
Probabilistic Advanced Reservations for Batch-scheduled
Parallel Machines

Daniel Nurmi Rich Wolski
University of California Santa Barbara
{nurmi,rich}@cs.ucsb.edu

John Brevik
California State University Long Beach

jbrevik@csulb.edu

Abstract
In high-performance computing (HPC) settings, in which multi-
processor machines are shared among users with potentially com-
peting resource demands, processors are allocated to user work-
load using space sharing. Typically, users interact with a given ma-
chine by submitting their jobs to a centralized batch scheduler that
implements a site-specific, and often partially hidden, policy de-
signed to maximize machine utilization while providing tolerable
turn-around times. In practice, while most HPC systems experience
good utilization levels, the amount of time experienced by individ-
ual jobs waiting to begin execution has been shown to be highly
variable and difficult to predict, leading to user confusion and/or
frustration.

One method for dealing with this uncertainty that has been
proposed is to allow users who are willing to plan ahead to make
“advanced reservations” for processor resources. To date, however,
few if any HPC centers provide an advanced reservation capability
to their general user populations for fear (supported by previous
research) that diminished machine utilization will occur if and
when advanced reservations are introduced.

In this work, we describe VARQ, a new method for job schedul-
ing that provides users with probabilistic “virtual” advanced reser-
vations using only existing best effort batch schedulers and poli-
cies. VARQ functions as an overlay, submitting jobs that are indis-
tinguishable from the normal workload serviced by a scheduler. We
describe the statistical methods we use to implement VARQ, detail
an empirical evaluation of its effectiveness in a number of HPC
settings, and explore the potential future impact of VARQ should
it become widely used. Without requiring HPC sites to support ad-
vanced reservations, we find that VARQ can implement a reserva-
tion capability probabilistically and that the effects of this proba-
bilistic approach are unlikely to negatively affect resource utiliza-
tion.

1. Introduction
Most high-performance computing (HPC) centers serving the sci-
entific and engineering research communities use space-sharing
to manage the allocation of compute resources to user programs.
These systems today are frequently implemented as centralized
batch schedulers to which users submit jobs (text scripts each spec-

[Copyright notice will appear here once ’preprint’ option is removed.]

ifying a program to be run and its resource requirements) for even-
tual execution on some partition of a target machine. When a job
begins executing, it is given exclusive access to the processors in
its partition (i.e., the machine resources are space-shared) and pre-
emption is typically not supported. Thus, each job must wait in a
queue until programs that have been scheduled before it release
sufficient resources to permit it to run.

This approach to resource scheduling offers two attractive ben-
efits. First, resource utilization can be kept high (through various
scheduling policies discussed in Section 2) if offered job load ex-
ceeds machine capacity. Secondly, user jobs run with maximum
efficiency once they are scheduled since they do not share the pro-
cessors they are assigned with other competing jobs.

The primary drawback, however, is that the time each job spends
queued waiting for a machine partition is experienced by the user
as delay in the overall turn-around time for the job. Large-scale par-
allel programs have highly variable execution times [4, 14] and be-
cause HPC resources in research settings tend to be severely over-
committed (to help amortize sunk costs), user jobs often experience
highly variable queuing delays [2, 6, 7, 26]. At present, for exam-
ple, jobs submitted at the National Science Foundation (NSF) HPC
centers may experience several orders or magnitude variation in
queuing delay, when delay is measured in seconds 1. Predicting the
time an individual job will wait in a given queue when it is submit-
ted has been the subject of previous research [6, 7, 26] but reliable
and accurate predictions of the delays experienced by individual
jobs remain elusive. Thus, while a user may know quite precisely
how long her program will execute once it begins executing, pre-
dicting the time to results, or planning the availability of results by
a specific deadline has, to date, proved a daunting challenge.

The problem of predicting queue delay itself is further compli-
cated because queue-scheduling priority is rarely, if ever, first-in-
first-out (FIFO) in a production setting and, also because adminis-
trators need to change policies dynamically to meet changing user
needs. System administrators control scheduling priority through a
policy interface (typically a scheduler configuration file) specify-
ing how jobs waiting for execution should be chosen when suffi-
cient resources within the machine become available. While mini-
mizing user turnaround times and scheduling fairness are concerns,
the scheduling policies must balance these requirements against the
need to maximize machine utilization and dynamically changing
administrative demands such as an important user who suddenly
requires a substantial fraction of the machine to meet an unfore-
seen deadline. Because of this tension, the exact scheduling policy

1 This level of variability is not particular to the NSF centers, and in fact
has been greater historically across machines no longer in service that
have been managed by a number of different organizations. For evidence,
see Feitelson’s workload archive at http://www.cs.huji.ac.il/
labs/parallel/workload.

1 2013/10/19



in place at any given time is rarely revealed to the general user
community, nor are users always informed when policy changes
are instituted, particularly when they are made to favor a particular
user or group of users (however necessary the changes might be).

One possible approach to solving the planning problems brought
about by such unpredictable queuing delay is to allow users to make
advanced reservations [15, 25, 27] for resources. With an advanced
reservation system in place, users can attempt to reserve partitions
of the machine, each starting at a particular time for a specified
duration. In situations where real-world deadlines are critical to
success (e.g. for paper deadlines, conference demonstrations, col-
laborative meetings, etc.) an advanced reservation capability is es-
sential.

However, while most open-source and commercial batch sched-
ulers provide support for user reservations, to date this capability is
not offered to the general user population by any of the HPC com-
puting centers of which we are currently aware. While there are a
number of reasons why advanced user-settable reservations are not
available (e.g., it is not clear what users should be charged for a
reservation, what the priorities for making a reservation should be,
etc.) the primary concern appears to be the possible loss of machine
utilization. Unlike a busy restaurant that can cover the cost of an
unused or under-used reservation through higher prices to all cus-
tomers, the HPC centers pay for their resources almost entirely “up
front” and then account for the capital expense as utilization over
the lifetime of the machine. Thus lost utilization can be viewed
as lost revenue that cannot be recovered. It is currently true that
specially privileged users may still make reservations for particu-
larly important and well-justified deadlines, but these reservations
are negotiated individually with site administrators beforehand on
a case-by-case basis and are not available to the general user com-
munity.

In this work, we present a new statistical method that imple-
ments advanced reservations probabilistically as an overlay atop
existing best-effort (i.e. non-reservable) batch-queue systems in
production HPC settings. Our approach builds upon recent work in
predicting bounds on queuing delay using fast, on-line time-series
techniques [21]. We use these results to build a virtual reservation
capability – Virtual Advanced Reservations for Queues (VARQ) –
for regular (e.g. non-privileged) users that does not require the co-
operation of the target batch scheduler. With VARQ, site adminis-
trators are not required to implement a local reservation capability;
rather, they see jobs managed by our system as part of the normal
workload. Users experience the cost of a virtual reservation as an
additional charge to their accounts (typically funded in units of al-
lowed occupancy time) automatically, without a change to local ac-
counting systems. One drawback of our approach is that the exact
cost for a specific reservation is difficult to predict precisely. The
system attempts to minimize this cost, however, and it does pro-
vide conservative worst-case estimates. Finally, users are able to
specify explicitly an acceptable failure probability for each VARQ
virtual reservation.

