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Abstract

In this paper, we present VIProf, a full-system, perfor-
mance sampling system capable of extracting runtime be-
havior across an entire software stack. Our long-term goal
is to employ VIProf profiles to guide online optimization
of programs and their execution environments according to
the dynamically changing execution behavior and resource
availability. VIProf thus, must be transparent while produc-
ing accurate and useful performance profiles.

We overview the design and implementation of VIProf
and empirically evaluate the system using a popular soft-
ware stack – one that includes a Linux operating system,
a Java Virtual Machine, and a set of applications. This
composition is commonly employed and important for high-
end systems such as application and web servers as well
as Computational Grid services. We show that VIProf in-
troduces little overhead and is able to capture accurate
(function-level) full-system performance data that previ-
ously required multiple profiles and extensive, manual, and
offline post-processing of profile data.

11. Introduction

Recent advances in virtualization techniques expose a
number of new opportunities for applications that execute
using them. Virtualization systems are increasingly pop-
ular software systems that multiplex lower-level resources
among higher level software programs and systems. Exam-
ples of virtualization systems include a vast body of work
in the area of operating systems [22, 14, 7], high-level lan-
guage virtual machines such as those for Java and .Net, and,
most recently, virtual machine monitors (VMM) [28, 20, 1].

In our research, we investigate opportunities for perfor-
mance optimization across the entire system stack (OS, Java
Virtual Machine, application server, application), when we
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use virtualization to isolate system instances. Key to our ap-
proach is our assumption that a single application executes
at a time. This assumption holds for both batched, cluster
systems that execute scientific applications, as well as for
a wide range of web, Grid service, and application server
systems. Virtualization enables us to customize the system
stack for a particular application, i.e., the application that is
currently executing (or will execute once scheduled), very
aggressively. Then, when the application completes, vir-
tualization facilitates the replacement of the entire system
stack with another one (e.g., for another application).

Given this execution model, i.e., isolated application in-
stances that execute within guest operating systems over
a virtualizing software layer, we can consider novel tech-
niques for optimization and specialization across all lay-
ers of the software system. In particular, we are interested
in automatic and dynamic adaptation, customization, and
integration of the application, runtime, and operating sys-
tem according to the dynamically changing characteristics
of program behavior and underlying resource availability.
Our approach is called VIVA – Vertically Integrated Vir-
tualizAtion, and our preliminary results indicate significant
potential and opportunity [12, 32, 31, 30].

As a first step toward enabling dynamic customization,
in this paper, we investigate an efficient and accurate pro-
filing system that captures performance data transparently
while the application executes. Such information is vital for
guiding effective runtime (re-)optimization and (re-) adap-
tation according to dynamically changing conditions.

Current profiling systems are limited in that they operate
on a single layer of the execution stack at a time. Ana-
lyzing profiles and identifying common bottlenecks across
layers (OS, JVM, application) is thus, currently not possi-
ble without manual, offline, and tedious post-processing of
profiles collected via different tools. Moreover, even across
layers, existing profiling techniques have difficulty captur-
ing performance data on all code that executes, e.g. code
that is dynamically compiled. If we are to optimize across
the different layers of the software stack, we must be able
to sample all code that executes, and interrelate the perfor-



mance data across all software layers. To address this need
for a transparent, online, full-system profiling system, we
present VIProf, a Vertically Integrated Profiler.

VIProf is an extension of the system wide profiler, OPro-
file, for Linux [19]. We extend OProfile by integrating its
sampling system to access program-level information from
any Application Virtual Machine. We implement a VIProf
prototype using the open source Jikes Research Virtual Ma-
chine (JikesRVM) from IBM T.J. Watson Research center.
We evaluate the overhead and efficacy of this VIProf pro-
totype and detail how VIProf captures full-system perfor-
mance behavior.

In the sections that follow, we present the background
and motivation for our research, as well as other related
work in this area. We then describe VIProf in Section 3.
In Section 4, we demonstrate the potential benefits of verti-
cally integrated profiling and empirically evaluate the over-
head and efficacy of our system. Finally, we conclude and
discuss our future research plans in Section 5.

