
Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis∗

Tegan Brennan, Nestan Tsiskaridze, Nicolás Rosner, Abdulbaki Aydin, and Tevfik Bultan

Department of Computer Science, University of California Santa Barbara, CA

{tegan,nestan,rosner,baki,bultan}@cs.ucsb.edu

ABSTRACT
We present a constraint caching framework to expedite potentially

expensive satisfiability and model-counting queries. Integral to this

framework is our new constraint normalization procedure under

which the cardinality of the solution set of a constraint, but not

necessarily the solution set itself, is preserved. We extend these

constraint normalization techniques to string constraints in order

to support analysis of string-manipulating code. We use a group-

theoretic framework, which generalizes earlier results, to express

our normalization techniques. We also present a parameterized

caching approach where, in addition to storing the result of a model-

counting query, we store a model-counter object that allows us to

efficiently recount the number of satisfying models for different

bounds. We implement these techniques in our tool Cashew, which
is built as an extension of the Green caching framework [55], and

integrate it with the symbolic execution tool Symbolic PathFinder

(SPF) and the model-counting constraint solver ABC. Our experi-

ments show that constraint caching can significantly improve the

performance of symbolic and quantitative program analyses. For

instance, Cashew can normalize the 10,104 unique constraints in

the SMC/Kaluza benchmark down to 394 normal forms, achieve

a 10x speedup on the SMC/Kaluza-Big dataset, and an average 3x

speedup in our SPF-based side-channel analysis experiments.

CCS CONCEPTS
• Software and its engineering→ Formal software verification;

KEYWORDS
Constraint caching, quantitative program analysis, model counting,

string constraints

ACM Reference Format:
Tegan Brennan, Nestan Tsiskaridze, Nicolás Rosner, Abdulbaki Aydin, and

Tevfik Bultan. 2017. Constraint Normalization and Parameterized Caching

∗
This material is based on research sponsored by NSF under grant CCF-1548848 and

by DARPA under the agreement number FA8750-15-2-0087. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. The views and conclusions contained herein

are those of the authors and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied, of DARPA or the U.S.

Government.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00

https://doi.org/10.1145/3106237.3106303

for Quantitative Program Analysis. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4–8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106303

1 INTRODUCTION
Improvements in the area of satisfiability modulo theories [10, 12]

and powerful SMT solvers [11, 20, 21] have been key technologi-

cal developments enabling the rise of effective symbolic program

analysis and testing techniques in the last decade [15, 27, 32, 48].

Performing symbolic analysis via satisfiability checking, how-

ever, is not sufficient for quantitative program analysis, which is an

important problem that arises inmany contexts such as probabilistic

analysis [14, 24, 38], reliability analysis [22] and quantitative infor-

mation flow [7, 17, 28, 40, 41, 43–45, 50, 53]. The enabling technol-

ogy for quantitative program analysis is model-counting constraint

solvers. A model-counting constraint solver returns the number of

solutions for a given constraint within a given bound [6, 8, 39].

Since constraint solving and model counting are heavily used

in program analysis, improving performance of these tasks is of

critical importance. In this paper, we present a new approach for

constraint normalization and constraint caching with the goal of

improving the performance of quantitative program analyses.

The key step in constraint caching is normalization of constraints,

i.e., reducing constraints to a normal form, where two constraints

are reduced to the same form only if they are equivalent (w.r.t.

satisfiability or model counting). Using the normal form of a con-

straint as a key, we can recover results of previous satisfiability or

model-counting queries without recomputing them.

Earlier techniques for constraint caching [4, 31, 55] 1) focus only

on numeric constraints and do not handle string constraints, 2) use

normalization techniques that preserve the exact solution set of a

constraint, which reduces cache hits for model-counting queries,

and 3) always produce cache misses for model-counting queries if a

different bound is used, even if the queried constraint remains the

same. In this paper, we extend earlier results in multiple directions:

• We present constraint normalization techniques for model

counting under which the solution set of the constraint may

not be preserved but its cardinality is.

• We extend constraint caching to string constraints which is

crucial for analyzing string manipulating code.

• We present a parameterized caching approach where, in

addition to the result of a model-counting query, we also

cache a counter object in the constraint cache that allows us

to efficiently recount the models for different bounds.

• We formalize our normalization scheme using an extensible

group-theoretic framework for constraint normalization that

535

https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1145/3106237.3106303

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

generalizes earlier results on constraint normalization for

caching.

We implemented these techniques in our toolCashew, which is built
as an extension of the Green caching framework [55]. We integrated

Cashew with Symbolic PathFinder (SPF) [42] and the ABC [6]

model-counting constraint solver. Our experiments demonstrate

that constraint caching can improve the performance of quantitative

program analysis significantly.

The paper is organized as follows: In Section 2 we provide some

motivating examples for constraint caching. In Section 3 we give

an overview of our constraint caching framework. In Section 4 we

discuss our group-theoretic normalization scheme. In Section 5 we

describe the constraint language we support. In Sections 6 and 7

we present the constraint normalization procedure. In Section 8 we

present our experiments. In Section 9 we discuss related work. In

Section 10 we present our conclusions. In Section 11 we describe

how to obtain and use the implementation.

2 MOTIVATION
The amount of string-manipulating code in modern software appli-

cations has been increasing. Common uses of string manipulation

include: 1) Input sanitization and validation in web applications;

2) Query generation for back-end databases; 3) Generation of data

formats such as XML and HTML; 4) Dynamic code generation; 5)

Dynamic class loading and method invocation. In order to analyze

programs that use string manipulation, it is necessary to develop

techniques for efficient manipulation of string constraints. Recently,

there has been significant amount of work in string constraint solv-

ing to address this problem [2, 23, 29, 30, 33–36, 47, 52, 57]. One of

our contributions in this paper is a constraint normalization and

caching framework that can handle string constraints.

Consider the following string constraint F :

b = “https” ∧ prefix_of (b,url) ∧ c = “?” ∧ contains(c,url)
∧w ∈ (0|1)+ ∧ index_of (w,url) = 8

The solution set of F is the set of values that can be assigned to the

string variables b, c ,w , and url for which F evaluates to true.

Constraints such as F commonly arise in symbolic program anal-

ysis. For example, F might correspond to a path constraint generated

during symbolic execution of a string-manipulating program. A fun-

damental question about a constraint F generated during program

analysis is its satisfiability. Symbolic program analysis techniques

generate numerous satisfiability queries while analyzing programs.

Given that satisfiability checking is computationally expensive, it

is crucial to answer satisfiability queries efficiently in order to build

scalable symbolic program analysis tools.

On the other hand, quantitative program analysis techniques

ask another type of question while analyzing programs. Assume

that we bound the length of the string variables b, c ,w , and url in
constraint F to 5. How many different string values are there for

the variable b such that the constraint F is satisfiable within the

given bound? These types of queries can be answered by model-

counting constraint solvers. Again, due to the high complexity of

model counting, answering model-counting queries efficiently is

crucial for quantitative program analysis.

Now, consider the following string constraint G:

k = “#” ∧w = “http : ” ∧ contains(k,var0) ∧ z ∈ (1|0)+

∧ index_of (z,var0) = 8 ∧ prefix_of (w,var0)

Constraint G is a constraint on string variables k , z, w , and var0.
Assume that constraints F and G are generated during program

analysis and it is necessary to check the number of satisfying so-

lutions and satisfiability of each. Can we avoid making redundant

calls to the constraint solver? Note that the solution sets of F and

G are different since different string constants appear in these two

constraints. However, the satisfiability and the cardinality of the so-

lution sets for these two constraints are identical. Hence, if we were

able to detect the relationship between the number of satisfying

models of F and G and had stored the result of a model-counting

query on F , then when we see G we do not have to call the model-

counting constraint solver again. Same for satisfiability queries.

The problem of reusing information about F to answer our ques-

tions about G has now been reduced to finding a fast way to deter-

mine that F and G are equivalent with respect to satisfiability and

model counting. In this paper, we present a constraint normaliza-

tion scheme to determine this type of equivalence. Based on our

scheme, the normalized form of F and G are identical:

v0 = “a” ∧v1 = “bccde” ∧ contains(v0,v2)
∧ prefix_of (v1,v2) ∧v3 ∈ (f |д)+ ∧ index_of (v3,v2) = 8

Hence, given a constraint, to determine if an equivalent constraint

has already been encountered, we normalize it and check if its

normal form was seen previously. Using a constraint store to cache

the results of prior queries to the solver, we avoid redundant queries

for constraints that have the same normalized form.