In this paper, we detail the implementation of virtual advanced
reservations and evaluate its effectiveness empirically using several
shared production HPC facilities currently dedicated to science
and engineering research. We also analyze the cost, in terms of
additional charges to our occupancy allocations, incurred during
our experiments. Finally, we use a trace-based, faster-than-real-
time simulator to explore the possible effects of virtual advanced
reservations should our system become a popular infrastructure
component.

In so doing, this paper makes the following contributions.

• We propose a statistical approach to implementing advanced
reservations in production science and engineering HPC set-

tings that does not require site administrators to implement hard
reservations.

• We analyze the effectiveness of this approach using both a
working implementation targeting “live” HPC systems running
in production mode and its potential impact using a new trace-
based simulation capability.

• We find that virtual advanced reservations are surprisingly ef-
fective at the present time on the HPC machines we tested and
that their impact is unlikely to affect current HPC operational
settings negatively.

• We describe the statistical conditions that must exist at the sites
for these results to be general in future, and argue that they are
likely to exist for the near and medium term.

These contributions are important and relevant to the parallel com-
puting community because they offer the possibility of providing a
specific quality-of-service to users without the need to modify lo-
cal software and/or management policies. In particular, for grid set-
tings where resource usage is federated and cross-site scheduling is
tremendously challenging, we believe virtual reservations prove an
important and enabling technology.

The remainder of this paper is organized as follows. In the next
section (Section 2) we describe how batch systems are currently
managed in the science and engineering HPC community and ex-
plore some previous related work in this field. Continuing in Sec-
tion 3, we describe the statistical approaches and methods we have
developed to make virtual advanced reservations. Section 4 de-
scribes the experiments we have performed to evaluate the efficacy
and generality of our technique and their results. Finally we con-
clude in Section 5.

2. Background and Related Work
Our contribution of a Virtual Advanced Reservation system for
Queues (VARQ) is designed to function in an administrative envi-
ronment that is typical of science and engineering computing cen-
ters serving users with potentially competing resource demands. In
this section, we describe the general characteristics of these HPC
settings and discuss other research projects that are germane to
our effort. VARQ’s function depends critically on QBETS (Queue
Bounds Estimation from Time Series) – an on-line tool for making
real-time bounds predictions of queue delay [21]. While developing
and deploying QBETS in a number of University, National Science
Foundation (NSF), and open Department of Energy (DOE) centers,
we observed several features common to the way these systems
are managed that, in part, make the success of VARQ possible. We
provide a brief summary of these features as background to the re-
mainder of this paper.

2.1 Users, Accounting, and Priority

In most of these settings, each user (represented by a unique per-
site user identifier) is associated with one or more accounts each
funded with an allocation of per-node occupancy time. When a
user submits a job to the local batch scheduler, they must specify
which account to charge when the program is eventually allocated
machine resources for execution (on some systems, the scheduler
may choose a default for the user if none is specified). There is
no charge made to the account while the job is waiting in queue,
nor is any form of refund or compensation granted for jobs that
wait for overly long periods. It is only the execution occupancy
time that is decremented from the account once the program begins
executing. If the account is exhausted, the currently executing jobs
charging the account are terminated. Note that in most settings the
“aspect ratio” of a parallel job submitted by a user is specifically
not considered in the accounting subsystem. That is, a 1-node job

2 2013/10/19



executing for 100 hours decrements the user’s account by the same
quantity that a 100 node job executing for 1 hour does: 100 node-
hours.

Typically, site administrators configure their batch systems to
employ a simple fundamental scheduling policy based on tech-
niques such as first-come-first-serve (FCFS), and then perform fur-
ther tuning, taking into consideration specific job and/or user prior-
ity goals that are unique to each site. A nice overview of current par-
allel job scheduling techniques is provided in [11] and a more com-
prehensive survey for past methods is provided in [10]. In particu-
lar, most sites currently use some form of backfilling [16, 17, 19]
to maintain utilization in the presence of large resource requests
without introducing starvation. Utilization, in this context, is mea-
sured in terms of node occupancy. Once a user’s job is allocated
a set of nodes, the system does not (and almost certainly cannot)
determine whether the work done by the program is useful – only
that an account should be charged for the occupancy.

If large node counts are needed by a job, the machine must
“drain” until a sufficient number of nodes become available (recall
from the previous section that pre-emption and/or checkpointing is
typically not available). To avoid the potential loss of utilization
that results during a drain, each job can specify a maximum exe-
cution time, past which it is willing to be terminated. A backfilling
scheduler will use these execution limits to schedule jobs from far-
ther down in the queue onto draining nodes such that they do not
prolong the waiting time of a job causing the drain that is ahead of
them.

In general, the scheduling policies that are in place are not made
entirely public, partially because users may not be entirely satisfied
with their respective priorities, but also because specific knowl-
edge of existing policies may allow users to attempt to “game”
the system in order to obtain better turnaround time for their own
jobs [20, 23]. Moreover, HPC resources are typically overcommit-
ted. Because it is difficult to predict resource demand in an en-
vironment where demand is driven by research, and also to en-
sure that the utilization of expensive resources is maximized, total
user allocations typically exceed feasible occupancy. For these rea-
sons, predicting the time individual jobs wait in queue has proved
to be a difficult problem [2, 6, 7, 26]. To give users some mea-
sure of predictability and control, many centers configure differ-
ent queues with partially described scheduling priorities to allow
users to make some form priority-motivated decision. For example,
a “short” queue may accept jobs that have maximum run times no
greater than 15 minutes which are given preference during back-
filling. Users can use this information to gain faster turn-around
for small amounts of work, but the exact degree of preference is
typically not revealed, and local administrators change the specific
policy parameters without announcement (sometimes frequently).

The effects of this constantly changing interaction between
users and the batch-scheduling policies in place, in conjunction
with other factors such as hardware failures, preventive mainte-
nance, etc. that may induce changes as well, often result in queuing
delays that fluctuate through several orders of magnitude (c.f. Fig-
ures 2 a typical example).

2.2 Grid Computing and Co-Allocation

Over the last decade, there has been a great deal of interest in the
concept of grid computing [1, 12] (originally termed “metacom-
puting” [24]), which is essentially the idea of using multiple dis-
tributed, heterogeneous resources with minimal global centralized
control structures to perform coordinated tasks, such as executing
scientific applications. One of the fundamental research hurdles
which needs to be overcome to realize a functional grid comput-
ing environment is that of resource co-allocation, where multiple
disparate sets of resources must be made available simultaneously

