Automated Software Engineering
https://doi.org/10.1007/s10515-018-0249-2

@ CrossMark

Inductive verification of data model invariants in web
applications using first-order logic

Ivan Boci¢! - Tevfik Bultan? - Nicolas Rosner?

Received: 22 December 2017 / Accepted: 18 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Modern software applications store their data in remote cloud servers. Users interact
with these applications using web browsers or thin clients running on mobile devices. A
key concern for these applications is the correctness of the actions that update the data
store, which are triggered by user requests. Considering that modern applications store
and manage data for millions (even billions) of users, misuse or loss of user data can
have catastrophic consequences. In this paper, we focus on automated discovery of data
store bugs in applications that use development frameworks that are RESTful, enforce
the Model-View—Controller architecture, and use Object Relational Mapping libraries
to manipulate data. We present a formal data model for data stores and data store
manipulation in such applications. We have developed a framework for verification
of data models via translation to First Order Logic (FOL), followed by automated
theorem proving. Due to the undecidability of FOL, this automated approach does not
always produce a conclusive answer. We investigate the use of many-sorted logic in
data model verification in order to improve the effectiveness of this approach. Many-
sorted logic allows us to specify type information explicitly, thus lightening the burden
of reasoning about type information during theorem proving. Our experimental results
demonstrate that our verification approach is scalable to real-world web applications
and is able to detect bugs in them.

Keywords Data model - Automated verification - First-order logic - Many-sorted
logic

This material is based on research sponsored by NSF under Grant CCF-1423623.

B Nicolds Rosner
rosner @cs.ucsb.edu

Extended author information available on the last page of the article

Published online: 12 December 2018 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-018-0249-2&domain=pdf
http://orcid.org/0000-0002-0742-8101

Automated Software Engineering

1 Introduction

Modern software applications have migrated from the desktop onto to the cloud. Ben-
efits of web applications over desktop applications include accessibility on multiple
devices anywhere and anytime, higher availability due to redundant systems, eas-
ier upgrades and patching etc. However, these benefits come at the cost of increased
complexity, as web applications are complicated, distributed systems. Many web appli-
cations store and manage significant amounts of sensitive user data. Verification of
how applications manage data is of paramount importance.

Modern software applications are challenging to develop and maintain due to the
complexity of building software systems that consist of distributed components that
run concurrently and interact over the Internet. In order to reduce this complexity
and achieve modularity, web application development frameworks have been created
for various languages: Ruby on Rails (2013) for Ruby, Django (2013) for Python,
and Spring (2013) for Java. These frameworks share similar architectures and basic
features shown in Fig. 1.

In particular, web application development frameworks use the Model-View—
Controller (MVC) pattern (Krasner and Pope 1988) to separate the code for the model
(Model) from the user interface logic (View) and the navigation logic (Controller).
The data model defines the data the application manages, as well as the methods that
are used to modify the data. The controller accepts requests, queries and/or updates the
data, and invokes the view to synthesize the response. These operations are defined as
actions. Web applications built using these frameworks have the following character-
istics: (1) They are RESTful (Fielding 2000), meaning that actions can be invoked any
number of times and in any order; (2) Actions are (or should be) atomic, meaning that
they update the data in one step and revert any changes if an error is encountered; (3)
The data is manipulated only by actions, meaning that there is no way to modify the
data outside of actions; (4) The data model is implemented using Object-Relational
Mapping (ORM) libraries that help bridge the semantic gap between object oriented
languages and relational databases.

Although there are web applications that do not adhere to these design princi-
ples, popular open-source web application frameworks such as Ruby on Rails (2013),

Fig.1 Architecture imposed by
web application frameworks

RESTful Requests

Controller

Database

@ Springer

Automated Software Engineering

Django (2013), and Spring (2013) enforce them. Web applications that are based on
these frameworks would benefit from the verification techniques we present in this
paper.

We implemented our approach for Ruby on Rails, or Rails in short. We decided
to focus on the Rails framework since it is widely used. However, our approach can
be adapted to other MVC-based web application frameworks such as Django and
Spring. As of October 2018, SimilarTech (2018) reports 337,569 public websites built
using Rails, 62,681 using Django, and 3378 using Spring. (The actual number of
Spring applications is likely higher, as Spring is often used in intranets and business-
to-business applications.)

The aforementioned characteristics and the modularity induced by the web appli-
cation development frameworks enabled us to develop a framework for automated
verification of data model invariants by analyzing the object oriented code that defines
the actions, and verifying that each action preserves the invariants. Our key observa-
tion is that, in RESTful applications, actions are atomic and can be executed in any
order. This lets us use inductive verification to verify data integrity by considering
each action in isolation and checking whether an action could possibly invalidate a
property that was presumed to be valid before the action executed. If no action breaks
any property, then assuming the application starts executing in a valid state, no invalid
state could possibly be reached.

Our framework for verification of web application data models automatically trans-
lates verification queries to logic formulas and then uses an automated theorem prover
to check these automatically generated formulas (Bocic and Bultan 2014, 2015c¢).
First, by exploiting the structure of the MVC-pattern, we automatically extract a for-
mal data model, which we call Abstract Data Store (ADS). ADS models capture the
semantics of the database schema and the actions that update the data store (Bocic and
Bultan 2014). ADS models represent the data store as sets of objects (corresponding
to objects of the data model classes) and associations among them (corresponding to
the associations among the data model classes). Attributes that correspond to basic
types are not represented in ADS models (i.e., they are abstracted away). This means
that we can verify invariants about sets of objects and associations among them, but
for example, not about numeric attributes of objects.

We statically extract the abstract data store model from the given web application by
analyzing the data model schema and the methods that implement the actions (Bocic
and Bultan 2017). We ask the user to write data model invariants to be verified using
our invariant specification library that provides constructs for quantification. For each
action-invariant pair, we synthesize a first order logic (FOL) theorem that is valid if
and only if the action preserves the invariant. Assuming that the invariant is true before
the action starts executing, and specifying the way the action modifies the data, the
theorem posits that the invariant must hold after the action ends its execution. We send
this theorem to an off-the-shelf FOL theorem prover to verify.

Since FOL is undecidable, an automated theorem prover may never termi-
nate deducing, continuously producing new deductions without reaching a proof
of the theorem. Our approach results in one of three outcomes for each action-
invariant pair: (1) a proof that the action preserves the invariant, (2) a proof
that the action can violate the invariant, or (3) an inconclusive result, caused

@ Springer

Automated Software Engineering

by the theorem prover not reaching a conclusive answer in a specified time
period.

Minimizing the ratio of inconclusive results is a necessary step for making our
approach usable in practice. In order to understand the causes of inconclusive results,
we investigated the logs of the first theorem prover we integrated to our framework
(Spass Weidenbach et al. 2009). We noticed that the theorem prover performed an
excessive number of deductions solely to reason about the types of quantified variables
and objects. Since FOL does not have a notion of type, our FOL translation generates
predicates that encode all the type information, and the theorem prover was spending
a lot of time making deductions about these predicates.