For both satisfiability and model-counting queries, we can cache

the result of the query in a constraint store, use normalization to

determine equivalence of constraints, and then reuse the query

results from the store when we get a cache hit. However, since

model-counting queries come with a bound parameter, in order

for the query to match, the bound also has to match. While this

limits our ability to reuse results in the most general case, there

is a class of model-counting constraint solvers whose results can

be reused even is the case of mismatched bounds. Parameterized

model-counting techniques [6, 39] not only count the number of

solutions for a constraint within a given bound, but also generate a

model counter that can count the number of solutions for any given

bound. Note that counting the number of solutions with different

bounds may be necessary during program analysis. For example,

consider the following constraint which has no solutions for bounds

less than 5 but has satisfying solutions for higher bounds:

contains(x , “abcde”) ∧ |y | > |x | ∧ y ∈ (ab)∗

In this paper, we present a parameterized caching approach

that utilizes parameterized model-counting constraint solvers. We

assume that, in response to a model-counting query, parameterized

model-counting constraint solvers return a model-counter object

that can be used to count the number of models for any given bound.

By storing the model-counter object, we are able to reuse model-

counting query results even for queries with different bounds.

536

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Conjunct sorter

Variable renamer

String alphabet renamer

Constant shifter

Store

Solver

Translator

Client

Reuse
Mgr

Model-counter
object evaluator

⟦ F, V, b ⟧

⟦ F, V, b ⟧

#(F, v, b)

M-c object, ⟦ b ⟧

N
or

m
al

iz
at

io
n

pr
oc

ed
ur

e

⟦ F, V, b ⟧

F, v, b

⟦ F, V ⟧

Figure 1: Architecture of Cashew

3 CONSTRAINT CACHING
Our tool Cashew, depicted in Figure 1, is designed to work with a

wide range of model-counting solvers to support quantitative pro-

gram analyses. Algorithm 1 outlines how Cashew handles model-

counting queries. Cashew expects a query of the form (F ,V ,b),
where F is a well-formed formula,V is a set of variables in F , and b
is a bound. The answer to the query, denoted as #(F ,V ,b), is the
number of satisfying solutions for F for the variables inV within the

boundb. We normalize the formula, variable(s) and bound using our

normalization procedure, Normalize-Query, which is described in

the following sections. The resulting normalized query is denoted

as ⟦F ,V ,b⟧ = Normalize-Query(F ,V ,b).
Depending on the capabilities of the selected model-counting

constraint solver, ⟦F ,V ,b⟧ is queried differently. Algorithm 1 out-

lines the normalization and query process. Typical model-counting

constraint solvers [16, 37, 51], return a single count value (#(F ,v,b))
after receiving a query of the form (F ,V ,b). For such solvers, our

caching algorithm first sends the query ⟦F ,V ,b⟧ to the cache store.
If there is a cache hit, the result is returned to the client. If not,

the normalized query is sent to the model-counting solver, and the

result is stored under ⟦F ,V ,b⟧ and returned to the client.

We call a model-counting constraint solver paramaterized if it
returns a model-counter object that can be used to compute the

number of satisfying solutions for an arbitrary bound. ABC [6]

is a parameterized model-counting constraint solver where the

model-counter object is the transfer matrix of an automaton that

accepts all satisfying models of the given constraint. SMC [39] and

barvinok [54] are also parameterized model-counting constraint

solvers where the model-counter object is a generating function.

For parameterized solvers, the store is queried as follows: First,

⟦F ,V ,b⟧ is queried. On a hit, the result (#(F ,V ,b)) is returned to

the client. In the case of a miss, an additional query for ⟦F ,V ⟧ is
made. If this results in a hit, the model-counter object for ⟦F ,V ⟧ is
recovered from the store. This model-counter object is sent to the

model-counter evaluator which evaluates #(F ,V ,b) based on ⟦b⟧.
The result returned by the model-counter evaluator is stored under

⟦F ,V ,b⟧ and is returned to the client. If both queries are misses,

the selected solver is called, the model-counter object is computed

and cached under the key ⟦F ,V ⟧, and #(F ,V ,b) is evaluated based

on ⟦b⟧, stored under ⟦F ,V ,b⟧ and returned to the client.

In order to use Cashew’s parameterized caching functionality

and reuse cachedmodel-counter objects, a service that is able to take

a model-counter object (such as a transfer matrix or a generating

function) and evaluate it for a particular bound is required. This

service is referred to as the model-counter evaluator.

Algorithm 1 Constraint-Caching(F ,V ,b):

Input: A query (F , V , b).
Output: The number of satisfying solutions of V in F under the length bound b .
1: ⟦F , V , b⟧ = Normalize-Query(F , V , b)
2: if Hit on ⟦F , V , b⟧ then
3: return #(F ,V ,b)
4: end if
5: if Hit on ⟦F , V ⟧ then
6: Evaluate the model-counter object for bound ⟦b⟧ using the model-counter

evaluator;

7: Store the result under ⟦F , V , b⟧
8: return #(F,v,b)

9: end if
10: Translate ⟦F , V , b⟧ and send it to the selected model-counting solver

11: Store the returned model-counter object under ⟦F , V ⟧
12: Store #(F,V,b) under ⟦F , V , b⟧
13: return #(F ,V ,b)

4 GROUP-THEORETIC FRAMEWORK
The goal of normalization is to reduce constraints equivalent un-

der some property to the same form. This objective is shared by

work in constraint programming, where detecting symmetries in

constraints leads to a more efficient search [18, 19, 25]. Symmetry-

breaking for constraint programming is expressed using concepts

from group theory [3, 26, 49], a formalization we find fitting and

intuitive for our purposes and adopt.

Our framework provides a means for constructing normal forms

of constraints based on groups of property-preserving transfor-

mations. For different analysis problems, it might be necessary to

preserve the entire solution set, the cardinality of the solution set,

or only the satisfiability of constraints, each corresponding to a dif-

ferent level of normalization. Our framework is equally applicable,

regardless of the desired level of normalization. Our framework is

also not restricted to a constraint language, but is equally applicable

to any background theory on which a group of property-preserving

transformations can be defined.

Symmetry Groups. A group (G, op) is a set of elements together

with a binary operator that satisfies the four group axioms: closure,

associativity, identity, and invertibility. For example, the set of

all transpositions on the natural numbers, N, under the binary

operator function composition form a group. The transposition

from N to itself defined by the relation {(1, 2), (2, 1)} is an example

of an element of this group which maps 1 to 2, 2 to 1 and all other

elements of N to themselves.

A subset of a group is called a subgroup if it also forms a group un-

der the same binary operator. We construct the group of cardinality-

preserving transformations under composition (G
card
, ◦) by intro-

ducing its generating subgroups. As composition is the only bi-

nary operator we consider, we simply refer to this group as G
card

throughout the remainder of the paper.

Solution-Set-Preserving Subgroups ofGcard. A solution-set-preser-

ving transformation is one under which the solution set is mapped

537

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

to itself. Any solution-set-preserving transformation is trivially

cardinality-preserving. Each generating subgroup acts on a par-

ticular domain related to some feature of a constraint. The first

generating subgroup we introduce acts on I, the domain of all

possible indices of conjuncts in a constraint. Here, we consider the

index of a conjunct to be its position in that constraint when read

from left-to-right, making I simply the set of natural numbers. The

subgroup acting on I is the group mentioned previously — that of

all transpositions on N or identically, the permutation group whose

elements fix all but a finite number of numbers.

Intuitively, this subgroup captures our understanding that the

solution set of a constraint is independent of the order of the con-

juncts in it. Under the transposition {(1, 2), (2, 1)}, for example, the

formula x > 0 ∧y < 0 is mapped to y < 0 ∧ x > 0, making the two

orderings equivalent modulo the action of this group.

Our second solution-set-preserving subgroup is the transposition

group acting on V, the infinite domain of all allowable variable

names. Since the solution set of a constraint is independent of

the choice of variable names, two constraints that are equivalent

modulo the action of this group have the same solution set. As a

simple example, realize that both w and x are elements of V and

that the number of solutions for x < 7 ∧ x > 2 is the same as that

of its mapping under the relation {(x ,w), (w,x)}:w < 7 ∧w > 2.

Cardinality-Preserving Subgroups of Gcard. Preserving only the

cardinality of the solution set of a constraint enables the use of sub-

groups with less constrained group actions. Under these groups, the

solution set of a constraint is bijectively mapped to the solution set

of another constraint, leaving the number of solutions unchanged.