to some global scheduler. There have been many research efforts
indicating that grid “meta-scheduler” systems [3, 8, 9, 13] can in-
creases global system utilization while providing large resource
pools, but for the most part these efforts require the use of a central-
ized, global batch scheduling entity to which all jobs (both global
and local) are submitted. While this body of work shows a great
deal of promise and utility using simulation and closed research
environments, the modification and coordination burden placed on
local site resource operators has proven to be so severe as to not be
applicable in practice. The primary prohibitive modification these
systems impose on local site schedulers is that of allowing regular
users to make advance reservations in order to support resource co-
allocation. Several studies have shown that allowing regular users
the right to make advance reservations can have a negative impact
on both system utilization and overall turnaround time for regu-
lar jobs. In [25], it was shown that the introduction of a general
use advanced reservation system into a normal HPC workload can
have a substantial impact on the experience of regular batch users.
In this work, the authors convert 10-20% of jobs in historical job
traces into “reservation” requests for a upcoming time in the fu-
ture. Even though the assumption is that the jobs requiring ad-
vanced reservations can tolerate some slippage (reservation start
time can be delayed if scheduler cannot guarantee resources at the
requested time), the average wait time increase for regular batch
jobs increased by 9-37% depending on how many reservation jobs
were made (10-20% of overall jobs, respectively). In [15], the au-
thors evaluate the impact of advance reservations on a regular batch
controlled workload in terms of percentage of reservation requests
rejected, slowdown factor of regular jobs (termed “variable” jobs in
the paper) and system utilization. Running various simulation ex-
periments, using two reservation algorithms and a real job trace, the
authors are able to determine that the introduction of advance reser-
vations increases the queuing delay experienced by regular jobs,
but it is difficult to gauge the magnitude of the impact based on
the metric used. In essence, the authors show that as the number
of accepted advance reservations increases, the negative impact on
queuing delay of regular jobs increases as well. Finally, researchers
in [27] perform a simulation based experiment, using the popular
Maui scheduler [18], that attempts to determine the effect of ad-
vance reservations on regular HPC workloads; the authors suggest
methods for minimizing this effect when compared to an alternate
technique for co-allocation in which sites explicitly reserve a spe-
cific time every day for explicit meta-scheduler use. Although the
authors make a compelling case for the use of advance reservations
based scheduling to support cross-site co-allocation of resources,
their experiments and conclusions indicate that the introduction of
advance reservations have a negative impact on both system utiliza-
tion as well as queue delay experienced by non-reservation jobs.

As a result of these studies, HPC site operators have been re-
luctant to adopt the use of general advance reservation systems to
support off-site metaschedulers, and are unwilling or unable to re-
linquish local control of resource scheduling to a global scheduling
system. In a particularly relevant work proposing a resource man-
agement system for metacomputing [5], the authors acknowledge
the fact that local control must be maintained in order for HPC
centers to subscribe to metacomputing methodologies, but argue
that advance reservations must be supported to fully support co-
allocation. Even so, the authors briefly propose a method for mak-
ing a “best effort” batch submission to support co-allocation with-
out advance reservation, but do not detail the specific mechanisms
used to implement their solution, and make it clear that their so-
lution is a temporary situation which will be replaced when sites
adopt general advance reservation functionality. However, in the
decade since this paper was published, general adoption of advance

3 2013/10/19



reservation capabilities has remained elusive and shows little sign
of becoming enabled on production systems.

2.3 QBETS

We wish to be unambiguous about the novelty of our batch-queue
job delay prediction system (QBETS ) and virtual advance reser-
vation system (VARQ). QBETS is prior art. It became operational
in December of 2006, and is currently deployed on twenty-three
production HPC centers around the world, where it is used primar-
ily as an advisory tool (through a number of different web-based
interfaces [28, 22]) for users who wish to plan their job submis-
sions. VARQ is a system we have developed that uses QBETS to
implement an advanced reservation abstraction for its users, and it
is novel. To provide adequate context for VARQ, we briefly sum-
marize the function of QBETS without detailing its effectiveness
(as we have in previous work). Instead, in addition to the analysis
of its capabilities that we have reported on previously, in its current
operational mode we continually monitor the correctness and ac-
curacy of its predictions. To date, both exceed the initial levels we
had hoped it would achieve.

QBETS predicts bounds, analogous to confidence intervals, on
delay by estimating percentiles of the empirically observed delay
distribution by analyzing a continually updated log of previous job
delays. We have found, perhaps unsurprisingly in retrospect, that
a bounds prediction on delay is more useful in this setting than a
moment-based point-valued prediction. Users are often interested
in “worst case” delay, since getting the results of a program ex-
ecution earlier that expected generally does not imply a penalty
or cost as might receiving them late. To estimate bounds on delay
time, a QBETS user provides a description of the job as a 4-tuple
(machine, queue, requested nodes, requested execution time) and a
success probability corresponding to the percentile of interest.

For example, as user who wishes to be “95% certain” of having
her job start before the time bound that will be returned by QBETS
prompts the system to estimate and report the 95th percentile of
the delay distribution. It does so by using a non-parametric esti-
mate of percentiles based on a binomial (success-failure) treatment
of historical job delay data. QBETS also implements a special-
ized change-point detector so that it only considers history relevant
(within the current region of stationarity) to the current prediction it
is making. Finally, QBETS uses on-line model-based clustering to
categorize jobs automatically in terms of the scheduling delay they
have experienced. This clustering reverse-engineers the current pri-
ority mechanism in place by detecting which classes of jobs (based
on their node counts and execution times) are experiencing similar
delays. By maintaining a separate predictor for each class, the clus-
tering has the practical effect of indicating (indirectly) where the
backfilling cutoff is at any given moment.

QBETS computes a time bound on the delay a specific user job
will experience. For this work, we have modified QBETS to invert
this functionality so that it returns an integer percentile estimate
between 1 and 100 for a specific time bound. By treating these per-
centiles as coming from a single empirical distribution, QBETS can
return the probability that a job corresponding to a specific 5-tuple
will begin executing before a specified period of time has elapsed
(termed the deadline). This functionality, which is the foundation
of our virtual resource reservation system, is expressed here as a
function to be used for the remainder of this paper:

QBETS(m, q, nodes, wallT ime, startDeadline) = prob

For example, if we were to submit a 4 node, one hour (3600
seconds) job to the UC/ANL TeraGrid supercomputer in the “dque”
queue, QBETS estimates the probability that it will wait no longer
than ten minutes (600 seconds) if submitted immediately:

VARQ

Batch Queue
System

vjob3
nodes,walltime,startdeadline

job1
nodes,walltime

job2
nodes,walltime

vjob4
nodes,walltime,startdeadline

vjob5
nodes,walltime,startdeadline

job3
nodes,walltime,startdeadline

job4
nodes,walltime,startdeadline

job5
nodes,walltime,startdeadline

job1
nodes,walltime

vjob3
nodes,walltime

job2
nodes,walltime

vjob4
nodes,walltime

vjob5
nodes,walltime

QBETS

Figure 1. Overview of VARQ system interaction with local batch
scheduler

QBETS(ucteragrid, dque, 4, 3600, 600) = prob

At the time of this writing, prob = .89 for such a job. The
accuracy of this function on all the systems we monitor continues to
impress us under continual verification and despite dynamic system
behavior.

In summary, by constantly monitoring the delays experienced
by jobs submitted to a batch scheduler, adjusting the historical
data considered, and categorizing jobs into service classes, QBETS
makes accurate on-line predictions of queue delay bounds for indi-
vidual jobs.

3. VARQ Design and Implementation
VARQ implements a reservation by determining when (according
to predictions made by QBETS ) a job should be submitted to a
batch queue so as to ensure it will be running at a particular point
in future time. It does not actually reserve the resource, but rather
achieves the same goal – the predictably scheduled execution of a
user program – that a reservation enables. Because VARQ does not
require modification to the local scheduling policies or scheduler
submission protocols, it can function as an overlay. VARQ jobs
do not appear different from non-VARQ submissions at the batch
scheduler.