In order to address this problem, we looked into using many-sorted logic for data
model verification. In many-sorted logic, sorts (i.e., types) are explicitly associated
with all variables, functions and predicates. Our intuition was that using sorts will
benefit verification because it mitigates the necessity of deducing type information.
On the other hand, the semantics of sorts and the semantics of data model classes do not
match, and this semantic mismatch makes the translation of data models challenging
especially if inheritance is present in the data model.

In addition to dealing with inheritance, there is one more complication in transla-
tion to many-sorted logic. Classical FOL (i.e., FOL without sorts) defines structures
(instances that may or may not satisfy a given set of formulas) as strictly non-empty.
In our data model encoding, empty structures represent the possibility of a particular
class having no objects, and, we want to allow empty structures since this might be
a possible behavior of the data model. Unfortunately, most theorem provers do not
allow empty structures. This problem was not a significant issue with our translation
to unsorted FOL since we were encoding types with predicates, and it is possible to
define a predicate that never evaluates to true (which would encode an empty class).
However, when we map classes to sorts, the issue of empty structures must be handled
during translation which introduces extra complexity, further distancing sorts from the
data model type system.

We developed a data model to many-sorted logic translator that addresses these
issues. As a many-sorted logic theorem prover we used Z3 (de Moura and Bjgrner
2008), a Satisfiability Modulo Theories (SMT) (SMT-LIB) solver. SMT problems are
problems that can be expressed in FOL with equality and different background theories
such as linear arithmetic, bitvectors etc. When used with uninterpreted functions and
quantification only, SMT provers can be used as general purpose FOL theorem provers.

In order to compare the performance of the unsorted FOL (i.e., FOL without sorts)
translation with the many-sorted logic translation we used Spass and Z3. We compared
the performance between Spass (using the unsorted FOL translation) and Z3 (using the
many-sorted logic translation) by extracting action-invariant pairs from 17 open source
web applications, and translating them to formulas for Spass and Z3. We observed that
verification results for Z3 were significantly better. We found that Z3 outperformed
Spass, producing far fewer inconclusive results. In addition, we observed a speedup
of two orders of magnitude over Spass. This performance difference was beyond our
expectations.

However, looking just at these results, it is not possible to attribute the performance
improvement to the benefits of many-sorted logic translation over the unsorted FOL

@ Springer

Automated Software Engineering

translation. Spass and Z3 use different deduction methods, which could be the cause
of the performance difference. Or, the performance difference could even be due to
differences in the implementations and optimizations of the different provers.

In order to determine the cause of the performance difference we developed a
translation of the data model to many-sorted logic that effectively bypasses the sort
system. We re-ran our experiment suite on Z3 with this unsorted translation. We found
that the unsorted translation induced an order of magnitude higher inconclusive result
rate, and slowed down verification by two orders of magnitude. While Z3 and Spass
use fundamentally different approaches to theorem proving, we conclude that sorts
are inherently useful in data model verification.

To experimentally evaluate our overall approach, we applied our automated
verification framework to 17 open source web applications and checked 17,291 action-
invariant pairs. Of these 17,291 verification conditions, our framework verified 17,133
to be correct. For the remaining 158 verification conditions: (1) For 20 of them the
verification process was inconclusive since our theorem provers did not produce a
result within the allocated time. (2) For 45 of them our verification approach reported
that the property fails, however, after manual investigation we observed that these were
false positives corresponding to infeasible behaviors (which is possible since the ADS
model we use abstracts the behavior of the application, hence, can include infeasible
behaviors). (3) For 93 properties our verification approach reported that the property
fails and we manually confirmed that these are true positives where the property failure
exists in the application. In fact, we identified 69 unique bugs in 17 applications that
were exposed by these property violations.

The rest of the paper is organized as follows. Section 2 discusses the formal data
model we developed as part of our formal verification framework, Sect. 3 explains
the translation of verification queries about the data models to first order logic. Sec-
tion 4 discusses verification via many-sorted logic. Section 5 presents experiments
evaluating the effectiveness of different logic encodings and the overall effectiveness
of the proposed verification approach. Section 6 discusses related work, and Sect. 7
concludes the paper.

2 Abstract data stores

In this section we define abstract data stores (ADSs), a formal model we use for
representing data models of web applications (Bocic and Bultan 2014). We use excerpts
from an application as a running example first to demonstrate the data models in Rails
and then to demonstrate how ADSs capture data models of Rails applications. In
addition, ADSs can capture properties (invariants) defined on data models.

2.1 Data models in Ruby on Rails
Tracks (2013) is a Rails application for organizing tasks, to-do lists etc. This application

spans 17,562 lines of code, 11 model classes and 117 actions. Figure 2 an example
excerpt from Tracks. This excerpt would normally be contained in multiple files, one

@ Springer

Automated Software Engineering

17 class TodosController

18 def create
1 class User 19 @project = Project.find(params[:project_id])
9 has many :todos 20 Quser = current_user
3 has_many : roiects 21 Q@todo = Todo.new
~many :proj 22 Qtodo.user = Quser
4 end . .
. 23 Q@todo.project = @project
5 class Project
24 Q@todo.save!
[§ belongs_to :user
25 respond_to(...)
7 has_many :todos
26 end
8 has_many :notes
9 end 27 end
28 class ProjectsController
10 class Todo
29 def destroy
11 belongs_to :user
. 30 @project = Project.find(params[:project_id])
12 belongs_to :project
31 @project.notes.each do |n|
13 end
32 n.delete
14 class Note
15 belongs_to :project 33 end
16 end §8-t0 :pro] 34 @project.delete
35 respond_to(...)
36 end
37 end

Fig.2 Excerpt from a Rails application

User Todo
N 0.1 0..*
0 +todos: list<Todo> +user: User
— +projects: list<Project> o +project: Project
Project
R 0.1
0 +todos: list<Todo>
= +user: User . Note
+notes: list<Note> 0.1 0.. +project: Project

Fig.3 Class diagram corresponding to Fig. 2

for each model class and one for each controller. For brevity, we only show relevant
details in Fig. 2.

Lines 1-16 in Fig. 2 demonstrate how ActiveRecord (default ORM for Ruby on
Rails) can be used to define a data model. The example application defines four
ActiveRecord classes: User, Project, Todo and Note, declared in lines 1-4, 5-9,
10-13 and 14-16 respectively.

Each class contains a set of associations (relations) with other classes. These
associations are declared using methods belongs_to, has_one, has_many and
has_and_belongs_to_many that imply different cardinality and schema details. Fig-
ure 3 shows the class diagram corresponding to the code given in Fig. 2. For example,
each Todo object has at most one associated Project (line 12). The types and symme-
try of associations are inferred from association names. For example, Project . todos
and Todo.project are symmetrical: for every project p and every Todo t of that
Project, the Project of 7 is p.