Our first family of cardinality-preserving subgroups are given by

the Euclidean groups E (n) (symmetry groups on Euclidean space)

acting on the solution space of linear integer arithmetic constraints.

The elements of these groups are Euclidean motions such as trans-

lations, rotations and indirect isometries such as reflection. Under

these symmetries of Euclidean space, the volume captured by the

corresponding polytope remains unchanged.

Though this volume is preserved under any action of the Eu-

clidean group, some actions impact the number of lattice points in

the polytope. Because we are often interested in the number of inte-

ger solutions to a constraint, we limit ourselves to considering only

those transformations that preserve the number of lattice points

as well as those that can be easily reflected through changes in the

syntax of the constraint. In particular, our normalization scheme

uses the subgroup of integral translations in Euclidean space as a

generating subgroup for G
card

. Integral translations can be reflected

syntactically in integer constraints through changes in the constant

terms of each conjunct. Each constant term must be identically

shifted by an integral amount. For example, shifting each constant

term of the constraint x + y = 2 ∧ x ≥ 0 ∧ y ≥ 0 by 2 results in the

constraint x + y = 4 ∧ x ≥ 2 ∧ y ≥ 2 which has the same number

of integer solutions (6) as the original.

For any arithmetic constraint, F , the shift of F , denoted Shift (F),
is the vector composed of the constant terms of each of its conjuncts.

SH denotes the domain of all possible shifts. The subgroup of inte-

gral translations thus acts on SH . For string or mixed constraints,

we do not apply transformations from this subgroup and we say

that Shift (F) of such constraints is ∅.

Our second cardinality-preserving subgroup is given by the per-

mutation group on the string alphabet, Σ. The solution set of a

string constraint can be canonically represented by an automaton

that accepts exactly the set of solutions to that constraint. Transi-

tions between states are made based on a set of allowed alphabet

symbols. Permuting the alphabet symbols thus changes the strings

accepted by that automaton but not the cardinality of the accepted

set. As a simple example, the number of solutions of the constraints

F := x .contains(“ac”) and F ′ := x .contains(“bd”) is the same.

Orbits under the Symmetry Group Gcard. These subgroups gen-
erate G

card
in the following sense: the domain of any element of

G
card

is the union of the domains of the subgroups, making it the

Cartesian product I × V × SH× Σ. Every element of a subgroup

acts as an element of G
card

by acting as the identity on every do-

main element on which it is not defined. Any element of G
card

can

be written as a composition of elements from these subgroups.

For a constraint F , the orbit of F under G
card

is the set of con-

straints obtained by applying any element σ ∈ G
card

to F .
The problem of choosing a normalized form for F can now be

formulated as choosing a representative constraint from the orbit of

F underG
card

.We do this by defining a strict ordering on constraints

and choosing the well-defined lowest ordered constraint within the

orbit as the representative for all constraints within the orbit.

While we have spoken generally about cardinality-preserving

group actions, our application of interest is in parameterized model-

counting which involves finding the number of satisfying solutions

to a constraint for any given bound.While most of the group actions

defined above preserve the number of solutions for a given bound,

the elements of the Euclidean group may not. For example, x +
y = 2 ∧ x ≥ 0 ∧ y ≥ 0 has 6 solutions given a bound of 2 but

x + y = 4 ∧ x ≥ 2 ∧ y ≥ 2, which is in the same orbit under G
card

,

has only one solution for the same bound. In order to preserve

the parameterized model count, the bound is translated according

to the same group action as the constraint. In the example above,

bound 2 is translated to bound 4 by the same integer translation (2)

that translated the shift, resulting in 6 satisfying models.

In a similar vein, it’s interesting to note that though not all of

our transformations preserve the solution set of a constraint, all of

them are invertible. This means that the solution set of a constraint

can be obtained from the solution set of its normal form by applying

the inverse transformations of those applied to Σ and SH when

normalizing the constraint to the solution set of its normal form.

This enables our transformations to be used even for analyses that

require the solution sets of constraints.

5 CONSTRAINT LANGUAGE
We focus on constraints over strings and linear integer arithmetic.
We define three types of terms: string terms TS, regular expression

terms TR, and LIA terms TA, as described in Figure 2. We consider

three types of constraints over these terms, which we call conjuncts
throughout this paper: string conjuncts S, regular membership

conjuncts R, and LIA conjuncts A. The conjuncts are built using
comparators as described in Figure 3. L is a language defined over

these conjuncts. Input constraints to our normalization procedure

are assumed to be in conjunctive form, with each conjunct from L.

538

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

TS B c | vS | TS · TS | char_at(TS,TA) | int_to_str(TA) |

replace(TS,TS,TS) | substr(TS,TA,TA)

TR B ϵ | s | (TR) | TR · TR | TR |TR | T ∗R
TA B n | vA | −TA | (TA) | TA + TA | TA − TA | TA × n |

n × TA | |TS | | index_of (TS,TS) | str_to_int(TS)

Figure 2: Here c ∈ Σ, n ∈ Z, s ∈ Σ∗, vS and vA denote an
unbounded string variable and an integer variable, resp.

L B ⊤ | ⊥ | S | R | A
S B TS = TS | TS , TS | contains(TS,TS) | prefix_of (TS,TS) |

suffix_of (TS,TS) | not_contains(TS,TS) |
not_prefix_of (TS,TS) | not_suffix_of (TS,TS)

R B TS ∈ TR | TS < TR
A B TA = TA | TA < TA | TA ≤ TA | TA , TA

Figure 3: The language L: conjuncts of string (S), regular ex-
pression (R) and LIA (A) types.

Let Sop be the set of string operators, i.e. the operators used to

build the TS terms. LetScomp be the set of string comparators, i.e.

the comparator used to build S conjuncts. Similarly, let Rop be the

set of regular expression operators used in TR; Rcomp – the set of

regular expression comparators used in R; Aop – the set of the LIA

operators used in TA; and Acomp – the set of LIA comparators used

in A. Let a function Type:S ∪ R ∪ A− > Scomp ∪ Rcomp ∪ Acomp
be a function that takes in a conjunct and returns the comparator

of this conjunct.

6 CONSTRAINT ORDERING
Assume a strict total ordering on constraints, ≺. A constraint F is a

normal form if for every other constraint F ′ in its orbit under G
card

,

F ≺ F ′. There are many ways to impose an ordering on constraints.

We present one possible ordering below.

Our ordering is produced compositionally, with strict orders

defined over various components of our language which are com-

posed to yield an ordering on constraints. To start, we define an

ordering on each element of the domain of G
card

.

The ordering on bothV and Σ is lexicographical. The ordering on

I is that induced by the natural numbers. We define the ordering on

SH , the domain of constant shifts, after we introduce an ordering

on vectors. We consider vectors over strict totally ordered sets and

denote by ≺vec an order on such vectors.

LetX be a strict totally ordered set, and ≺X be a strict total order

on X . Let v = (v0, . . . ,vn) and u = (u0, . . . ,um) be two vectors

over X , then ≺vec is defined as:

v ≺vec u ⇐⇒



m < n, or
m = n, ∃i ∀j : j < i < n, vj = uj , vi ≺X ui .

This defines ordering on SH since shift vectors are built over

integer constants.

Our normalization procedure relies on the following auxiliary

functions that given a constraint return, as vectors, various struc-

tural and syntactic components characterizing the constraint. These

vectors are built over the domains of V, Σ and Z, i.e. over strict
totally ordered sets.

VI (F) — returns a vector of the indices of variables as they occur

in F relative to other variables, constants and operators. The

indices are compared according to the “<” operator over Z.
Int (F) — returns a vector of integer constants occurring in F from

left to right, ignoring all elements of Shift (F). The vectors are
compared according to the “<” operator on Z.
VVV(F) — returns a vector of variable names occurring in F from

left to right. These vectors are compared according to the lexi-

cographical order on V.
ΣΣΣ(F) — returns a vector of string characters occurring in F from

left to right. The vectors are compared according to the lexico-

graphical order on Σ.

Next, we define strict total orderings on operators and (sepa-

rately on) comparators, listing them in the order of the increasing

precedence. Both operators and comparators, are ordered with

precedence to S, then R, and A.

Sop : ·, the rest of the string operators in the lexicographic order
according to their names in Figure 2;

Rop : ordered according to the standard precedence order on

regular expression operators;

Aop : +,−, ×, | |, (), the rest of the LIA operators in the lexico-

graphic order according to their names in Figure 2.