2. Background and Related Work

To enable dynamic and adaptive customization of the
system stack (all software layers including the application),
we require techniques that capture accurate performance
data across the system that we can use to guide optimization
decisions. Currently, extant approaches to profiling capture
only single-layer information, e.g., within a virtual execu-
tion environment (JVM or CLR) [2, 9, 5, 17, 11, 21], across
the system but agnostic to JVM-process internals [19, 15],
employ complex software instrumentation [13, 23, 26], or
require hardware extensions [16, 18, 10, 4]. To achieve
efficient, full-system profiling currently requires multiple,
complex, profiling tools and tedious, inaccurate, offline in-
tegration of profile data. To address these limitations, we in-
vestigate a full-system profiling system that captures light-
weight hardware performance event data across both run-
times for high-level languages, e.g., Java and Microsoft
.Net, and for code within the operating system. Our sys-
tem is called the Vertically Integrated Profiler (VIProf).

VIProf is based on a popular, software-based, operating
system profiler called OProfile [19] that we extended to en-
able the integration of internal JVM profile data. OProfile
is a system-wide profiling system that captures hardware
performance counter events and correlates them with vari-
ous parts of the executing system, including applications, li-
braries, and operating system functions. This system, how-
ever, does not support dynamically generated code, such as
JIT or dynamically compiled code, and views a JVM in-
stance as a single application without regard as to which
applications or programs execute within it. As a result, we
are unable to investigate the performance of high-end Java
programs, applications servers and their applications, Grid

services, and Java middleware in concert with OS perfor-
mance and OS-JVM interaction. Extant recent approaches
to JVM profiling, in particular vertical profiling [8], provide
a thorough examination of JVM and Java program internals,
but do not capture fine-grain OS activity and the JVM-OS
interaction. To address the limitations of these two types
of profiling systems, we have developed VIProf. VIProf is
able to correlate hardware performance counter events with
all code that executes in the system regardless of where it
executes (user or kernel space) and how it is generated and
linked (dynamically or statically).

An alternative approach to the one that we take with
VIProf, is that of the Performance and Event Monitoring
(PEM) infrastructure from IBM Research [27]. PEM com-
bines information collected by several distinct monitoring
streams that are provided by agents instrumented into the
application or operating system (K42), or by native hard-
ware counter agents on the supported hardware (Power Mac
G5). VIProf, however, is a lightweight, whole-system,
hardware-event profiler that provides a unified perspective
of the entire execution stack, and requires no instrumenta-
tion or combination of multiple monitored streams. More-
over, VIProf, as a result of our use of OProfile as a base in-
frastructure, supports different operating systems and hard-
ware platforms – extant profiling system commonly support
a single OS or architecture. Finally, our implementation is
simple and general enough to support a wide range of vir-
tual execution environments (multiple Java virtual machines
as well as Microsoft .Net common language runtimes).

3. Vertically Integrated Profiler (VIProf)
VIProf extends the OProfile to enable integrated profil-

ing across the virtual layers of a system. OProfile con-
sists of a Linux kernel module, and a user level applica-
tion. The kernel module sets up the hardware performance
counters (HPCs) with the user’s settings and requests a Non-
Maskable Interrupt (NMI) to be raised whenever a con-
figurable threshold value is reached. When the prescribed
number of hardware events occur, an HPC overflows and
an NMI is raised by the OS. The kernel module handles
the interrupt by reading the active Program Counter (PC)
value from the processor. OProfile matches the PC value
to a virtual memory region, and identifies the correspond-
ing binary or library. Further, OProfile computes the offset
into the corresponding object file to pinpoint the method
that was executing at the time the interrupt is raised. OPro-
file adds this information, to which we refer to as a sample,
to a buffer for later servicing by a user-level, OProfile dae-
mon. Periodically, this daemon processes the sample buffer
and writes the samples to disk. OProfile also includes post-
processing utilities to enable flexible reporting.

