CS32 F15 HO7 Handout—Page 1
Sorting

This handout explains three quadratic sorting algorithms. Each explanation assumes we are sorting an array of size nin
ascending order from position position [0] through [n-1]. (Technically, we should say "non-decreasing" rather than
"ascending", since we could have duplicates.)

Bubble Sort

As was demonstrated in class, the main idea of bubble sort is as follows.

= Make n-1 passes through the array, numbered i=n-1, n-2, etc. down to 1
= On pass i, we consider the part of the array 0 through i
We walk through that part of the array, looking at each pair of adjacent elements, and swapping them if
they are out of order.
= We also can keep track of whether any swaps happen during each pass. If we make a pass that has NO
swaps at all, we can stop, because we know the array is already sorted.

Some things we know about bubble sort:

= After pass i, we know that the element in position i through the end of the array (n-1) is in proper place in the
array. (This was explained in lecture.)
= Corrolary 1: After pass 1, we know that elements 1 through n-1 are sorted and in their correct place in the

array.
= Corrolary 2: After pass 1, we know the entire array is sorted, because it is not possible for element [0] to
be out of place if every other element is in place.
Given this, here are two example "worked problems" for bubble sort.

The part in bold is what YOU would write if given the problem.

initial

6050403020 itial

values 10 | 40 | 30 @ 60 | 50
i=4 5040302060 values

=3 140/30/20/50/60 i=4 10 30 40 50 60

2 [30/2040/50/60 i=3 10 30 40 50 60
1 20/30/40/50 60 i=2 |DONE: no swaps on previous pass

CS32 F15 H07 Handout—Page 2

Insertion Sort

As demonstrated in class, the main idea of insertion sort is that we take elements from one array, and insert them, in
turn, into a sorted array that we are building up one element a time. The simplest approach is to insert into a completely
separate array. Later, we'll discuss "in-place" approaches to insertion sort. Each "pass" is the insertion of one new
element, and it has two parts (a) figure out into which index the new element should go (b) copy all the elements from
the end of the array down to that position one index higher (c) put the new element in place.

Here are two examples of solved problems using insertion sort.

o gl'ltj':'s 1014030 6050
N2l 60150203010 o
i=0 60 i=1 1040
i=1 5060 i=2 103040
i—2 205060 i=3 101304060
i=3 203050/60 i—4 10304050 60
i=4 1020130/50 60

Selection Sort

As demonstrated in class, the main idea of selection sort is to first choose whether we are going to work from the "big
end" or the "little end".

If we work from the "big end", we have an outer loop where i goes from n-1 down to 1.

= fori=n-1downtol
= |ook at portion of array from 0 through i,
and find the "index of the maximum element"
= Swap a[i] with a[indexOfMax]

Here are two solved problems for selection sort:

'”I'“a' 609017050 10 o
values 121 11014030/60/50

i=4 60/10/70/5090 values
i=3 60/10/5070/90 i=4 1040 30/5060
i=2 15010/6070190 i=3 1040305060
i=1 110/50/60(70/90 i=2 1/10/3040 50 60
i=1 10301405060