Scomp : =, ,, the rest of the string comparators in the lexico-

graphic order according to their names in Figure 3;

Rcomp : ∈, <;
Acomp : =, <, ≤, ,;

The ordering on comparators allows to define an order ≺type on

the types of the conjuncts Type, based on the type of the comparator

occurring in the conjuncts. The strict total ordering on operators

allows to introduce vectors of operators of constraints and compare

them with ≺vec :

Op(F) — a vector of string, regular and LIA operators occurring
in F from left to right.

Note all auxiliary vectors and their orderings introduced in this

section are defined for constraints and are naturally applicable to

conjuncts – as to a special type of constraints with a single conjunct.

In the future, when we compare two elements of the same type

we will drop the subscript notation and use ≺ to represent compar-

ison between them.

We are now ready to build a strict total order on conjuncts. We

define the ordering hierarchically: the structural or syntactic aspects

of the conjuncts are compared one at a time in a fixed order, until a

tie-breaking aspect is found. This order can be selected in any way.

We present one intuitive order below to distinguish conjuncts with

more significant differences as early as possible. The conjuncts are

first compared based on their type Type, then based on their length

∥ ∥, then the total number of variables #Var , then their vectors of

operators Op, followed by the vectors of indices of variables VI ,
their vectors of integer coefficients Int, their vectors of variable
namesVVV, then vectors of string constants ΣΣΣ, and finally based on

their constant shifts Shift. This order is described in Algorithm 2.

This order is strict and total. Two conjuncts are equal if and only

if they are the same conjunct. This allows us to extend the ordering

to constraints as follows:

(i) Order constraints based on their total number of conjuncts.

539

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

Algorithm 2 C-LessThan(C1,C2): Conjunct Comparison

Input: Two conjuncts C1, C2 ∈ L
Output: True if C1 ≺ C2 , otherwise False

1: for each f ∈ [Type, ∥ ∥, #Var, Op, VI, Int, VVV, ΣΣΣ, Shift] do
2: if f (C1) ≺ f (C2) then
3: return True

4: end if
5: end for
6: return False

(ii) Then order constraints by comparing their conjuncts element-

wise according to the order imposed on I. This is equivalent

to comparing conjuncts pairwise from first to last.

(iii) A constraint F is lower ordered than a constraint G if the

first differing conjunct of F is lower ordered than that of G.

This order is described in Algorithm 3.

Algorithm 3 F-LessThan(F ,G): Constraint Comparison

Input: Two constraints F = F1 ∧ . . . ∧ Fm and G = G1 ∧ . . . ∧Gn
Output: True if F ≺ G , otherwise False

1: if m = n then
2: for i ← 1, n do
3: if C-LessThan(Fi , Gi) then
4: return True

5: end if
6: end for
7: end if
8: returnm < n

7 NORMALIZATION PROCEDURE
The normal form of a constraint F is the lowest constraint in the

orbit of F under G
card

. In this section, we present a normalization

procedure to find the normal form of a constraint.

Given a transformationσ ∈ G
card

, we defineσ [F], the action of σ
on F , as a composition of elements of four categories corresponding

to each of the components of the domain of G
card

:

I: σI[F] gives the constraint resulting from re-ordering the

conjuncts of F according to σI .

V: σV[F] gives the constraint resulting from renaming the vari-

ables of F according to σV;

Σ: σΣ[F] gives the constraint resulting from permuting the al-

phabet constants in F according to σΣ;

SH : σSH [F] gives the constraint resulting from shifting each

element of F ’s shift according to σSH .

We first present an expensive but complete procedure for nor-

malization in Algorithm 4 and give guarantees for its termination

and correctness. Given a constraint F , this procedure probes each
permutation F ′ of conjuncts in F , building and applying a compos-

ite σ from transformations specific to the domains V, Σ, and SH
which reduces F ′ until the only transformations that can reduce it

further involve an action on I. The results among all permutations

of F are compared and the lowest-ordered result is chosen as the

normal form of F .
The procedure uses auxiliary functions to build the minimizing

domain-specific transformations:

Min-σ -V(F ′) constructs σV compositionally — it proceeds through

the conjuncts of F ′ from left to right renaming the variables of F ′

in order of appearance. Each time a new variable is encountered a

transposition is added to the composition that permutes the name

of the encountered variable and the lowest-ordered variable name

that no other variable of F ′ has been renamed to yet. At the start

of the procedure, σV is initialized to the identity transposition onV.

Min-σ -Σ(F ′) similarly constructs σΣ — it proceeds through the con-

juncts of F ′ from left to right, this time permuting string characters.

Each time a new string character is encountered, a transposition

is added to the composition that permutes the encountered string

character with the lowest-ordered character that no other charac-

ter in F ′ has been mapped to yet. σΣ is initialized as the identity

transposition on Σ.

Min-σ -SH (F ′) returns σSH — the transformation on Shift (F)
that translates the constant coefficient of the first appearing (from

left to right) linear integer arithmetic conjunct in F ′ to 0. If F con-

tains variables that are shared between string and LIA constraints,

σSH is the identity transformation.

Algorithm 4 Complete-Normalization(F)

Input: A constraint F
Output: The normalized form of F
1: Fmin := F
2: for each permutation F ′ of conjuncts in F do
3: σV :=Min-σ -V(F ′)
4: σ Σ :=Min-σ -Σ(F ′)
5: σSH :=Min-σ -SH (F ′)
6: F ′ := σV ◦ σ Σ ◦ σSH [F ′]
7: if F-LessThan(F ′, Fmin) then
8: Fmin := F ′
9: end if
10: end for
11: return Fmin

Theorem 7.1. Algorithm 4 terminates.

Proof. Given a constraint F , there are finitely many permuta-

tions of conjuncts F ′. Consequently, there are finitely many exe-

cutions of the “for each" loop. Construction of each permutation

F ′ is linear in the length of F . Construction of each of the domain-

specific transformations within a single “for each” call is performed

in a single pass through the conjuncts of F ′, thus, is linear in the

length of F , too. The final transformation on F ′ is also linear in the

length of F . Thus, Complete-Normalization terminates. □

Theorem 7.2. Algorithm 4 returns the normal form of F .

Proof. Assume G = Complete-Normalization(F) is not the
normal form of F . Then eitherG is not in the orbit of F under G

card

or there is some constraint H in the orbit of F such that H , F and

F ⊀ H . We show that both result in a contradiction.

Assume G is not in the orbit of F . G is the result of permuting

the conjuncts of F , the action of some σI , composed with domain

specific transformations. Each domain-specific transformation has

an inverse in G
card

as does any permutation of the conjuncts of F .
Therefore, there exists some σ in G

card
such that σ [G] = F .

Now assume that there is some H in the orbit of F such that

H , G and G ⊀ H . The order of conjuncts in H is given by some

transposition of the indices of F . This means that there is some

iteration of the for loop of Algorithm 4 in which the conjuncts of

540

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

the considered permutation of F are ordered identically to those

of H . By construction, our choices of σV, σΣ and σSH reduce this

constraint to the lowest-ordered constraint that maintains the same

ordering of conjuncts. Therefore either G = H or G ≺ H . □

Algorithm 4 gives a normalization procedure which is sound
(each orbit has at least one fixed point) and complete (there is exactly
one fixed point for each orbit). In practice, however, such a brute

force exploration is very expensive. For our implementation, we

use a sound but not complete normalization procedure given in

Algorithm 5. Given F , Normalization(F) returns the semi-normal

form on F — a constraint within the orbit of F which, though not

necessarily the lowest in the orbit, is not higher ordered than F .
Algorithm 5 simplifies Complete-Normalization procedure in

that instead of brute-forcing all permutations of conjuncts in F , it
inexpensively chooses a permutation by ordering the conjuncts of F
according to C-LessThan up to the point when further refinement

involves comparison over the domainsV, Σ, or SH . In other words,

the conjuncts are not compared according to their variable names,

string constants or shifts. It is possible that two conjuncts in F
are equal by this comparison, in which case their initial order in

F is preserved. The resulting permutation of conjuncts defines a

transposition on I. We apply this transposition to F , resulting in a

constraint F ′. σV, σΣ, and σSH are generated by the same auxiliary

functions as in Algorithm 4, composed, and applied to F ′. The result
is the semi-normal form of F .

Algorithm 5 Normalization(F)

Input: A constraint F
Output: A semi-normal form of F
1: F ′ := Permute conjuncts of F according to Algorithm 2 up untilVVV
2: σV :=Min-σ -V(F ′)
3: σ Σ :=Min-σ -Σ(F ′)
4: σSH :=Min-σ -SH (F ′)
5: ⟦F ⟧ := σV ◦ σ Σ ◦ σSH [F ′]
6: return ⟦F ⟧

Theorem 7.3. Algorithm 5 is sound.