@ Springer

Automated Software Engineering

Two actions can be seen in Fig. 2: one in TodosController called create (lines
18-26) and one in ProjectsController called destroy(lines 29-36).

The TodosController#create action takes an argument as part of the request,
called project_id. This argument is used to lookup the corresponding project object
and assign it to a variable eproject (line 19). In line 20, the current user object is
stored in a variable called euser. The action, then, creates a new Todo instance (line
21), associates it with the loaded user and project objects (lines 22 and 23) and saves
the changes (line 24). The response is synthesized in line 25 by the view, which is
omitted for brevity.

The TodosController#destroy action (lines 29-36) takes a single request argu-
mentproject_id. The corresponding project object is loaded in line 30 and stored in
a variable. In line 31, the action iterates through all Notes associated with that project
and deletes them one at a time (line 32). Finally, said project gets deleted (line 34).

Assume that we would like to verify the following property for the application in
Fig. 2: Each Todo object is associated with a project object. In order to do that, we first
need a way to express this property. We developed a Rails library for specification of
data model invariants using Rails syntax. For example, this property would be stated as:

invariant forall{ |todo| not todo.project.empty? }

For this property, our tool would show that the TodosController#create action
preserves the given invariant, whereas the ProjectsController#destroy action
potentially violates the invariant. If the deleted project had Todo objects associated
with it at the beginning of the action, after deleting it, these Todo objects will be left
with no associated project, invalidating the invariant.

2.2 A formal data model: abstract data stores

In this section we define the formal data model that we use to capture the semantics of
data models in web applications. The abstract data store, or data store in short, is an
abstraction of a web application’s data model that focuses on the persistent data that
the application manages.

An abstract data store is a structure DS = (C, L, A, I) where C is a set of classes,
L is a set of associations, A is a set of actions, and [is a set of invariants.

A data store state is a tuple (O, T') where O is the set of objects and T is the set
of tuples denoting associations among objects. We define DS to be the set of all data
store states of DS.

2.2.1 Classes and objects

The set of classes C identifies the types of objects that can be stored in the data store.
Each class can have a set of superclasses (superclass(c) C C) and, transitively, the
superclass relation cannot contain cycles. We will use operator ¢, < ¢, to denote that
cp is a parent class to c., transitively or directly. We will use operators >, < and >
accordingly.

For example, given the application presented in Fig. 2, C would encompass four
classes: User, Project, Todo and Note. The superclass set of each of these classes
is empty.

@ Springer

Automated Software Engineering

Given a data store state (O, T) € DS, O is the set of objects that are stored in a
data store in that state. Each object o € O is an instance of a class ¢ € C denoted by
¢ = classof(o). We use the notation O, to encapsulate all objects in O whose class is ¢
or any subclass of c. We define O to be the set of all sets of objects that appear in DS.

2.2.2 Associations and tuples

An association [= (name, c,, c;, card) € L contains a unique identifier name,
an origin class ¢, € C, a target class ¢; € C and a cardinality constraint card.
Cardinality constraints supported by ORM tools are limited, and so is our definition
of valid cardinality constraints. Cardinality constraints are a pair of ranges n, and
n; written as n,-n,;. Ranges n, and n; describe the allowed number of objects on the
origin and target side of the association, respectfully. The possible ranges are: [0. .. 1],
1, [1...%] and *. For example, cardinality constraint 1 — * defines that every target
object is associated with exactly one origin object. Alternatively, cardinality constraint
[0...1] — 1 defines that every object of the target class is associated with an object
of the origin class, and that no object of the origin class is associated with more than
one object of the target class.

For example, given the application presented in Fig. 2, there are four associations
in L:

l1 = (User_todos, User, Todo, 1 — %)
l» = (User_projects, User, Project, 1 — %)
Project_todos, Project, Todo, 1 — *)

I3 ={
l4 = (Project_notes, Project, Note, 1 — %)

Similar to how objects are instances of classes, tuples are instances of associations.
Each tuple ¢ € T is in the form ¢t = (I, 0,, 0;) where | = (name, c,, c;, card) € L
and classof(o,) < ¢, and classof(o;) < ¢;. For a tuple t = (r, o,, 0;) we refer to o,
as the origin object and o, as the target object.

Note that we did not define that data store states need to have association cardinality
correctly enforced. This is because, sometimes, an action will temporarily invalidate
cardinality while mutating data. In fact, cardinality is enforced when the data gets
sent to the database, either by application-level validations or by the database schema
directly. If cardinality constraints are violated, the action should abort without mod-
ifications to the data, trivially preserving all invariants. Hence, we treat cardinality
constraints as implicit invariants that are necessarily correct before and after an action
executes.

2.2.3 Actions

Given adatastore DS = (C, L, A, I), A denotes the set of actions. Actions are used to
query or update the data store state. Each action a € A is a set of executions (s, s') C
DS x DS where s = (O, T) is the pre-state of the execution and s’ = (O’, T’) is the
post-state of the execution.

@ Springer

Automated Software Engineering

In a web application implementation of an action is not specified as state transitions.
Each action is implemented as a sequence of statements. However, each statement can
be modeled as a state transition represented by a combination of boolean and object
set expressions (i.e., expressions that return boolean values or a set of objects), and the
state transitions for an action can be obtained by composing the state transitions of the
statements used in the implementation of the action. In our verification framework, we
use an intermediate representation called the Abstract Data Store Language (ADSL)
to capture the semantics of action implementations in web applications (Bocic 2016).
We give an overview of this representation in the next section.

2.2.4 Extraction of abstract data store models from web applications

Our verification framework requires extraction of an abstract data store model for a
given web application. We do this by using the symbolic model extraction technique
(Bocic and Bultan 2017) which is an automated technique for extracting formal data
models from web applications. The description of the symbolic model extraction
technique we use can be found in Bocic and Bultan (2017).

Given a web application, symbolic model extraction generates an Abstract Data
Store Language (ADSL) specification characterizing the data model of the given appli-
cation. We summarize some features of ADSL below, but we omit the full description
of the ADSL here [which can be found in Bocic (2016)]. We note that the semantics
of an ADSL specification corresponds to an ADS.

ADSL supports the specification of classes, inheritance relationships among classes,
associations, and cardinalities of associations. The most involved part of an ADSL
specification is the action specifications. Action specifications in ADSL consist of
statements, boolean expressions (that evaluate to true or false) and object set expres-
sions (that evaluate to a set of objects).

For example, a Block statement in ADSL corresponds to sequential composition
of arbitrary number of statements. Each statement may migrate the data store state, or
evaluate to a boolean or set of objects, or both. For example, an Assign statement in
ADSL assigns the result of an object set expression to a variable, and the statement
evaluates to the assigned object set.

Statements that return an object set evaluate to a set of objects in the data store that
share a common class or superclass. Statements that return a boolean evaluate to true
or false, typically used as conditions in branches.