Figure 1 provides an overview of the functional relationships
between VARQ, QBETS , and the local batch scheduler. User
batch jobs may be submitted to VARQ for execution at a specific
point in time in the future (specified by a deadline). VARQ then
uses QBETS predictions to determine when the job should be
submitted to the batch scheduler queue to ensure it is executing at
the deadline. At the same time, non-VARQ jobs are being submitted
to the batch scheduler queue. The delays these jobs experience
affect QBETS predictions which in turn, affects VARQ decision
making. We describe the nature of this interaction more completely
in the following subsections.

3.1 Virtual Advanced Reservations
Using QBETS , we can estimate the probability, at time T , of a
specific job beginning execution by a certain time in the future
T + startDeadline, but we cannot say when between T and
T + startDeadline the job will actually start. Using the UC
TeraGrid example above, we know that, at time T , QBETS reported
a 0.89 probability of the specified job starting within ten minutes.
However QBETS provides no information about the likelihood of
the job starting at any specific time between T + 1 seconds and

4 2013/10/19



T + 599 seconds. Because of this uncertainly, this probabilistic
prediction alone is not sufficient for certain applications which need
to reserve a precise time slot in the future when the resources will
be available.

One naive way to get around this deficiency is to attempt to
submit a job that requests a runtime long enough to encapsulate
both the time from T to T+startDeadline and the requested time
of the job itself (wallTime). Using such a tactic, we would submit
a job which, instead of requesting wallT ime seconds of compute
time, instead requests wallT ime+ startDeadline seconds. This
technique will guarantee that if the job begins execution between
T and T + startDeadline, then it will be allowed to execute
from T + startDeadline to T + startDeadline + wallT ime.
If the user desires that the job start at T + startDeadline and
not before, the job simply needs to “sleep” or spin until time
T + startDeadline. Recall from Section 2 that once the batch
scheduler allocates nodes to a job, the job will not be prematurely
terminated nor pre-empted. Thus any job is free to simply wait
to begin doing useful work, however the accounting system will
charge the user’s allocation for occupancy starting at the moment
the job acquires its nodes. Because this occupancy is by a user job,
and the user’s account is charged for it, the center does not need to,
and indeed cannot, consider it lost utilization.

Potential Drawbacks

The disadvantages to this approach are twofold. First, when the
desired startDeadline is large (and it likely is), then the job
could waste a substantial amount of allocation by holding the
resources until the user’s deadline arrives. Second, again when
startDeadline is large, the probability of such a large job making
it through the queue is much lower than the job requesting the time
actually needed for execution. For example, if startDeadline =
43200 and wallT ime = 3600, then we would be requesting a
46800 second job when we only need 3600 seconds of compute
time, 43200 seconds from now. The probability of a 46800 sec-
ond job making it through the queue by startDeadline is much
lower than that of a 3600 second job starting by startDeadline,
primarily because of the inability of the scheduler to use this job
for backfilling.

Bounds Prediction Stability

Our solution to this problem is to find the amount of time to wait
before submitting a job so that when we do submit, the job isn’t
so large as to make the probability of success prohibitively low
because of the additional runtime necessary to cover the possibility
that it begins running immediately. This approach is based on the
observation that if the percentile estimates do not change, or change
slowly, QBETS predictions made in the future will look very much
like current predictions. Thus it is possible to predict the bounds
on delay if the user were to wait a short time (thereby reducing
the extra time needed to cover the delay until the deadline) before
submitting a job.

In the process of verifying QBETS (a process that continues),
we observed that while the queue delays may fluctuate to a great
degree, the time series of percentile predictions corresponding to
those delays are relatively stable, often over many days. Figure 2
presents an example that compares queue delays observed for jobs
submitted to the “normal” queue (the default work queue) on the
San Diego Supercomputer Center’s Datastar machine and the corre-
sponding QBETS estimates for the upper 95th percentile reported
during the month of February of 2007. In the figure, the x-axis rep-
resents the submission time of a job, and the y-axis (using a log
scale) describes the delay (so that the figure shows the time series
of delays). Each point feature represents the delay observed for a
single job, and the line feature traces the QBETS estimates. Notice

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Q
u

e
u

e
 D

e
la

y
 (

se
co

n
d

s)

February 1, 2007 March 11,2007

Figure 2. Queue delay measurements and QBETS 95th percentile
predictions on Datastar for the month of February, 2007.

that even though the job delays vary from between 10 and 110, 000
seconds, the percentile estimate is quite stable by comparison.

The clustering feature of QBETS enhanced the stability shown
in Figure 2 by selecting a relatively homogeneous subset of the
wait times. While the full trace shows several orders of magnitude
variation, this trace for a single cluster automatically identified by
QBETS shows only a range of only about 4 orders of magnitude.
The reason for this effect is that the appearance of highly variable
delay may be because the scheduler is interleaving jobs of different
classes, each of which experiences a different “class” of delay. For
example, if large jobs are experiencing roughly 100, 000 seconds
of delay and small jobs are all being serviced in 10s of seconds, an
interleaving of the two appears to have more variance than either
taken separately.

Because the bounds predictions are so stable, it is possible to
use the inverted predictor function QBETS() to estimate the prob-
abilities that jobs submitted at successive points in the future (each
having a successively shorter requested execution time) will start
running at some point before a specific deadline and will be able
to continue executing until completion. However, the effect is not
monotonic. Notice that in Figure 2 very few jobs waited less than
20 seconds between the time they were submitted and the time they
began execution; a greater number waited between 20 and 100 sec-
onds; etc. This effect occurs because in the short run, the sched-
uler attempts to implement a fair policy between jobs of equiva-
lent resource requirements. Thus a VARQ job submitted near the
deadline will contend with non-VARQ jobs for immediate initia-
tion thereby, decreasing that job’s probability of starting before the
deadline. Therefore, as the submission time approaches the dead-
line, the probability of starting before the deadline tends to in-
crease, possibly due to the backfilling, as less additional runtime
is necessary to cover the time before the approaching deadline; but
it tends to decrease due to contention by other submissions and the
scheduler’s need to enforce fairness among equivalent jobs. One
might expect, then, to find a “sweet spot” at which the probability
is maximized.

Probability Trajectories
To find the submission time in the future that will most likely meet
the deadline or a submission time that corresponds to a user’s reser-
vation request, VARQ computes a probability trajectory for the
user’s job by considering the possibility of submitting a given job
at successive 30 second intervals from the time the job is given
to VARQ until the specified deadline. For each point in time, it
decrements the additional runtime startDeadline required by 30
seconds, and estimates the the probability of starting before the
deadline using QBETS(). Specifically, it implements the algo-

5 2013/10/19



rithm described in pseudocode in Figure 3, where the algorithm
accepts as input the 4-tuple job description, the required time when
the resources must be available (startDeadline) and the mini-
mum acceptable probability that the reservation request is success-
ful (reqProb). Upon completion, the algorithm returns the number
of seconds VARQ should wait before submitting the job (waitT ),
and the modified job walltime (advWallT ime) required to ensure
that the reservation can be met with probability reqProb.