The primary limitation of OProfile (or any other system-
wide profiler) is in profiling dynamically generated code.
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Time %   Dmiss %  Image name     Symbol name 
 9.6393   0.4586  RVM.map        com.ibm.JikesRVM.classloader.VM_NormalMethod.getOsrPrologueLength 
 5.4750   0.2293  RVM.map        com.ibm.JikesRVM.classloader.VM_NormalMethod.hasArrayRead 
 5.3216   0.2784  RVM.map        com.ibm.JikesRVM.opt.VM_OptCompiledMethod.createCodePatchMaps 
 4.9421   1.3429  JIT.App        edu.unm.cs.oal.DaCapo.JavaPostScript.Red.Scanner.Scanner.parseLine 
 3.6599   0.1146  RVM.map        com.ibm.JikesRVM.opt.VM_OptGenericGCMapIterator.checkForMissedSpills 
 3.6019   0.5077  RVM.map        com.ibm.JikesRVM.MainThread.run 
 2.6813  28.2673  libc-2.3.6.so  memset 
 1.8861   0.0491  RVM.map        com.ibm.JikesRVM.classloader.VM_NormalMethod.finalizeOsrSpecialization 
 1.7619   0       RVM.map        com.ibm.JikesRVM.opt.VM_OptMachineCodeMap.getMethodForMCOffset 
 1.5274   0.1802  RVM.map        java.util.Vector.trimToSize 
 1.3186  10.0066  libxul.so.0d   (no symbols) 
 1.1783   0.1474  libfb.so       fbCopyAreammx 
 1.1268   0.0164  libfb.so       fbCompositeSolidMask_nx8x8888mmx 

Time %   Dmiss %  Image name                                    Symbol name 
69.6552  15.9909  RVM.code.image                               (no symbols) 
 2.3053  39.6149  libc-2.3.6.so                                memset 
 1.9327   0.6569  anon (range:0x65000000-0x65700000),JikesRVM  (no symbols) 
 1.2961   0.4304  anon (range:0x65000000-0x65b00000),JikesRVM  (no symbols) 

Figure 1. Sample profile generated by VIProf (above) and Oprofile (below) for the Dacapo ps bench-
mark. (Truncated for brevity). The hardware events profiled are GLOBAL POWER EVENTS(time) and
BSQ CACHE REFERENCE (L2 data cache misses) shown on the first and second columns respectively

Such code is typical for programs that execute using a vir-
tual machine (VM), e.g., those developed in languages like
Java and the Microsoft .Net languages. The format of such
programs is an architecture-independent format (to enable
portability) that is converted by a VM using an interpreter
or dynamic (sometimes referred to as a just-in-time (JIT))
compiler. The location and layout (needed by OProfile to
map a PC value to its corresponding binary) of dynamically
generated code bodies are thus determined and assigned at
runtime and are stored in the VMs virtual memory region.
To further complicate matters, virtual machines re-compile
frequently executing code in an effort to extract higher per-
formance through additional optimization. Thus, the loca-
tion and layout of code can change dynamically. Finally,
if these code bodies are stored in a garbage-collected sec-
tion of JVM memory, certain garbage collectors may also
move code bodies. We refer to dynamically generated code
bodies as JIT code throughout.

VIProf is a set of OProfile extensions to handle JIT code
and VM internals. The extensions enable OProfile to iden-
tify a sample as belonging to JIT code and to retrieve in-
formation from the VM in which the code is executing. We
also map code bodies to its high-level information (methods
in an application) so that we can attribute performance data
to particular methods. Two key extensions we contributed
with include the Runtime Profiler and the VM agent.

Runtime Profiler. The runtime profiler is the OProfile dae-
mon that runs whenever we wish to log the samples. It is the
main source of profiling overhead, extra care must be there-
fore taken to ensure minimal work is done by this daemon.
We extend this daemon by a mechanism that allows a VM
to register the fact that it is executing dynamically generated
code. The virtual machine also registers the boundaries of

its memory heap. Within the daemon, the logging code will
consult this information before deciding to log a sample as
being anonymous. Instead, if it is found to fall within the
boundaries of the VM’s heap, the sample will be logged as a
JIT.App sample. Apart from a few other limited VM prob-
ing routines, this added mechanism is the only extra work
that needs to be done at runtime. We evaluate the overhead
associated with this daemon in Section 4.

VM Agent. A counterpart to the runtime profiler is the VM
agent. This module is responsible for tracking JIT compi-
lations and any GC-induced code body moves. The agent
is implemented as a library with several hooks in the VM’s
code. Specifically, we add instructions in the body of the
‘compile’ and ‘recompile’ methods within the VM to log
the beginning address, size and signature of the method that
was just compiled into a buffer. We also instrument the GC
‘move’ method within the VM to mark a method’s body as
having been moved. We simply flag it instead of actually
logging it in order to avoid undue overhead. This is because
the body of the GC methods are highly tuned and any calls
to the outside of their code space will result in a significant
performance hit.