Let us also give some examples of object set expressions in ADSL. The
Al10f (class) expression returns all objects of class (or subclass of) class. On the
other hand, the subset (object set) expression returns an arbitrary subset (non-
deterministically selected) of its argument object set. Similarly, the oneof (object
set) expression represents a non-deterministic selection of one object from its argu-
ment object set. Finally, varread expression takes a variable as an argument and
evaluates to the set of objects assigned to that variable.

The complete description of the ADSL is provided in Bocic (2016). Note that ADSL
is an intermediate representation used in our verification framework. It is automatically
extracted from a given web application using the symbolic model extraction technique

@ Springer

Automated Software Engineering

(Bocic and Bultan 2017). In the following sections we discuss how we generate logic
formulas from ADSL specifications for data model verification.

2.2.5 Invariants

Given a data store DS = (C, L, A, I), I is the set of invariants. An invariant i € [
corresponds to a function i: DS — {false, true} that identifies the set of data store
states which satisfy the invariant. As we mentioned above, invariants can be specified
using the Rails library we developed for specification of data model invariants.

2.2.6 Behaviors

A behavior of a data store is an infinite sequence of data store states such that the
initial state satisfies all invariants, and each pair of consecutive states is covered by at
least one action. Formally, given a data store DS = (C, L, A, I), abehavior of a data
store DS is an infinite sequence of data store states (QOo, Tp), (O1, T1), (O2, T>), . ..
where

— Forall k > 0, (O, T}) € DS and there exists an action @ € A such that
((Ok, Tx), (Ok+1, Tiv1)) € a, and
— Vi el:i({(Og, Tp)) = true

Given a data store DS = (C, L, A, I), all state_sthat appear in a behavior of DS are
called reachable states of DS and denoted as DSk.

2.3 Data store correctness

If a data store preserves its invariants, then we say that it satisfies data integrity. Our
goal is to verify the data integrity property for a given data store. Formally, given
an abstract data store DS = (C, L, A, I), we call DS consistent if and only if all
reachable states of DS satisfy all the invariants of DS, i.e., DS is consistent if and
only if forall (O, T) € DS, foralli € I,i((O, T)) = true. The verification problem
for data integrity is to determine if a given abstract data store is consistent. Since we
do not bound the sizes of the classes and relations in a data model, and since we allow
arbitrary quantification in invariant properties, determining if a data store specified in
the ADS language is consistent or not is not a decidable verification problem.

As we discussed earlier, in RESTful applications, each action is required to preserve
the invariants of the data model independently of the previous execution history. This
is a stronger requirement that implies the consistency condition defined above, and can
be formulated as inductive invariant verification. An inductive invariant is a property
where, given a state that satisfies the property, all the next states of that state also satisfy
the property. In other words, an inductive invariant is a property that is preserved
by all transitions (i.e., all actions) of a given system. An abstract data store DS =
(C, L, A, I) is consistent if the conjunction of all the invariants i € I is an inductive
invariant. In other words, an abstract data store DS = (C, L, A, I is consistent if and
only if every execution of every action preserves all invariants:

@ Springer

Automated Software Engineering

Feons =Va e A:V(s,s',a) ea: Viel:i(s)) = (Viel:i(s))

3 Verification via first order logic

In this section we present the translation of ADS language specifications to classical
first order logic and show how this translation can be used to verify whether invariants
hold on a given ADS, i.e., if the given ADS is consistent and satisfies data integrity.

A FOL language L is atuple (F, P, V) where F is a set of function symbols, P is
a set of predicate symbols, V is a set of variable symbols. All function and predicate
symbols are associated with their arities, which are positive integers denoting the
number of arguments they accept. !

Given a FOL language L = (F, P, V), a term is a variable v € V or a function
invocation f(t1,t>...7) where f € F and ¢1...# are terms and k is the arity of
function f.

A (well formed) FOL formula is defined as either:

p(ty,...t), where p € P is a predicate of arity k and ¢, . . . #; are terms
— Vv: f,where v € V and f is a formula

= f1, fi A fa, f1 V fo where f1 and f> are formulas

— t; = 1o, where £, and 1, are terms.?

Given a FOL language L, a structure S is an instance that may or may not satisfy
a formula expressed in this language. More formally, it is a tuple (U, FS, PS5, V5)
where U is a non-empty set of elements called the universe. F* is a mapping of F onto
a set of functions such that for every f € F of cardinality k there exists an 5 € F*
such that f% is a function that maps U* — U. Similarly, for every predicate p € P
of arity k, there exists a pU € PY such that pV c U*.

We can test whether a structure S satisfies a formula (whether the formula is true
within this structure). To do this we assign elements of U to all terms in the formula.
Each variable v € V is assigned an element v5 € U. Term f(t; ... ;) is mapped to the
return value of Y when using elements of U assigned to terms 7| . . . ; as arguments.
Similarly, p(¢1, ... 1) is considered to be true if and only if elements corresponding
to 11 .. .1 form a tuple that is in PY. Boolean operators and equality are interpreted
in a standard way. Universal quantification is a bit more involved: Yv: f is satisfied
by S if and only if, for every structure S,¢) that is identical to S except that v was
assigned a (potentially different) element e of U, f is satisfied by S(ye).

A formula that is satisfied by one structure may not be satisfied by another. For
example, x = y is true for all structures that happen to map variables x and y to the
same element. A formula Vx: (Vy: x = y) is true if and only if U is a singleton set.
If a formula is satisfied by all structures, we call this formula valid. E.g. x = x is a
valid formula.

I we may extend this to introduce constants as functions of arity 0 and propositional variables as predicates
of arity 0.

2 Although classical FOL does not include equality, since the theorem provers we use operate on FOL with
equality, we include equality in our definition of FOL.

@ Springer

Automated Software Engineering

We take note of free variables: variables that are not quantified outside the term in
which they appear. For example, Vx: x = y has one free variable y. Since theorem
provers we use do not allow free variables, from this point on, we will only evaluate
the truth value of formulas without free variables. Such a formula is true if and only
if it is valid for all structures.

3.1 Translation of abstract data stores to first order logic

To translate an ADS to first order logic for verification, we create a different set of
formulas for each action and for each invariant. We translate the schema (Sect. 3.1.1),
the action (Sect. 3.1.5), and invariants in the pre-state (Sect. 3.1.6) into axioms. We
also translate the invariant in question into a conjecture. If the resulting set of axioms
implies the conjecture, then the action correctly preserves the invariant. If axioms do
not imply the conjecture, a bug is reported as there exists a way for the action to
invalidate the invariant that is being verified.

A single translation that models all actions and verifies all invariants at once is
feasible, but we decided to not take this approach for two reasons. First, this would
make identifying a detected bug difficult, as the theorem prover would show that an
action could break an invariant without specifying which invariant and which action
are the violators. Second, the resulting set of formulas would be rather large and if
a theorem prover were not able to terminate for any isolated action/invariant pair,
it would probably not terminate if given all actions and invariants (depending on
theorem prover heuristics, it may be possible that this would instead terminate, though
extremely unlikely). Such a failure would provide no partial result to the developer.
By partitioning the problem and verifying each action/invariant property in isolation,
the developer can get results for everything successfully proven or falsified even if
there exist action/invariant pairs for which the theorem prover produced no conclusive
result.

