such that S ⊆ F
m
p is

(2−η, k, f)-homogeneously distributed modulo p.
Assume that t1,1, . . . , td,k ∈ S are chosen uniformly and independently at

random. Then with probability P ≥ 1 − 2−η for any vector

s = (s1, . . . , sd, 0, . . . , 0)

with (
d∑

i=1

(�f(ti,1) + · · · + f(ti,k)�p − si)2
)1/2

≤ 2−ηp,

all vectors v = (v1, . . . , vd, vd+1, . . . , vd+w) ∈ Lτ,e,p(t1,1, . . . , td,k) satisfying

(
d∑

i=1

(vi − si)2
)1/2

≤ 2−ηp

are of the form

v =

(⎢⎢⎢⎣
w∑

j=1

βj(t
ej

1,1 + · · · + tej

1,k)

⎥⎥⎥⎦

p

, . . . ,

⎢⎢⎢⎣
w∑

j=1

βj(t
ej

d,1 + · · · + tej

d,k)

⎥⎥⎥⎦

p

,

β1/2τ+1, . . . , βw/2τ+1

)

with some integers βj ≡ αj mod p, j = 1, . . . , w.

Proof. We define the modular distance between two integers λ and μ as

distp (λ, μ) = min
b∈Z

|λ − μ − bp| = min {�λ − μ�p , p − �λ − μ�p} .
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Because of the homogeneous distribution property, we see that for any polyno-
mial g ∈ Pf the probability P (g) that

distp (g(t1) + · · · + g(tk), f(t1) + · · · + f(tk)) ≤ 2−η+1p

for t1, . . . , tk ∈ S selected uniformly at random is

P (g) ≤ 2−η+2 + 2−η =
5
2η

.

Therefore, for any g ∈ Pf , the probability that there is i ∈ [1, d] with

distp (g(ti,1) + · · · + g(ti,k), f(ti,1) + · · · + f(ti,k)) > 2−η+1p

equals 1 − P (g)d ≥ 1 − (
5
2η

)d
, where the probability is taken over t1,1, . . . ,

td,k ∈ S chosen uniformly and independently at random.
Since #Pf = pw − 1, we obtain

Pr
[
∀g ∈ Pf , ∃i ∈ [1, d] |

distp (g(ti,1) + · · · + g(ti,k), f(ti,1) + · · · + f(ti,k)) > 2−η+1p
]

≥ 1 − (pw − 1)
(

5
2η

)d

> 1 − 2−η

because

d(η − log 5) > 2(nw)1/2(0.5(nw)1/2 + 3 − log 5) > nw + η ≥ w log p + η,

provided that p is large enough.
Indeed, we fix some (t1,1, . . . , td,k) ∈ Sdk with

min
g∈Pf

max
i∈[1,d]

distp (g(ti,1) + · · · + g(ti,k), f(ti,1) + · · · + f(ti,k)) > 2−η+1p. (5)

Let v ∈ Lτ,e,p(t1,1, . . . , td,k) be a lattice point satisfying

(
d∑

i=1

(vi − si)2
)1/2

≤ 2−ηp.

Since v ∈ Lτ,e,p(t1,1, . . . , td,k), there are some integers β1, . . . , βw, z1, . . . , zd such
that

v =

(
w∑

j=1

βj(t
ej

1,1 + · · · + tej

1,k) − z1p, . . . ,

w∑

j=1

βj(t
ej

d,1 + · · · + tej

d,k) − zdp,

β1/2τ+1, . . . , βw/2τ+1

)
.
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If βj ≡ αj mod p, j = 1, . . . , w, then for all i = 1, . . . , d we have

w∑

j=1

βj(t
ej

i,1 + · · · + tej

i,k) − zip =

⎢⎢⎢⎣
w∑

j=1

βj(t
ej

i,1 + · · · + tej

i,k)

⎥⎥⎥⎦

p

= �f(ti,1) + · · · + f(ti,k)�p,

since otherwise there is i ∈ [1, d] such that |vi − si| > 2−ηp.
Now suppose that βj 	≡ αj mod p for some j ∈ [1, w]. In this case we have

(
d∑

i=1

(vi − si)2
)1/2

≥ max
i∈[1,d]

distp

⎛

⎝
w∑

j=1

βj(t
ej

i,1 + · · · + tej

i,k), si

⎞

⎠

≥ max
i∈[1,d]

(
distp

(
f(ti,1) + · · · + f(ti,k),

w∑

j=1

βj(t
ej

i,1 + · · · + tej

i,k)
)

− distp
(
si, f(ti,1) + · · · + f(ti,k)

))

> 2−η+1p − 2−ηp = 2−ηp,

contradicting our assumption. As we have seen, condition (5) holds with proba-
bility exceeding 1 − 2−η and the result follows. �

Now we state a rather general result.

Theorem 1. Let p be a sufficiently large n-bit prime and w and k be positive
integers of polynomial size. We define

μ = (nw)1/2, τ = 
μ + log n + log k� , d = 2 
μ� , and η = 0.5μ + 3.

There exists a deterministic polynomial time algorithm A such that for any
polynomial f , defined by (1), such that S ⊆ F

m
p is (2−η, k, f)-homogeneously

distributed modulo p, given kd(m + 1) integers

ti,j ∈ S and si,j = MSBτ,p(f(ti,j)), i = 1, . . . , d, j = 1, . . . , k

its output satisfies

Pr
t1,1,...,td,k∈Fm

p

[A(t1,1, . . . , td,k; s1,1, . . . , sd,k) = (α1, . . . , αw)
] ≥ 1 + O(2−η),

if t1,1, . . . , td,k are chosen uniformly and independently at random from S.

Proof. Let us consider the vector s = (s1, . . . , sd, sd+1, . . . , sd+w) where sd+j = 0,
j = 1, . . . , w, and si = si,1 + · · · + si,k, i = 1, . . . , d. We have

|f(ti,j) − si,j | ≤ p/2τ+1

and thus
|f(ti,1) + · · · + f(ti,k) − si| ≤ kp/2τ+1.
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Next we have

f(ti,1) + · · · + f(ti,k) − si = �f(ti,1) + · · · + f(ti,k)�p − �si�p + νp

with ν ∈ {−1, 0, 1}. If ν = 1 then we have

�f(ti,1) + · · · + f(ti,k)�p − �si�p + p = |f(ti,1) + · · · + f(ti,k) − si| < kp/2τ+1

which is only possible if �f(ti,1) + · · · + f(ti,k)�p < kp/2τ+1. Similarly, we can
show that ν = −1 is only possible if �f(ti,1)+ · · ·+ f(ti,k)�p > p− kp/2τ+1. Be-
cause of the homogeneous distribution property, the probability that kp/2τ+1 ≤
�f(ti,1) + · · ·+ f(ti,k)�p ≤ p− kp/2τ+1 for all i = 1, . . . , d is 1 + O(dk/2τ ). Now
we assume that ν = 0 and thus

|�f(ti,1) + · · · + f(ti,k)�p − �si�p| < kp/2τ+1.

Multiplying the jth row vector of the matrix (4) by αj and subtracting a certain
multiple of the (w + j)th vector, j = 1, . . . , w, we obtain a lattice point u =
(u1, . . . , ud, α1/2τ+1, . . . , αw/2τ+1) ∈ Lτ,e,p(t1,1, . . . , td,k) such that

|ui − si| < kp2−τ−1, i = 1, . . . , d + w,

where ud+j = αj/2τ+1, j = 1, . . . , w. Therefore,

d+w∑

i=1

(ui − si)2 ≤ (d + w)2−2τ−2k2p2.

We can assume that w ≤ n because in the opposite case τ > n+log k and the re-
sult is trivial. Therefore d+w = O(τ). Now we can use Lemma 4 to find in polyno-
mial time a lattice vector v = (v1, . . . , vd, vd+1, . . . , vd+w) ∈ Lτ,e,p(t1,1, . . . , td,k)
such that

d∑

i=1

(vi − si)2 ≤ 2o(d+w) min

{
d+w∑

i=1

(zi − si)2, z = (z1, . . . , zd+w) ∈ L
}

≤ 2−2τ+o(τ)(d + w)k2p2 ≤ 2−2τ+o(τ)k2p2 ≤ 2−2η−1p2,

provided that p is large enough. We also have

d∑

i=1

(ui − si)2 ≤ d2−2τ−2k2p2 ≤ 2−2η−2p2.

Therefore,
∑d

i=1(ui−vi)2 ≤ 2−2ηp2. Applying Lemma 5, we see that v = uf with
probability at least 1− 2−η, and therefore the coefficients of f can be recovered
in polynomial time. �

Applying Lemma 3 and Equation (3) to Theorem 1 we obtain (k = 1):
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Corollary 1. Let p be a sufficiently large n-bit prime and let w ≥ 1 be an
integer. We define μ = (nw)1/2, τ = 
μ + log n�, d = 2 
μ�, η = 0.5μ+ 3. There
exists a deterministic polynomial time algorithm A such that for any polynomial
f defined by (1), with known exponents 1 ≤ e1 < · · · < ew < pm and total degree

D ≤ p1/2

2η log p
;

given d(m + 1) integers ti ∈ F
m
p and si = MSBτ,p(f(ti)), i = 1, . . . , d, its output

satisfies

Pr
t1,...,td∈Fm

p

[A(t1, . . . , td; s1, . . . , sd) = (α1, . . . , αw)
] ≥ 1 + O(2−η),

if t1, . . . , td are chosen uniformly and independently at random from F
m
p .

For polynomials of higher degree, Lemma 2 gives:

Corollary 2. Let p be a sufficiently large n-bit prime and let w ≥ 1 be an
integer. We define μ = (nw)1/2, τ = 
μ + log n + log k�, d = 2 
μ�, η = 0.5μ+3,
where k =

⌈
3(w log p)1+ε log p

⌉
for 1 > ε > 0. There exists a deterministic

polynomial time algorithm A such that for any polynomial f defined by (1), with
known exponents 1 ≤ e1 < · · · < ew < pm and satisfying (2), given kd(m + 1)
integers ti,j ∈ F

m
p and si,j = MSBτ,p(f(ti,j)), i = 1, . . . , d, j = 1, . . . , k, its

output satisfies

Pr
t1,1,...,td,k∈Fm

p

[A(t1,1, . . . , td,k; s1,1, . . . , sd,k) = (α1, . . . , αw)
] ≥ 1 + O(2−η),

if t1,1, . . . , td,k are chosen uniformly and independently at random from F
m
p .

Remarks. Using the standard method for reducing incomplete exponential sums
to complete ones we can easily extend Corollary 1 to subboxes of F

m
p of the

form S = {x0 + (x1, . . . , xm) : 0 ≤ xi < Ki, i = 1, . . . , m} for some integers
1 ≤ K1, . . . , Km ≤ p and x0 ∈ F

m
p . Moreover, we can extend the results to the

situation where the randomly chosen points are chosen from a sufficiently large
subgroup of F

∗
p of order T by substituting the variable X by Y (p−1)/T .

The condition e1 ≥ 1 is not absolutely necessary. However, if we don’t re-
strict ourselves to the case f(0, . . . , 0) = 0 a modified algorithm gives only an
approximation of the constant term f(0, . . . , 0).
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New Commutative Semifields and Their Nuclei
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Abstract. Commutative semifields in odd characteristic can be equiv-
alently described by planar functions (also known as PN functions). We
describe a method to construct a semifield which is canonically associ-
ated to a planar function and use it to derive information on the nuclei
directly from the planar function. This is used to determine the nuclei
of families of new commutative semifields of dimensions 9 and 12 in ar-
bitrary odd characteristic.

Keywords: PN functions, planar functions, presemifields, semifields,
middle nucleus, kernel, Dembowski-Ostrom polynomial, isotopy, strong
isotopy.

1 Introduction

Until recently the only known families of commutative semifields in arbitrary
odd characteristic aside of the fields themselves were the classical constructions
by Dickson [7] and Albert [1]. The first provably new such general constructions
were given in Zha-Kyureghyan-Wang [11] and [2]. The families constructed in
Budaghyan-Helleseth [3] may be new as well but this seems to remain unproved.
The survey article of Kantor [9] gives more background information and com-
ments on the scarcity of known commutative semifields in odd characteristic, in
particular when the characteristic is > 3.

Definition 1. A presemifield is a set F with two binary relations, addition
and ∗, such that

– F is a commutative group with respect to addition, with identity 0.
– F ∗ is a loop under multiplication.
– 0 ∗ a = 0 for all a.
– The distributive laws hold.

If moreover there is an element e ∈ F such that e ∗ x = x ∗ e = x for all x we
speak of a semifield.

Definition 2. Let F = Fpr for an odd prime p. A function f : F −→ F is
perfectly nonlinear (PN), also called a planar function, if for each 0 �= a ∈
F the directional derivative δa defined as δa(x) = f(x + a) − f(x) is bijective.

M. Bras-Amorós and T. Høholdt (Eds.): AAECC 2009, LNCS 5527, pp. 179–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Let f : F −→ F and write it as a polynomial f(x) =
∑r−1

i=0 aix
i. Then f is a

Dembowski-Ostrom (DO-)polynomial if all its monomials have p-weight ≤ 2
(the exponents are sums of two powers of p).

In odd characteristic planar DO-polynomials are equivalent with commutative
presemifields, see Coulter-Henderson [4]:

Theorem 1. The following concepts are equivalent:

– Commutative presemifields in odd characteristic.
– Dembowski-Ostrom polynomials which are PN functions.

The relation between those concepts is identical to the equivalence between
quadratic forms and bilinear forms in odd characteristic, with the planar function
in the role of the quadratic form. If ∗ is the presemifield product, then the
corresponding planar function is f(x) = x ∗ x. When the planar function is
given, the corresponding semifield product is

x ∗ y = (1/2){f(x + y) − f(x) − f(y)}. (1)

For an overview see also Section 9.3.2 of Horadam [8]. One way to construct
a semifield from a commutative presemifield is the following: choose 0 �= e ∈ F
and define the new multiplication ◦ by

(x ∗ e) ◦ (y ∗ e) = x ∗ y.

Then ◦ describes a semifield with unit element e ∗ e.

Definition 3. Let F = F
r
p be the r-dimensional vector space over Fp. Consider

presemifields on F whose additions coincide with that of F. Two such presemifield
multiplications ∗ and ◦ on F are isotopic if there exist α1, α2, β ∈ GL(r, p) such
that

β(x ◦ y) = α1(x) ∗ α2(y)

always holds. They are strongly isotopic if we can choose α2 = α1.

This notion of equivalence is motivated by the fact that two presemifields are
isotopic if and only if the corresponding projective planes are isomorphic. Let
F = Fpr be the field of order pr. It is a commonly used method to replace a
given commutative semifield of order pr by an isotopic copy which is defined on
F and shares the additive structure and the unit element 1 with F. The question
is then to which degree the semifield structure can be made to coincide with
the field structure. As associativity is the only field axiom that a commutative
semifield does not satisfy it is natural that associativity will be in the center of
interest.

Definition 4. Let F = Fpr and (F, ∗) a commutative semifield with unit 1 whose
additive structure agrees with that of the field F. Define

S = {c ∈ F |c ∗ x = cx for all x ∈ F}.
M = {c ∈ F |(x ∗ c) ∗ y = x ∗ (c ∗ y) for all x, y ∈ F}.
K = {c ∈ F |c ∗ (x ∗ y) = (c ∗ x) ∗ y for all x, y ∈ F}.
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Here the dimensions of the middle nucleus M and of the kernel or left nu-
cleus K of a commutative semifield are invariant under isotopy. The dimension
of S depends on the embedding of the semifield in the field F. As mentioned
in [5] we have K ⊆ M (if a ∗ (x ∗ y) = (a ∗ x) ∗ y for all x, y, then this also equals
(a ∗ y) ∗ x = (y ∗ a) ∗x = (x ∗ a) ∗ y = x ∗ (a ∗ y)). As M is closed under semifield
multiplication and is associative it is a field. The semifield multiplication on M
can therefore be made to coincide with field multiplication. The same is true of
the vector space structure of F over its subfield M. It follows that we can find
a suitable isotope such that

K ⊆ M ⊆ S.

Here are the constructions from [11] and [2]:

Theorem 2. Let p be an odd prime, q=ps, q′=pt, F =Fq3 , s′=s/ gcd(s, t), t′ =
t/ gcd(s, t), s′ odd. Let f : F −→ F be defined by

f(x) = x1+q′ − vxq2+q′q where ord(v) = q2 + q + 1.

Then f is a PN function in each of the following cases:

– s′ + t′ ≡ 0 (mod 3).
– q ≡ q′ ≡ 1 (mod 3)

Theorem 3. Let p be an odd prime, q = ps, q′ = pt, K = Fq ⊂ F = Fq4 such
that 2s/ gcd(2s, t) is odd, q ≡ q′ ≡ 1 (mod 4). Let f : F −→ F be defined by

f(x) = x1+q′ − vxq3+q′q where ord(v) = q3 + q2 + q + 1.

Then f is a PN function.

The first family of Theorem 2 is constructed in [11], the second family of Theo-
rem 2 and Theorem 3 are from [2]. In the generic case the first family of The-
orem 2 is new as was shown in [11]. It was proved in [2] that the semifields of
order p4s isotopic to the special case t = 2, s > 1 odd of Theorem 3 are not
isotopic to Dickson or Albert semifields.

Let f(x) be a Dembowski-Ostrom polynomial which is a PN function and ∗
the corresponding presemifield product (x ∗ y = (1/2){f(x+ y)− f(x)− f(y)}).
In the following section we decribe a canonical construction of a (commuta-
tive) semifield strongly isotopic to (F, ∗) which allows to read off information
on the nuclei directly from f(x). In the last section we continue studying low-
dimensional subfamilies of the planar functions of Theorems 2,3. In particular
we describe 12-dimensional semifields with middle nucleus of dimension 2 and
kernel Fp as well as a new family of 9-dimensional semifields all of whose nuclei
agree with the prime field. In the sequel p always denotes an odd prime.
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2 From Commutative Presemifields to Semifields in Odd
Characteristic

Definition 5. Let f(X) be a DO-polynomial defined on F = Fpr for odd p. Let
G = Gal(F |Fp) = {g0 = id, g1, . . . , gr−1} be the Galois group where gi(x) = xpi

.
Write

f(X) =
r−1∑

i=0

aigi(X2) +
∑

j<k

bjkgj(X)gk(X)

where ai, bjk ∈ F. If f(X) is also a planar function, then the presemifield product
defined by f(X) is

x ∗ y =
∑

i

aigi(xy) +
∑

j<k

(bjk/2)(gj(x)gk(y) + gk(x)gj(y))

Let ti(X) = Xpi − X.