At specific points during execution, we process code
buffers by writing out a JIT code map to disk. We also
traverse a list of known compiled methods and write out the
information about any method that was flagged by GC. We
then notify the OProfile daemon and request that the written
map be associated with the logged JIT.App samples.

3.1. Handling GC-Managed Code

In some VMs, such as the open-source Jikes Research
Virtual Machine (Jikes RVM), the code and data regions
are both interwound into a single heap; even though the
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heap may be segregated for optimized garbage collection
and memory performance. This presents an additional chal-
lenge since the body of a method can exist at several differ-
ent memory locations during a single execution.

We overcome this challenge by viewing each instance
of a Garbage Collection as a cascaded execution epoch.
In our Runtime profiler, instead of designating samples to
the JIT application, we designate them to a particular ex-
ecution epoch of the JIT application. At the same time,
at the end of each execution epoch, we write out a code
map corresponding to the method addresses of this particu-
lar epoch. We perform this write just before the launching
of the garbage collection. It is important to note that this is a
partial write; since it only includes methods that were com-
piled (or recompiled) since the previous code map write. It
also includes the methods that were moved by the previous
garbage collection.

During logging time, a sample will be assigned a partic-
ular epoch. The post processing tool will attempt to find
the corresponding method in that particular code Map. It
is possible that the method would not be found, indicating
that the sample belongs to a method that was neither com-
piled nor moved during this particular epoch. In such case,
the post processing tool will traverse the set of code maps
backwards until it identifies the first occurrence of a method
which used to have addresses corresponding to the sample.

3.2. Post Processing Tools

A key to our low overhead implementation of the whole
system profiler is that we delay most of the work to the of-
fline profile analysis stage. OProfile comes with a powerful
set of post processing tools that are able to categorize, sort
and display sample information in a variety of ways. The
initial step in the working of these features is the reading
and grouping of the sample files.

We modify this component by adding code that will read
the map files generated by the VM agent. Since these maps
are organized into sequential files - corresponding to the GC
epochs of the VM - the tools will initially search for a sam-
ple in the map file corresponding to the epoch during which
the sample was recorded. If the sample is not found in the
epoch’s map, the tool will search the immediately preced-
ing map and so on. This guarantees that the method which
the sample will be associated with is the most recently com-
piled - or moved - method to occupy that address space.

The VM itself is an application whose job is to execute
the portable object files (e.g. Java Byte Code). Many VMs
are written in C or C++ (e.g. Sun Hotspot) and are compiled
directly into object files. Since object files are profiled di-
rectly by OProfile, no additional work is needed to include
the execution information associated with the VM.

However, some VMs, such as the Jikes RVM, are writ-
ten mostly in Java and as such will not be profiled directly

by OProfile. Luckily, the build mechanism for Jikes RVM
produces a static image (in a Jikes internal format) and an
associated map. We modify the OProfile post processing
tool to read in the Jikes RVM internal map and use it to
process samples associated with the VM component of the
execution. Moreover, there is a small bootstrap application
responsible for loading the Jikes RVM class image which is
written in C. This application is compiled into an object file
and no additional work is needed to profile it.

4. Results
To demonstrate the usefulness and low overhead of

VIProf, we used it to profile several benchmarks. In this
section we present our experimental methodology, and re-
sults of our tests, including a sample profile output and an
evaluation of the overhead of our system.

4.1. Methodology

VIProf is an extension to version 0.9.2 of the Oprofile
system [19]. The Virtual Machine used is version 2.4.5 of
the Jikes Research Virtual Machine [11]. We use a Debian
sarge distribution [6] running Linux Kernel 2.6.20.16. All
experiments are performed on a single core Intel Pentium 4
Xeon running at 3.4MHz with 2GB of RAM.

We profile three groups of benchmarks: Spec
JVM98 [25], Dacapo [3], and Spec Pseudo JBB [24].
JVM98 and Dacapo are collections of short and medium
length applications for a variety of tasks including com-
pilers, string manipulation, databases, decoders and other
applications designed to model typical Java applications.
Pseudo JBB is a variation of Spec JBB which models sev-
eral warehouses servicing transactions. It is a longer run-
ning application than JVM98 and Dacapo. pseudo JBB is
configured to have a fixed number of transactions, allow-
ing a direct measure of the execution time. We use an in-
put of ‘100’ for JVM98 benchmarks and ‘large’ for Dacapo
benchmarks. We use 3 warehouses with 100K transactions
for pseudo JBB.