In this section we frequently conjoin or disjoin a set of formulas. When a set of
conjoined or disjointed formulas is empty, we substitute the conjunction or disjunction
with their neutral elements (true and false respectively).

In Fig. 4 we show the the class diagram that corresponds to a small part of the
data model of a web application called FatFreeCRM. FatFreeCRM is an application
for customer-relation management. It supports storing and managing customer data,
leads that may potentially become customers, contacts, campaigns for marketing etc.
It spans 20,178 lines of Ruby code, 32 model classes and 120 actions. We will use the
class diagram shown in Fig. 4 as a running example in this section.

3.1.1 Schema translation

We assume that we are given a data store DS = (C, L, A, I).

Class translation First, for each class ¢ € C, we define a unary predicate ¢ that seman-
tically denotes whether its argument represents either an instance of that particular
class or an instance of any subclass.

@ Springer

Automated Software Engineering

Account 0.1 0.% Contact
account contacts
I |
I
v
Taggable 0.% 1| Commentable
taggings commentable
Tag 0.x 0. Comment
tags comments

Fig.4 A data model schema example based on FatFreeCRM (2013)

Predicates: Account, Contact, Taggable, Commentable, Tag, Comment, XTaggable,
XCommentable.

Vo: Account(o) — Taggable(o) A Commentable(o) (1)
Vo: Contact(o) — Taggable(o) A Commentable(o) (2)
Vo: XTaggable(o) < Taggable(o) A —Account(o) A —Contact(o) (3)
Vo: XCommentable(o) < Commentable(o) A —Account(o) A Contact(o) (4)

Vo: Account (o) — —Contact(o) A —XTaggable(o) A —XCommentable(o) A ~Tag(o) A ~Comment (o)
(5)

Vo: Contact(o) — —Account(o) A —XTaggable(o) A —XCommentable(o) A ~Tag(o) A ~Comment (o)
(6)

Vo: XTaggable(o) — —Account(o) A ~Contact(o) A ~XCommentable(o) A ~Tag(o) A ~Comment (o)

Vo: XCommentable(o) — —Account(o) V —Contact(o) A —XTaggable(o) A =Tag(o) A ~Comment (o)
)

Vo: Tag(o) — —Account(o) A —Contact(o) A =XTaggable(o) A =XCommentable(o) A ~Comment (o)
(9)

Vo: Comment (o) — —Account(o) A ~Contact(o) A ~XTaggable(o) A ~XCommentable(o) A —Tag(o)
(10)

Fig.5 Axioms defining the class diagram in Fig. 4 in classical FOL

Then we define axioms that enforce our type system. We define three groups of
axioms: inheritance axioms that define superclass relationships, instance axioms that
define predicates that we can use to denote that an object is an instance of a given class
(specifically not of a subclass), and membership axioms that define that every object
is an instance of at most one class.

Inheritance axioms define that objects of subclass types are also of superclass
types. For each class ¢ € C that has a non-empty superclass set superclass(c) =
{p1, P2 ... px} we generate an axiom:

Yo: c(o) = pi1(o) Apa(o) A--- Apr(o)

For example, given the model in Fig. 4 this method produces Formulas (1) and (2) in
Fig. 5.

Instance axioms constitute one axiom per class ¢ € C and serve to define instance
predicates ¢y, where the x stands for the fact that ¢ is the exact class of the corre-
sponding object (denoted as the prefix X in the formulas in Fig. 5). More precisely,

@ Springer

Automated Software Engineering

these predicates are used to express that an object is an instance of class ¢, but not of
any of ¢’s subclasses. Given {s7 ... si}, the set of all direct subclasses of ¢ (all classes
s for which ¢ € superclass(s)), we generate an axiom:

Yo: ¢c;(0) < c(0) A —=51(0) A -+ A —5E(0)

Note that, if ¢ has no subclasses, this axiom defines equivalence between ¢ and c,. If
this is the case, as an optimization, we omit defining ¢, and use ¢ instead. Given the
model in Fig. 4 this creates Formulas (3) and (4) in Fig. 5.

Membership axioms define that each object represents an instance of exactly one
class. Assuming that C = {c; ... c}, for every class ¢; € C, we create an axiom in
order to constrain that, if an object is an instance of class ¢;, it cannot be an instance
of any other class:

Yo: ¢iy(0) = —cix(0) Ao A=CiZ1,(0) A —=Cix1,(0) A+ A —Cky(0)

These formulas correspond to Formulas (5)—(10) in Fig. 5.
The resulting number of generated formulas is linear in the number of classes, and
so is the size of these formulas.

Association translation Similarly to objects, we use FOL universe elements to repre-
sent tuples. A convenient consequence of this approach is that it allows us to define the
creation and deletion of objects and tuples uniformly. We introduce unary predicates
is_object andis_tuple to distinguish whether a universe element represents an object
or a tuple. We define that no domain element can be both an object and a tuple.

For each association [€ L we introduce a unary predicate /(¢) that returns true if
and only if 7 is representing a tuple that belongs to /.

In order to associate tuples with objects, for each association / € L we define two
unary functions: origin;(t) and target;(t) such that: t = (I, origin;(t), target;(t)).

We enforce association cardinality constraints using formulas to limit the number
of tuples per origin/target object in a data store state. Note that we do not enforce
cardinality globally, but only in the action’s pre and post state. We do this because
real world applications often invalidate cardinality temporarily while an action is
executing.

3.1.2 Action translation

Actions are the most complex part of ADS translation to FOL. We will first define
how states are represented in FOL, then define how object set and boolean expres-
sions in ADSL are translated to FOL. For brevity, we will not discuss translation of
all expressions in ADSL to FOL, and instead discuss translations of most represen-
tative operators used in ADSL expressions. Description of all ADSL expressions are
provided in Bocic (2016).

States are translated to unary predicates that define which objects and tuples exist
in the state. For example, given a state predicate s, if s(x) then x is a domain element
representing either an object or a tuple that exists in state s.

@ Springer

Automated Software Engineering

3.1.3 Object set translation

Most ADSL statements manipulate or return object sets. An object set « represents a
set of objects that share a common set of classes or superclasses.

Every object set « is translated into a formula F,, that has one free variable 0. Object
sets inside loops are translated to formulas with more than one free variable, but for
simplicity, we will focus on object sets outside loops in the following discussion.

F,, evaluates to true if and only if the free variable o is assigned a universe element
that represents an object that belongs to the object set . Object set formulas are meant
to be directly injected into formulas that quantify over these free variables, and use
the object set according to the statement’s semantics.