Proof. Each action on F is the action of an element of G
card

. By

definition, the resulting formula is in the orbit of F under G
card

. □

The procedure given in Algorithm 5 is not complete. There are

orbits for which not every constraint is reduced to the same form.

Though this potentially increases the number of misses to the cache,

our experimental results demonstrate the large number of formulas

mapped to the same semi-normal form by Algorithm 5.

Queries to Cashew are of the form (F ,V ,b) where V is the set

of variables on which to count, and b is the maximum length of a

satisfying solution. To ensure that the cardinality of the solution

set is preserved after normalizing F , both V and b must be normal-

ized according to the same transformations applied to F during

Algorithm 5. Algorithm Normalize-Query(F ,V ,b) implements

this query normalization.

8 EXPERIMENTAL EVALUATION
We implemented our tool,Cashew, as an extension of the Green [55]
caching framework. This allows Cashew to use any of the exist-

ing Green services, and it allows Green users to benefit from our

normalization procedure. We experiment with Cashew-enabled
satisfiability and model-counting services, which support string

Algorithm 6 Normalize-Query(F ,V ,b)

Input: A query (F , V , b)
Output: A normalized query ⟦F , V , b⟧
1: ⟦F ⟧ := Normalization(F)
2: σ := the transformation used to normalize F
3: ⟦V ⟧ := σ [V]

4: ⟦b⟧ := σ [b]
5: return (⟦F ⟧, ⟦V ⟧, ⟦b⟧)

constraints and linear integer arithmetic. They also support mixed
constraints, i.e., those involving both string and arithmetic opera-

tions. In this evaluation, we used ABC [6] as our constraint solver.

As we explained in Section 3, other model-counting constraint

solvers can be integrated instead of ABC.

All the experiments were run on an Intel Core i7-6850 3.5 GHz

computer running Linux 4.4.0. The machine has 128 GB RAM, of

which 4 GB were allocated for the Java VM.

8.1 Model Counting over the SMC/Kaluza
String Constraint Dataset

The Kaluza dataset is a well-known benchmark of string constraints

that are generated by dynamic symbolic execution of real-world

JavaScript applications [47]. The authors of the SMC solver [39]

translated the satisfiable constraints to their input format: one

contains 1,342 big, while the other contains 17,554 small where big

and small classification is done based on the constraint sizes in the

Kaluza dataset. We shall refer to the former as the original SMC-Big

and to the latter as the original SMC-Small.

Duplicate Constraints. While inspecting the results of our nor-

malization, we found out that many of the files within each dataset

are identical (indistinguishable by diff). Due to the presence of

duplicates, even trivial caching (without any normalization) will

yield some benefit on the original datasets. After removing all du-

plicate files, only 359 of the 1,342 constraints in SMC-Big and 9,745

of the 17,554 constraints in SMC-Small were found to be unique.

As we discuss below, our normalization procedure allows further

reductions in this dataset, increasing the benefits of caching well

beyond what can be achieved with trivial caching.

Model Counting. Since these constraints correspond to path con-

ditions from symbolic execution, counting the number of satisfying

models of each one could be necessary for quantitative analysis.

We model-counted all constraints in each set as a simple way to

emulate the behavioral pattern (w.r.t. caching) of one or more users

performing quantitative analyses on the original programs.

When counting the models of a constraint over strings, to avoid

infinite counts one needs to set a bound on the length of strings.

In this experiment, we set the bound to 50 characters for both sets.

We model-counted each constraint in the dataset. We first did this

without normalization or caching, and then again with Cashew
normalization and caching. In non-caching mode, each constraint

was sent unmodified to the model-counting solver. In caching mode,

the cache was cleared before running SMC-Big, and again before

running SMC-Small. Since these path constraints were produced

by an external symbolic executor, in this experiment we did not use

SPF. Note that since all constraints were model-counted, the order

in which we traverse the datasets does not matter: each normalized

541

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

SMC-Big SMC-Small

13

15
22

253

27

27

28

3
32

34

3536 36

37

38 38

38

38

39

39

39

39

40 40

40

42 42

43

6

99

99

1020

152

155
168

186

18741875

195

216

2537

2543

323345

371

374

374

399

445
57
72

729
73

736

74
94

Figure 4: Orbit sizes for the original SMC datasets.

Table 1: Model counting SMC-Big and SMC-Small.

Without caching With caching Speedup

Big Average 8.94 s 0.82 s 10.90x

(no dups) Maximum 121.92 s 40.13 s 3.03x

Total time 3,208.65 s 293.21 s 10.94x

Small Average 0.12 s 0.05 s 2.40x

(no dups) Maximum 1.09 s 1.12 s 0.97x

Total time 1,211.09 s 552.56 s 2.19x

Big Average 23.32 s 0.26 s 89.70x

(original) Maximum 121.92 s 40.13 s 3.03x

Total time 31,297.90 s 358.17 s 87.38x

Small Average 0.13 s 0.05 s 2.60x

(original) Maximum 1.09 s 1.12 s 0.97x

Total time 2,221.91 s 971.50 s 2.29x

constraint will fall within some orbit, and for each orbit, the full

cost will be paid exactly once (first cache miss).

Results. Table 1 shows the total, maximum and average model-

counting time, as well as the speedups obtained by Cashew on each

of these metrics, for the two datasets with and without duplicates.

On the SMC-Big set, Cashew achieved a speedup over 10x. On the

SMC-Small set, which is a rather bad case for the caching trade-

off because it contains a large number of very small constraints,

Cashew still achieved a 2.19x speedup.

For the original datasets, these numbers (e.g., a 87x speedup) are

largely due to the presence of duplicates, which makes even caching

with no normalization very effective. We report the results because

the original datasets are widely used, and because the duplicates

might indeed have been genuinely generated by symbolic execution

of various different (yet similar) JavaScript programs.

Figure 4 depicts the effect of our normalization procedure on

the original benchmarks. The area of each orbit is proportional to

its size. Labels indicating orbit size are shown only when they fit

in the available space. For the original SMC-Small set, the 17,554

original constraints are reduced to 360 orbits. For the SMC-Big set,

the 1,342 original constraints are reduced to just 34 orbits.

We do not compare Cashew with Green because the original

Green (without Cashew) cannot handle string constraints.
Note that the largest constraint in SMC-Small takes slightly more

time after normalization. We cannot infer much from this, because

the largest constraint in SMC-Small barely takes one second; the

small difference (about 30 msec) could be due to noise. However,

the maximum time for SMC-Big decreased by 3x with caching

enabled, from 122 to 40 seconds. This is due to normalization. The

constraint that (without normalization) requires maximum time to

be model-counted falls within some orbit. It does not matter which

constraint in that orbit will be the one to cause a cache miss once

Table 2: Effect of transformations on orbit refinement.

Transformations enabled #Orbits (SMC-Big) #Orbits (SMC-Small)

None 359 9754

All transformations 34 360

All except σI 72 376

All except σV 344 9645

All except σΣ 35 841

All except removeVar 34 361

All except removeConj 40 386

caching is enabled — only one of them will, and as they are all

normalized to the same normal form, any of them would take the

same model-counting time. What is interesting is that said time can

be significantly smaller than the maximum pre-normalization time.

Table 2 shows the number of orbits that are achieved by differ-

ent subsets of the transformations in our normalization procedure.

Since some transformations can benefit from others, instead of

considering them in isolation, we measured the effect of disabling

each one. We did not include σSH as it doesn’t apply to the string

domain. The removeVar and removeConj transformations are pre-

processing steps that remove redundant variables and conjuncts,

respectively. These results indicate that all transformations yield

some benefit, and that σV is the most beneficial transformation. For

SMC-Small, removing σΣ more than doubles the number of orbits.

The same is true of σI for SMC-Small. This shows that different

transformations can be more effective for different datasets.

8.2 SPF Analysis of String-Handling Code
In this second part of the experimental evaluation we use Symbolic

PathFinder [42] with Cashew, to symbolically execute Java pro-

grams that operate on strings. In order to support model-counting-

based quantitative analyses, we are interested in obtaining a model

count for each leaf path constraint.

As an example of quantitative information flow analysis, we

study some possible applications of Cashew to side-channel anal-

ysis. We consider four Java programs in which a side channel

can allow an attacker to gain information about a hidden secret.