INPUT(mach, queue, nodes, wallTime, startDeadline, reqProb)
OUTPUT(waitT, advWallTime)
T = current UNIX timestamp
currT = T
currProb = I = 0

WHILE (currT < startDeadline)
    advWallTime = wallTime + (startDeadline - currT)
    currProb = QBETS(nodes, advWallTime)
    probVec[I] = (currT, currProb)
    I = I + 1
    currT = currT + 30
ENDWHILE

I = LENGTH(probVec)
WHILE (I >= 0)
    (currT, currProb) = probVec[I]
    IF (currProb >= reqProb) THEN
        waitT = currT
        advWallTime = startDeadline - currT
        RETURN(waitT, advWallTime)
    ENDIF
    I = I - 1
ENDWHILE

Figure 3. Pseudocode describing VARQ determines how long to
wait before submitting a VARQ job.

Figure 4 depicts an example VARQ probability trajectory (de-
noted probV ec in the pseudocode) computed in this way. The data
comes from a VARQ reservation made at 2:49 PM on March 6th,
2007 on the NCSA TeraGrid machine for the “dque.” For this reser-
vation, the user requested 4 nodes for 1 hour of execution time start-
ing at 2:49 AM on March 7th (12 hours into the future). Time of
day (given as a Unix timestamp) beginning at 2:49 PM on the left-
hand side of the figure is shown along the x-axis. The y-axis shows
the return values of QBETS() which is the probability estimate
for the job starting before the deadline at 2:49 AM (right-hand side
of the graph) as function of when, in the future, it is submitted.

From time T at 2:49 AM until approximately T + 21600 sec-
onds, the probability of the requisite sized job starting before T +
43200 steadily drops from slightly below 0.4 to 0.25. This part of
the graph illustrates the probability decay that occurs as the even-
tual submission time and the deadline draw closer together. How-
ever, at approximately T+21600, we see a drastic increase in prob-
abilistic prediction. This increase shows the effects of the clustering
algorithm used by QBETS . At that point in time, the combina-
tion of node request and total requested execution time for the job
put it in a different scheduler service class (presumably due to the
possibility of backfilling). After this point, again the probabilities
steadily approach 0 as the deadline approaches.

The probability trajectory can be used to identify the point in
time when VARQ should submit the job to the machine’s queue
that corresponds to the most probable success in attaining the reser-
vation (at T +21600 in the figure the QBETS reported a maximum
probability of approximately 0.7). VARQ supports this mode of
operation, but in choosing the maximum, the user cannot explic-
itly tradeoff success probability for potentially lost allocation. If
the user in this case requested VARQ to submit at the most prob-
able point in time, and the job began running immediately, the
user’s allocation could be charged a maximum of an additional
4 ∗ (43200− 21600) = 86400 node-seconds of allocation in addi-
tion to the 3600 ∗ 4 = 14400 node-seconds required for the job’s
execution.

Minimizing Lost Allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1173220000 1173230000 1173240000 1173250000 1173260000

Figure 4. VARQ probability trajectory for a 4-node, 1-hour job in
the “dque” on NCSA TeraGrid machine

To allow somewhat greater efficiency and flexibility, VARQ also
accepts a target success probability from the user and finds the
latest submission time in the probability trajectory that can meet
it as a way of minimizing the additional allocation overhead. For
example, if the user specified success probability of 0.5 and the
trajectory in Figure 4 were used, then VARQ walks backwards in
probV ec until it encounters the first timestamp where the prob-
ability is equal to or exceeds 0.5. In this case, such a timestamp
exists at T + 40470 which indicates that we should wait 40470
seconds and then submit a 4 node job requesting 6330 second job
(3600 + (43200 − 40470)) to guarantee that the job will be run-
ning between T + 43200 and T + 43200 + 3600. The potential
allocation overhead (i.e. the maximum possible additional alloca-
tion cost) is 4 ∗ (43200 − 40470) = 9480 node-seconds for the
same job requiring 14400 node-seconds of execution time.

Thus the VARQ probability trajectory allows the user to trade
estimated success probability for potential allocation overhead. In
this example, reducing the desired success probability from 0.7
to 0.5 implies a reduction in potential extra allocation cost from
86400 node-seconds to 9480 node-seconds. VARQ, at present,
reports only the maximum possible allocation overhead since it
does not currently attempt to estimate at what time before the
deadline the job is likely to begin executing. We believe a “best
guess” in addition to the worst case allocation loss is possible,
however, and we are pursuing it as part of current efforts.

Notice also that the probability trajectory associated with a par-
ticular VARQ reservation may indicate that there is no submission
time corresponding to the user’s specified success probability. Re-
turning to the example, if the user had specified a desired success
probability greater than 0.7, the system would have responded by
indicating that no reservation is possible. This condition is analo-
gous to the circumstance in which a “hard” reservation is denied
because a conflicting reservation has already been made. In ad-
dition, to handle the possibility that a change-point occurs during
a reservation period, VARQ continually generates new probability
trajectories while waiting to submit a job.

In sum, VARQ exploits the slowly changing nature of QBETS
bounds estimates to determine when in the future a job should be
submitted so that it will be running at a specific deadline. Because
QBETS estimates are upper bounds, the job may start earlier than
the desired time and simply wait, incurring an extra allocation
charge while it does. VARQ allows the user to control this cost

6 2013/10/19



Machine Processors Batch Software Description
datastar 2176 Load Leveler SDSC IBM PowerPC Production Compute Cluster
ucteragrid 316 Torque/Maui UC/ANL IBM/Intel Compute/Viz Linux TeraGrid Cluster
dante 35 Torque/Maui RENCI Intel Xeon Research Linux Cluster
cnsidell 256 Torque/Maui UCSB NanoScience Research Linux Cluster
ncsateragrid 1744 Torque/Maui NCSA IBM/Intel Compute Linux TeraGrid Cluster
iuteragrid 32 PBS IU AVIDD Compute Linux Cluster
ornlteragrid 56 Torque ORNL IA64 Compute Linux Cluster

Table 1. HPC machines used in VARQ empirical experiment. Chosen systems represent a realistic set of distributed HPC resources on which
users would have simulataneous access.

explicitly by specifying a target success probability that it will try
to honor with the minimum potential cost.

4. Experiments and Results
To explore the efficacy of VARQ, we report results from a series
of empirical experiments conducted using the machines listed in
Table 1. Each of these machines is currently in production use
by a shared, and potentially competing, user community. To the
best of our knowledge, our user login and account specification
received “typical” treatment on each machine (with one possible
caveat discussed below), and we did not inform the relevant system
administrators of the experiments. We also conducted a simulation
experiment to understand the effects of multiple users submitting
VARQ jobs as a preliminary investigation of its potential generality.
Without cooperation from site administrators, however, we felt it
ill-advised to conduct “stress” tests involving multiple and frequent
VARQ requests in live settings in which unsuspecting users could
be exposed to unforeseen system response.

4.1 Efficacy Experiments and Apparatus

Table 1 describes the characteristics of the machines we chose to
use for our experiments. We chose these machines for a number of
reasons: Each machine is supported by QBETS , has a number of
active users (although some machines are observed to be busier
than others), and provides us the low-level ability to instrument
the submission and tracking of job status necessary to perform an
actual experiment and gather meaningful results.

In each experiment a submitting process formulates a job, and
then selects a specific time in the future when the job needs to be
running, and a probability of success. Ideally, we would have liked
to perform this experiment for all job sizes, with a large number
of future deadlines, and for a multitude of success probabilities.
However, since the experiments run in real time, and the delays
on these machines can be substantial, exploring every reasonable
combination of these factors is infeasible.