For example, let us translate an object set expression A110f (c¢) to FOL, where the
All0f (c) expression in ADSL evaluates to all objects of the class c. Let ¢ be the type
predicate corresponding to the argument class, and let s be a predicate denoting the
state in which the object set is being evaluated. Then, the object set is defined simply
using the formula:

s(0) A c(o)

meaning that domain element o represents a member of this object set if and only if
it exists in the current state s and is of class c. Note that o is the one free variable in
this formula.

As an another example, a subset expression in ADSL semantically evaluates to an
object set that is a subset of its argument object set. Let 8 be the argument object set
of a subset node «. To translate a subset expression in state s, we introduce a new
predicate subsety (x) and define an axiom:

Vx: subsety(x) = Fg(x)

With this axiom, F,(0) is translated as: subsety (0)

The resulting formula still has o as a free variable, meaning that it is a valid object
set formula. Notice that we enforced this subset function to be non-deterministic by
not having any rules on which o is included in the subset using subset, (0).

Other interesting examples are Assign and varRead expressions. Note that this
translation is done after transforming the program to static single assignment that
ensures that all variables are defined once.

The assign expression takes two arguments: a variable identifier v and object set
node «. It defines a predicate v that corresponds to the object set set «. It accomplishes
this by defining an axiom:

Vx:v(x) € alx)

After defining this predicate, the assign expression returns v(o) as its object set
formula.

@ Springer

Automated Software Engineering

Variable read expression varRead takes a variable v as an argument. When evaluated
in state s, it translates to the object set formula denoting all object that were assigned
to v and still exist in the current state:

v(x) As(x)
3.1.4 Boolean expression translation

Boolean expressions are translated to formulas that are embedded into statements,
similarly to object sets. Unlike object set formulas, these formulas do not have free
variables, unless inside a loop. Free variables are only introduced to facilitate loops,
as will be explained further down in this section.

For example, the 1sEmpty expression takes an object set as an argument and eval-
uates to true if and only if the argument object set is empty. If object set « is this
argument, the node translates to formula:

Vx: —a(x)

As one more example, the C expression accepts two object sets and is expected to
evaluate to true if and only if the first object set is a superset of the other. Let Fi(0)
and F> (o) be the translations of the two object sets. The C expression translates to the
formula:

Yo: Fi(0o) — F>(0)
3.1.5 Translation of state migrations

Many ADSL expressions migrate the data store state. Each state migration can be
represented as a set of pairs of states (s, s’) C DS x DS which semantically represent
possible state transitions by means of that statement. For a statement S and two states s
and s’, we will use [s, s']s to denote that (s, s’) is a possible execution (state transition)
of S.

For example, let us translate a pelete statement D that deletes objects from an
object set «, as well as all tuples associated with deleted objects. Assuming there
exists only one association between class ¢ and other types, this statement can be
translated as follows:

Vs,s' € DS x DS:
[s,s']p < (Yo: is_object(o) = (0 € s’ & 0 € s A =Fy(0)))
A (Vt:is_tuple(t) = t € s & (t € s A —(Fy(origin, (1)) V Fy(target,(1)))))

As an other example, consider a Block statement B, which contains a sequence of
other statements A; for 1 < i < n for some n. Let statement A transition between
states s and sy if and only if [s, s1]4,. The set of states that the sequence A; A2 can
transition to from s is equal to the union of all states that A, can transition to from

@ Springer

Automated Software Engineering

any state s; such that [s, s1]4,. Therefore, Vs, s’ € DS x DS : [s,5']a;:a, < (351 €
DS : [s,s1]a, A [s1,5']4,). If we extrapolate this reasoning to the whole block B:

Vs,s' € DS x DS : [s,5']g < (3s1,52...59—1 € DS x -+ x DS :

/
[s,s1]a, ALs1 8204, A Alsu—1, 5'14,)

Loop translation A Fortach loop statement (F E) is defined with three parameters:
the set of objects being iterated over, the variable containing the iterated value, and
the block of code that will be executed for each object in the object set. Let o be the
object set, v the variable, and B the block of code. Let |«¢| = n. By definition, the
order of iteration is non-deterministic.

Since B has access to the iterated object that is different for each iteration, executions
of B are affected by the iterated variable. Effectively, each iteration is a different state
transition: we use notation [s, s'] B, to refer to a possible execution of an iteration
executed for object o. In this case, we refer to o as the trigger object. The formula
defining the FE loop is:

Vs,s' € DS x DS : [s,s'1rg < 301 ...00 €@, 351 ...5, € DS :
Vi,jell...nl:i#j <& o0 #0jA)
[s,s11B,; A [s1,521B,0 A=+ AlSn—1,SnlB,, N Sn — 2)

In words, a pair of states is an execution of a given loop FE if and only if there
exists an enumeration of objects from « and a sequence of states such that (1) the said
enumeration of objects is a permutation of «, and (2) the said sequence of states is
achievable by triggering iterations in the order of the object permutation.

There exists a corner case where an object that is about to trigger an iteration
gets deleted by a prior iteration. We did not include this corner case as part of the
definition as it introduces considerable complexity, but the semantic is as follows:
such an iteration will still execute with an empty set iterator variable value. This
behavior is in concordance with our abstraction and the behavior of ORM tools when
objects are deleted before triggering iterations.

3.1.6 Invariant translation

Invariants are translated as boolean expressions. Unlike boolean expressions, invari-
ants can be translated twice: once in the pre-state of the action and, for the purpose
of data integrity verification, once in the post-state of the action. In the pre-state of an
action, we state that the conjunction of all invariants holds, defining that the pre-state
is consistent. We translate the invariant once again in the post-state if we are verifying
data integrity.

@ Springer

Automated Software Engineering

4 Verification via many-sorted logic

We implemented the FOL translation we described in the previous section and used
it to verify data model properties of web applications. We observed that, the theorem
prover is unable to give a conclusive result for some verification queries. Since FOL is
undecidable in general, FOL theorem provers are not guaranteed to produce a result for
all cases. Our experiments indicate that, when we use the FOL translation described
in the previous section, about 17% of verification queries lead to inconclusive results.

Minimizing the ratio of inconclusive results is a necessary step for making our
approach usable in practice. Inconclusive results force the developer to manually
investigate actions and invariants, and since we encounter inconclusive results in the
most complex actions, this is a difficult and error prone process.

In order to understand the cause of inconclusive results, we investigated the logs
of the FOL theorem prover we used in our experiments. We noticed that the theorem
prover did an excessive number of deductions solely to reason about the types of
quantified variables and objects. Since FOL does not have a notion of type, our FOL
translation generates predicates that encode all the type information, and the theorem
prover was spending a lot of time reasoning about these predicates.

This seemed unnecessary to us, as in general, inheritance is rarely used in web
applications. Out of 25 most starred Ruby on Rails applications on Github only 7
employ inheritance, and on average, only 23% of classes inherit or are inherited from
other classes. This means that, if FOL would allow us, we could annotate our formulas
with precise type information and a theorem prover might use this information to
greatly trim the space of deductions it makes.

There exists a variant of FOL called many-sorted logic. Many-sorted logic enforces
a rigid type system on top of FOL, where all predicates, functions etc. have to be
annotated with types.