PasswordCheck1 contains a method that checks whether or not a

user-given string matches a secret password. Due to the way the

program is written, the attacker can deduce that the longer the

program executes, the longer a prefix of the hidden password was

matched. PasswordCheck2 is another variant that attempts to miti-

gate that vulnerability by requiring a certain number of characters

to be compared before returning, even if a mismatch has already

been found. This yields a more interesting side channel, which can

still be exploited but is much noisier and less predictable. Obscure
is a Java translation of the obscure.c program used in [39], which

is a password change authorizer. Given an old password and a new

one, Obscure performs a series of tests to determine whether the

new password is different enough from the old one. CRIME is a Java
version of a well-known attack, Compression Ratio Info-leak Made
Easy [9, 46]. This is a side channel in space — the secret is con-

catenated with a string that can be controlled by the attacker, and

both are compressed together before encryption. Thus, the attacker

can try various strings and observe the changes in the size of the

compressed payload to infer, from the compression rate, the level

of similarity between the secret and the injected content.

542

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 3: SPF-based quantitative analyses of string programs.

Program Caching Total time Speedup #Hits #Misses H/M

Password1 None 297 s - - - -

No norm 258 s 1.15x 17,547 56,173 0.31

Cashew 106 s 2.80x 62,797 10,923 5.75

Password2 None 3,364 s - - - -

No norm 3,379 s 0.99x 30,448 824,832 0.04

Cashew 1,243 s 2.71x 659,804 195,476 3.38

Obscure None 2,158 s - - - -

No norm 1,965 s 1.10x 2,000 59,000 0.03

Cashew 609 s 3.54x 44,893 16,107 2.79

CRIME None 3,005 s - - - -

No norm 2,941 s 1.02x 31,884 84,127 0.38

Cashew 1,067 s 2.82x 78,289 37,722 2.08

In symbolic execution, it is not always desirable to make all argu-
ments of a method symbolic. This is often the case due to scalability

issues. It can also be due to the need to explore a nonstandard distri-

bution of some parameter. Consider, for instance, a situation where

a list of passwords from a website is unwillingly disclosed to the

public. As a consequence, users are strongly encouraged to change

their passwords, and an algorithm similar to the Obscure program

is employed to ensure that they are sufficiently different from the

stolen ones. We might be interested in measuring the amount of

leakage of the algorithm over that particular list of passwords. By

running SPF on Obscure with the new password as a symbolic

string, and the old password as a concrete string, we can measure

the leakage for that particular stolen password. By repeating this

for various passwords from the list, we can quantify the algorithm’s

leakage for that list’s particular distribution. Doing so requires run-

ning SPF repeatedly on the same code, but with different secret

strings. This will affect many path conditions in fundamental ways,

but others might be unaffected, or changed in such a way that

Cashew can still normalize them down to a previously seen one.

RockYou. The RockYou1K dataset is a sample of 1,000 real-world

passwords taken from the RockYou leak [56] without duplicates.

The sample consists of 1,000 unique passwords that cover all lengths

between 6 and 16 characters, and can include any ASCII symbols.

Results. For each of the four programs under analysis, we ran

1,000 symbolic-execution-based side-channel analyses, using as the

secret each of the 1,000 passwords in the RockYou1K dataset. For

PasswordCheck1 and PasswordCheck2, the secret is the password,
which is concrete, and the user’s guess is a symbolic string. For

Obscure, the roles are reversed: what we made concrete is the

old password, which is no longer secret, whereas the user-chosen

new password (which is secret) is symbolic. For CRIME, we used a

concrete secret (session ID) and a symbolic user-injected payload.

Table 3 shows execution time, hits and misses for three execution

modes. The first mode uses neither normalization nor caching. In

the second mode, only caching without normalization is performed,

which measures the extent to which syntactically identical path

conditions (akin to the duplicates mentioned in Section 8.1) are

generated. In the third mode, Cashew’s normalization is enabled.

Note that each symbolic execution generates many path conditions.

The tables show the aggregated results over all path conditions

of each execution and the 1,000 executions of each mode. As in

the previous section, we do not compare Cashew with Green in

Table 4: Cashew normalization and caching costs.

Total Total Total Total Average Total

time time norm. norm. norm. cache

(no cache) (Cashew) time calls time size

SMC-Big 3,209 s 293 s <3 s 359 8 ms 54 KB

SMC-Small 1,211 s 553 s 31 s 9,745 3 ms 104 KB

Password1 297 s 106 s 20 s 73,720 275 µs 2.9 MB

Password2 3,364 s 1,243 s 94 s 855,280 110 µs 58 MB

Obscure 2,158 s 609 s 19 s 61,000 300 µs 5.1 MB

CRIME 3,005 s 1,067 s 47 s 116,011 400 µs 8.8 MB

these experiments because the original Green (without Cashew)
cannot handle string constraints. The results show that, for these

experimental subjects, Cashew achieved an average speedup of

nearly 3x, while caching without normalization only achieved 1.06x

(and, for PasswordCheck2, was in fact slower than no caching). The
hit/miss ratios improve dramatically when switching to Cashew.

Costs of Caching and Normalization. A caching scheme involves

overheads and space/time trade-offs. Normalization overhead must

be kept low, since its cost must be paid not only for each hit, but

also for each miss. Cache size must also be kept within reasonable

limits.Cashew is implemented on top of Green and, like Green, uses

the in-memory Redis [1] database by default. This allows extremely

fast queries, but competes with the client application for available

RAM. As Table 4 shows, the average time to normalize a constraint

in our SPF symbolic execution experiments was only a few hundred

microseconds. It was about 8 milliseconds for the largest formulas

(the SMC-Big set, with an average size before normalization of about

10 KB of text per constraint). Finally, as shown in Table 4, the total

cache memory usage was very reasonable for these experiments.

8.3 Parameterized Caching
In this last part of the experimental evaluation we present some

experiments for evaluating parameterized caching—that is, caching

that leverages parameterized model-counting solvers.

Themotivation behind these experiments is that users of Cashew
who are targeting quantitative information analysis techniques

often perform their analyses with various different bound values.

For example, in side-channel analysis, one maywant to compute the

amount of information leakage for different lengths of a symbolic

secret or input. This requires using different bounds when counting

models. In scenarios where we have reason to believe that there is

potential for reusing already-created model-counting objects for

multiple values of b, we can try to amortize the time required to

construct them by caching them.

String Constraints: SMC/Kaluza. Recall the SMC-Big and SMC-

Small datasets from Section 8.1. We ran these two datasets several

more times, starting with the string length bound b at 10 characters

and raising it up to 100 characters. Since our goal was to evaluate the

usefulness of caching model-counting objects, we did not clear the

cache between successive values of b. Again, we did not compare

with Green in these experiments because Green (without Cashew)
does not support constraints over strings.

Figure 5 shows the cumulative time spent running SMC-Big and

SMC-Small, respectively, forb ∈ {10, 20, 30, . . . , 100} characters.We

did this twice for each dataset. The upper lines (red) correspond to

543

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

Figure 5: SMC datasets for increasing bounds. Cashew: non-
parameterized (red) and parameterized (blue) caching.

Figure 6: Symbolic execution of sorting/searching programs
for increasing bounds. Green (green) vs. Cashew (blue).

Cashew with parameterized caching disabled (model-counting ob-

jects are not cached). The lower lines (blue) correspond to Cashew
with parameterized caching enabled. In this mode, an extra cost

is paid to cache the model-counting objects, but doing so enables

the possibility of reusing them later on. The left chart shows that

caching model-counting objects is indeed beneficial for SMC-Big.

This is an idealized amortization scenario, since all stored model-

counting objects are reused on each successive bound value. Never-

theless, it is useful to confirm that for this dataset, running even one

additional bound is profitable, and that this profit becomes larger

each time we run the dataset for an additional value of b. The right
chart shows a similar phenomenon for SMC-Small, but although

the gap does increase, the lines are so close together that caching

model-counting objects would probably not be worth its cost. This

is consistent with a large number of small problems.

Arithmetic Constraints. The goal of these experiments is to eval-

uate the usefulness of Cashew’s parameterized caching when sym-

bolically executing Java code whose branch conditions involve

linear integer arithmetic operations. Green can handle arithmetic

constraints, so we can use it as the baseline for these experiments.

One well-known class of algorithms that involve integer arith-

metic constraints and give rise to nontrivial path conditions are clas-

sical sorting algorithms. For these experiments we ran an SPF-based

quantitative analysis (symbolic execution and model counting on

complete path conditions) on the following algorithms: BubbleSort,

InsertionSort, SelectionSort, QuickSort, HeapSort, and MergeSort.