For each benchmark, we measure execution time by run-
ning the benchmark 10 times, eliminating the fastest and
slowest run, and then averaging the remaining 8 runs. We
start VIProf just prior to benchmark launch and we config-
ure it to measure the execution time of the benchmarks only.

4.2. Case Study

Figure 1 shows the output of VIProf (the upper portion)
versus the output of Oprofile (the lower portion) for an iden-
tical run of the Dacapo ps benchmark. In the Oprofile out-
put, the Java Application and Virtual Machine are both pro-
filed as black boxes. However, we are able, using VIProf to
identify the systems execution patterns and view all meth-
ods side by side. In addition to relative method weights
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Figure 2. Overhead of profiling with VIProf compared to Oprofile. Higher bars indicates slower rela-
tive execution time.

and correlated hardware events, VIProf also extends the call
graph functionality of Oprofile to include call sequence pro-
files across layers. We omit these results for brevity.

VIProf output demonstrates the utility and convenience
of our profiler for whole system profiling. This level of de-
tail profiling is indispensable to our overall goal of verti-
cally integrated optimization.

4.3. Overhead

Figure 2 shows the execution overhead associated with
VIProf at 3 different profiling frequencies. The figure
also shows the Oprofile overhead for the median frequency
(90K). The execution times are normalized to base execu-
tion time (i.e. no profiling or running VM agents). Figure 3
shows the base execution time of the evaluated benchmarks
for reference.

On average, VIProf adds negligible overhead to what
Oprofile already introduces. While most benchmarks ex-
perienced a slight slowdown compared to Oprofile, a few
experienced speedups. We believe this is due to VIProf
avoiding the anonymous memory logging code in Oprofile
(which we replace with our VIProf mapping code). A few
benchmarks exhibited speedups as compared to the base ex-
ecution time. We found these to be medium lengthed Da-
capo applications ( hsqldb, bloat). We believe this is
due to system noise and the uncertainty involved in full sys-
tem measurements.

For a moderate level of sampling (1 in 90K cycles),
Oprofile generally slows down the system by an average of
5%. Our system also exhibits a similar slowdown on aver-
age. This compares favorably to other similar profilers such
as Vertical Profiling which reported 7% average profiling
overhead (although vertical profiling is limited to covering
the VM and application domain only).

For a median sampling frequency (90K) with VIProf, the
majority of benchmarks experienced slowdowns less than
10%, with one exception, antlr, recording a slowdown
above 10%. Four benchmarks had slowdowns that were

Benchmark Base time
pseudoJBB 31
JVM98 (average) 5.74
antlr 8.7
bloat 28.5
fop 3.2
hsqldb 43
pmd 16.3
xalan 137.9
pseudoJBB 22.2
Average 32.9

Figure 3. Base execution time in seconds for
the benchmarks.

less than 5%. Longer running benchmarks generally ex-
perienced the smaller slowdowns, due to the amortization
of the cost of writing out the code maps. Further, as the
code reaches higher optimization levels and the GC moves
these regions to the mature space, there is less need for any
runtime work to be done to support our VIProf system.

5. Conclusions and Future Work
Investigating optimization and specialization opportuni-

ties across the entire system stack is the main focus of our
research. In this paper, we present VIProf: an efficient pro-
filing system that captures performance transparently across
the entire system stack. VIProf is a first step towards in-
terrelating performance bottlenecks across layers (OS, VM,
and application), and identifying potential optimization and
specialization opportunities for the entire execution stack.
We show that VIProf captures interesting events across the
system with very low overhead.

As part of future work, we plan to integrate Xen virtu-
alization extensions into VIProf to integrate profiling of the
Xen layer (via XenoProf [29]) as well as multiple concur-
rently executing software stacks. In addition, we plan to in-
vestigate profile-guided optimizations across multiple lay-
ers of the execution stack. In particular, we are interested in
customizing the VM and OS and their interaction according
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to the changing behavior of an application and the available
resources.
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