In this section we present a translation of data models to many-sorted logic, and
encounter and fix a problem regarding empty logic in our many-sorted translation.
Then, in our experimental evaluation, we show that using many-sorted logic drastically
increases our verification performance, and furthermore, that sorts themselves are the
main factor in this performance increase.

4.1 Many-sorted logic

Sometimes it is useful to divide the universe of a structure using types with mutu-
ally exclusive domains. This is especially true if the functions and predicates make
sense only within a specific domain. Types in many-sorted logic are called sorts.
Many-sorted logic requires us to explicitly declare the types of all function and
predicate arguments, function return values and variables. It also gives us the
ability to quantify over elements of a given type instead of over the whole uni-
verse.

Formally, many-sorted logic is very similar to classical FOL. In addition to every-
thing discussed in Sect. 3 for a first order logic language L, the many-sorted logic
language L also includes a set of sorts S. Functions and predicates in F and P respec-

@ Springer

Automated Software Engineering

tively define the sorts of their arguments, functions define the sort of their return value,
and all variables are associated with a sort from S. We also require all formulas to be
well typed (e.g. a predicate can only accept a term as an argument if the term’s sort
matches the predicate’s declaration).

A structure S in many-sorted logic does not contain a single universe U'. Instead, it
contains a non-empty universe U* for each sort s € S. For each predicate p of sorts
s1...5¢ and arity k, we define PS as a subset of U*! x --- x US. The set FY is
defined analogously, and VY assigns an element of a variable’s sort to each variable.
Quantification is always done over a specific sort’s universe. For clarity, we explicitly
declare the sort s of a variable v when quantifying by using the notation Vs v: f.

Note that many-sorted logic and unsorted logic have equivalent expressive power
(Claessen et al. 2011). Given a set of many-sorted formulas, a similar set of unsorted
formulas is equisatisfiable if we introduce predicates used to denote sorts and conjoin
the formulas that partition the universe to these sorts. Unsorted logic can be translated
to many-sorted logic by introducing a single sort that applies to all language elements.

4.2 Empty logic

Empty universes are a useful concept for data model verification. In general, a data
model state may contain no objects. This is an important consideration for data model
verification (e.g. does the application behave properly even if there exist no Users or
Accounts?). For this reason it is necessary to consider empty universes as a possibility
during verification. As one would expect, data model verification tools, such as Alloy
(Jackson 2002), support empty domains. However, empty universes are outside the
scope of classical FOL. Even though Spass (one of the FOL theorem provers we use
in our verification framework) does not support empty universes, our translation was
such that the empty model state was a possibility. This will cease to be the case for the
translation we describe below in Sect. 4.3 for many-sorted logic. However, before we
explain this problem, we must define empty logic: FOL that allows an empty universe.

FOL universes are typically defined to be non-empty. Allowing the special case
of an empty universe makes definitions more complicated, and invalidates certain
inference rules that stop working only in the case of an empty universe (for example,
¢ Vv Ixy implies Ix(¢ Vv) where x is not a free variable in ¢). The treatment of
variables and function return values becomes problematic because terms are expected
to always take a value of one element of the universe. This is not possible in empty
universes.

Furthermore, the possibility of an empty universes breaks certain fundamental rules
about FOL. E.g. Vx: x # x is normally an unsatisfiable formula. If we define quan-
tification over an empty universe to be vacuously true (as there does not exist an
assignment of the variable that does not satisfy the subformula), this example formula
is satisfied by a structure with an empty universe.

Empty logic is a variant of FOL that allows empty universes. The treatment of
empty universe in empty logic is defined by Quine (1954): universal quantification
over an empty set is considered vacuously true (since there exists no counterexample

@ Springer

Automated Software Engineering

variable assignment), and existential quantification over an empty set is considered
vacuously false (since there exists no satisfactory variable assignment).

This interpretation of quantification over empty sorts is in concordance with an
alternative definition of universal quantification: Given a universe U, quantification
Yuv: f can be unrolled into a conjunction of all formulas that result from replacing v
in f with an element of U. In case of an empty universe this list of quantified formulas
is empty, and the neutral element of conjunction is the boolean true.

In combination with many-sorted logic, empty logic allows a sort’s universe to be
empty. Although theorem provers we use during verification do not support empty
logic, in our translation of data models to FOL, we simulate the empty logic semantics
so that the resulting translation covers the data model behaviors where data classes
can be empty (i.e., without any instances). We discuss our formalization of the data
models and how we deal with many-sorted logic and empty universes in our translation
to FOL in the following sections.

4.3 Translation of abstract data stores to many-sorted logic

The translation presented in Sect. 3 is based on unsorted, empty logic. In this section
we modify the previously presented translation to many-sorted logic. For brevity, we
focus only on classes as associations are largely analogous.

Within our translation where universe elements correspond to entities, sorts nat-
urally serve the purpose similar to classes and associations. However, sorts imply
disjoint universes, which is only suitable for classes that do not employ inheritance.
Classes that employ inheritance cannot be directly mapped to sorts because a subclass’s
object set is a subset of a parent’s.

To work around this problem, we partition the set of all classes into inheritance
clusters. An inheritance cluster is a maximal set of classes such that, for any two
classes ¢ and ¢ in the cluster, there exists a list of classes ¢y, ¢, ... cr where each
consecutive pair of classes constitutes a child-parent or parent-child relationship. In
other words, in the class graph where vertices are classes and edges correspond to
inheritance, an inheritance cluster is a maximally connected component. Note that all
classes that do not employ inheritance are members of singleton clusters.

For each inheritance cluster we introduce a sort that is common to all classes in the
cluster. In case of an inheritance cluster with multiple classes we introduce predicates
and axioms in order to differentiate classes within the cluster. These predicates and
axioms are similar in purpose to the predicates used in the unsorted logic translation.
For each class ¢ in a non-singleton inheritance cluster we introduce unary predicates
¢ and ¢, of the cluster’s sort and introduce axioms that resemble the ones defined for
unsorted logic, the key distinction being these axioms refer to classes of that cluster
only.

Specifically, inheritance axioms are defined as follows: for each class ¢ that belongs
to an inheritance cluster of sort s and whose superclass set is superclass(c) =

{p1.p2...pr}:

Vso:c(o) = pi(o) Apa(o) A--- Api(o)

@ Springer

Automated Software Engineering

Sorts: Cluster, Tag, Comment.
Predicates: Account(Cluster), Contact(Cluster), Taggable(Cluster), XTaggable(Cluster),
Commentable(Cluster), XCommentable(Cluster).