Lemma 1. tmu(X) is a polynomial in tm(X).

Proof. Let Q = pm. Then tmu(X) = tm(X)Qu−1
+ tm(X)Qu−2

+ . . . + tm(X) =
g(u−1)m(tm(X)) + . . . + tm(X).

Proposition 1. Let p odd, F = Fpr and (F, ∗) a commutative presemifield. Let
α ∈ GL(r, p) and define a product ◦ by

α(1) ∗ α(x ◦ y) = α(x) ∗ α(y).

Then (F, ◦) is a commutative semifield with unit 1. It is strongly isotopic to
(F, ∗).
Proof. Obviously (F, ◦) is a commutative presemifield. It is related to (F, ∗) by
the strong isotopy β(x ◦ y) = α(x) ∗ α(y) where β(x) = α(1) ∗ α(x). Choosing
y = 1 shows α(1) ∗ α(x ◦ 1) = α(x) ∗ α(1). It follows x ◦ 1 = x.

In case α = id we obtain 1∗ (x◦ y) = x∗ y. This is made explicit in the following
definition and theorem.

Definition 6. Let F = Fpr for odd p and f(x) a planar DO-polynomial on
F. The associated semifield function is B(f(x)) where B ∈ GL(r, p) is the
inverse of A(x) = x ∗ 1. The associated semifield product is the product ◦
defined by B(f(x)).

Theorem 4. Let f(X) =
∑r−1

i=0 aigi(X2) +
∑

j<k bjkgj(X)gk(X) be a planar
function on F = Fpr for odd p, with presemifield product ∗ and associated
semifield product ◦ (see Definition 6). Let m be the greatest common divisor
of r and the numbers k − j where j < k is such that bjk �= 0. Then Fpm ⊆
M(F, ◦) ∩ S(F, ◦).
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Proof. Let x ∗ y be the presemifield product defined by f(X). We have

A(x) = x ∗ 1 =
∑

aigi(x) +
∑

j<k

(bjk/2)(gj(x) + gk(x))

and
f(x) = A(x2) +

∑

j<k

(bjk/2)(2gj(x)gk(x) − gj(x2) − gk(x2)).

The expression in parenthesis is

2gj(x)gk(x) − gj(x2) − gk(x2) = −(gk(x) − gj(x))2 = −gj(tk−j(x)2).

This yields the associated semifield function

B(f(x)) = x2 − B(
∑

j<k

(bjk/2)gj(tk−j(x)2))

and the associated semifield product

x ◦ y = xy − B(
∑

j<k

(bjk/2)gj(tk−j(x)tk−j(y)).

This follows from the linearity of Equation 1 and the fact that a term x2 in the
planar function turns into xy in the presemifield product. Observe that tmu(X)
is a polynomial in tm(X) by Lemma 1. Let c ∈ Fpm . Then c◦x = cx as tm(c) = 0.
This shows Fpm ⊆ S(F, ◦). In order to show Fpm ⊆ M(F, ◦) it remains to be
shown (cx) ◦ y = x ◦ (cy) for all x, y. This also follows directly from the fact that
tk−j(cx) = ctk−j(x) for all k, j such that bjk �= 0.

Theorem 5. In the situation of Theorem 4 let l be the greatest common divisor
of r and the numbers i, j, k where ai �= 0 and j < k such that bjk �= 0. Then the
associated semifield has Fpl in its left nucleus.

Proof. Let c ∈ Fpl . We have to show (cx) ◦ y = c(x ∗ y). This follows from the
form of B(f(x)) as given in the proof of Theorem 4 and the fact that A(x) and
its inverse B(x) are linear over Fpl .

3 Some Semifields and Their Nuclei

Theorem 6. The semifields of order p12 associated to the presemifields in case
s = 3, t = 2 of Theorem 3 have middle nucleus Fp2 and kernel Fp.

Proof. We have p ≡ 1 (mod 4), F = Fp12 and ord(v) = p9 + p6 + p3 + 1. The
planar function is

f(x) = x1+p2 − vxp5+p9
.

It follows from Theorem 4 that the middle nucleus M of the associated semifield
(F, ◦) has even dimension. It was shown in [2] that dim(M) is not a multiple of
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6. If dim(M) > 2, then dim(M) = 4. By a result of Menichetti [10] the semifield
would be Albert which is not the case as we proved in [2]. It follows M = Fp2 .
We have

x ◦ y = xy − (1/2)B(t2(x)t2(y)) + (1/2)B(vg5(t4(x)t4(y)))

(see the proof of Theorem 4) and t4(X) = t2(X) + g2(t2(X)). Let K(X, Y ) be
the polynomial such that x ◦ y = xy + K(t2(x), t2(y)). Then

K(X, Y ) = −(1/2)B(XY − vg5((X + Xp2
)(Y + Y p2

)) =

= −(1/2)B(XY − v(XY )p5 − v(XY )p7 − vXp5
Y p7 − vXp7

Y p5
).

Assume dim(K) > 1. Then K = M = Fp2 . It has been proven in [5], Theorem
4.2, that this is equivalent with K(X, Y ) being a polynomial in Xp2

and Y p2
.

Although we do not know B explicitly it is obvious that this condition cannot be
satisfied. In fact, let B(x) =

∑11
i=0 βigi(x). The absence of monomials Xpi

Y pi+2

for odd i shows β0 = β2 = . . . = β10 = 0. As (XY )pi

is absent for odd i we have
0 = βi − gi−5(v)βi−5 − gi−7(v)βi−7 = βi. This yields the contradiction B ≡ 0.

We turn to Theorem 2. The smallest dimension for which new planar functions
may result is r = 9 for the second subfamily. Here t should not be a multiple
of 3 as otherwise a field or an Albert twisted field is obtained. Up to obvious
isotopy equivalences there are three cases, f(x) = x1+p−vxp4+p6

, f(x) = x1+p−
vxp3+p7

, f(x) = x1+p2 − vxp3+p8
. We show that those yield new semifields all

of whose nuclei agree with the prime field:

Theorem 7. Let p ≡ 1 (mod 3), q = p3, K = Fq ⊂ F = Fp9 and ord(v) =
q2 + q + 1. The semifields of order p9 associated to the planar functions

f(x) = x1+p − vxp4+p6
, f(x) = x1+p − vxp3+p7

or f(x) = x1+p2 − vxp3+p8

have middle nucleus Fp and are not isotopic to a commutative Albert semifield.

Proof. Assume the middle nucleus M of a corresponding semifield has dimen-
sion > 1. Then the dimension is 3. By Menichetti [10] we are in the Albert
case. It suffices therefore to prove that our presemifield is not isotopic to a
commutative Albert presemifield. There are four cases to consider. Correspond-
ing presemifields are described by the monomial planar functions X1+ps

where
s ∈ {1, 2, 3, 4}. Here case s = 3 corresponds to the uniquely determined Albert
semifield with nucleus of dimension 3, the remaining values of s are representa-
tives of the three isotopism classes of commutative Albert presemifields whose
corresponding semifields have nucleus of dimension 1. Assume we have isotopy
with one of those commutative Albert presemifields. It follows from Coulter-
Henderson [4], Corollary 2.8 that there is a strong isotopy. There exist invertible
linear mappings

α(x) =
8∑

i=0

aigi(x), β(x) =
8∑

i=0

bigi(x)
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such that
α(x)1+ps

= β(f(x)).

We complete the proof for the first type f(x). The proofs in the remaining cases
are analogous. Observe that in the exponents modular distances (in the circle
of length 9) d = 0, d = 3, d = 4 do not occur. In the case of distance d = 0 this
yields aiai+s = 0 for all i. The equations for d = 3 and d = 4 are the following:

aigs(ai+3−s) + ai+3gs(ai−s) = 0.

aigs(ai+4−s) + ai+4gs(ai−s) = 0.

Without restriction a0 �= 0. It follows as = a−s = 0. Evaluating the d = 3
equation for i ∈ {0,−3, s, s− 3} and the d = 4 equation for i ∈ {0,−4, s, s− 4}
shows ai = 0 for i ∈ ±{s, s− 3, s− 4, s + 3, s + 4}. For s = 3 or s = 4 this yields
the contradiction a0 = 0. For s = 1 or s = 2 the contradiction ai = 0 for all
i �= 0 is obtained.
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Abstract. We prove a necessary and sufficient condition for the existence of
spreads in the projective Hjelmslev geometries PHG(Rn+1

R ). Further, we give a
construction of projective Hjelmslev planes from spreads that generalizes the fa-
miliar construction of projective planes from spreads in PG(n,q).
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1 Introduction

In this paper, we introduce spreads in the projective Hjelmslev geometries PHG(Rn+1
R ).

There exists an extensive literature about spreads in the projective geometries PG(k,q)
(cf. [5] and the references there). The same objects in ring geometries have attracted
little or no attention despite the connections with interesting areas as linear codes over
finite chain rings.

In what follows, we restrict ourselves mainly to spreads in geometries over chain
rings of nilpotency index 2. This is a necessary step towards investigating geometries
over chain rings of larger nilpotency index, because of the nested structure of the pro-
jective Hjelmslev geometries. On the other hand, geometries over rings have less reg-
ularities than the usual projective geometries, we settle for a problem that is tractable
to some extent. Finally, there exists a complete classification for the chain rings R with
|R| = q2 , R/ radR ∼= Fq, so that in this case we have a description of all coordinate
geometries.

This paper is organized as follows. In Section 2, we give some basic facts about
finite chain rings and the structure of projective Hjelmslev geometries over such rings.
In Section 3, we prove a necessary and sufficient condition for the existence of spreads
in the projective Hjelmslev geometries PHG(Rn+1

R ), where R is a finite chain ring of
nilpotency index 2. We sketch the proof of the main theorem for arbitrary chain rings.
In Section 4, we present a construction of projective Hjelmslev planes from spreads in
PHG(Rn+1

R ).
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2 Basic Facts on Projective Hjelmslev Geometries

A finite ring R (associative, with identity 1 �= 0, ring homomorphisms preserving the
identity) is called a left (resp. right) chain ring if the lattice of its left (resp. right)
ideals forms a chain. It turns out that every left ideal is also a right ideal. Moreover, if
N = radR every proper ideal of R has the form Ni = Rθi = θiR, for any θ ∈ N \N2 and
some positive integer i. The factors Ni/Ni+1 are one-dimensional linear spaces over
R/N. Hence, if R/N ∼= Fq and m denotes the nilpotency index of N, the number of
elements of R is equal to qm. For further facts about chain rings, we refer to [2,10,11].

As mentioned above, we consider chain rings of nilpotency index 2, i.e. chain rings
with N �= (0) and N2 = (0). Thus we have always |R| = q2, where R/N ∼= Fq. Chain
rings with this property have been classified in [3,12]. If q = pr there are exactly r + 1
isomorphism classes of such rings. These are:

• for every σ ∈ AutFq the ring Rσ ∼= Fq[X ;σ]/(X2) of so-called σ-dual numbers over
Fq with underlying set Fq ×Fq, component-wise addition and multiplication given
by (x0,x1)(y0,y1) =

(
x0y0,x0y1 + x1σ(y0)

)
;

• the Galois ring GR(q2, p2) ∼= Zp2 [X ]/( f (X)), where f (X) ∈ Zp2 [X ] is a monic poly-
nomial of degree r, which is basic irreducible (cf. [10]).

The rings Rσ with σ �= id are noncommutative, while Rid is commutative. Moreover,
charRσ = p for every σ. The Galois ring GR(q2, p2) is commutative and has character-
istic p2. From now on we denote by R a finite chain ring of nilpotency index 2. The only
exception will be Theorem 8, where R is a chain ring of an arbitrary nilpotency index.

Let R be a finite chain ring and consider the module M = Rk
R. Denote by M∗ the set

of all non-torsion vectors of M, i.e. M∗ = M \Mθ. Define sets P and L by

P = {xR;x ∈ M∗},
L = {xR + yR;x,y ∈ M∗,x,y linearly independent},

respectively, and take as incidence relation I ⊆ P ×L set-theoretical inclusion. Further,
define a neighbour relation �� on the sets of points and lines of the incidence structure
(P ,L, I) as follows:

(N1) the points X ,Y ∈ P are neighbours (notation X��Y ) if there exist two different
lines incident with both of them;

(N2) the lines s,t ∈ L are neighbours (notation s��t) if there exist two different points
incident with both of them.

The incidence structure Π =(P ,L, I) with the neighbour relation�� is called the (k−1)-
dimensional (right) projective Hjelmslev geometry over R and is denoted by PHG(Rk

R).
The point set S ⊆P is called a Hjelmslev subspace (or simply subspace) of PHG(Rk

R)
if for every two points X ,Y ∈ S , there exists a line l incident with X and Y that is incident
only with points of S . The Hjelmslev subspaces of PHG(Rk

R) are of the form {xR;x ∈
U∗}, where U is a free submodule of M. The (projective) dimension of a subspace is
equal to the rank of the underlying module minus 1.

It is easily checked that �� is an equivalence relation on each one of the sets P and
L . If [X ] denotes the set of all points that are neighbours to X = xR, then [X ] consists
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of all free rank 1 submodules of xR + Mθ. Similarly, the class [l] of all lines which are
neighbours to l = xR + yR consists of all free rank 2 submodules of xR + yR + Mθ.

More generally, two subspaces S and T , dimS = s, dimT = t, s ≤ t, are
neighbours if

{[X ];X ∈ S} ⊆ {[X ];X ∈ T }.
In particular, we say that the point X is a neighbour of the subspace S if there exists a
point Y ∈ S with X��Y . The neighbour class [S ] contains all subspaces of dimension s
that are neighbours to S .

The next theorems give some insight into the structure of the projective Hjelmslev
geometries PHG(Rk

R) and are part of more general results [1,4,6,7,8,9,13]. As usual,[n
k

]
q denotes the Gaussian coefficient:

[
n
k

]

q
=

(qn −1)(qn−1−1) . . .(qn−k+1 −1)
(qk −1)(qk−1−1) . . .(q−1)

.

Theorem 1. Let Π = PHG(Rk
R) where R is a chain ring with |R| = q2, R/N ∼= Fq.

Then

(i) the number of points (hyperplanes) in Π is qk−1
[n

k

]
q = qk−1 · qk−1

q−1 ;

(ii) every point (hyperplane) has qk−1 neighbours;
(iii) every subspace of dimension s− 1 is contained in exactly q(t−s)(k−t)[k−s

t−s

]
q

sub-

spaces of dimension t −1, where s ≤ t ≤ k;
(iv) given a point P and a subspace S of dimension s − 1 containing P, there exist

exactly qs−1 points in S that are neighbours to P.

Note that the Hjelmslev spaces PHG(Rk
R) are 2-uniform in the sense of [4]. Denote by

η the natural homomorphism from Rk to Rk/Rkθ and by η the mapping induced by η
on the submodules of Rk. It is clear that for every point X and every line l we have

[X ] = {Y ∈ P ;η(Y ) = η(X)},
[l] = {m ∈ L;η(m) = η(l)}.

Let us denote by P ′ (resp. L ′) the set of all neighbour classes of points (resp. lines).
The following result is straightforward.

Theorem 2. The incidence structure (P ′,L ′, I′) with incidence relation I′ defined by

[X ] I′ [l] ⇐⇒∃Y ∈ [X ],∃m ∈ [l] : Y I m

is isomorphic to the projective geometry PG(k−1,q)

Let S0 be a fixed subspace in PHG(Rk
R) with dimS0 = s. Define the set P of subsets of

P by
P = {S ∩ [X ];X��S0,S ∈ [S0]}.

The sets S ∩ [X ] are either disjoint or coincide. Define an incidence relation I ⊂ P×L
by

(S ∩ [X ])I l ⇐⇒ l ∩ (S ∩ [X ]) �= /0.
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Let L(S0) be the set of all lines in L incident with at least one point in P. For the lines
l1, l2 ∈ L(S0) we write l1 ∼ l2 if they are incident (under I) with the same elements
of P. The relation ∼ is an equivalence relation under which L(S0) splits into classes
of equivalent lines. Denote by L a set of representatives of the equivalence classes of
lines in L(S0). The set of representatives L contains only two types of lines: lines l with
l��S0 and lines l with l ���S0.

Theorem 3. The incidence structure (P,L,I |P×L) can be embedded into PG(k−1,q).

A special case of this result is obtained if we take S0 to be a point. Given Π = (P ,L, I) =
PHG(Rk

R) and a point P ∈ P , let L(P) be the set of all lines in L incident with points in
[P]. For two lines s,t ∈ L(P) we write s ∼ t if s and t coincide on [P]. Denote by L1 a
complete list of representatives of the lines from L(P) with respect to the equivalence
relation ∼. Then we have the following result:

Theorem 4
([P],L1, I|[P]×L1

) ∼= AG(k−1,q).

Finally, let two points X1 and X2 in Π = PHG(Rk
R) be neighbours. Then any two lines

incident with X1 and X2 are neighbours and belong to the same class, [l] say. In such
case we say that the neighbour class [l] has the direction of the pair (X1,X2).

3 The Existence of Spreads in Projective Hjelmslev Geometries

Definition 5. An r-spread of the projective Hjelmslev geometry PHG(Rn+1
R ) is a set S

of r-dimensional subspaces such that every point is contained in exactly one subspace
of S .

Theorem 6. Let R be a chain ring with |R| = q2, R/ radR ∼= Fq. There exists a spread
S of r-dimensional spaces of PHG(Rn

R) if and only if r + 1 divides n + 1.

Proof. The number of points in an r-dimensional subspace is qr
[r+1

1

]
q. The existence of

a spread of r dimensional subspaces implies that qr
[r+1

1

]
q divides qn

[n+1
1

]
q, i.e.

[r+1
1

]
q

divides
[n+1

1

]
q, i.e. r + 1 divides n + 1.

Assume that r + 1 divides n + 1 and let s be determined by n + 1 = (s + 1)(r + 1).
First we consider the case where R = GR(q2, p2). Take an algebra of dimension r + 1
over R = GR(q2, p2), e.g. let this algebra be Rr+1 = R[X ]/( f (X)) = GR(q2(r+1), p2),
where f is a monic irreducible polynomial of degree r + 1 over R. If α is a root of f in
Rr+1 then every element β from Rr+1 can be written as

β = b0 + b1α+ . . .+ brαr, bi ∈ R.