Figure 6 shows the cumulative time spent in the analysis of

each of the seven Java programs, for b ∈ {16, 20, 24, . . . 64}. Since

we are counting over the integers, the bound b now denotes the

maximum number of bits that may be used to represent an integer.

We ran each series twice. The upper curve (green) corresponds to

Green, with caching enabled, using its normalization procedure for

integer arithmetic constraints. The lower curve (blue) corresponds

to Cashew with parameterized caching enabled.

The magnitude of the gap between both curves varies for dif-

ferent programs. In most cases, the initial run on an empty cache

(for b = 16) is slightly more costly for Cashew due to the over-

head of having to store all the model-counting objects in the cache.

This is compensated as soon as they are reused at least once, and

in all cases we see that the gap between the curves grows as the

model-counting objects are reused further. This confirms that pa-

rameterized caching is beneficial for these programs if there is a

reasonable chance that the model-counting objects may be reused.

9 RELATEDWORK
Our work builds on top of Green [55], an external framework for

caching the results of calls to satisfiability solvers or model counters

developed by Visser et al. Other caching frameworks include Green-

Trie [31], an extension of Green and Recal [4], both of which are

able to detect some implications between constraints. Recal trans-

forms a LIA constraint to a matrix, canonizes it, and uses the result

as the constraint’s normal form. A different approach is taken by

the tool Utopia [5] which identifies past satisfying solutions likely

to be shared with new formulas. This enables results to be reused

across formulas that share at least one solution, regardless of their

structural resemblance.

Cashew differs notably from these previous caching frameworks.

First, we present a parameterized model counting approach for

quantitative program analysis which allows us to cache and reuse

a model-counter object in addition to the results of model count-

ing queries. This allows us to reuse results for model-counting

queries across different bounds. Cashew also exploits more expres-

sive normalization techniques with reductions that preserve only

the number of solutions of a constraint instead of their solution set.

This allows us to reuse information that the above caching frame-

works can not. Cashew is also able to handle string constraints, a

unique contribution amongst the above mentioned tools.

10 CONCLUSIONS
We presented a caching framework for quantitative program anal-

ysis built on constraint normalization techniques that preserve

the cardinality of the solution set for a given constraint but not

necessarily the solution set itself. We augmented our framework

with parameterized constraint caching techniques that can reuse

the result of a previous model counting query even if the bounds

of the queries do not match and extended our framework to sup-

port string constraints and combinations of string and arithmetic

constraints. Our experiments exemplify how, when supplemented

with our constraint normalization techniques, constraint caching

can significantly improve the performance of quantitative program

analyses.

544

Constraint Normalization and Parameterized Caching for
Quantitative Program Analysis ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 5: Classes implementing each transformation

Transformation Class name

σI OrderingService
σV VariableRenamer
σΣ AlphabetRenamer
removeVar VariableRemover
removeConj RedundantConstraintRemover

11 IMPLEMENTATION
Cashew is built on top of Green, and like Green, it acts as a wrapper

around constraint solvers and model counters. In other words, it sits

between the client application (typically a verification tool based on

constraint satisfiability and/or model counting) and the actual con-

straint solver and/or model counter. Besides the caching strategy

and mechanism, it provides a standard interface for the client appli-

cation to create constraints and request solving/counting services;

this enables switching solvers without modifying the client.

Constraints for Cashew are constructed using the same class

hierarchy as in Green; the main change is that we extended that

hierarchy with new objects that represent operations on strings.

Cashew also inherits the storage abstraction from Green. The

default store is a Redis database, but other back ends can be used.

11.1 Obtaining Cashew
Cashew can be obtained from the GitHub repository located at

https://github.com/vlab-cs-ucsb/cashew/

11.2 Configuring Cashew
Cashew can be configured via key/value pairs, using the standard

Java Properties mechanism. Each of the transformations shown

in Table 2 is implemented by a class in the service.canonizer
package, as shown in Table 5. Layers can be enabled and disabled,

for both constraint satisfiability and model counting, by means

of the green.service.sat and the green.service.count prop-

erties, respectively. As in the Green framework, these properties

can specify a composition of services using a parenthesized syntax.

Examples of this can be found in the sample configuration files

included in the Cashew repository.

11.3 Cashew Integration Examples
AModel-Counting Tool for SMC/Kaluza Benchmark Problems. We

used Cashew to implement a simple model counter for SMC/Kaluza

constraints, as shown in Section 8.1, expressed using a subset of

the SMT-LIB format [13].

This tool is essentially a translator that parses that input syntax,

maps it to Cashew’s constraint representation, and then invokes

the model counter service. This implementation is included in the

Cashew repository as RunCashewKaluza.java.

Cashew as a Back End for SPF. We also used Cashew as the

back end for Symbolic PathFinder, as shown in Section 8.2. The

integration of SPF with Cashew was done much in the same way as

it was with Green: the SPF codebase is modified in the few places

where it calls the constraint solver or model counter, so that it calls

Cashew instead. A translator class is added in order to translate

SPF’s constraint language (i.e., abstract syntax tree class hierarchy)

to Cashew’s before making the call.

The Cashew repository includes a sample working version of

SPF modified in this way.

Also, Cashew option configuration properties are read through

the JPF configuration property space, which allows the user to

controlCashew-specific behavior from the same .jpf configuration
file used by JPF and SPF. Examples can be found in the sample

configuration files included in the Cashew repository.

Cashew as a Back End for Your Own Tool. Cashew can be inte-

grated with your client application just like Green; see the Green

documentation and examples for more details.

If you would like to use string operations in your constraints,

please see the Operation, StringConstant, and StringVariable
classes in the green.expr package.

Adding Your Own Solver to Cashew. Cashew has already been

integrated with the ABC constraint solver and model counter. You

can add a new SMT solver to Cashew in the same way as you

would add one to Green. At a minimum, you will need to write a

translator from Cashew’s constraint representation to your solver’s

input format. The simplest way to do this is to have your translator

class extend the Visitor class in the green.expr package.
Adding a new model counter is done similarly as well, but in this

case we augmented the interface to allow for storing model-counter

objects. Besides the getModelCountmethod, Cashew also supports

the getModelCounter method, which does not require a bound,

and returns a model-counter object rather than a number, and

the getModelCountUsingCounter method, which takes a model-

counter object and a bound, and returns a number. You may want

to implement these methods if your solver supports parameterized

model counting. Model-counter objects are stored by Cashew as

raw binary objects (byte[]), so they can contain anything.

REFERENCES
[1] Redis. https://redis.io/.

[2] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Sten-

man. String constraints for verification. In Proceedings of the 26th International
Conference on Computer Aided Verification (CAV), pages 150–166, 2014.

[3] F. A. Aloul, K. A. Sakallah, and I. L. Markov. Efficient symmetry breaking for

boolean satisfiability. IEEE Transactions on Computers, 55(5):549–558, 2006.
[4] A. Aquino, F. A. Bianchi, M. Chen, G. Denaro, and M. Pezzè. Reusing constraint

proofs in program analysis. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, pages 305–315. ACM, 2015.

[5] A. Aquino, G. Denaro, and M. Pezzè. Heuristically matching solution spaces

of arithmetic formulas to efficiently reuse solutions. In Proceedings of the 39th
International Conference on Software Engineering, pages 427–437. IEEE Press,

2017.

[6] A. Aydin, L. Bang, and T. Bultan. Automata-based model counting for string

constraints. In Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, Proceedings, Part I, pages 255–272, 2015. doi:

10.1007/978-3-319-21690-4_15.

[7] M. Backes, B. Köpf, and A. Rybalchenko. Automatic discovery and quantification

of information leaks. In 30th IEEE Symposium on Security and Privacy (S&P 2009),
17-20 May 2009, Oakland, California, USA, pages 141–153, 2009.

[8] V. Baldoni, N. Berline, J. D. Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto,

M. Vergne, and J. Wu. Latte integrale v1.7.2. http://www.math.ucdavis.edu/ latte/,

2004.

[9] L. Bang, A. Aydin, Q.-S. Phan, C. S. Păsăreanu, and T. Bultan. String analysis

for side channels with segmented oracles. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
193–204. ACM, 2016.

[10] C. Barrett, L. de Moura, S. Ranise, A. Stump, and C. Tinelli. The smt-lib initiative

and the rise of smt. In Haifa Verification Conference, pages 3–3. Springer, 2010.