We have set up one machine at our host institution to act as a
single point where all experiments are launched. On this machine,
we run submitting processes designed to act as users that make
reservation requests to VARQ for the HPC targets listed in Table 1.

Each process targets a specific machine and queue. When it
is initiated, the job is passed a specific success probability and
deadline (expressed as a duration until a reservation should be
made) as parameters. It begins by composing a job for submission
through VARQ using a randomly selected node count and run time
from the following sets: either 1, 4, 8, 16, or 32 nodes and either
600, 1800, 3600, 7200, or 14400 seconds of run time. Once the
submit process has crafted a job, it queries VARQ regarding the
possibility of attaining a virtual reservation using the newly minted
job and the deadline and success probability originally specified
when the submit process was initiated. If, after computing the
necessary probability trajectory for the reservation, VARQ cannot
find a submission time in the future that will satisfy the reservation

specification at the desired probability levels, it reports “unable to
make reservation” to the submission process which sleeps for 15
seconds, composes a new random job, subtracts 15 seconds from
the deadline (so that it targets the same point in time in the future),
and retries. The process continues to retry every 15 seconds until
VARQ accepts the reservation or until the deadline is decremented
to zero. If the latter conditions occurs, the submission process resets
the deadline it is attempting to its originally specified value (thereby
picking a new target time in the future for a reservation) and
continues to retry. Once the submit process successfully makes a
reservation with VARQ, it then waits until shortly after the deadline
has expired and starts again, attempting a new reservation one
deadline duration into the future.

The intention of the protocol is to model a user who wishes to
obtain a reservation that starts at a specific point in time, and who is
willing to re-query the system in the event VARQ is unable to grant
the request. It has the effect, however, of making the time between
attempted reservations more or less equal. We do not believe this
induced periodicity affects the results negatively, particularly since
we observed a fair amount of “drift” in the experiment cycle for
each process over the entire experimental period.

For instrumentation purposes, the experimental apparatus deter-
mines the success or failure of a VARQ job in meeting its deadline,
and the actual allocation overhead incurred, by searching through
the batch scheduler logs on the target machine post facto. We con-
sidered adding an instrumentation facility to VARQ itself to allow
users to query the success history of their own reservations. Such an
extension would increase the intrusiveness of VARQ substantially,
however, since in its current form the only component that requires
access to the local batch scheduler logging information is QBETS .

On the launching machine, we run an experiment process for
each of three required probabilities (0.5, 0.75, and 0.95) and the
same deadline duration (to speed the time to results). We stagger
the start times of these processes so that they do not all target
exactly the same moment as a deadline. Also, we for the sake of
alacrity, we have chosen a deadline duration of 21600 seconds
(six hours), both to improve the number of completed experiments,
but also because we felt that six hours the shortest reasonable
lead time a user would normally expect to be able to make static
advanced reservations. As shown in Figure 2, the percentile time
series for these machines is typically stable for several days. If
a short reservation is possible, longer ones should be more likely
within the confines of this stability.

4.2 Efficacy Results
To determine the efficacy of the VARQ system, we compare the
percentage of successful VARQ attempts to the specified success
probability. For example, a submit process attempting to make
VARQ requests with 0.5 success probability, should have at least
50% of the submissions accepted by VARQ start before their spec-
ified deadlines.

In Table 2 we compare the target success probabilities with
those we observed across all machines. Each row corresponds to

7 2013/10/19



.5 .75 .95
machine predicted actual count predicted actual count predicted actual count
datastar 0.52 0.42 36 0.75 0.71 17 0.97 0.00 1
ucteragrid 0.76 0.98 45 0.86 1.00 45 0.96 0.96 48
dante 0.90 0.80 61 0.93 0.78 59 0.96 0.85 61
cnsidell 0.54 0.71 62 0.76 0.88 66 0.00 0.00 0
ncsateragrid 0.53 0.74 23 0.76 0.77 13 0.00 0.00 0
iuteragrid 0.80 0.88 24 0.81 1.00 22 0.97 0.94 18
ornlteragrid 0.88 1.00 39 0.87 1.00 37 0.97 1.00 58
all 0.71 0.79 290 0.83 0.89 259 0.96 0.93 186

Table 2. Average predicted success probability and actual success fraction for VARQ reservations.

a specific machine (we used the default queue in each case). For
each of three different success probabilities (0.5, 0.75, and 0.95)
we show three columns of numbers: the average expected success
probability used by VARQ, the actual fraction of jobs accepted by
VARQ that met their deadlines, and the number of accepted jobs.
Recall that VARQ uses the latest time in its probability trajectory
that exceeds specified success probability as a way of attempting to
potential allocation overhead. In some cases, this probability may
be quite a bit larger than that specified, especially when the ma-
chine is lightly loaded. For example, using a specified 0.5 success
probability on ornlteragrid, VARQ submitted a job when it “saw”
predicted success probability, on the average, of 0.88 in the proba-
bility trajectories it computed. 100% of the 39 jobs it submitted in
this category met their deadlines (as shown in columns 2, 3, and 4
of Table 2 in the row for ornlteragrid).

These results indicate that VARQ, in the mode we have tested
it, is quite successful. Of the 21 test cases (7 machines at 3 target
probabilities each) only dante at the 0.95 target level and datastar
at the 0.5 and 0.75 were probabilistic failures (shown in bold face
in the table). There were several instances, however, where VARQ
refused to accept any reservations, or only accepted one. These are
not failures in the sense that the user (the submission process in our
case) did not experience a different quality of service than the one
VARQ agreed to deliver.

Returning to the observed failures, in dante’s case, of 61 jobs ac-
cepted by VARQ, with an average predicted success probability of
0.96, only 0.86 (52 jobs) successfully met their deadlines. We pro-
vide a more probing analysis of this case also in the next section.
For datastar, however, the problem was that our job submissions
were being assigned (accidentally) to an account used for educa-
tional purposes and not research. Apparently jobs submitted to this
account receive degraded scheduling priority in comparison to the
“average” research user tracked by QBETS . We discovered this
anomaly only in post mortem analysis of the experiments. At the
time of this writing, we have re-initiated the datastar experiment
under the correct account, and the results for the small number of
attempts show success. For the sake of uniformity, however, we felt
it unwise to replace the datastar numbers with the new data since
it was not part of the original experimental run and also because
the number of attempts so far is too small to yield a meaningful
inference.

For all other tests, however, in which the count of jobs attempted
is not 0 or 1, the observed fraction of successes exceeds the average
predicted success probability. These results combine to show that
VARQ is conservative with respect to success probability. To gen-
erate Table 2 required 457 hours of wallclock time. We initiated the
experiments at 11:30 AM on February 15th, 2007 and terminated
them at 12:48 PM on March 6th, 2007. In many cases, despite retry-
ing every 15 seconds, VARQ could not identify a single instance in
a probability trajectory that it predicted would result in a successful
reservation over the entire experimental period.