Clearly, Rs+1
r+1, Rn+1 and Rn+1 are isomorphic as modules over R. Thus each point in

PHG(Rn+1
R ) can be represented by an (s + 1)-tuple of elements from Rr+1 or as a unit

in Rn+1. In the same time, every (s+1)-tuple over Rr+1 that has at least one coordinate
that is a unit, can be viewed as a point in PHG(Rs+1

r+1).
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Let (γ0,γ1, . . . ,γs) ∈ (Rs+1
r+1)

∗ be a nontorsion vector. Without loss of generality, let
γ0 �= 0. Consider the system

∣∣
∣
∣
∣
∣∣
∣
∣

−γ1x0 + γ0x1 = 0
−γ2x0 + + γ0x2 = 0

. . .
. . . = 0

−γsx0 + + γ0xs = 0

. (1)

The choice of the nonzero element is not essential. If we take γ j �= 0. The system (1) is
equivalent to −γix j + γ jxi = 0 for i = 0,1, . . . ,s, i �= j. The solutions of (1) form a free
submodule of rank 1 Rs+1

r+1, i.e. a point in PHG(Rs+1
r+1). This rank 1 submodule can be

considered as a free submodule of rank (r + 1) of Rn+1
R , i.e. a r-dimensional subspace

of PHG(Rn+1
R ). Two (r + 1)-dimensional subspaces in Rn+1

R obtained from different 1-
dimensional subspaces of Rs+1

r+1 do not have a common nontorsion vector.
Now consider two different points (γ0,γ1, . . . ,γs) and (δ0,δ1, . . . ,δs) in PHG(Rs+1

r+1).
These points give rise to systems of the type (1) having as solutions different points of
PHG(Rs+1

r+1) (1-dimensional subspaces of Rs+1
r+1). Assume otherwise and let the (s+ 1)-

tuple (x0,x1, . . . ,xs)�=(0,0, . . . ,0) be a common solution of the two systems. Then

x0 = λγ0 = µδ0,x1 = λγ1 = µδ1, . . . ,xs = λγs = µδs,

where λ,µ ∈ Rr+1, λ,µ �= 0. This is a contradiction since the points (γ0,γ1, . . . ,γs) and
(δ0,δ1, . . . ,δs) were assumed to be different.

It remains to prove that every point is contained in a r-dimensional subspace. The
number of points in PHG(Rn+1

R ) is qn
[n+1

1

]
q; the number of points in an r-dimensional

subspace is qr
[r+1

1

]
q and the number of points in PHG(Rs+1

r+1) is qs(r+1)[s+1
1

]
qr+1 . Now

we have

qr
[

r + 1
1

]

q
·qs(r+1)

[
s+ 1

1

]

qr+1
= qr qr+1 −1

q−1
·qs(r+1) q(s+1)(r+1)−1

qr+1 −1
= qn

[
n + 1

1

]

q
,

which means that the r-dimensional subspaces cover all points of PHG(Rn+1
R ).

Secondly, consider the case where R is the ring of σ dual numbers over the finite field
Fq, i.e. R = Rσ = Fq + tFq. Denote by R′ the ring of σ′-dual numbers Fqr+1 + tFqr+1 ,
where σ′|Fqr+1 = σ. Similarly, let R′′ be the ring of σ′′-dual numbers Fqn+1 + tFqn+1 ,

where σ′′|Fqn+1 = σ′. The ring R is a subring of R′ which in turn is a subring of R′′. As

above, R′s+1
R and Rn+1

R and R′′
R are isomorphic as (right) submodules over R.

Consider an arbitrary nontorsion vector (γ0,γ1, . . . ,γs) ∈ RR′s+1. Fix a component
which is a unit, γ0 say, and consider the system of linear equations (1). The set of
solutions of (1) is a free rank 1 submodule of R′s+1

R which can be viewed as a free rank
r submodule of Rn+1

R . Further the proof is completed as for Galois rings.

Remark 7. Assume r + 1 divides n + 1. We can prove the existence of a spread of r-
dimensional subspaces using the nested structure of the projective Hjelmslev
geometries.
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Let H0 be a fixed subspace in PHG(Rk
R) with dimH0 = r. Define the set P of subsets

of P by

P = {H ∩ [X ];X��H0,H is a subspace,dimH = s,H ∈ [H0]}.
The sets H ∩ [X ] are either disjoint or coincide. Define an incidence relation I⊂P×L
by

(H ∩ [X ])I l ⇐⇒ l ∩ (H ∩ [X ]) �= /0.

Let L(H0) be the set of all lines in L incident with at least one point in P. For the lines
l1, l2 ∈L(H0) we write l1 ∼ l2 if they are incident (under I) with the same elements of P.
The relation ∼ is an equivalence relation under which L(H0) splits into nonintersecting
classes of equivalent lines. Denote by L a set of representatives of the equivalence
classes of lines in L(H0). The set of representatives L contains only two types of lines:
lines l with l��H0 and lines l with l ���H0.

It is known from [6] that the incidence structure (P,L,I |P×L) can be embedded
isomorphically into the projective geometry PG(k − 1,q). Hence we can construct a
spread in PHG(Rn+1

R ) in the following way. We start with a spread in the factor geometry
PG(n,q). This spread defines a set of neighbourhood classes of projective r-subspaces.
Each one of these classes is isomorphic in the sense of the above mentioned result to
a projective geometry PG(n,q) with an (n− r− 1)-dimensional space deleted. Now it
suffices to take a spread which contains a spread of the deleted (n− r−1)-dimensional
subspace.

A spread with this property can be constructed, for instance, by repeating the con-
struction from the proof of Theorem 6. The exceptional (n− r− 1)-dimensional space
can be taken as the space consisting of all points having zeros in the first r+1 positions.

Theorem 6 can be generalized to projective Hjelmslev geometries over arbitrary chain
rings R.

Theorem 8. Let R be a chain ring with |R| = qm, R/ radR ∼= Fq. The n-dimensional
projective Hjelmslev geometry PHG(Rn+1

R ) has a spread of r-dimensional projective
Hjelmslev subspaces if and only if r + 1 divides n + 1.

Proof. We give only a sketch of a proof. For the sake of convenience, we set N =
radR = θR. As before, the "only if"-part is straightforward. The proof of the "if"-part
uses induction on m and n. This result is obviously true for m = 1 and 2. It is also trivial
if n = r for every m.

Consider the factor geometry having as points the (m − 1)-neighbour classes on
points. It is isomorphic to PHG((Rk/θm−iRk)R/Nm−i (cf. [6]). By the induction hypoth-
esis, it has a spread of r-dimensional projective Hjelmslev subspaces. The preimage of
these subspaces are of the form [Δ]m−1 where Δ is an r-dimensional Hjelmslev subspace
in PHG(Rn+1

R ). Here [Δ] j is the class of all r-dimensional Hjelmslev subspaces that are
j-th neighbours to Δ. Now [Δ] j can be imbedded isomorphically in PHG((R/N)n+1

R/N) ∼=
PG(n,q) (cf. [6]) where the missing part is an (n−r−1)-dimensional subspace, H say.
Since r + 1 divides n− r = (n + 1)− (r + 1), we have that H contains a spread by the
induction hypothesis. Now it is enough to take a spread which contains as a subset the
spread of the missing (n− r−1)-dimensional subspace.
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4 Projective Hjelmslev Planes from Spreads

Spreads in Π = PHG(Rn+1
R ) can be used to construct projective Hjelmslev planes. Set

n = 2t −1, r = t −1, s = 1.

By Theorem 6 , there exists a spread S of r-dimensional subspaces of Π such that its
image under the canonical map η is a (multiple of a) spread in PG(n,q).

The geometry Π can be imbedded in Π̂ = PHG(Rn+2
R ), e.g. by taking by taking as

points of Π all points of Π̂ with first coordinate 0. Hence Π can be considered as a
hyperplane of Π̂. Denote by [Π] the set of all neighbour hyperpalnes to Π in Π̂. Define
a new incidence structure as follows:

Take as points:

(1) all points of Π̂ that are not incident with a point of [Π]. These are called proper
points and their number is:

qn+1 qn+2 −1
q−1

−qn+1 qn+1 −1
q−1

= q2(n+1) = q4t .

(2) all subspaces of the form
〈S,P〉∩H,

where S is an r-dimensional subspace from S , P is a point from Π̂ \ [Π] and H is
a hyperplane of Π̂ contained in the neighbour class [Π]. We cann call these ideal
points. The number of choices for the point P is q4t = q2(n+1). The number of
choices for S ∈ S is

|S | =
qn qn+1−1

q−1

qr qr+1−1
q−1

=
q2t−1(q2t −1)
qt−1(qt −1)

= qt(qt + 1).

The number of choices for H ∈ [Π] is qn+1 = q2t . For all points Q in 〈S,P〉 \ [Π],
we have 〈S,Q〉 ∩H = 〈S,P〉 ∩H i.e. we get the same point in the new incidence
structure. Hence for

qr+1 qr+2 −1
q−1

−qr+1 qr+1 −1
q−1

= q2(r+1) = q2t .

different points P we get the same (r + 1)-dimensional subspace 〈S,P〉.
As lines we take:

(1) all subspaces of the form 〈S,P〉, where S ∈ S and P is a point from Π̂ \ [Π], i.e.
these are all (r+1)-dimensional subspaces through r-dimensional subspaces in the
spread;

(2) all hyperplanes H from [Π].
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For the proper points neighbourhood is inherited from Π̂. For the ideal points, we
have that

〈S′,P〉∩H ′��〈S′′,P〉∩H ′′

if and only if S′ and S′′ are neighbours in Π. By definition, two lines �1 and �2 are neigh-
bours if for every point X ∈ �1 there exists a point Y ∈ �2 with X��Y , and, conversely,

for every Y ∈ �2 there exists an X ∈ �1 with Y��X .

Lemma 9. Let S be an r-dimensional subspace in Π and let P,Q be points from Π̂\ [Π]
with P��Q. Then 〈S,P〉∩ [Π] = 〈S,Q〉∩ [Π].

Proof. Assume there exists a point X ∈ [Π] with X ∈ 〈S,Q〉, but X �∈ 〈S,P〉. The lines
PY and QY are neighbours. Therefore |PY ∩QY |= q. The common points of both lines
must be neighbours to Y . Hence the q common points must lie in [Π], contradiction to
the initial assumption.

Lemma 10. The number of hyperplanes from [Π] through a fixed r-dimensional flat
S ∈ S (S ⊂ Π) is qt .

Proof. Any r-dimensional flat in an (n+1)-dimensional space can be given by a set of
(n + 1)− r = t + 1 equations. Without loss of generality, let S be given by x0 = x1 =
. . . = xt = 0 and let Π be the hyperplane defined by x0 = 0. An arbitrary hyperplane in
[Π] containing S satisfies an equation of the form:

x0 + θ(r1x1 + r2x2 + . . .+ rtxt) = 0. (2)

We have θr = θs if and only if r− s ∈ radR, therefore (2) describes all hyperplanes in
[Π] through S when (r1,r2, . . . ,rt ) runs Γt , where Γ is a set of elements no two of which
are congruent modulo radR. hence there are exactly q possibilities for each ri and the
number of hyperplanes in [Π] through S is qt .

According to Lemma 9 the number of the essentially different choices of P is

qn+2−1
q−1 − qn+1−1

q−1

qr+2−1
q−1 − qr+1−1

q−1

=
qn+1

qr+1 = qt .

The number of choices for S is qt(qt + 1) and the number of hyperplanes H from [Π]
is q2t . On the other hand, by Lemma 10, we get the same intersection for qt different
hyperplanes in [Π]. Each ideal point of the second type can be obtained for qt different
subspaces 〈S,P〉. Therefore the number of all points of the second type is

qt ·qt(qt + 1) ·q2t

qt ·qt = q3t + q2t.

Now it is a straightforward check that the defined incidence structure is indeed a pro-
jective Hjelmslev plane.
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for n ≥ r − 1 with some initial values u0, . . . , ur−1.
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fk(X) ≡ fk−1(g1(X), . . . , gr(X)) (mod M), k ≥ 1 (2)

where f0(X) = f(X).
It is obvious that (1) becomes periodic with some period t ≤ M r. Through-
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Although the distribution of nonlinear congruential generators has been stud-
ied extensively, see [5,6,9] for instance, much less is known for its higher orders
analogue. A result for a class of polynomials for prime moduli was established
in [7], where this was later extended to a larger family of polynomials in [8]. In
this paper we show a generalization of this result to a larger class of pseudoran-
dom number generators.

1.1 Notation and First Results

This section begins with some notation. It will be assumed that N, Ai, Bi and
bi represent integer positive numbers and 0 is the r-dimensional 0 vector. The
elements of ZZM will be identified with the integers {0, . . . , M − 1}. For this
reason, we can define eM (z) = exp(2πiz/M) for any element z ∈ ZZM .

For a polynomial f , G is the gcd of the coefficients of nonconstant monomials
with M .

We will denote f (p)(X) ≡ f(X) (mod p) of total degree d′ for a polynomial f
with integer coefficients and total degree d. Finally, we define degXr

f , the degree
of the coefficient Xr of the polynomial f , to be degXr

modulo every prime factor
p of M .

Lemma 1. Given a polynomial in the ring ZZM [X],

f(X) ≡
d1∑

i1=0

. . .

dr∑

ir=0

bi1,...,irX
i1
1 . . .X ir

r (mod M)

with degXr
f ≥ 1 , total degree d, then exist polynomials

h1(Xr), . . . , hr−1(Xr) of degree less than d(�log d� + 1) such that

g(p)(Xr) = f (p)(a1 + h
(p)
1 (Xr), . . . , ar−1 + h

(p)
r−1(Xr), Xr) (3)

is a nonconstant polynomial for any p|M , p � |G and any values
a1, . . . , ar−1 ∈ ZZM .

Proof. Let p|M be a prime number not dividing G and D = �log d� + 1. By the
definition of G, we note that f (p)(X) is not a constant polynomial and it can be
expressed as f (p)(X) = h(X1, . . . , Xr−1)Xd′

r +f ′(X) where f ′(X) is a polynomial
of degree stricly less than d′ in Xr. If d′ = 0 then f (p)(X) = h(X1, . . . , Xr−1),
but in any case h is a not a constant polynomial.

Let IF be an extension field of degree D over ZZp. By the cardinality of IF,
there exist ξ1, . . . , ξr−1 ∈ IF such as h(ξ1, . . . , ξr−1) �= 0.

It is easy to check that

f (p)(X1 + ξ1Xr, . . . , Xr−1 + ξr−1Xr, Xr) = h(ξ1, . . . , ξr−1)Xd′′
r + f ′′(X) (4)

where d ≥ d′′ > 0 and f ′′(X) is a polynomial with total degree less than d′′ − 1
in Xr. Let E be a extension field of degree d + 1 over IF and let θ be a defining
element of E over both ZZp and E, i.e. E ≡ ZZp(θ) ≡ IF(θ).
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The evaluation of the polynomial in (4)

f (p)(a1 + ξ1θ, . . . , ar−1 + ξr−1θ, θ) �= 0, a1, . . . , ar−1 ∈ ZZp (5)

because the degree of the minimal polynomial of θ over IF is d + 1.

For i = 1, . . . , r−1, each element ξiθ can be expressed as h
(p)
i (θ), where h

(p)
i (Xr) ∈

ZZp[Xr]. Applying the Chinese Remainder Theorem to the different polynomials
h

(p)
i (Xr) for each prime p|M , we find the corresponding hi(Xr). By construction,

f (p)(a1 + h
(p)
1 (Xr), . . . , ar−1 + h

(p)
r−1(Xr), Xr) is not the zero polynomial by (5)

for any integer values a1, . . . , ar−1.

Now, we proceed to define a family of polynomials depending on g1(X),. . . ,gr(X)
which will be the main subject of the article.

Let IK be a field. We denote by T as the set of polynomials, f , such that∑s−1
j=0 aj (fk+j(X) − fl+j(X)) is nonconstant, where fi(X) are defined by (2)

and aj ∈ IK, with at least one aj �= 0 and k �= l.
Here is a sufficient condition for a certain polynomial to be in class T . To

prove the result, we need some background.
We start defining a homomorphism of polynomial rings φ : IK[X1, . . . , Xr] →

IK[X1, . . . , Xr] with φ(Xi) = gi(X).
Polynomials g1(X), . . . , gr(X) are said to be algebraically independent if the

application φ is injective. φk denotes the composition of the function φ k times
with φ0 being the identity map.

Lemma 2. Let f(X) be a polynomial in IK[X] and g1(X), . . . , gr(X) be al-
gebraically independent and IF be an extension field of IK. Suppose that there
exists (b1, . . . , br), (c1, . . . , cr) ∈ IFr two different zeros of the polynomials
g1(X), . . . , gr(X) with f(c1, . . . , cr) �= f(b1, . . . , br), then f ∈ T .

Proof. Suppose that k > l, and exist a0, . . . , as−1 ∈ IK with a0 �= 0 satisfying;∑s−1
j=0 aj (fk+j(X) − fl+j(X)) = K, where K ∈ IK.
Then

s−1∑

j=0

aj (fk+j(X) − fl+j(X)) = φk−1
(∑s−1

j=0 aj (f1+j(X) − f1−k+l+j(X))
)

and this implies K =
∑s−1

j=0 aj ((f1+j(X)) − (f1−k+l+j(X))) because φ is an
injective map.

By equation (2), we notice that for k �= 0, we have that fk(b1, . . . , br) =
fk−1(0, . . . , 0) = fk(c1, . . . , cr), so substituting in the equation both points and
subtracting the result, we get that a0 = 0.

The last remark in this section is that conditions in this criterion can be tested
using Groebner basis.
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1.2 Exponential Sums and Previous Results

We start by listing some previous bounds on exponential sums which will be
used to establish our main results.

The first Lemma is the well-known Hua-Loo Keng bound in a form which is
a relaxation of the main result of [11] (see also Section 3 of [3] and Lemma 2.2
in [6]), followed by its multidimensional version.

Lemma 3. For any polynomial f(X) = bdX
d + . . . + b1X + b0 ∈ ZZM [X ] of

degree d ≥ 1, there is a constant c0 > 0 where the bound
∣∣∣∣∣

∑

x∈ZZM

eM (f(x))

∣∣∣∣∣ < ec0dM1−1/dG1/d

holds, where G = gcd(bd, . . . , b1, M).

Lemma 4. Let f(X), with total degree d ≥ 2 and degree greater than one in
Xr, be a polynomial with integer coefficients, with G = 1. Then the bound

∣∣∣∣∣∣

∑

x1,...,xr∈ZZM

eM (f(x1, . . . , xr))

∣∣∣∣∣∣
≤ ec0d2(log d+1)M r−1/(d2(log d+1))

holds, where c0 is some positive constant.