545

https://github.com/vlab-cs-ucsb/cashew/
https://redis.io/

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany T. Brennan, N. Tsiskaridze, N. Rosner, S. Aydin, and T. Bultan

[11] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,

A. Reynolds, and C. Tinelli. Cvc4. In International Conference on Computer
Aided Verification, pages 171–177. Springer, 2011.

[12] C. Barrett, M. Deters, L. DeMoura, A. Oliveras, and A. Stump. 6 years of smt-comp.

Journal of Automated Reasoning, 50(3):243–277, 2013.
[13] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5. Tech-

nical report, Department of Computer Science, The University of Iowa, 2015.

Available at www.smt-lib.org.
[14] M. Borges, A. Filieri, M. d’Amorim, and C. S. Pasareanu. Iterative distribution-

aware sampling for probabilistic symbolic execution. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Berg-
amo, Italy, August 30 - September 4, 2015, pages 866–877, 2015.

[15] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs. In 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, pages 209–224, 2008.

[16] S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi. Approximate probabilistic

inference via word-level counting. arXiv preprint arXiv:1511.07663, 2015.
[17] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information

flow in a simple imperative language. Journal of Computer Security, 15(3):321–371,
2007.

[18] J. Crawford. A theoretical analysis of reasoning by symmetry in first-order logic.

In AAAI Workshop on Tractable Reasoning. Citeseer, 1992.
[19] J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates

for search problems. KR, 96:148–159, 1996.
[20] L. DeMoura and N. Bjørner. Z3: An efficient smt solver. In International conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–
340. Springer, 2008.

[21] B. Dutertre. Yices 2.2. In International Conference on Computer Aided Verification,
pages 737–744. Springer, 2014.

[22] A. Filieri, C. S. Pasareanu, and W. Visser. Reliability analysis in symbolic

pathfinder. In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 622–631, 2013.

[23] V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C. Rinard. Word equations with

length constraints: What’s decidable? In Proceedings of the 8th International Haifa
Verification Conference (HVC), pages 209–226, 2012.

[24] J. Geldenhuys, M. B. Dwyer, andW. Visser. Probabilistic symbolic execution. In In-
ternational Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis,
MN, USA, July 15-20, 2012, pages 166–176, 2012.

[25] I. P. Gent and B. Smith. Symmetry breaking during search in constraint program-
ming. Citeseer, 1999.

[26] I. P. Gent, K. E. Petrie, and J.-F. Puget. Symmetry in constraint programming.

Foundations of Artificial Intelligence, 2:329–376, 2006.
[27] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.

In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pages 213–223,
2005.

[28] J. Heusser and P. Malacaria. Quantifying information leaks in software. In

Twenty-Sixth Annual Computer Security Applications Conference, ACSAC 2010,
Austin, Texas, USA, 6-10 December 2010, pages 261–269, 2010.

[29] P. Hooimeijer and W. Weimer. A decision procedure for subset constraints

over regular languages. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 188–198, 2009.

[30] P. Hooimeijer and W. Weimer. Solving string constraints lazily. In Proceedings of
the 25th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 377–386, 2010.

[31] X. Jia, C. Ghezzi, and S. Ying. Enhancing reuse of constraint solutions to im-

prove symbolic execution. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pages 177–187. ACM, 2015.

[32] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Warsaw, Poland,
April 7-11, 2003, Proceedings, pages 553–568, 2003.

[33] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi: a solver

for string constraints. In Proceedings of the 18th International Symposium on
Software Testing and Analysis (ISSTA), pages 105–116, 2009.

[34] G. Li and I. Ghosh. PASS: string solving with parameterized array and interval

automaton. In Proceedings of the 9th International Haifa Verification Conference
(HVC), pages 15–31, 2013.

[35] T. Liang, N. Tsiskaridze, A. Reynolds, C. Tinelli, and C. Barrett. A decision

procedure for regular membership and length constraints over unbounded strings.

In C. Lutz and S. Ranise, editors, Proceedings of the 10th International Symposium
on Frontiers of Combining Systems, volume 9322 of Lecture Notes in Computer
Science, pages 135–150. Springer, 2015.

[36] T. Liang, A. Reynolds, N. Tsiskaridze, C. Tinelli, C. Barrett, and M. Deters. An

efficient smt solver for string constraints. Formal Methods in System Design, 48
(3):206–234, 2016.

[37] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice point

counting in rational convex polytopes. Journal of Symbolic Computation, 38(4):
1273 – 1302, 2004. ISSN 0747-7171. doi: http://dx.doi.org/10.1016/j.jsc.2003.04.003.

[38] K. Luckow, C. S. Păsăreanu, M. B. Dwyer, A. Filieri, and W. Visser. Exact and

approximate probabilistic symbolic execution for nondeterministic programs. In

Proceedings of the 29th ACM/IEEE international conference on Automated software
engineering, pages 575–586. ACM, 2014.

[39] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for constraints

over unbounded strings. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), page 57, 2014.

[40] B. Mao, W. Hu, A. Althoff, J. Matai, J. Oberg, D. Mu, T. Sherwood, and R. Kast-

ner. Quantifying timing-based information flow in cryptographic hardware. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
pages 552–559. IEEE Press, 2015.

[41] S. McCamant and M. D. Ernst. Quantitative information flow as network flow

capacity. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pages
193–205, 2008.

[42] C. S. Pasareanu, W. Visser, D. H. Bushnell, J. Geldenhuys, P. C. Mehlitz, and

N. Rungta. Symbolic pathfinder: integrating symbolic execution with model

checking for java bytecode analysis. Autom. Softw. Eng., 20(3):391–425, 2013.
[43] Q. Phan, P. Malacaria, O. Tkachuk, and C. S. Pasareanu. Symbolic quantitative

information flow. ACM SIGSOFT Software Engineering Notes, 37(6):1–5, 2012.
[44] Q. Phan, P.Malacaria, C. S. Pasareanu, andM. d’Amorim. Quantifying information

leaks using reliability analysis. In Proceedings of the International Symposium on
Model Checking of Software, SPIN 2014, San Jose, CA, USA, pages 105–108, 2014.

[45] Q.-S. Phan and P. Malacaria. Abstract model counting: a novel approach for

quantification of information leaks. In Proceedings of the 9th ACM symposium on
Information, computer and communications security, pages 283–292. ACM, 2014.

[46] J. Rizzo and T. Duong. The crime attack. Ekoparty Security Conference, 2012.

[47] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic

execution framework for javascript. In Proceedings of the 31st IEEE Symposium
on Security and Privacy, 2010.

[48] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C.

In Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, pages 263–272, 2005.

[49] I. Shlyakhter. Generating effective symmetry-breaking predicates for search

problems. Electronic Notes in Discrete Mathematics, 9:19–35, 2001.
[50] G. Smith. On the foundations of quantitative information flow. In Foundations

of Software Science and Computational Structures, 12th International Conference,
FOSSACS 2009, York, UK, March 22-29, 2009. Proceedings, pages 288–302, 2009.

[51] M. Thurley. sharpsat–counting models with advanced component caching and

implicit bcp. In International Conference on Theory and Applications of Satisfiability
Testing, pages 424–429. Springer, 2006.

[52] M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability

detection in web applications. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 1232–1243, 2014.

[53] C. G. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J. Hu. Precisely measuring

quantitative information flow: 10k lines of code and beyond. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 31–46. IEEE, 2016.

[54] S. Verdoolaege. barvinok: User guide. Version 0.23), Electronically available at
http://www. kotnet. org/˜ skimo/barvinok, 2007.

[55] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing, reusing and recy-

cling constraints in program analysis. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, page 58.
ACM, 2012.

[56] M. Weir, S. Aggarwal, M. P. Collins, and H. Stern. Testing metrics for password

creation policies by attacking large sets of revealed passwords. In Proceedings
of the 17th ACM Conference on Computer and Communications Security, CCS
2010, Chicago, Illinois, USA, October 4-8, 2010, pages 162–175, 2010. doi: 10.1145/
1866307.1866327.

[57] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A z3-based string solver for web

application analysis. In Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pages 114–124, 2013.

546

	Abstract
	1 Introduction
	2 Motivation
	3 Constraint Caching
	4 Group-Theoretic Framework
	5 Constraint Language
	6 Constraint Ordering
	7 Normalization Procedure
	8 Experimental evaluation
	8.1 Model Counting over the SMC/Kaluza String Constraint Dataset
	8.2 SPF Analysis of String-Handling Code
	8.3 Parameterized Caching

	9 Related Work
	10 Conclusions
	11 Implementation
	11.1 Obtaining Cashew
	11.2 Configuring Cashew
	11.3 Cashew Integration Examples

	References