4.3 Allocation Overhead Results

In Table 3 we show the effects of VARQ on the allocation charges
incurred during the experiment described above. Organized in a
way similar to Table 2, each row corresponds to a specific machine,
and each of the three major columns represents results for different
specified success probabilities (0.5, 0.75, and 0.95 respectively). In
Table 3, each major column shows the total allocation required to
execute the jobs in that category (denoted required), the actual allo-
cation used by VARQ in that category (denoted used) and the ratio
of allocation used to allocation required (denoted ratio). The units
of allocation in this table are node-hours. For example, columns
2, 3, and 4 of the row marked ornlteragrid show that the VARQ
reservations submitted with a 0.5 success probability required 464
total node-hours of occupancy to execute the work in all jobs and
473 node-hours for that occupancy and the additional cost when
jobs started early under VARQ. The ratio of 1.02 indicates the cost
factor associated with the use of VARQ. That is, the submission
process in this experiment “spent” 1.02 times as much allocation
to obtain VARQ reservations as it would have spent had it simply
submitted the jobs (without reservations).

From the table, the allocation overhead penalty VARQ intro-
duces varies from machine to machine. On the cnsidell machine,
for example, VARQ reservations at the 0.5 probability level cost
the allocation almost 2.5 times the non-reserved outlay compared
to a cost factor of 1.08 on ucteragrid. This variability is consis-
tent with our experience in developing QBETS previously in that
each of the machines in this study displays a unique queue delay
response profile. Also confirmed is the notion that greater certainty
(in terms of higher success probability) implies a greater allocation
cost since the cost factor increases monotonically from left to right
in each row.

4.4 Generality Experiments and Apparatus

To be able to test the effectiveness of VARQ when a sizeable frac-
tion of user-offered jobs are under its control, we constructed a
faster-than-real time, trace-based simulator which uses the same
VARQ infrastructure we used for the empirical experiment and the
Maui [18] batch-scheduler running in simulation mode. The Maui
scheduler is the actual scheduler deployed at many of the sites we
tested empirically (See Table 1). Maui includes a simulation capa-
bility that allows input job workloads to exercise a given sched-
uler policy so that potential performance effects can be identified
prior to deployment. Because we did not have access to the specific
scheduler policy files at each site, we chose Maui’s default policy
which is first-come-first-served with backfilling [18, 16] and a pro-
cessor node count set to 272, which is the total number of nodes in
the Datastar machine at SDSC, where each node has 8 processors.

We hasten to clarify that we do not claim the performance re-
sults generated by this simulator are representative of any actual
system hence we did not use it to investigate the effectiveness of
VARQ. However, the question of how well VARQ performs when
the fraction of offered workload controlled by VARQ increases is

8 2013/10/19



.5 .75 .95
machine required used ratio required used ratio required used ratio
datastar 14 22 1.58 8 9 1.16 0 0 0.00
ucteragrid 1038 1120 1.08 877 956 1.09 563 1221 2.17
dante 884 944 1.07 604 735 1.22 831 2040 2.45
cnsidell 257 636 2.48 60 212 3.53 0 0 0.00
ncsateragrid 58 127 2.17 28 84 3.00 0 0 0.00
iuteragrid 82 82 1.00 91 91 1.00 110 258 2.34
ornlteragrid 464 473 1.02 628 640 1.02 83 94 1.13
all 2797 3405 1.22 2295 2725 1.19 1587 3612 2.28

Table 3. Non-VARQ and VARQ allocation costs and their ratio. Cost units are node-hours.

one we believe must be considered. To do so, we use the simulator
to compare VARQ performance over repeated experiments where
we vary only the fraction of jobs that use VARQ. If VARQ is to be a
generally useful methodology, it must be able to support an appre-
ciable fraction of the workload experienced without breaking down
or adversely impacting competitive users outside the prioritization
specified in the local scheduler policy.

The simulator takes a workload trace (we chose the datastar
“normal” queue since it seems particularly active), a fraction of
jobs that should use VARQ and a success probability. Next, the
simulator chooses regular time periods (six hours apart) within
the trace indicating times of advance reservation start deadlines.
This mode of operation represents the worst case where the given
percentage of jobs request reservations starting at same time every
six hours. Jobs are considered in submission order, and a job is
selected to be considered a VARQ job randomly, but in proportion
to the specified fraction (e.g. if the fraction is 0.10 each job has
a 10% chance of being converted into a VARQ job). If the job is
selected, it is presented to VARQ for execution at the next six hour
deadline with the specified success probability.

4.5 Generality Results

The results of our simulation experiment are shown in Table 4.
Note that although there are times when we failed to achieve the
minimum expected success percentage using VARQ, in most cases
VARQ was able to acquire a success percentage very close to
the expected success percentage of reservations. Predictably, as
the fraction of VARQ jobs increases and the success probability
increases, VARQ’s success rate decreases. However, in many cases
the results are surprisingly close, given the extreme nature of the
simulation. For example, if 10% of the jobs are VARQ jobs and
they target the same deadline with a desired success probability
of 0.95, the observed success fraction is 0.91. Only when 95%
of the jobs are VARQ jobs and the desired success probability is
equal to 0.75 do the simulations show VARQ’s quality of service
guarantees breaking down. Note that when 95% of the jobs are
VARQ jobs and the desired success probability is either 0.5 or 0.95
VARQ almost succeeds. In the former case, the conservativeness of
QBETS predictions furnishes VARQ with enough “slack” in the
estimate of the 50th percentile so that the predicted probability
(0.68) is only slightly larger than the observed success fraction
(0.64). In the latter case, QBETS is able to find few instances where
it predicts the probability to be 0.95 or greater. A closer analysis of
the simulation trace reveals that the 48 VARQ attempts in this case
only occurred during period of light workload in the job trace we
used. Thus we observe in this example there is a regime between the
extremes of 0.5 and 0.95 success probability where VARQ clearly
fails to operate. We believe this effect is general, but the precise
failure regime will be site specific.

At a high level, these results indicate that VARQ is both likely
to offer a larger user community valuable functionality without
degrading resource performance or utilization. In the simulations,

each VARQ job had its run time increased to cover the possibility
of an early start. Either the simulated machine was under utilized
by the original (non-VARQ) workload, in which case VARQ in-
creases the utilization perceived by the system administration, or
the machine was originally over committed, in which case VARQ
does not cause utilization to be lost. Moreover all of the simulations
executed in approximately the same simulated time interval as did
the VARQ-free simulation (not shown). Thus the amount of work
accomplished with active VARQ jobs is approximately the same as
when no VARQ jobs are present. We present these results in order
to provide evidence that a more aggressive field test of VARQ is
warranted as its general use (even in the worst case) appears rela-
tively benign.

4.6 Discussion

The results presented in the previous subsection show that VARQ
implements a new advanced reservation abstraction for HPC users.
Moreover, the abstraction is virtual. Existing batch systems, gov-
erned by complex and hidden local scheduling policies, do not need
to change in any way and, in particular, do not need to agree to sup-
port any form of user-initiated reservation mechanism for VARQ
to function. Finally, the virtualization is statistical. VARQ uses pre-
dictions generated by QBETS to “manufacture” a reservation with-
out local infrastructure support. As a fortuitous side-effect, each
VARQ reservation can be characterized by success probability that
is conservative. Users know the minimum success probability as-
sociated with each of their reservations. Together, these features
enable VARQ to achieve a functionality first hypothesized as be-
ing useful almost a decade previously [5] and for which we believe
there will be substantial demand.

New Capabilities

VARQ also offers several capabilities that would otherwise be
difficult to implement as mechanism.

• It trivially implements a zero-overhead “best effort” reserva-
tion. In this mode, a user specifies a deadline and a success
probability, but is willing to tolerate having the submitted job
start before the deadline.