Proof. We recall the univariate case that appears as Lemma 3. Then let

g(X) = f(X1 + h1(Xr), X2 + h2(Xr), . . . , Xr)

where hi(Xr) are the polynomials defined in Equation (3). It is easy to see that
∣∣∣
∑

eM (f(x1, x2 . . . , xr))
∣∣∣ =

∣∣∣
∑

eM (g(x1, x2 . . . , xr))
∣∣∣ .

where the summations are taken over x1, x2 . . . , xr ∈ ZZM since (x1, . . . , xr) →
(x1 + h1(xr), x2 + h2(xr), . . . , xr) merely permutates the points. By Lemma 1,
for any selection x1, . . . , xr−1 this polynomial is not constant modulo p and the
gcd of the coefficients of g and M are coprime. Hence, applying Lemma 3, we
have

∣∣∣∣∣∣

∑

x1,x2...,xr∈ZZM

eM (g(x1, x2 . . . , xr))

∣∣∣∣∣∣

≤
∑

x1,...,xr−1∈ZZM

∣∣∣∣∣
∑

xr∈ZZM

eM (g(x1, x2 . . . , xr))

∣∣∣∣∣

≤ ec0d2(log d+1)M r−1/d2(log d+1).

We obtain the last step by noting that the degree of g in Xr can be bounded by
d2(log d + 1) and so we are done.
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This now allows us to state and prove the following Lemma.

Lemma 5. Let f(X) be a polynomial with integer coefficients with
degXr

f ≥ 1 and total degree d. Recalling the definition of G,
∣∣∣∣∣∣

∑

x1...,xr∈ZZM

eM (f(x1, . . . , xr))

∣∣∣∣∣∣
≤ ec0d2(log d+1)M r(G/M)1/d2(log d+1)

Proof. We let
fG(x1, . . . , xr) = (f(x1, . . . , xr) − f(0))/G

and m = M/G.
Then,

∣∣∣∣∣∣

∑

x1,...,xr∈ZZM

eM (f(x1, . . . , xr))

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x1,...,xr∈ZZM

eM (f(x1, . . . , xr) − f(0))

∣∣∣∣∣∣

= Gr

∣∣∣∣∣∣

∑

x1,...,xr∈ZZm

em (fG(x1, . . . , xr))

∣∣∣∣∣∣

Now fG(x1, . . . , xr) satisfies the conditions in Lemma 4, so:

Gr

∣∣∣∣∣∣

∑

x1,...,xr∈ZZm

em(fG(x1, . . . , xr))

∣∣∣∣∣∣
≤ Grec0d2(log d+1)(m)r−1/d2(log d+1)

and so the result follows.

Lastly, we will make use of the following lemma, which is essentially the multi-
dimensional version of Lemma 2.3 of [6].

Lemma 6. Let f(X) ∈ ZZM [X] be a polynomial such that f (p) ∈ T for every
p|M and let

s−1∑

j=0

aj (fk+j(X) − fl+j(X)) =
d1∑

i1=0

. . .

dr∑

ir=0

bi1,...,irX
i1
1 . . . X ir

r ,

where k �= l. Recalling the definition of G, the following equality
G = gcd(a0, . . . , as−1, M) holds.

Proof. We put Aj = aj/G and m = M/G, j = 0, . . . , s − 1. In particular,

gcd(A0, . . . , As−1, m) = 1. (6)

It is enough to show that the polynomial

H(X) =
s−1∑

j=0

Aj (fk+j(X) − fl+j(X))

is nonconstant modulo any prime p|m, for k �= l.
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By definition, we have

H(p)(X) ≡
s−1∑

j=0

Aj

(
f

(p)
k+j(X) − f

(p)
l+j(X)

)
(mod p)

and H(p)(X) can not be a constant polynomial, since f (p) ∈ T and so we are
done.

1.3 Discrepancy

For a sequence of N points

Γ = (γ0,n, . . . , γs−1,n)N−1
n=0 (7)

of the half-open interval [0, 1)s, denote by ΔΓ its discrepancy, that is,

ΔΓ = sup
B⊆[0,1)s

∣∣∣∣
TΓ (B)

N
− |B|

∣∣∣∣ ,

where TΓ (B) is the number of points of the sequence Γ which hit the box

B = [α0, β0) × . . . × [αs−1, βs−1) ⊆ [0, 1)s

and the supremum is taken over all such boxes.
For an integer vector a = (a0, . . . , as−1) ∈ ZZs we put

|a| = max
i=0,...,s−1

|ai|, r(a) =
s−1∏

i=0

max{|ai|, 1}. (8)

We need the Erdös–Turán–Koksma inequality (see Theorem 1.21 of [4]) for the
discrepancy of a sequence of points of the s-dimensional unit cube, which we
present in the following form.

Lemma 7. There exists a constant Cs > 0 depending only on the dimension s
such that, for any integer L ≥ 1, for the discrepancy of a sequence of points (7)
the bound

ΔΓ < Cs

⎛

⎝ 1
L

+
1
N

∑

0<|a|≤L

1
r(a)

∣∣∣∣∣∣

N−1∑

n=0

exp

⎛

⎝2πi
s−1∑

j=0

ajγj,n

⎞

⎠

∣∣∣∣∣∣

⎞

⎠

holds, where |a|, r(a) are defined by (8) and the sum is taken over all integer
vectors

a = (a0, . . . , as−1) ∈ ZZs

with 0 < |a| ≤ L.

The currently best value of Cs is given in [2].
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2 Discrepancy Bound

Let the sequence (un) generated by (1) be purely periodic with an arbitrary
period t. For an integer vector a = (a0, . . . , as−1) ∈ ZZs we introduce the expo-
nential sum

Sa(N) =
N−1∑

n=0

eM

⎛

⎝
s−1∑

j=0

ajun+j

⎞

⎠ .

Theorem 1. Let the sequence (un), given by (1) with a polynomial f (p)(X) ∈ T ,
for every prime divisor p of M , with total degree d and degXr

f ≥ 1, be purely
periodic with period t and t ≥ N ≥ 1. The bound

max
gcd(a0,...,as−1,M)=G

|Sa(N)| = O
(
N1/2M r/2(log log(M/G))−1/2

)

holds, where G = gcd(a0, . . . , as−1, M) and the implied constant depends only on
s and d.

Proof. The proof follows a strategy first seen in [9].
Select any a = (a0, . . . , as−1) ∈ ZZs with gcd(a0, . . . , as−1, M) = G.

It is obvious that for any integer k ≥ 0 we have
∣∣∣∣∣∣
Sa(N) −

N−1∑

n=0

eM

⎛

⎝
s−1∑

j=0

ajun+k+j

⎞

⎠

∣∣∣∣∣∣
≤ 2k.

Therefore, for any integer K ≥ 1,

K|Sa(N)| ≤ W + K2,

where

W =

∣∣∣∣∣∣

N−1∑

n=0

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajun+k+j

⎞

⎠

∣∣∣∣∣∣
≤

N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajun+k+j

⎞

⎠

∣∣∣∣∣∣
.

Accordingly, letting x = x1, . . . , xr, we obtain

W 2 ≤ N

N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajfk+j (un, . . . , un−r+1)

⎞

⎠

∣∣∣∣∣∣

2

≤ N
∑

x∈ZZr
M

∣∣∣∣∣∣

K−1∑

k=0

eM

⎛

⎝
s−1∑

j=0

ajfk+j (x)

⎞

⎠

∣∣∣∣∣∣

2

= N
K−1∑

k=0

K−1∑

l=0

∑

x∈ZZr
M

eM

⎛

⎝
s−1∑

j=0

aj (fk+j (x) − fl+j (x))

⎞

⎠ .
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If k = l, then the inner sum is trivially equal to M r. There are K such sums.
Otherwise the polynomial

∑s−1
j=0 aj (fk+j (X) − fl+j (X)) is nonconstant since

f (p) ∈ T . Hence we can apply Lemma 5 and Lemma 6 (so that we only need
consider aj , j = 0, . . . , s − 1, instead of the coefficients of f) to the inner sum,
obtaining the upper bound

ec0d3(K+s−2)
M r−1/d3(K+s−2)

G1/d3(K+s−2)

for at most K2 sums and positive constant c0 and noting that
d2(log d + 1) < d3.
Hence,

W 2 ≤ KNM r + K2Nec0d3(K+s−2)
M r−1/d3(K+s−2)

G1/d3(K+s−2)
.

Now, without too much loss of generality we may assume (d + 1)3(K+s−2) ≥ 2.
Next we put K = �log log(M/G)/(3c log(d + 1))�, for some c > 2 to guarantee
that the first term dominates and the result follows.

Next, let Ds(N) denote the discrepancy of the points given by
(un

M
, . . . ,

un+s−1

M

)
, n = 0, . . . , N − 1,

in the s-dimensional unit cube [0, 1)s.

Theorem 2. If the sequence (un), given by (1) with a polynomial f (p)(X) ∈ T ,
for every prime divisor p of M , with total degree d and degXr

f ≥ 1 is purely
periodic with period t with t ≥ N ≥ 1, then the bound

Ds(N) = O
(
N−1/2M r/2(log log log M)s/(log log M)1/2

)

holds, where the implied constant depends only on s and d.

Proof. The statement follows from Lemma 7, taken with

L =
⌈
N1/2M−r/2(log log M)1/2

⌉

and the bound of Theorem 1, where all occurring G = gcd(a0, . . . , as−1, M) are
at most L.
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Abstract. A new reduction on the size of the search space for cocyclic
Hadamard matrices over dihedral groups D4t is described, in terms of the
so called central distribution. This new search space adopt the form of a
forest consisting of two rooted trees (the vertices representing subsets of
coboundaries) which contains all cocyclic Hadamard matrices satisfying
the constraining condition. Experimental calculations indicate that the
ratio between the number of constrained cocyclic Hadamard matrices
and the size of the constrained search space is greater than the usual
ratio.

Keywords: Hadamard matrix, cocyclic matrix, dihedral groups.

1 Introduction

Since Hadamard matrices (that is, {1,−1}-square matrices whose rows are pair-
wise orthogonal) were introduced at the end of the XIXth century, the interest in
their construction has grown substantially, because of their multiple applications
(see [7] for instance).

For this reason, many attempts and efforts have been devoted to the design
of good construction procedures, the latest involving heuristic techniques (see
[5], [1], [4] for instance). Even alternative theoretical descriptions characteriz-
ing Hadamard matrices have been proposed (for instance, Ito’s works involving
Hadamard graphs [11] in the middle eighties, and Hadamard groups [6,12] more
recently). But no matter what one may think, Hadamard matrices keep on being
elusive anyway.

The point is that though it may be easily checked that the size of a Hadamard
matrix is to be 2 or a multiple of 4, there is no certainty whether such a Hadamard
matrix exists for every size 4t. This is the Hadamard conjecture, which remains
unsolved for more than a century.

In fact, the design of a procedure which outputs a Hadamard matrix of the
desired size has shown to be as important as solving the Hadamard conjecture
itself.
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In the early 90s, a surprising link between homological algebra and Hadamard
matrices [9] led to the study of cocyclic Hadamard matrices [10]. The main
advantages of the cocyclic framework are that:

– On one hand, the Hadamard test for cocyclic matrices [10] runs in O(t2)
time, better than the O(t3) algorithm for usual (not necessarily cocyclic)
Hadamard matrices.

– On the other hand, the search space reduces drastically, though it still is
often of exponential size (see [4,2] for details).

Among the groups for which cocyclic Hadamard matrices have been found, it
seems that dihedral groups D4t are more likely to give a more density of cocyclic
Hadamard matrices, even for every order multiple of 4 (see [8,3,2] for instance).

Unfortunately, the task of explicitly construct cocyclic Hadamard matrices
over D4t is considerably difficult, since the search space inherits a exponential
size. New ideas dealing with this problem are welcome.

The purpose of this paper is to describe a new reduction on the size of the
search space for cocyclic Hadamard matrices over dihedral groups D4t. The key
idea is exploiting the notions of i-paths and intersections introduced in [2], in
order to design a forest consisting of two rooted trees (the vertices representing
subsets of coboundaries) which contains all cocyclic Hadamard matrices sat-
isfying the so called central distribution. We will explain these notions in the
following section.

We organize the paper as follows. Section 2 is devoted to preliminaries on
cocyclic matrices. Section 3 describes the new search space for cocyclic Hadamard
matrices over D4t. We include some final remarks and comments.

2 Preliminaries on Cocyclic Matrices

Consider a multiplicative group G={g1 =1, g2, . . . , g4t}, not necessarily abelian.
A cocyclic matrix Mf over G consists in a binary matrix Mf = (f(gi, gj)) coming
from a 2-cocycle f over G, that is, a map f : G × G → {1,−1} such that

f(gi, gj)f(gigj , gk) = f(gj , gk)f(gi, gjgk), ∀ gi, gj, gk ∈ G.

We will only use normalized cocycles f (and hence normalized cocyclic matrices
Mf), so that f(1, gj) = f(gi, 1) = 1 for all gi, gj ∈ G (and correspondingly
Mf = (f(gi, gj)) consists of a first row and column all of 1s).

A basis B for 2-cocycles over G consists of some representative 2-cocycles
(coming from inflation and transgression) and some elementary 2-coboundaries
∂i, so that every cocyclic matrix admits a unique representation as a Hadamard
(pointwise) product M = M∂i1

. . . M∂iw
· R, in terms of some coboundary ma-

trices M∂ij
and a matrix R formed from representative cocycles.

Recall that every elementary coboundary ∂d is constructed from the charac-
teristic set map δd : G → {±1} associated to an element gd ∈ G, so that

∂d(gi, gj) = δd(gi)δd(gj)δd(gigj) for δd(gi) =
{−1 gd = gi

1 gd �= gi
(1)
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Although the elementary coboundaries generate the set of all coboundaries, they
might not be linearly independent (see [3] for details). Moreover, since the ele-
mentary coboundary ∂g1 related to the identity element in G is not normalized,
we may assume that ∂g1 /∈ B.

The cocyclic Hadamard test asserts that a cocyclic matrix is Hadamard if and
only if the summation of each row (but the first) is zero [10]. In what follows,
the rows whose summation is zero are termed Hadamard rows.

This way, a cocyclic matrix Mf is Hadamard if and only if every row (Mf )i

is a Hadamard row, 2 ≤ i ≤ 4t.
In [2] the Hadamard character of a cocyclic matrix is described in an equivalent

way, in terms of generalized coboundary matrices, i-walks and intersections. We
reproduce now these notions.

The generalized coboundary matrix M̄∂j related to a elementary coboundary
∂j consists in negating the jth-row of the matrix M∂j . Note that negating a row
of a matrix does not change its Hadamard character. As it is pointed out in [2],
every generalized coboundary matrix M̄∂j contains exactly two negative entries
in each row s �= 1, which are located at positions (s, i) and (s, e), for ge = g−1

s gi.
We will work with generalized coboundary matrices from now on.

A set {M̄∂ij
: 1 ≤ j ≤ w} of generalized coboundary matrices defines an

i-walk if these matrices may be ordered in a sequence (M̄l1 , . . . , M̄lw) so that
consecutive matrices share exactly one negative entry at the ith-row. Such a
walk is called an i-path if the initial and final matrices do not share a common
−1, and an i-cycle otherwise. As it is pointed out in [2], every set of generalized
coboundary matrices may be uniquely partitioned into disjoint maximal i-walks.

From the definition above, it is clear that every maximal i-path contributes
two negative occurrences at the ith-row. This way, a characterization of
Hadamard rows (consequently, of Hadamard matrices) may be easily described
in terms of i-paths.

Proposition 1. [2] The ith row of a cocyclic matrix M = M∂i1
. . .M∂iw

· R is
Hadamard if and only if

2ci − 2Ii = 2t − ri (2)

where ci denotes the number of maximal i-paths in {M̄∂i1
, . . . , M̄∂iw

}, ri counts
the number of −1s in the ith-row of R and Ii indicates the number of positions
in which R and M̄∂i1

. . . M̄∂iw
share a common −1 in their ith-row.

From now on, we will refer to the positions in which R and M̄∂i1
. . . M̄∂iw

share
a common −1 in a given row simply as intersections, for brevity.

We will now focus on the case of dihedral groups.

3 Cocyclic Matrices over D4t

Denote by D4t the dihedral group ZZ2t ×χ ZZ2 of order 4t, t ≥ 1, given by the
presentation

< a, b|a2t = b2 = (ab)2 = 1 >
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and ordering

{1 = (0, 0), a = (1, 0), . . . , a2t−1 = (2t− 1, 0), b = (0, 1), . . . , a2t−1b = (2t− 1, 1)}
In [6] a representative 2-cocycle f of [f ] ∈ H2(D4t, ZZ2) ∼= ZZ3

2 is written inter-
changeably as a triple (A, B, K), where A and B are the inflation variables and
K is the transgression variable. All variables take values ±1. Explicitly,

f(ai, ajbk) =
{

Aij , i + j < 2t,
AijK, i + j ≥ 2t,

f(aib, ajbk) =
{

AijBk, i ≥ j,
AijBkK, i < j,

Let β1, β2 and γ denote the representative 2-cocycles related to (A, B, K) =
(−1, 1, 1), (1,−1, 1), (1, 1,−1) respectively.

A basis for 2-coboundaries is described in [2], and consists of the elementary
coboundaries {∂a, . . . , ∂a2t−3b}. This way, a basis for 2-cocycles over D4t is given
by B = {∂a, . . . , ∂a2t−3b, β1, β2, γ}.

Computational results in [6,2] suggest that the case (A, B, K) = (1,−1,−1)
contains a large density of cocyclic Hadamard matrices.

Furthermore, as it is pointed out in Theorem 2 of [2], cocyclic matrices over
D4t using R = β2γ are Hadamard matrices if and only if rows from 2 to t are
Hadamard, so that the cocyclic test runs four times faster than usual.

From now on, we assume that R = Mβ2 · Mγ =
(

A A
B −B

)
for

A =

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 ··· −1
... ··· ···

...
1 −1 · · · −1

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

1 −1 · · · −1
...

. . . . . .
...

1
. . . −1

1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ (3)

Now we would like to know how the 2-coboundaries in B have to be combined
to form i-paths, 2 ≤ i ≤ t. This information is given in Proposition 7 of [2].

Proposition 2. [2] For 1 ≤ i ≤ 2t, a maximal i-walk consists of a maximal
subset in

(M∂1 , . . . , M∂2t) or (M∂2t+1 , . . . , M∂4t)

formed from matrices (. . . , Mj, Mk, . . .) which are cyclically separated in i − 1
positions (that is j ± (i − 1) ≡ k mod 2t).

Notice that since ri = 2(i − 1) for 2 ≤ i ≤ t, the cocyclic Hadamard test
reduces to check whether ci − Ii = t − i + 1, for 2 ≤ i ≤ t. Thus ci uniquely
determines Ii and reciprocally, 2 ≤ i ≤ t.

In fact, the way in which intersections may be introduced at the ith-row is
uniquely determined. More explicitly

Lemma 1. The following table gives a complete distribution of the coboundaries
in B which may create an intersection at a given row. For clarity in the reading,
we note the generalized coboundary M̄∂i simply by i:
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row coboundaries
2 2t, 2t + 1
3 2, 2t− 1, 2t, 2t + 1, 2t + 2

4 ≤ k ≤ t 2, . . . , k − 1, 2t − k + 2, . . . , 2t + k − 1, 4t − k + 2, . . . , 4t − 2

Proof
It may be seen by inspection, taking into account the distribution of the negative
occurrences in R and the form of the generalized coboundary matrices. 
�
Lemma 2. In particular, there are some coboundaries which do not produce
any intersection at all, at rows 2 ≤ k ≤ t, which we term free intersection
coboundaries. More concretely,

t coboundaries
2 2, 3, 6

t > 2 t, t + 1, 3t, 3t + 1

Proof
It suffices to take the set difference between B and the set of coboundaries used
in the lemma above. 
�
Lemma 3. Furthermore, the following table distributes the coboundaries which
produce a intersection at every row, so that coboundaries which produce the same
negative occurrence at a row are displayed vertically in the same column.

row coboundaries

2 2t 2t + 1

3 2t-1
2t

2
2t + 1 2t+2

4 ≤ k ≤ t 2t-k+2
2t − k + 3

2
. . .
. . .

2t − 1
k − 2

2t

k-1

2t + 1

4t-k+2
2t + 2

4t − k + 1
. . .
. . .

2t + k − 3
4t − 2 2t + k − 2 2t+k-1

Proof
It may be seen by inspection. 
�
Remark 1. Notice that:

– The set of coboundaries which may produce an intersection at the ith-row is
included in the analog set corresponding to the (i + 1)th-row.

– The boxed coboundaries do not produce any intersection at the precedent
rows.

Now one could ask whether cocyclic Hadamard matrices exist for any formal
distribution of pairs (ci, Ii) satisfying the relations ci−Ii = t−i+1, for 2 ≤ i ≤ t.
Actually, this is not the case.

Proposition 3. Not all of the formal sequences [(c2, I2), . . . , (ct, It)] satisfying
ci − Ii = t − i + 1 give rise to cocyclic Hadamard matrices over D4t, for t ≥ 3.
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Proof
Proposition 10 of [2] bounds the number w of coboundaries in B to multiply with
R so that a cocyclic Hadamard matrix is formed, so that t − 1 ≤ w ≤ 3t + 2.

In particular, for t ≥ 6, we know that 5 ≤ w. Consequently, the case I2 =
. . . = It = 0 is not feasible, since from Lemma 2 we know that only up to 4
coboundaries may be combined so that no intersection is generated at any row.

This proves the Lemma for t ≥ 6. We now study the remaining cases.
Taking into account that 0 ≤ Ii ≤ ri = 2i − 2, we may have a look in the

way in which cocyclic Hadamard matrices are distributed regarding the number
of intersections Ii, for those groups D4t for which the whole set of cocyclic
Hadamard matrices have been computed until now. These are precisely t =
2, 3, 4, 5.

For t = 2, we formally have 3 solutions for the equation c2 − I2 = 1,

c2 1 2 3
I2 0 1 2

Each of these solutions gives rise to some cocyclic Hadamard matrices Mf ,

I2 0 1 2
|Mf | 4 10 2

For t = 3, we formally have 15 solutions for the system
{

c2 − I2 = 2
c3 − I3 = 1 coming

from the combination of any solution of each of the equations

c2 2 3 4
I2 0 1 2

c3 1 2 3 4 5
I3 0 1 2 3 4

Only 9 of the 15 hypothetical solutions are real solutions (there are no combi-
nations of coboundaries meeting the other 6 “theoretical” solutions), distributed
in the following way:

(I2, I3) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)
|Mf | 6 10 2 8 20 8 2 10 6

For t = 4, we formally have 105 solutions for the system

⎧⎨
⎩

c2 − I2 = 3
c3 − I3 = 2
c4 − I4 = 1

coming

from the combination of any solution of each of the equations

c2 3 4 5
I2 0 1 2

c3 2 3 4 5 6
I3 0 1 2 3 4

c4 1 2 3 4 5 6 7
I4 0 1 2 3 4 5 6

Only 36 of the 105 hypothetical solutions are real solutions, distributed in the
following way:
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(I2, I3, I4) (0, 0, 2) (0, 1, 1) (0, 1, 2) (0, 1, 3) (0, 1, 4) (0, 2, 2) (0, 2, 3) (0, 2, 4) (0, 2, 5)
|Mf | 8 6 18 18 6 12 12 24 12

(I2, I3, I4) (0, 3, 3) (0, 3, 4) (1, 0, 3) (1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4) (1, 1, 5) (1, 2, 1)
|Mf | 4 8 12 18 12 8 4 6 4

(I2, I3, I4) (1, 2, 2) (1, 2, 3) (1, 2, 4) (1, 2, 5) (1, 3, 2) (1, 3, 3) (1, 3, 4) (1, 4, 3) (2, 1, 2)
|Mf | 24 72 24 4 12 32 20 20 2

(I2, I3, I4) (2, 2, 1) (2, 2, 2) (2, 2, 3) (2, 2, 4) (2, 3, 2) (2, 3, 3) (2, 1, 3) (2, 1, 4) (2, 1, 5)
|Mf | 6 6 2 12 24 12 12 24 12

For t = 5, we formally have 945 solutions for the system

⎧⎪⎪⎨
⎪⎪⎩

c2 − I2 = 4
c3 − I3 = 3
c4 − I4 = 2
c5 − I5 = 1

coming

from the combination of any solution of each of the equations

c2 4 5 6
I2 0 1 2

c3 3 4 5 6 7
I3 0 1 2 3 4

c4 2 3 4 5 6 7 8
I4 0 1 2 3 4 5 6

c5 1 2 3 4 5 6 7 8 9
I4 0 1 2 3 4 5 6 7 8

Only 153 of the 945 hypothetical solutions are real solutions,

(I2, I3, I4, I5) (0, 0, 1, 3) (0, 0, 2, 3) (0, 1, 1, 4) (0, 1, 2, 2) (0, 1, 2, 3) (0, 1, 2, 4)
|Mf | 4 12 3 6 12 21

(I2, I3, I4, I5) (0, 1, 2, 5) (0, 1, 3, 2) (0, 1, 3, 3) (0, 1, 3, 4) (0, 1, 3, 5) (0, 1, 3, 6)
|Mf | 6 6 12 21 21 9

(I2, I3, I4, I5) (0, 1, 3, 7) (0, 1, 4, 3) (0, 1, 4, 4) (0, 1, 4, 5) (0, 1, 4, 6) (0, 1, 4, 7)
|Mf | 3 6 3 9 18 6

(I2, I3, I4, I5) (0, 2, 0, 2) (0, 2, 1, 2) (0, 2, 1, 3) (0, 2, 1, 4) (0, 2, 2, 2) (0, 2, 2, 3)
|Mf | 2 4 2 2 4 12

(I2, I3, I4, I5) (0, 2, 2, 4) (0, 2, 3, 2) (0, 2, 3, 3) (0, 2, 3, 4) (0, 2, 3, 5) (0, 2, 3, 6)
|Mf | 4 8 8 24 14 2

(I2, I3, I4, I5) (0, 2, 4, 4) (0, 2, 4, 5) (0, 2, 4, 6) (0, 2, 5, 4) (0, 3, 2, 5) (0, 3, 3, 2)
|Mf | 12 26 4 4 2 2

(I2, I3, I4, I5) (0, 3, 3, 3) (0, 3, 3, 4) (0, 3, 3, 5) (0, 3, 4, 2) (0, 3, 4, 3) (0, 3, 4, 4)
|Mf | 7 6 6 1 4 5

(I2, I3, I4, I5) (0, 3, 4, 5) (0, 3, 5, 4) (1, 0, 1, 4) (1, 0, 2, 2) (1, 0, 2, 3) (1, 0, 2, 4)
|Mf | 6 1 2 4 2 4

(I2, I3, I4, I5) (1, 0, 4, 2) (1, 0, 4, 3) (1, 0, 4, 4) (1, 0, 5, 4) (1, 1, 1, 3) (1, 1, 1, 4)
|Mf | 4 2 4 2 6 3

(I2, I3, I4, I5) (1, 1, 2, 3) (1, 1, 2, 4) (1, 1, 2, 5) (1, 1, 2, 6) (1, 1, 3, 2) (1, 1, 3, 3)
|Mf | 7 14 22 8 4 16

(I2, I3, I4, I5) (1, 1, 3, 4) (1, 1, 3, 5) (1, 1, 3, 6) (1, 1, 3, 7) (1, 1, 4, 3) (1, 1, 4, 4)
|Mf | 20 8 16 16 5 10

(I2, I3, I4, I5) (1, 1, 4, 5) (1, 1, 4, 6) (1, 1, 5, 3) (1, 1, 5, 4) (1, 2, 1, 3) (1, 2, 1, 4)
|Mf | 18 8 2 1 4 8
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(I2, I3, I4, I5) (1, 2, 2, 2) (1, 2, 2, 3) (1, 2, 2, 4) (1, 2, 2, 5) (1, 2, 3, 2) (1, 2, 3, 3)
|Mf | 4 16 28 16 24 20

(I2, I3, I4, I5) (1, 2, 3, 4) (1, 2, 3, 5) (1, 2, 4, 2) (1, 2, 4, 3) (1, 2, 4, 4) (1, 2, 4, 5)
|Mf | 32 56 4 12 24 24

(I2, I3, I4, I5) (1, 2, 5, 4) (1, 3, 1, 2) (1, 3, 1, 3) (1, 3, 1, 4) (1, 3, 2, 2) (1, 3, 2, 3)
|Mf | 8 1 3 2 8 16

(I2, I3, I4, I5) (1, 3, 2, 4) (1, 3, 2, 5) (1, 3, 3, 3) (1, 3, 3, 4) (1, 3, 3, 5) (1, 3, 4, 2)
|Mf | 10 6 24 32 16 8

(I2, I3, I4, I5) (1, 3, 4, 3) (1, 3, 4, 4) (1, 3, 4, 5) (1, 3, 5, 2) (1, 3, 5, 3) (1, 3, 5, 4)
|Mf | 16 22 10 3 9 6

(I2, I3, I4, I5) (1, 4, 1, 3) (1, 4, 2, 3) (1, 4, 2, 4) (1, 4, 3, 3) (1, 4, 3, 4) (1, 4, 4, 3)
|Mf | 2 6 6 16 8 6

(I2, I3, I4, I5) (1, 4, 4, 4) (1, 4, 5, 3) (2, 1, 2, 3) (2, 1, 2, 4) (2, 1, 2, 5) (2, 1, 2, 6)
|Mf | 6 2 2 1 3 6

(I2, I3, I4, I5) (2, 1, 2, 7) (2, 1, 3, 2) (2, 1, 3, 3) (2, 1, 3, 4) (2, 1, 3, 5) (2, 1, 3, 6)
|Mf | 2 2 4 7 7 3

(I2, I3, I4, I5) (2, 1, 3, 7) (2, 1, 4, 2) (2, 1, 4, 3) (2, 1, 4, 4) (2, 1, 4, 5) (2, 1, 5, 4)
|Mf | 1 2 4 7 2 1

(I2, I3, I4, I5) (2, 2, 1, 4) (2, 2, 2, 4) (2, 2, 2, 5) (2, 2, 2, 6) (2, 2, 3, 2) (2, 2, 3, 3)
|Mf | 4 12 26 4 8 8

(I2, I3, I4, I5) (2, 2, 3, 4) (2, 2, 3, 5) (2, 2, 3, 6) (2, 2, 4, 2) (2, 2, 4, 3) (2, 2, 4, 4)
|Mf | 24 14 2 4 12 4

(I2, I3, I4, I5) (2, 2, 5, 2) (2, 2, 5, 3) (2, 2, 5, 4) (2, 2, 6, 2) (2, 3, 1, 4) (2, 3, 2, 2)
|Mf | 4 2 2 2 3 3

(I2, I3, I4, I5) (2, 3, 2, 3) (2, 3, 2, 4) (2, 3, 2, 5) (2, 3, 3, 2) (2, 3, 3, 3) (2, 3, 3, 4)
|Mf | 12 15 18 6 21 18

(I2, I3, I4, I5) (2, 3, 3, 5) (2, 3, 4, 5) (2, 4, 2, 3)
|Mf | 18 6 12


�Attending to the tables above, we conclude that, for 2 ≤ t ≤ 5, there is a
large density of cocyclic Hadamard matrices in the case ci = t for 2 ≤ i ≤ t,
that is, (I2, . . . , It) = (1, . . . t − 1). We call this case the central distribution for
intersections and i-paths on D4t.

We include now a table comparing the number central of cocyclic Hadamard
matrices in the central distribution with the proportion % = |Mf |

cases of the amount
|Mf | of cocyclic Hadamard matrices over D4t by the total number cases of valid
distributions of intersections (I2, . . . , It). The last column contains the number
of cocyclic Hadamard matrices of the most prolific case:

t cases |Mf | % central best
2 3 16 5.33 10 10
3 9 72 8 20 20
4 36 512 14.22 72 72
5 153 1400 9.15 32 56
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It seems then reasonable trying to constraint the search for cocyclic Hadamard
matrices over D4t to the central distribution case.

The search space in the central distribution (I2, . . . , It) = (1, . . . , t−1) may be
represented as a forest of two rooted trees of depth t−1. We identify each level of
the tree to the correspondent row of the cocyclic matrix at which intersections are
being counted, so that the roots of the trees are located at level 2 (corresponding
to the intersections created at the second row of the cocyclic matrix).

This way the level i contains those coboundaries which must be added to the
father configuration in order to get the desired i− 1 intersections at the ith-row,
for 2 ≤ i ≤ t.

The root of the first tree is ∂2t, whereas the root of the second tree is ∂2t+1,
since from Lemma 1 these are the only coboundaries which may give an inter-
section at the second row.

As soon as one of these coboundaries is used, the other one is forbidden, since
otherwise a second intersection would be introduced at the second row.

Now one must add some coboundaries to get two intersections at the third row.
Since ∂2t is already used and ∂2t+1 is forbidden, there are only 3 coboundaries
left (those boxed in the table of Lemma 3).

Successively, in order to construct the nodes at level k, one must add some
of the correspondent boxed coboundaries of the table of Lemma 3, since the
remaining coboundaries are either used or forbidden.

We include the forests corresponding to the cases t = 2, 3, 4 for clarity.

t trees

2
Level 2 4 5

3

Level 2

Level 3

6

5 8 (2,5,8)

Level 2

Level 3

7

2 5 8

4

8

7 10 (2,7,10)

6 11 14 (3,6,11) (3,6,14) (3,11,14) 6 11 14 (3,6,11) (3,6,14) (3,11,14) 6 11 14 (3,6,11) (3,6,14) (3,11,14) 

Level 2

Level 3

Level 4

9

2 7 10

3 6 11 (14,3,6) (14,3,11) (14,6,11) 3 6 11 (14,3,6) (14,3,11) (14,6,11) 3 6 11 (14,3,6) (14,3,11) (14,6,11) 

Level 2

Level 3

Level 4
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Every branch ending at level t gives a cocyclic matrix meeting the desired dis-
tribution of intersections (I2, . . . , It). Now one has to check whether any of the 16
possible combinations with the free intersection coboundaries {∂t,∂t+1,∂3t,∂3t+1}
of Lemma 2 gives rise to a cocyclic Hadamard matrix (that is, to the desired
distribution of i-paths, (c2, . . . , ct) = (t, . . . , t)).

We now give some properties of the trees above.

Proposition 4. In the circumstances above, it may be proved that

1. The skeleton (i.e., the branches, forgetting about the indexes of the cobound-
aries used) of the trees related to D4t are preserved to form the levels from
2 to t corresponding to the trees of D4(t+1).

2. Among the boxed coboundaries {∂2t−k+2, ∂k−1, ∂4t−k+2, ∂2t+k−1 to be added
at level k of the trees, precisely one of them removes an intersection, whereas
the remaining three adds one intersection each.

3. At each level, either just one or exactly three boxed coboundaries must be
used, there is no other possible choice in order to meet the desired amount
of intersections.

4. Consequently, a branch may be extended from level k to level k + 1 if and
only if k − hk ∈ {−1, 1, 3}, where hk denotes the number of intersections
inherited from level k to level k + 1.

5. Branches ending at levels above level t will never give rise to cocyclic Hadamard
matrices meeting the central distribution. This will be more frequent the greater
t is.

6. Both trees may have branches ending at level t which may not produce any
cocyclic Hadamard matrix at all. This will be more frequent the greater t is.

Proof
Most of the properties are consequences of the results explained in Lemma 1
through Lemma 3, and are left to the reader.

Property 3 comes as a result of a parity condition: there must be an odd
number of intersections at odd levels, and an even number of intersections at
even levels. Since boxed coboundaries either add an intersection each, or just
one of them removes an intersection (added by a coboundary previously used),
the parity condition leads to the result.

Concerning Property 5, we give a branch not reaching the last level for t = 9:

level 2 3 4 5 6 7 8
cob. 18 17 21 4, 22, 33 32 6, 13, 24 12, 25, 30

Concerning Property 6, we give a branch reaching the last level for t = 9, which
do not give rise to any cocyclic Hadamard matrix at all:

level 2 3 4 5 6 7 8 9
cob. 19 17 21 22 14 6, 24, 31 12, 25, 30 29


�
So far, it is evident that the above trees reduce the search space for cocyclic
Hadamard matrices over D4t, constraining the solutions to the central distribu-
tion case.
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There is only one question left. Is the new proportion ratioc of cocyclic
Hadamard matrices in the central distribution case by the size of the reduced
space greater than the proportion ratiog of general cocyclic Hadamad matrices
by the size of the general search space?

It seems so, attending to the table below (we have followed the calculations
of [2] about the size of the general search space in D4t).

t |Mf | g. size ratiog |Mf | central size ratioc

2 16 32 0.5 10 16 0.625
3 72 492 0.146 20 96 0.208
4 512 8008 0.063 72 576 0.125

We claim that developing a heuristic search in the forest described above will
produce some cocyclic Hadamard matrices over D4t more likely than any other
technique applied till now to the general case.