• It allows users to control what they pay in allocation as a
function of how precisely they wish to have their deadlines met.

• It allows VARQ reservations to be combined from independent
sites with predictable joint probabilities of success.

The first feature is simply a function of when a user job actually
begins doing work after it has successfully be allocated a set of
processors. If a user does not want to pay the allocation overhead
necessary to wait until her deadline, her job need only begin exe-
cuting immediately instead of ‘spinning” until the deadline. In the
current prototype, this spinning or waiting is implemented in the
application itself. It is trivial to wrap the application in a script to
avoid the need for user modification of the program. Either way,

9 2013/10/19



.5 .75 .95
Percent VARQ jobs predicted actual count predicted actual count predicted actual count
10 0.54 0.66 359 0.77 0.72 60 0.97 0.91 11
50 0.55 0.60 1869 0.77 0.68 1108 0.96 0.84 194
95 0.68 0.64 1960 0.43 0.81 939 0.98 0.97 48

Table 4. Average predicted success probability and actual observed success fraction for VARQ jobs in simulation.
however, the user can control the cost at the time the job begins
node occupancy.

Finally, because each VARQ reservation is associated with a
success probability, it is trivially possible to combine reservations
to meet a specific reliability target as long as the user can take
advantage of which ever resource ultimately is delivered first. For
example, if it is possible to obtain two different VARQ reservations
for the same point in time, each with a success probability of
0.9, and the machines behave independently with respect to queue
delay (which they almost certainly do at present), the probability
of getting one or the other or both is 1.0 minus the probability that
they will both fail. That is, the joint probability of success in this
example is at least 0.99. While users may not take advantage of this
simple approach manually since it involves canceling one of the
submissions to avoid even greater allocation cost, in grid settings,
where metaschedulers can manage this complexity automatically,
the possibility is intriguing.

5. Conclusion
One major hurdle the HPC community has yet solve generally is
that of providing users and grid/metacomputing systems the ability
to obtain advance reservations. In this work, we introduce VARQ,
a statistical approach which provides users with a mechanism to
obtain virtual advance reservations on existing systems, without af-
fecting local site software or administration and scheduling poli-
cies. We show through empirical experiment that VARQ success-
fully obtains resources corresponding to a variety of user requests
on real HPC systems in operation, and provide evidence that the in-
troduction of VARQ as a more general tool is likely to be effective
and will not cause a substantial impact on resource performance.

In the future, we plan to press for VARQ tests in live HPC set-
tings, based on the strength of the results presented herein. We also
plan to continue to use VARQ as part of applications that require
deadline-based scheduling in large-scale distributed environments.
Finally, adapting QBETS to meet the needs of VARQ has exposed
several possible improvements (including the possibility of a ma-
chine down-time detector) which we plan to pursue.

Finally, by way of conclusion, we wish to express our sincere
gratitude to the various organizations who have allowed us to ac-
cess their scheduling systems in such an intimate way. Without their
cooperation, this research certainly would have been impossible.

References
[1] F. Berman, G. Fox, and T. Hey. Grid Computing: Making the Global

Infrastructure a Reality. Wiley and Sons, 2003.
[2] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on queuing

delay for batch-scheduled parallel machines. In Proceedings of
PPoPP 2006, March 2006.

[3] A. Bucur and D. Epema. The performance of processor co-allocation
in multicluster systems. In 3rd IEEE/ACM Int’l Symp. on Cluster
Computing and the GRID (CCGrid2003.

[4] S. Clearwater and S. Kleban. Heavy-tailed distributions in supercom-
puter jobs. Technical Report SAND2002-2378C, Sandia National
Labs, 2002.

[5] C. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A resource management architecture for
metacomputing systems. In International Parallel Processing Symp.
– Workshop on Job Scheduling Strategies for Parallel Processing,
1998.

[6] A. Downey. Predicting queue times on space-sharing parallel
computers. In Proceedings of the 11th International Parallel
Processing Symposium, April 1997.

[7] A. Downey. Using queue time predictions for processor allocation.
In Proceedings of the 3rd Workshop on Job Scheduling Strategies for
Parallel Processing, April 1997.

[8] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour,
and A. Streit. On advantages of grid computing for parallel job
scheduling. In 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2002, pages 39–47.

[9] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic scheduling
in grid computing, 2002.

[10] D. G. Feitelson. A survey of scheduling in multiprogrammed parallel
systems.

[11] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job
scheduling — a status report, 2004.

[12] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[13] J. Gehring and T. Preiss. Scheduling a metacomputer with
uncooperative sub-schedulers. In Proc. JSSPP, pages 179.

[14] M. Harchol-Balter. The effect of heavy-tailed job size distributions
on computer system design. In Proceedings of ASA-IMS Conference
on Applications of Heavy Tailed Distributions in Economics,
Engineering and Statistics, June 1999.

[15] F. Heine, M. Hovestadt, O. Kao, and A. Streit. On the impact of
reservations from the grid on planning-based resource management.
In International Workshop on Grid Computing Security and Resource
Management (GSRM 2005) at ICCS 2005, Atlanta, USA, Springer,
LNCS 3516, pages 155–162.

[16] D. Jackson, Q. Snell, and M. Clement. Core algorithms of the maui
scheduler. In 7th Workshop on Job Scheduling Strategies for Parallel
Processing, 2001.

[17] D. Lifka. The ANL/IBM SP scheduling system, volume 949. Springer-
Verlag, 1995.

[18] Maui scheduler home page – http://www.clusterresources.
com/products/maui/.

[19] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2 with
backfilling. In IEEE Trans. Parallel and Distributed Syst. 12(6), Jun
2001, pages 529–543.

[20] C. Ng, P. Buonadonna, B. N. Chun, A. C. Snoeren, , and A. Vahdat.
Addressing strategic behavior in a deployed microeconomic resource
allocator. In In Proceedings of the 3rd Workshop on Economics of
Peer-to-Peer Systems, 2005.

[21] D. Nurmi, J. Brevik, and R. Wolski. Qbets: Queue bounds estimation
from time series. In Proceedings of Job Scheduling Strategies for
Parallel Processing (JSSPP), June 2007.

[22] The qbets web page – http://nws.cs.ucsb.edu/batchq.
[23] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C. Snoeren, and

A. Vahdat. Why markets could (but don’t currently) solve resource
allocation problems in systems. In Proceedings of the 10th USENIX
Workshop on Hot Topics in Operating Systems, 2005.

[24] L. Smarr and C. E. Catlett. Metacomputing, 1992.
[25] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced

reservations. In Parallel and Distributed Processing Symposium
(IPDPS 2000), pages 127–132.

[26] W. Smith, V. E. Taylor, and I. T. Foster. Using run-time predictions
to estimate queue wait times and improve scheduler performance.
In IPPS/SPDP ’99/JSSPP ’99: Proceedings of the Job Scheduling
Strategies for Parallel Processing, pages 202–219, London, UK,
1999. Springer-Verlag.

[27] Q. Snell, M. Clement, D. Jackson, and C. Gregory. The performance
impact of advance reservation meta-scheduling. In 6th Workshop on
Job Scheduling Strategies for Parallel Processing, pages 137–153,
2000.

[28] The teragrid user portal – http://portal.teragrid.org.

10 2013/10/19