This will be the goal of our work in the near future.
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Interesting Examples on Maximal Irreducible

Goppa Codes
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Abstract. A full categorization of irreducible classical Goppa codes of
degree 4 and length 9 is given: it is an interesting example in the con-
text of finding an upper bound for the number of Goppa codes which
are permutation non-equivalent and irreducible and maximal with fixed
parameters q, n and r (Fq is the field of the Goppa code, the Goppa
polynomial has coefficients in Fqn and its degree is r) using group theory
techniques.

1 The Number of Non-equivalent Goppa Codes

Definition 1. Let g(x) =
∑

gix
i ∈ Fqn [x] and let L = {ε1, ε2, . . ., εN} denote

a subset of elements of Fqn which are not roots of g(x). Then the Goppa code
G(L, g) is defined as the set of all vectors c = (c1, c2, . . ., cN ) with components in
Fq which satisfy the condition:

∑N
i=0

ci

x−εi
≡ 0 mod g(x).

If L = {ε1, ε2, . . ., εN} = Fqn the Goppa code is said maximal ; if the degree
of g(x) is r, then the Goppa code is called a Goppa code of degree r; if g(x)
is irreducible over Fqn the Goppa code is called irreducible . In this case, a

parity check matrix for G(L, g) can be Hα =
(

1
α−ε , 1

α−ε2 , . . ., 1

α−εqn−1 , 1
α

)
, where

α ∈ Fqnr is a root of g(x) and 〈ε〉 = F
∗
qn . We denote the Goppa code G(L, g) as

C(α) when a parity check matrix of type Hα is considered. It is important to
stress that by using parity check matrix Hα to define G(L, g) we implicitly fix an
order in L. We observe that the Goppa code G(L, g) is the subfield subcode of
code over Fqnr having as parity check matrix Hα. We denote by Ω = Ω(q, n, r)
the set of Goppa codes, with fixed parameters q, n, r, S = S(q, n, r) the set of
all elements in Fqnr of degree r over Fqn and P = P(q, n, r) the set of irreducible
polynomials of degree r in Fqn [x].

In [4] the action on Ω is obtained by considering an action on S of an ”semi-
affine” group T = AGL(1, qn)〈σ〉 in the following way: for α ∈ S and t ∈ T ,
αt = aαqi

+ b for some a, b ∈ Fqn , a �= 0 and i = 1 . . . nr. The action gives a
number of orbits over S which is an upper bound for the number of non equivalent
Goppa codes. An important result of [4] is the following:

Theorem 1. [4] If α, β ∈ S are related as it follows β = ζαqi

+ ξ for some
ζ, ξ ∈ Fqn , ζ �= 0, i = 1. . .nr, then C(α) is equivalent to C(β).
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In [2] the action of a group FG isomorphic to AΓL(1, qn) on the qn columns
of the parity check matrix Hα is considered. We point out that columns of Hα

are in bijective correspondence with the elements of Fqn . The group FG induces
on Ω the same orbits which arise from the action introduced in [4]. This action
does not describe exactly the orbits of permutation non equivalent Goppa codes,
since in some cases the number of permutation non-equivalent Goppa codes is
less than the number of orbits of T on S.

The group FG acts faithfully on the columns of Hα: it can be seen as a
subgroup of the symmetric group Sqn . In [2] it has been proved that there exists
exactly one maximal subgroup M (isomorphic to AGL(nm, p)) of Sqn (Aqn)
containing FG (q = pm). This suggests that one could consider the action of M
on codes to reach the right bound. From this result one could hope that, when it
is not possible to reach the exact number s of permutation non-equivalent Goppa
codes by the action of FG, s is obtained by considering the group AGL(nm, p).
Unfortunately, this is not always true as it is shown in the next section. The
following examples were introduced by Ryan in this PhD thesis [4]. In the next,
we thoroughly analyze them, pointing out the group action of AGL(nm, p).

Classification of Ω(3, 2, 4). Let q = 3, n = 2, r = 4; let ε be a primitive
element of F32 with minimal polynomial x2 + 2x + 2; let L = [ε, ε2, . . . , ε7, 1, 0];
let P = P(3, 2, 4) be the set of all irreducible polynomials of degree 4 in F9,
|P| = 1620 and let S = S(3, 2, 4) be the set of all elements of degree 4 over F9,
|S| = 6480. Let Γ (g, L) be a maximal irreducible Goppa code of length 9 over
F3, g ∈ P. We denote by SS the symmetric group on S. We consider the action
of T on S: it gives 13 orbits on S. It means that there are at most 13 classes
of maximal irreducible Goppa codes. We choose a representative for each class.

Table 1 shows the thirteen classes: for each representative code Γi, we give
the corresponding Goppa polynomial gi(x), the code parameters [n, k, d] and the
generator matrix M .

Table 1. Representatives of the 13 classes obtaining in the action of T over S

Γi gi(x) [n, k, d] generator matrixM

Γ1 x4 + f3x3 + fx + f5 [9, 1, 9] [112212212]
Γ2 x4 + f7x3 + x2 + f5x + f3 [9, 1, 5] [010222010]
Γ3 x4 + f5x + f [9, 1, 9] [122221112]
Γ4 x4 + f5x2 + f6x + f2 [9, 1, 6] [120101202]
Γ5 x4 + f7x2 + f2x + f5 [9, 1, 6] [112001011]
Γ6 x4 + fx3 + f5x2 + f3x + f6 [9, 1, 7] [001111122]
Γ7 x4 + f6x3 + f2x2 + 2x + f5 [9, 1, 5] [001220110]
Γ8 x4 + 2x3 + 2x2 + 2x + f7 [9, 1, 6] [121120200]
Γ9 x4 + f5x3 + f2x2 + f3 [9, 1, 6] [010021112]
Γ10 x4 + 2x3 + f3x2 + f6, [9, 1, 5] [120201200]
Γ11 x4 + fx3 + fx2 + fx + f2, [9, 1, 7] [120220221]
Γ12 x4 + f3x3 + f2x2 + 2x + f3, [9, 1, 6] [101012012]
Γ13 x4 + f3x3 + f5x2 + x + f6 [9, 1, 6] [011101202]
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The analysis of parameters [n, k, d] and generator matrices shows that these 13
code representantives can not be equivalent, since they have different minimum
distances. We can observe that Γ1 is permutation equivalent to Γ3; Γ2 and Γ10

are permutation equivalent to Γ7; Γ11 is permutation equivalent to Γ6; Γ4 is
permutation equivalent to Γ8; Γ9 are Γ12 are permutation equivalent to Γ13. We
can conclude that the number of different classes of permutation non equivalent
codes is 6 and not 13 (Γ5 composes a permutation equivalence class).

Moreover Γ5, Γ4, Γ8, Γ9, Γ12 and Γ13 are monomially equivalent, so there are
only 4 equivalence classes of non equivalent Goppa codes.

In Table 2 we summarize the results of the group actions as follows. The
action of T on S, T ≤ SS, creates 13 orbits: we report the number of elements
in each orbit |ST | and we count the number of Goppa codes corresponding to
these elements (by abuse of notation we write |Γ T

i |). For each representative
Γi, we consider its permutation group P(Γi): we obtain the number of codes
permutation equivalent to it by computing |S9|

|P(Γi)| ; the number of codes which are
permutation equivalent to Γi under the actions of FG (and AGL = AGL(2, 3)) is
obtained as |FG|

|FG∩P(Γi)| (and |AGL|
|ALG∩P(Γi)| , respectively). We use symbols ♣, ♦, ♥

and ♠ to denote the four monomial equivalence classes and symbols ⊕, 
, ⊗
to denote the permutation classes when they are different from the monomial
classes. We write P.E. to say Permutation Equivalent.

In this example, the action of the only maximal permutation group AGL ≤
Sqn , which contains FG, is not sufficient to unify disjoint orbits of non equiva-
lent codes. Only the whole symmetric group Sqn gives the right number of non
equivalent Goppa codes.

Remark 1. It is interesting to analyzing polynomials in P. We denote by P♣ the
set of polynomials corresponding to Goppa codes in the ♣ equivalence class, and

Table 2. Different group actions

Γi |ST | |Γ T
i | |P(Γi)| |S9|

|P(Γi)|
|F G|

|P(Γi)∩F G|
|AGL|

|P(Γi)∩ALG|
Γ1 ♣ 144 18 2880 126 18 54
Γ3 ♣ 576 72 2880 P.E.Γ1 72 72

Γ2 ♦ 576 144 288 1260 144 432
Γ10 ♦ 576 144 288 P.E.Γ2 144 216
Γ7 ♦ 576 144 288 P.E.Γ2 144 432

Γ6 ♠ 576 144 480 756 144 216
Γ11 ♠ 288 72 480 P.E.Γ6 72 108

Γ5 ♥ ⊗ 576 144 720 504 144 216
Γ4 ♥ ⊕ 576 144 432 840 144 432
Γ8 ♥ ⊕ 576 144 432 P.E.Γ4 144 216
Γ9 ♥ � 288 72 288 1260 72 108
Γ12 ♥ � 576 144 288 P.E.Γ9 144 216
Γ13 ♥ � 576 144 288 P.E.Γ9 144 216

6480 1530 4746 1530 2934
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so on for the others, hence P = P♣ ∪P♦ ∪P♠ ∪P♥. We denote by P∗,Γi , the set of
polynomials in P∗, ∗ ∈ {♣, ♦, ♥,♠}, corresponding to the codes in Γ T

i . It is easy
to check that if g ∈ P♣, g has the following shape x4 + εix3 + εjx + εk for some
εi, εj , εk ∈ Fqn and the x2 coefficient is equal to zero. We know that |P♣,Γ1 | = 36
and |Γ T

1 | = 18. This means that more than one polynomial generates the same
code. We can show that couples of polynomials in P♣,Γ1 generate the same code.
Moreover if g1, g2 ∈ Γ T

1 generate the same Goppa code then they have the same
coefficients except for the constant term: we can obtain one constant term from
the other by arising to the q-th power. For example polynomials x4+ε6x3+ε2x+ε2

and x4 + ε6x3 + ε2x + ε6 generate the same Goppa code. A similar argument can
conduce us to say that polynomials in P♣,Γ3 are 576, but they generate 72 different
Goppa codes. We have that 4 polynomials create the same Goppa code and we find
the following relation: given a polynomial g ∈ P♣,Γ3 , g = x4+εix3+εjx+εk, then
the following tree polynomials generate the same Goppa code: g′ = x4 + εiqx3 +
εjqx+εkq, g′′ = x4 +εjx3 +εix+εk and g′′′ = x4 +εjqx3 +εjqx+εkq. Analogous
arguments can be used to describe set of polynomials in P♦, P♥ and P♠.

Codes in Ω(2,5,6): let us consider the codes studied in [3]. Let q = 2, n = 5
r = 6 and let f be a primitive element of Fqn with minimal polynomial x5+x2+1;
let L = [f, f2, . . . , f30, 1, 0]. We consider the following two polynomials p1 :=
x6 + f22x5 + f2x4 + f25x3 + f10x + f3 and p2 := x6 + f20x5 + f19x4 + f19x3 +
f12x2+f4x+f28. They generate equivalent Goppa codes Γ1(L, p1) and Γ2(L, p2),
but their roots are in different orbits under the action of T over S = S(2, 5, 6).
To know how many codes are in each orbits we take a representative code and
we construct its orbit under the permutation group FG ≤ S32. We verify that
the action of the maximal subgroup AGL(2, 5) containing FG does not unify
the two orbits. Also in this case, the only permutation group which gives the
right number of non equivalent Goppa code is the whole symmetric group Sqn .
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Repeated Root Cyclic and Negacyclic Codes

over Galois Rings
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Abstract. In this notice we describe the ideal structure of all cases of
cyclic and negacyclic codes of length ps over a Galois ring alphabet that
have not yet been discussed in the literature. Unlike in the cases reported
earlier in the literature by various authors, the ambient spaces here are
never chain rings. These ambient rings do nonetheless share the proper-
ties of being local and having a simple socle.

Keywords: repeated root codes, cyclic codes, polynomial codes,
Galois rings.

1 Introduction

While the literature on cyclic and negacylic codes over chain rings (such as
Galois rings) has experienced much growth in recent years (see [1, 2, 3, 4, 5, 6]),
in most instances the studies have been focused only on the cases where the
characteristic of the alphabet ring is coprime to the code length, the so-called
simple root codes. A few of the contributions to the study of the cases where the
characteristic of the alphabet ring is not coprime to the code length (repeated
root codes) are [7, 8, 9, 10, 11, 12].

In this paper we focus on the repeated root case where the code length is in
fact ps, a power of a prime p. In all papers dealing with this type of code so far,
the codes correspond to principal ideals because in every case considered thus
far the code ambient has been a chain ring. It turns out that in the remaining
cases the code ambients are no longer chain rings and in fact, not even principal
ideal rings. The authors are submitting a complete account of their research
elsewhere [13]; the results announced here are proven there and methods to
calculate the minimum distance of all negacyclic and cyclic codes considered are
also given there.

The three cases of codes of length ps not previously tackled in the literature
are: cyclic and negacyclic codes over GR(pa, m) for odd prime p and a > 1
and cyclic codes over GR(2a, m) for a > 1. It is easy to see that the ambients
GR(pa,m)[x]

〈xps+1〉 and GR(pa,m)[x]
〈xps−1〉 for negacyclic and cyclic codes for an odd prime p

and a > 1 are isomorphic under the isomorphism sending x to −x. Hence, all
the results about the lattice structure of their ideals can be done for one and
translated into the other in a straightforward way. Surprisingly, the structure
for the ambient ring GR(2a,m)[x]

〈x2s−1〉 of the cyclic codes over GR(2a, m) for a > 1
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is similar to the two other ambients in this paper and, in fact, the proofs of
the corresponding results are highly parallel. For convenience, we opt to state
all results on the cyclic case so all results can be stated with a single notation
without restrictions on the parity of p. It is worthwhile noticing, however, that
GR(2a,m)[x]

〈x2s−1〉 is not isomorphic to its negacyclic counterpart which is a chain ring
[14]. One should also point out that in [13] where these results appear in their
entirety including proofs, it was found to be better to work on the negacyclic
case for the proofs when p is odd. In the case of p = 2, the results can be obtained
using x + 1 or x − 1. For the reason mentioned, x + 1 was chosen to present the
p = 2 case in [13] also. Here we will use x − 1 for the purposes of stating the
results for arbitrary prime p in a concise way.

We use standard ring-theoretic terminology which we include here for the
convenience of the reader. For further information, the reader may consult a
standard reference such [15]. For an account focusing on finite rings, see [16]. A
left module M of a ring R is simple if M �= 0 and M has no R-submodules other
than (0) and M . The socle of a ring R denoted by soc(R), is the sum of of all
minimal left ideals of R. The Jacobson Radical of ring R denoted by J(R), is the
intersection of all maximal left ideals of R. A chain ring is a ring whose ideals
are linearly ordered by inclusion. Since all rings in this paper are commutative,
the use of left modules, left ideals, etc. is unnecessary in our context and the
reader may simply ignore the word ”left” in each definition.”

2 The Main Results

The following results hold for ambient rings GR(pa,m)[x]
〈xps−1〉 for integers a > 1, s > 0

and p an arbitrary prime.

Proposition 1. In GR(pa,m)[x]
〈xps−1〉 , the element (x − 1) is nilpotent.

Proposition 2. The ambient ring GR(pa,m)[x]
〈xps−1〉 is a local ring with radical J(

GR(pa,m)[x]
〈xps−1〉

)
= 〈p, x − 1〉.

Proposition 3. The socle soc
(

GR(pa,m)[x]
〈xps−1〉

)
of GR(pa,m)[x]

〈xps−1〉 is the simple module

〈pa−1(x − 1)(p
s−1)〉.

Proposition 4. In the ambient ring GR(pa,m)[x]
〈xps−1〉

1. p /∈ 〈x − 1〉
2. x − 1 /∈ 〈p〉
3. GR(pa,m)[x]

〈xps−1〉 is not a chain ring
4. 〈p, x − 1〉 is not a principal ideal

Theorem 1. The ambient ring GR(pa,m)[x]
〈xps−1〉 is a finite local ring with simple socle

that is not a chain ring.
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Example 1. To illustrate Theorem 1, we provide the following figure. It shows
the ideal lattice of Z32 [x]

〈x3−1〉 . Notice that the radical is 〈3, x − 1〉 and the socle is
〈3(x − 1)2〉. More importantly, we see that the ring is not a chain ring.

〈1〉

〈3, x − 1〉

〈3, (x − 1)2〉 〈3 + (x − 1)〉 〈3 + 2(x − 1)〉 〈x − 1〉

〈3 + (x − 1)2, 3(x − 1)〉 〈3〉 〈3 + 2(x − 1)2〉 〈(x − 1)2〉

〈3 + 6(x − 1) + (x − 1)2〉 〈3 + 3(x − 1) + (x − 1)2〉 〈3 + (x − 1)2〉 〈3(x − 1)〉

〈3(x − 1)2〉

〈0〉
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3 Conclusion

The results in this paper shed light on a more general class of codes and their ambi-
ent structures, namely polynomial codes over Galois rings. It was shown here that
such codes are not always principal. This abridged version of [13] should serve as
insight for another paper by the authors which is in preparation at this time [17].
In that paper, the ambient rings for polynomial codes over Galois rings are studied
which is the natural next step for the research presented here.
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J. Pujol, J. Rifà, and L. Ronquillo
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de Barcelona, 08193-Bellaterra, Spain

Abstract. The well known Plotkin construction is, in the current pa-
per, generalized and used to yield new families of Z2Z4-additive codes,
whose length, dimension as well as minimum distance are studied. These
new constructions enable us to obtain families of Z2Z4-additive codes
such that, under the Gray map, the corresponding binary codes have the
same parameters and properties as the usual binary linear Reed-Muller
codes. Moreover, the first family is the usual binary linear Reed-Muller
family.

Keywords: Z2Z4-Additive codes, Plotkin construction, Reed-Muller
codes, Z2Z4-linear codes.

1 Introduction

The aim of our paper is to obtain a generalization of the Plotkin construction
which gave rise to families of Z2Z4-additive codes such that, after the Gray map,
the corresponding Z2Z4-linear codes had the same parameters and properties as
the family of binary linear RM codes. Even more, we want the corresponding
codes with parameters (r, m) = (1, m) and (r, m) = (m−2, m) to be, respectively,
any one of the non-equivalent Z2Z4-linear Hadamard and Z2Z4-linear 1-perfect
codes.

2 Constructions of Z2Z4-Additive Codes

In general, any non-empty subgroup C of Z
α
2 ×Z

β
4 is a Z2Z4-additive code, where

Z
α
2 denotes the set of all binary vectors of length α and Z

β
4 is the set of all

β-tuples in Z4.
Let C be a Z2Z4-additive code, and let C = Φ(C), where Φ : Z

α
2 ×Z

β
4 −→ Z

n
2 is

given by the map Φ(u1, . . . , uα|v1, . . . , vβ) = (u1, . . . , uα|φ(v1), . . . , φ(vβ)) where
φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), and φ(3) = (1, 0) is the usual Gray
map from Z4 onto Z

2
2.

Since the Gray map is distance preserving, the Hamming distance of a Z2Z4-
linear code C coincides with the Lee distance computed on the Z2Z4-additive
code C = φ−1(C).
� This work has been partially supported by the Spanish MICINN Grants MTM2006-

03250, TSI2006-14005-C02-01, PCI2006-A7-0616 and also by the Comissionat per a
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A Z2Z4-additive code C is also isomorphic to an abelian structure like Z
γ
2×Z

δ
4.

Therefore, C has |C| = 2γ4δ codewords and, moreover, 2γ+δ of them are of order
two. We call such code C a Z2Z4-additive code of type (α, β; γ, δ) and its binary
image C = Φ(C) is a Z2Z4-linear code of type (α, β; γ, δ).

Although C may not have a basis, it is important and appropriate to define a
generator matrix for C as:

G =
(

B2 Q2

B4 Q4

)
, (1)

where B2 and B4 are binary matrices of size γ × α and δ × α, respectively; Q2

is a γ × β-quaternary matrix which contains order two row vectors; and Q4 is a
δ × β-quaternary matrix with order four row vectors.

2.1 Plotkin Construction

In this section we show that the well known Plotkin construction can be gener-
alized to Z2Z4-additive codes.

Definition 1 (Plotkin Construction). Let X and Y be any two Z2Z4-additive
codes of types (α, β; γX , δX ), (α, β; γY , δY) and minimum distances dX , dY , re-
spectively. If GX and GY are the generator matrices of X and Y, then the
matrix

GP =
(GX GX

0 GY

)

is the generator matrix of a new Z2Z4-additive code C.

Proposition 2. Code C defined above is aZ2Z4-additive code of type (2α, 2β; γ, δ),
where γ = γX + γY , δ = δX + δY , binary length n = 2α + 4β, size 2γ+2δ and
minimum distance d = min{2dX , dY}.

2.2 BA-Plotkin Construction

Applying two Plotkin constructions, one after another, but slightly changing
the submatrices in the generator matrix, we obtain a new construction with
interesting properties with regard to the minimum distance of the generated
code. We call this new construction BA-Plotkin construction.

Given a Z2Z4-additive code C with generator matrix G we denote, respectively,
by G[b2], G[q2], G[b4] and G[q4] the four submatrices B2, Q2, B4, Q4 of G defined

in (1); and by G[b] and G[q] the submatrices of G,
(

B2

B4

)
,
(

Q2

Q4

)
, respectively.

Definition 3 (BA-Plotkin Construction). Let X , Y and Z be any three
Z2Z4-additive codes of types (α, β; γX , δX ), (α, β; γY , δY), (α, β; γZ , δZ) and min-
imum distances dX , dY , dZ , respectively. Let GX , GY and GZ be the generator
matrices of the Z2Z4-additive codes X , Y and Z, respectively. We define a new
code C as the Z2Z4-additive code generated by
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GBA =

⎛
⎜⎜⎜⎜⎝

GX [b] GX [b] 2GX [b] GX [q] GX [q] GX [q] GX [q]
0 GY [b2] GY [b2] 0 2G′

Y [q2] G′
Y [q2] 3G′

Y [q2]
0 GY [b4] GY [b4] 0 GY [q4] 2GY [q4] 3GY [q4]

GY [b4] GY [b4] 0 0 0 GY [q4] GY [q4]
0 GZ [b] 0 0 0 0 GZ [q]

⎞
⎟⎟⎟⎟⎠ ,

where G′
Y [q2] is the matrix obtained from GY [q2] after switching twos by ones in

its γY rows of order two, and considering the ones from the third column of the
construction as ones in the quaternary ring Z4.

Proposition 4. Code C defined above is a Z2Z4-additive code of type (2α, α +
4β; γ, δ) where γ = γX +γZ , δ = δX +γY +2δY + δZ , binary length n = 4α+8β,
size 2γ+2δ and minimum distance d = min{4dX , 2dY , dZ}.

3 Additive Reed-Muller Codes

We will refer to Z2Z4-additive Reed-Muller codes as ARM. Just as there is only
one RM family in the binary case, in the Z2Z4-additive case there are �m+2

2 �
families for each value of m. Each one of these families will contain any of the
�m+2

2 � non-isomorphic Z2Z4-linear extended perfect codes which are known to
exist for any m [1].

We will identify each family ARMs(r, m) by a subindex s ∈ {0, . . . , �m
2 �}.

3.1 The Families of ARM(r, 1) and ARM(r, 2) Codes

We start by considering the case m = 1, that is the case of codes of binary length
n = 21. The Z2Z4-additive Reed-Muller code ARM(0, 1) is the repetition code,
of type (2, 0; 1, 0) and which only has one nonzero codeword (the vector with
only two binary coordinates of value 1). The code ARM(1, 1) is the whole
space Z

2
2, thus a Z2Z4-additive code of type (2, 0; 2, 0). Both codes ARM(0, 1)

and ARM(1, 1) are binary codes with the same parameters and properties as
the corresponding binary RM(r, 1) codes (see [2]). We will refer to them as
ARM0(0, 1) and ARM0(1, 1), respectively.

The generator matrix of ARM0(0, 1) is G0(0, 1) =
(
1 1

)
and the generator

matrix of ARM0(1, 1) is G0(1, 1) =
(

1 1
0 1

)
.

For m = 2 we have two families, s = 0 and s = 1, of additive Reed-Muller
codes of binary length n = 22. The family ARM0(r, 2) consists of binary codes
obtained from applying the Plotkin construction defined in Proposition 2 to
the family ARM0(r, 1). For s = 1, we define ARM1(0, 2), ARM1(1, 2) and
ARM1(2, 2) as the codes with generator matrices G1(0, 2) =

(
1 1 2

)
, G1(1, 2) =(

1 1 2
0 1 1

)
and G1(2, 2) =

⎛
⎝1 1 2

0 1 0
0 1 1

⎞
⎠, respectively.
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3.2 Plotkin and BA-Plotkin Constructions

Take the family ARMs and let ARMs(r, m − 1), ARMs(r − 1, m − 1) and
ARMs(r − 2, m − 1), 0 ≤ s ≤ �m−1

2 �, be three consecutive codes with parame-
ters (α, β; γ′, δ′), (α, β; γ′′, δ′′) and (α, β; γ′′′, δ′′′); binary length n = 2m−1; mini-
mum distances 2m−r−1, 2m−r and 2m−r+1; and generator matrices Gs(r, m− 1),
Gs(r − 1, m − 1) and Gs(r − 2, m − 1), respectively. By using Proposition 2 and
Proposition 4 we can prove the following results:

Theorem 5. For any r and m ≥ 2, 0 < r < m, code ARMs(r, m) obtained by
applying the Plotkin construction from Definition 1 on codes ARMs(r, m − 1)
and ARMs(r − 1, m − 1) is a Z2Z4-additive code of type (2α, 2β; γ, δ), where
γ = γ′ + γ′′ and δ = δ′ + δ′′; binary length n = 2m; size 2k codewords, where

k =
r∑

i=0

(
m

i

)
; minimum distance 2m−r and ARMs(r − 1, m) ⊂ ARMs(r, m).

We consider ARMs(0, m) to be the repetition code with only one nonzero
codeword (the vector with 2α ones and 2β twos) and ARMs(m, m) be the whole
space Z

2α
2 × Z

2β
4 .

Theorem 6. For any r and m ≥ 3, 0 < r < m, s > 0, use the BA-Plotkin
construction from Definition 3, where generator matrices GX , GY , GZ stand for
Gs(r, m − 1), Gs(r − 1, m − 1) and Gs(r − 2, m − 1), respectively, to obtain a
new Z2Z4-additive ARMs+1(r, m + 1) code of type (2α, α + 4β; γ, δ), where
γ = γ′ + γ′′′, δ = δ′ + γ′′ + 2δ′′ + δ′′′; binary length n = 2m+1; 2k code-

words, where k =
r∑

i=0

(
m + 1

i

)
, minimum distance 2m−r+1 and, moreover,

ARMs+1(r − 1, m + 1) ⊂ ARMs+1(r, m + 1).

To be coherent with all notations, code ARMs+1(−1, m + 1) is defined as
the all zero codeword code, code ARMs+1(0, m + 1) is defined as the repetition
code with only one nonzero codeword (the vector with 2α ones and α+4β twos),
whereas codes ARMs+1(m, m + 1) and ARMs+1(m + 1, m + 1) are defined as
the even Lee weight code and the whole space Z

2α
2 × Z

α+4β
4 , respectively.

Using both Theorem 5 and Theorem 6 we can now construct all ARMs(r, m)
codes for m > 2. Once applied the Gray map, all these codes give rise to binary
codes with the same parameters and properties as the RM codes. Moreover,
when m = 2 or m = 3, they also have the same codewords.
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Abstract. Several constructions in binary linear block codes are also
related to matroid theory topics. These constructions rely on a given or-
der in the ground set of the matroid. In this paper we define the Gröbner
representation of a binary matroid and we show how it can be used for
studying different sets bases, cycles, activity intervals, etc.

1 Introduction

In this work we provide a representation of a binary matroid. We have tried to
keep “Gröbner machinery” [11] out of the paper for those readers non familiar
with it. Effective methods for computing the Gröbner representation that heavily
depend of Gröbner basis techniques can be found in other papers of the authors
[1,2,3,4]. The starting point of the research in Gröbner representations can be
found in [5,11,12,16].

Let E be a finite set called ground set and I ⊂ 2E . We say thatM = (E, I)
is a matroid if the following conditions are satisfied: (i) ∅ ∈ I, (ii) If A ∈ I and
B ⊆ A, then B ∈ I and (iii) If A, B ∈ I and |A| = |B| + 1, then there is an
element x ∈ A \B so that B ∪ {x} ∈ I.

Let F2 be the finite field with 2 elements and G be a binary matrix with
column index set E. Let I be the collection of sets I ⊆ E such that the column
submatrix indexed by I has F2 independent columns. If we consider ∅ ∈ I then
M = (E, I) is the binary matroid with ground set E and independent sets I.
A base B of M is a maximum cardinality set B ∈ I and a circuit C of M is a
subset of E that indexes a F2-minimal dependent column submatrix of G. We
call cycles to all the dependent sets (minimal and non minimal). G can be seen
as a generator matrix of a code. From now on we consider only binary matrices
that provide projective codes, i.e. those that any two columns of the generator
matrix are different (equivalently, the dual code has minimum weight at least
3). Circuits (respectively cycles) of the matroid defined by G are in one to one
correspondence with the minimum weight codewords (respectively codewords)
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of the dual code. In matroids the greedy algorithm always succeeds in choosing
a base of minimum weight, formally

Proposition 1. Let M = (E, I) a matroid where the elements of E are totally
ordered, then

1. there is a base A = {a1, a2, . . . , ak} with a1 < a2 < . . . < ak, called the first
basis, such that for any other base X = {x1, x2, . . . , xk} with x1 < x2 <
. . . < xk we have that ai ≤ xi.

2. there is a base B = {b1, b2, . . . , bk} with b1 < b2 < . . . < bk, called the last
basis, such that for any other base X = {x1, x2, . . . , xk} with x1 < x2 <
. . . < xk we have that bi ≥ xi.

The first base is computed by a greedy algorithm, {a1} is the smallest indepen-
dent set of size 1, then a2 is the smallest element such that {a1, a2} is indepen-
dent, and so on. The last base is built in a similar way.

2 A Gröbner Representation of a Binary Matroid

Let {ei}ni=1 be the canonical basis of F
n
2 (ie. ei is the vector with 1 in position

i and 0 elsewhere). We consider the following total order on the elements of F
n
2 .

Let x,y ∈ F
n
2 we say that x ≺e y if |supp(x)| ≤ |supp(y)|, or, if |supp(x)| =

|supp(y)| then x ≺ y where ≺ is the lexicographic ordering on the vectors of F
n
2 .

Consider a binary matroid and C its associated projective code. We define the
Gröbner representation of the matroid as follows,

Canonical forms. The set N is a transversal of F
n
2/C⊥ such that for each

n ∈ N \ {0} there exists ei 1 ≤ i ≤ n such that n = n′ + ei and n′ ∈ N .
Matphi. Let φ : N × {ei}ni=1 → N be the function that maps each pair (n, ei)

to the element in N representing the coset containing n + ei.

We call the pair N, φ a Gröbner representation of M. Suppose we consider
the ideal given by I(M) = 〈{xa − xb | (a − b) ∈ C⊥}〉 ⊆ F2[x1, x2, . . . , xn]
where (abusing the notation) we consider an element a in F

n
2 as a vector a =

(a1, a2, . . . , an) ∈ Z
n then xa represents the monomial

∏n
i=1 xan

i . A a Gröbner
representation [11] of the ideal I(M) is given by N, φ. An algorithm for com-
puting a Gröbner basis of the ideal can be found in [1]. This greedy algorithm
computes the first base given N, φ

1. FB ← 0, v← 0.
2. for i = 1, . . . , n

do (if φ(v, ei) �= 0 then FB ← FB + ei, v← φ(v, ei) endif) enddo
3. Return FB.

The returned vector is a 0-1 vector where the 1 index the elements on the first
basis. Same algorithm applies for the last base just changing the order in the
counter for. One can compute a trellis for a linear code isomorphic to Muder’s
minimal trellis [13] based on the first and last basis, see [6].
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3 Activities

Let M = (E, I) be a matroid on a linearly ordered set E, and let A ⊆ E. We
say that an element e ∈ E is M-active with respect to A if there is a circuit γ
such that e ∈ γ ⊆ A∪{e} and e is the smallest element of the circuit. We denote
by ActM(A) the set ofM-active elements with respect to A.

If C is the binary code associated to the matroid, then a codeword c =
(c1, . . . , cn) of the code C⊥ (i.e. a cycle of the matroid) is said to have the span
interval [i, j] where i ≤ j, if cicj �= 0, and cl = 0 if l < i or j < l. In this case
the codeword c is said to be sup-active in the interval [i, j − 1], and has span
length j− i+1. Sup-active words in binary codes are closely connected with the
construction and analysis of trellis oriented generator matrix of C⊥ (see [8,10]
and the references therein).

Given N, φ for a matroidM, the nodes of the GR-graph (Gröbner represen-
tation graph) be the set N of canonical forms and there is an edge from node
n1 to n2 if there is a i, 1 ≤ i ≤ n such that φ(n1, ei) = n2, and the label of
that edge is ei. Let A ⊆ E = [1, n] we define the graph GRA obtained from the
GR-graph of the matroid by deleting all the edges labelled with ei, such that
i ∈ E \A and element j is active if:

1. Either j ∈ A and there is a circuit in GRA such that all the labels el fulfill
l ≥ j and the (binary) sum of all the labels is different from 0.

2. or j /∈ A and there is a circuit in GRA∪{j} such that all the labels el fulfill
l ≥ j and the (binary) sum of all the labels is different from 0.

Let A be an interval and let IA the elimination ideal of I = I(M) (see [7] for
a definition) for the variables in {xi}i∈A. Let g the greatest element in A, then
the cycles correspond to the non-zero binomials in

(⋃
e<g

[
I[e,g]∩A \ I[e+1,g]∩A

])

and ActM(A) to the first elements of their leading terms. If we are given an
interval [i, j] ⊆ [1, n]let I[i,j] the set of codewords sup-active in the interval
[i, j − 1] is given as those cycles in the graph GR[i,j] where for all the labels el

we have l ∈ [i, j], two of them are ei and ej and the (binary) sum of all the
labels is different from 0. If we consider the elimination ideal I[i,j] of I for the
variables xi, xi+1, . . . , xj then the cycles correspond to the non-zero binomials
in

(
I[i,j] \ I[i+1,j]

) \ I[i,j−1].
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Abstract. In this paper we develop a generalization of the zig-zag graph
product created by Reingold, Vadhan, and Widgerson[8]. We do this by
using a broader definition of directed and undirected graphs in which
incidence is determined by functions from the edge set to the vertex set.
We introduce the sandwich product of graphs and show how our general
zig-zag product is a sandwich product.

1 Introduction

In this extended abstract we present a generalization of the zig-zag product of
graphs which is defined in the manner outlined in the paper by Hoory et.al.[3].
For this definition let

– G be a m-regular graph on n verticies.
– H be a d-regular graph on m verticies.
– Let v1, v2, . . . , vm be an enumeration of V (H)
– For each u ∈ V (G), fix an enumeration e1

u, e2
u, . . . , em

u of the edges incident
with u

Definition 1. The zig-zag product of graphs G and H, denoted G ©z H, is a
graph on V (G)×V (H) for which (u, vi) is adjacent to (w, vj) if and only if there
exists k, l ∈ {1, 2, . . . , m} such that both

– (vi, vk) , (vl, vj) ∈ E(H), and
– ek

u = el
u

The development of the zig-zag product was a seminal step in the explicit con-
struction of expander graphs. These graphs have been used to address fun-
dametal problems in computer science, such as network design[6,7] and com-
plexity theory[11,10], and areas of pure mathematics, such as topology [1] and
measure theory [5]. For a more general survey of the development of the con-
struction of exapnder graphs see Hoory, et al. [3].
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2 Graphs, Sandwiches, and the Zig-Zag Product

Our approach does not require the regularity of the first graph to be equal to
the number of edges in the second graph, moreover, neither graph needs to be
regular. We use definitions of digraph and of graph that allow for loops and
parallel edges. The definition is perhaps not standard but is found in Harary[2]
(where the term net is used instead of digraph) and is close to the definitions
used by MacLane[4], and Serre [9]. We introduce the sandwich product of graphs
and we show that the zig-zag product of graphs may be concisely presented as
the sandwich product of two relatively simple graphs.

2.1 Directed and Undirected Graphs

In the following definitions, a graph is a digraph with additional structure.

Definition 2. A directed graph (or digraph), denoted by the letter G, is a
collection of two sets E(G) and V (G) together with two functions σG and τG

from E(G) to V (G) where

– E(G) and V (G) are known as the edge and vertex sets of the net G.
– σG and τG are known as the source and terminus functions of the net G.

Definition 3. An undirected graph, or just graph, is a digraph G in which
there exists a unique involution ρG : E → E such that τG = σG ◦ ρG. We call
the function ρG the rotation mapping of the graph G.

The term rotation map was used in [8]. In the usual depiction of a graph an edge
between two vertices represents two edges according to the preceding definition—
one going each direction—and the two are images of each other under the invo-
lution ρG.

The tip to tail concatenation of the graphs used in the definitions of the zig-
zag and replacement products has a connection to a more general construct, the
pullback of mappings of sets.

Definition 4. Let A, B, and C be sets and let f : A → C and g : B → C be
functions. Then the pullback of set functions f and g is the set

A ×C B = {(a, b) |f (a) = g (b)}
together with the standard coordinate projections π1 and π2.

We can look at the tip to tail traversing of the edges of two graphs in the zig-zag
product as really just the pullback of the terminus of one graph and the source
of the other. More generally we may define the concatenation of any two graphs
as follows:

Definition 5. Let G and H be directed graphs with a common vertex set V
and let E(G) ×V E(H) be the pullback of the mappings τG and σH . Then the
concatenation of G with H, denoted by G ©c H, is the directed graph with
vertex set V , edge set E(G)×V E(H), source map σ = σG ◦π1 and terminus map
τ = τH ◦ π2.
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While G©c H is not guaranteed to be a graph, the double concatenation of the
form G©c H ©c G always is. We will call this type of concatenation the sandwich
product.

Definition 6. Let G and H be graphs with common vertex set V . Then the
sandwich product of G with H, denoted G©s H, is the graph defined by the
triple concatination G©s H = G©c H ©c G

The sandwich product is a “zig-zag” like product but with the sole requirement
that they have the same vertex set.

2.2 A Zig-Zag Sandwich

We now can display the zig-zag product of two graphs as the sandwich product
of two simple graphs. The first factor we call the zig product and the second
factor the zag product.

Definition 7. Let G and H be graphs. The zig product of G with H, denoted
G©i H, is |V (G)| copies of the graph H defined by

V (G) × E(H)

idV (G)×σH

��

idV (G)×ρH

��

V (G) × V (H)

The zig product graph will lie at the beginning and end of our product much like
how we start and end in a “cloud” when we traverse the replacement product
graph in a “zig-zag” fashion. We now need to define our analog to the bridges
between the “clouds” in the zig-zag. We will call this graph the zag product. The
zig-zag product is the sandwich product of the zig and the zag.

Definition 8. Let G and H be graphs and φ : E(G) → V (H) be any mapping.
Then the zag product of G and H, denoted G©a H, is the graph with vertex
set V (G) × V (H), edge set E(G©a H) = E(G), source mapping σzag = σg × φ
and rotation mapping ρzag = ρG as depicted in the diagram

E(G)

σG×φ

��

ρG

��

V (G) × V (H)

The zig-zag product is then the sandwich product of the zig and the zag.

G©z H = (G©i H)©s (G©a H)
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The definition above requires only a mapping from the edge set of G to the
vertex set of H . It is more general then the one in the paper by Reingold et al.
[8] in which G must be regular with regularity equal to the number of vertices
in H .
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Abstract. We propose a new efficient certificateless aggregate signature
scheme which has the advantages of both aggregate signatures and cer-
tificateless cryptography. The scheme is proven existentially unforgeable
against adaptive chosen-message attacks under the standard computa-
tional Diffie-Hellman assumption. Our scheme is also efficient in both
communication and computation. The proposal is practical for message
authentication in many-to-one communications.

1 Introduction

The notion of newly introduced aggregate signatures [2] allows an efficient algo-
rithm to aggregate n signatures of n distinct messages from n different signers
into one single signature. The resulting aggregate signature can convince a veri-
fier that the n signers did indeed sign the n original messages. These properties
greatly reduce the resulting signature size and make aggregate signatures very
applicable to message authentication in many-to-one communications.

The inception of certificateless cryptography [1] efficiently addresses the key
escrow problem in ID-based Cryptography. In certificateless cryptosystems, a
trusted Key Generation Center (KGC) helps each user to generate his private
key. Unlike ID-based cryptosysems, the KGC in certificateless cryptosystems
merely determines a partial private key rather than a full private key for each
user. Then the user computes the resulting private key with the obtained partial
private key and a self-chosen secret value. As for the public key of each user,
it is computed from the KGC’s public parameters and the secret value chosen
by the user. With this mechanism, certificateless cryptosystems avoid the key
escrow problem in ID-based cryptosystems.

The advantages of certificateless cryptosystems motivate a number of further
studies. The first certificateless signature scheme was presented by Al-Riyami
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and Paterson [1]. A security definition of certificateless signature was formalized
in [7] and the Al-Riyami-Paterson scheme was analyzed in this model. The secu-
rity model of CLS schemes was further enhanced in [6,8,9]. Two Certificateless
Aggregate Signature (CLAS) schemes were recently presented [5] with security
proofs in a weak model similar to that in [7]. Subsequently, a new CLAS scheme
was proposed in [10] and proven secure in a stronger security model. As for
efficiency, the existing schemes require a relatively large number of paring com-
putations in the process of verification and suffer from long resulting signatures.
Our Contribution. In this paper, we propose a novel CLAS scheme which is
more efficient than existing schemes. By exploiting the random oracle model,
our CLAS scheme is proven existentially unforgeable against adaptive chosen-
message attacks under the standard CDH assumption. It allows multiple signers
to sign multiple documents in an efficient way and the total verification informa-
tion (the length of the signature), consists only 2 group elements. Our scheme
is also very efficient in computation and the verification procedure need only a
very small constant number of pairing computations, independent of the number
of aggregated signatures.

2 Our Certificateless Aggregate Signature Scheme

In this section, we propose a new certificateless aggregate signature scheme. Our
scheme is realized in groups which allowing efficient bilinear maps [3].

2.1 The Scheme

The specification of the scheme is as follows.

– Setup: Given a security parameter �, the KGC chooses a cyclic additive group
G1 which is generated by P with prime order q, chooses a cyclic multiplicative
group G2 of the same order and a bilinear map e : G1×G1 −→ G2. The KGC
also chooses a random λ ∈ Z∗

q as the master-key and sets PT = λP , chooses
cryptographic hash functions H1 ∼ H4 : {0, 1}∗ −→ G1, H5 : {0, 1}∗ −→ Z∗

q .
The system parameter list is params = (G1, G2, e, P, PT , H1 ∼ H5).

– Partial-Private-Key-Extract: This algorithm is performed by KGC that accepts
params, master-key λ and a user’s identity IDi ∈ {0, 1}∗, and generates the
partial private key for the user as follows.

1. Compute Qi,0 = H1(IDi, 0), Qi,1 = H1(IDi, 1).
2. Output the partial private key (Di,0, Di,1) = (λQi,0, λQi,1).

– UserKeyGen: This algorithm takes as input params, a user’s identity IDi,
selects a random xi ∈ Z∗

q and sets his secret/public key as xi/Pi = xiP .

– Sign: To sign a message Mi using the signing key (xi, Di,0, Di,1), the signer,
whose identity is IDi and the corresponding public key is Pi, first chooses a
one-time-use string Δ then performs the following steps.
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1. Choose a random ri ∈ Z∗
q , compute Ri = riP .

2. Compute T = H2(Δ), V = H3(Δ), W = H4(Δ).
3. Compute hi = H5(Mi||Δ||IDi||Pi).
4. Compute Si = Di,0 + xiV + hi(Di,1 + xiW ) + riT .
5. Output σi = (Ri, Si) as the signature on Mi.

– Aggregation: Anyone can act as an aggregate signature generater who can
aggregate a collection of individual signatures that use the same string
Δ. For an aggregating set (which has the same string Δ) of n users with
identities {ID1, · · · , IDn} and the corresponding public keys {P1, · · · , Pn},
and message-signature pairs (M1, σ1 = (R1, S1)), · · · , (Mn, σn = (Rn, Sn))
from {U1, · · · , Un} respectively, the aggregate signature generater computes
R =

∑n
i=1 Ri, S =

∑n
i=1 Si and outputs the aggregate signature σ = (R, S).

– Aggregate Verify: To verify an aggregate signature σ = (R, S) signed by n
users with identities {ID1, ..., IDn} and corresponding public keys {P1, ...,
Pn} on messages {M1, ..., Mn} under the same string Δ, the verifier performs
the following steps.
1. Compute T = H2(Δ), V = H3(Δ), W = H4(Δ), and for all i, 1 ≤

i ≤ n compute hi = H5(Mi||Δ||IDi||Pi), Qi,0 = H1(IDi, 0), Qi,1 =
H1(IDi, 1).

2. Verify e(S, P ) ?= e(PT ,
∑n

i=1 Qi,0 +
∑n

i=1 hiQi,1)e(T, R)e(W,
∑n

i=1 hiPi)
e(V,

∑n
i=1 Pi). If the equation holds, output true. Otherwise, output

false.

In our scheme, each user in an aggregating set must use the same one-time-use
string Δ when signing. As mentioned in [4], it is straightforward to choose such
a Δ in certain settings. For example, if the signers have access to some loosely
synchronized clocks, Δ can be chosen based on the current time. Furthermore,
if Δ is sufficiently long, then it will be statistically unique. By exploiting a
approach similar to that presented in [4], the one-time-use restriction on common
reference string Δ in the above scheme can also be removed to achieve better
applicability.

2.2 Security Analysis

Two types of adversaries, who can access to services in addition to those provided
to the attacker against regular signatures, are considered in CL-PKC – Type I
adversary and Type II adversary. A Type I adversary is not allowed to access to
the master-key, but he can replace the public key of any user with a value of his
choice. A Type II adversary can access to the master-key but he cannot replace
the public key of any user. In a secure CLAS scheme, it is infeasible for Type I
adversary and Type II adversary to forge a valid signature.

Under the standard computational Diffie-Hellman assumption, the proposed
CLAS scheme is provably secure against both types of adversaries in the random
model. The formal security proof is in the full version of this paper.
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3 Conclusion

We presented an efficient certificateless aggregate signature scheme. To verify
an aggregate signature signed by n users on n messages under the same string,
a verifier only needs to compute four pairing operations. The proposal is prov-
ably secure in the random oracle model assuming that the computational Diffie-
Hellman problem is hard. Our CLAS scheme can be applied to authentication
in bandwidth limited scenarios such as many-to-one communications.
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1 Introduction

An illegal re-distribution problem is a problem that a regular user who received
content re-distributes without legal permutation. This becomes a social problem
all over the world. As it is indicated in [2], this problem has been known since
a few or more handred years ago. Boneh and Shaw formalize this problem as
collusion-secure fingerprinting (c-secure code) for digital data [2]. After their
work, study of c-secure code has become one of popular research stream for
information security [1]. One of remarkable results is called Tardos’s code [5].
Tardos’s code achieved to construct approximately optimal length c-secure codes
with random coding method.

On the other hand, it is an interesting research way to restrict the number
of colluders to small values [3]. Small colluder cases give us many knowledge,
techniques, and examples for c-secure code theory. In [4], it is shown that coin-
flipping codes are useful for 2-secure code which is a c-secure code restricted to
against at most two colluders.

In this extended abstruct, we investigate the coin-flipping codes as 2-secure
codes. We give three formulas to represent the success probability of simple
tracing algorithm for the coin-flipping codes. It shows that even if the code
length is short, e.g. 128 bits, it succeeds to trace one of colluders with high
probability, e.g. 0.9999. A non-trivial achievable rate for our coin-flipping code
is also given.

2 Notations and Definitions

Let n be a positive integer. First, the administrator divides a content to n or
more parts, chose n parts from the divided contents.

A user i can requests to obtain a copy of the content one time. The adminis-
trator registers the person i. This is formalized as follows: The set of registered
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users U is defined as a set of integers. For ease, the set U is starting with 1 and
is consecutive, i.e. U = {1, 2, 3, . . .}.

The administrator flips coins n times. We assume that the probability to have
face side is 0.5 and the one of the other side is 0.5 also. If jth coin is face side,
we put c

(i)
j = 0. If otherwise, put c

(i)
j = 1. Therefore the administrator obtains

n-bit sequence c(i) = (c(i)
1 , c

(i)
2 , . . . , c

(i)
n ). The administrator memorizes c(i) to a

database which the only administrator accesses. We call the set of codewords
constructed by coin-flipping coin-flipping code. The bit c

(i)
j is encrypted and

is embedded to jth part of the requested content. Assume that any user cannot
decrypt and cannot distinguish which bit is embedded.

The user i receives the requested content which the secret n-bit sequence c(i)

is embedded by the administrator.

2.1 Collusion Attack under Marking-Assumption

We introduce the notion, called marking-assumption. For details, see the ref-
erence [2]. It is assumed that any user cannot delete the embedded codeword or
a part of the codeword from a distributed content. The only attack users can
is to shuffle the distributed content. We assumed that user cannot distinguish
which bit is embedded to the distributed contents. However, it is possible for
users a and b to find a part associated to jth part if the different bits c

(a)
j �= c

(b)
j

are embedded by comparing their content.

2.2 Tracing Algorithm for Coin-Flipping Codes

If illegally re-distributed content is found somewhere, the administrator decrypts
a bit sequence y from the content. The administrator tries to trace at least one
of the colluders by analyzing y. A tracing algorithm T is an algorithm which
inputs a bit sequence and outputs a subset of the users U .

The details of our algorithm are the following:
For the input y and an user i ∈ U , calculate Hamming distance d(c(i), y). For

i, denote the Hamming distance by si and call it the score of i for y. Since a
value of Hamming distance is non-negative integer, we have minimum value s in
{d(c(i), y)|i ∈ U}. Define a set Us := {i ∈ U|d(c(i), y) = s}. Then output Us. We
denote the output Us by T (y). Remark that the output Us is not the empty set.
We call the algorithm T (y) Hamming distance tracing algorithm.

3 Main Results

Let us introduce the numerical security indicator for coin-flipping codes as 2-
secure codes. We propose the success probability Sn,U by putting:

Sn,U = Prob[T (y) ⊂ {colluders}, y : illegally re-distributed code].

= Prob[c(1), c(2), . . . ,∈R {0, 1}n, a, b ∈R U , y = Sa,b(c(a), c(b)), T (y) ⊂ {a, b}],
where Sa,b(c(a), c(b)) is the best strategy for a, b with inputs (c(a), c(b)) and Ex()
is the expected value function.
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Theorem 1. Let n be the code length of a coin-flipping code and U the number
of the users. Then the success probability Sn,U is written by the following two
forms:
1) 1

2n

∑
0≤s≤n,s:odd

(
n+1

s

)
2−(U−2)h(n,(s−1)/2),

2) Exx∈{0,1}n [(1
2 )(U−2)h(n,wt(x)/2)],

where h(n, a) := n − log2(2n −
∑

0≤t≤a

(
n
t

)
)) and wt(x) is the Hamming weight

of x.

We call Sn,U a security parameter. How Sn,U should be small depends on the
application. It is enough that the users give up re-distributing illegally.

It is easy to calculate h(n, a) if n is not so huge, e.g. n = 128, and 0 ≤ a < n/2
by using a math software, e.g. MuPAD, MATLAB, MAPLE, Mathematica and
so on. Once we obtained a list of h(n, a), it is easy to calculate Sn,U by the form
in Theorem 1 (1). The following is a table of upper bounds on the maximal
number of users for satisfying Sn,U > 0.99, 0.999, 0.9999.

Table 1. The Upper Bounds on The Number of Users for Satisfying a Given Security
Parameter and a Code Length

Sn,U > 0.99 Sn,U > 0.999 Sn,U > 0.9999

n = 32 3 2 2
n = 64 57 7 2
n = 128 68031 5363 516

From now, let introduce the following game G:

(1) Toss up n coins. Count the number of the face sides.
(2) Repeat step (1) U − 2 times. Put the maximal number of the face sides and

denote it by s1.
(3) Toss up n coins again. Count the number of the faces and denote it by s2.
(4) You win if 2s1 + s2 < 2n. You lose if the otherwise.

Denote the winning probability of the above game by Wn,U .

Theorem 2. For U ≥ 3, n ≥ 1, Wn,U = Sn,U .

It is interesting to know a theoretical capacity on the maximal number of the
users with infinite length. Recently, a capacity of collusion secure code has been
investigated by many researchers [1]. It is not trivial that there exist the capacity
for our code. We investigate an achievable rate R for the coin-flipping code with
Hamming distance tracing algorithm, where an achievable rate R is a constant
such that limn→∞ Sn,U = 0 for R0 > R, where U = 2R0

Theorem 3. For any R < 1 − h(1/4), limn→∞ Sn,U = 1, where h(·) is the
binary entropy function, i.e. h(x) = −x log2 x−(1−x) log2(1−x). In particular,
the capacity is more than 1 − h(1/4), if it exists.
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4 Applications: Digital Cinema Distribution and Hard
Paper Distribution

A recent illegally re-distribution problem is un-official copied DVD purchases. It
is said that someone records a film by his own video camera in a cinema theater
and he made illegally copied DVDs by him to sell them.

In this senario, the administrator is a provide company for films and the
users are cinema theatersa and divides films to n or more sets of frames. If a
cinema theater requests the film, the administrator embeds n-bit codeword to
the associated n-set of frames. If an illegally re-distributed content is found, the
administrator traces a cinema theater where the film was recorded. Then the
administrator asks the cinema theater to pay more attention customers illegal
recording. Corporation of the administrator and cinema theaters makes illegal
recoding harder for pirate customers. At the early stage, it is possible for a pi-
rate customer to find cinema theaters which does not pay so much attention to
such illegal recording. However by repeating making efforts between the admin-
istrator and theaters, we expect to reduce such crime. There are not many film
screens. For example, 3221 screens are in Japan, 2007 [6]. In Japan, the success
probability of coin-flipping codes is more than 0.999 if the code length is 128.

The next application is to protect hard papers from away illegally
re-distributions. The administrator is the president of a company or the chair-
man of the director’s meeting. In this case, the number of the users is at most
dozens. Furthermore the number of the colluders is at most a few by social rea-
sons. The administrator embeds each bit of a fingerprinting codeword to each
page of the material. If there is a mass of materials, it is hard to delete that from
the point of cost.
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Ŕıo, Ángel del 101
Ronquillo, L. 223
Ruano, Diego 1

Shin, SeongHan 149
Simón, Juan Jacobo 101
Szabo, Steve 219

Talukdar, Tanmoy 137
Tomás, Virtudes 73
Torres, F. 23
Tortosa, Leandro 117

Umlauf, Anya 65

Vicent, José 117
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