V Cluster o: Account(o) — Taggable(o) A Commentable(o) (1)
V Cluster o: Contact(o) — Taggable(o) A Commentable(o) (2)
V Cluster o: XTaggable(o) <> Taggable(o) A —Account(o) A —~Contact(o) (3)
V Cluster o: XCommentable(o) <> Commentable(o) A —Account(o) A —Contact(o) (4)
V Cluster o: Account(o) — —Contact(o) A ~XTaggable(o) A ~XCommentable (o) (5)
V Cluster o: Contact(o) — —Account(o) A ~XTaggable(o) A ~XCommentable (o) (6)
V Cluster o: XTaggable(o) — —Account(o) A —~Contact(o) A —XCommentable (o) (7)
V Cluster o: XCommentable(o) — —Account(o) A —Contact(o) A =XTaggable(o) (8)

Fig.6 Axioms defining the class diagram in Fig. 4 in many-sorted logic

For the model presented in Fig. 4, inheritance axioms are formulas (1) and (2) in
Fig. 6.

An instance axiom is generated for each class c. Let {s; ... sr} be the set of ¢’s
subclasses and let s be the sort of ¢’s inheritance cluster:

Vso: ¢cy(0) <> c(o) A —51(0) A -+ A —si(0)

Given the model presented in Fig. 4, instance axioms are formulas (3) and (4) in Fig. 6.

Finally, membership axioms are generated for each non-singleton inheritance clus-
ter individually instead of for the entire set C. Given an inheritance cluster that consists
of classes {cy, ...cr} where k > 1 we generate an axiom for each class ¢; inside this
cluster:

Vso:¢i(0) = —c1(0) A+ A=¢i—1(0) A=Cix1(0) A -+ A=k (0)

Formulas (5)—(8) in Fig. 6 correspond to membership axioms for the model in Fig. 4.

The number of introduced predicates and axioms is highly dependent on the data
model in question. With no inheritance, no additional predicates and axioms are intro-
duced. The number and size of formulas introduced by each inheritance cluster are
linear in the number of classes in the cluster. However, most classes do not employ
inheritance in data models of real world applications (18 out of 25 most starred Ruby
on Rails applications do not employ inheritance at all, with an average of 23% classes
involving inheritance), making most classes part of singleton inheritance clusters. Fur-
thermore, if multiple non-singleton inheritance clusters exist in the data model, the
size of generated axioms is relatively small when compared to those generated by the
unsorted logic translation. Finally, in case of a model with only singleton clusters, no
additional axioms are required to define the type system.

4.3.1 Empty logic and empty structures

Our treatment of empty structures is dependent on whether the underlying theory is
unsorted or many-sorted. In fact, our translation to unsorted logic as presented in

@ Springer

Automated Software Engineering

Fig.7 Example action based on
FatFreeCRM (2013)

class CommentsController

def destroy
@comment = Comment.find(params[:id])
@comment .destroy
respond_with(@comment)

end

© 00O Utk WN -

end

Predicates: PreState, PostState, AtComment.

Va: AtComment(z) = Comment(x) (1)
Va: (Vy: AtComment(z) A AtComment(y) = x = y) (2)
Va: AtComment(x) = —PostState(x) 3)
Vaz: ~AtComment(z) = (PreState(x) < PostState(x)) (4)

Fig.8 Unsorted action translation example

Sect. 3 allows empty structures by default. This becomes clear when we change the
interpretation of all type predicates ¢ to imply that the universe element in question is
of the given type, but in addition, it exists semantically. Notice that our encoding does
not require that all universe elements are of a class type. For example, we use universe
elements to represent tuples, and it is not required for a universe element to represent
either an object or a tuple.

Whenever we define functions and predicates in unsorted logic we constrain argu-
ment values and the return value, if applicable, to be of expected types. As a corollary
of our expanded interpretation, function return values objects exist semantically if
and only if arguments exist semantically and are of corresponding types. Similarly,
predicates may accept a set of domain elements under the condition that they exist
semantically and are of corresponding types.

As for quantification, whenever quantifying over a class type, we introduce a con-
dition that the subformula is relevant only for domain elements that represent objects
of the given type. For example, in order to universally quantify over elements of class
c using the variable v and a subformula f we generate a formula Vv: c¢(v) — f.In
case of existential quantification we would instead generate Jv: c(v) A f.

For example, the action presented in Fig. 7 can be translated to FOL as defined
in Fig. 8. For brevity, we omit listing all predicates and axioms that define the type
system. In this translation, the At Comment predicate denotes values that are saved in
the ecomment variable. First we constrain type-specific predicates to refer to their actual
types (formula (1)). Note that as part of our interpretation of class type predicates, any
entity accepted by the At Comment is also accepted by Comment and therefore exists
semantically. Next, in formula (2) we constrain that there exists at most one element in
variable AtComment, as the £ind method in Ruby on Rails (line 4 in Fig. 4) returns
at most one object.

Formulas (3) and (4) define the delete statement. Formula (3) defines that the objects
in the ecomment variable no longer exist after the statement (regardless of their exis-
tence before). Formula (4) defines that all objects outside this variable existed before

@ Springer

Automated Software Engineering

Predicates: PreStateciuster (Cluster), PreStatecoment (Comment), PreStaterag(Tag),
PostStateciuster (Cluster), PostStatecoment (Comment), PostStaterag(Tag),
AtComment (Comment), Comment p(Comment), Tagp(Tag).

V Comment x: AtComment(z) = Comment p(x) (1)
V Comment z: (VCommenty: AtComment(x) A AtComment(y) = = =y) (2)
V Comment z: AtComment(z) = PreStatecomment (%) A “PostStatecomment () (3)
V Comment x: —AtComment(z) = (PreStateciuster () < PostStateciuster(Z)) (4)

Fig.9 Many-sorted action translation example

if and only if they exist after the statement has finished executing. This particular
translation allows for an empty universe. Such a structure would have no elements
accepted by predicates Comment and AtComment.

The problem with the empty universe becomes more apparent with the many-sorted
logic translation. If we were to define a Comment sort and use it alone to define the
set of all comments, then the universe of this sort would be non-empty, meaning that
at least one Comment would exist for every sort. To go around this problem, for each
such class ¢, we introduce a predicate ¢ that accepts a single argument of ¢’s sort. We
do not introduce any axioms. We use these predicates to define object sets of these
classes, implying that object sets are subsets of their corresponding universes.

Given the example action in Fig. 7, a many-sorted translation can be defined as in
Fig. 9. Note that, once again, we omit declaring all sorts, predicates and axioms from
Fig. 6 for brevity.

Notice that we introduce predicates Comment p and Tag p in addition to previously
defined sorts Comment and Tag. In Formula (1) we define that all elements accepted
by AtComment are also accepted by Comment p. This is necessary to express since,
without this axiom, there could be an element accepted by AtComment that is not
accepted by Comment p. Formula (2) defines that there exists at most one element
accepted by AtComment. Formulas (3) and (4) define how the delete statement transi-
tions between the pre-state and the post-state. These formulas are analogous to formu-
las (3) and (4) in the unsorted translation. Note that, however, these formulas are con-
strained to the Comment sort. All other sorts are handled implicitly (we do not differ-
entiate between their pre- and post-states). This demonstrates the benefit of introducing
sorts, as the theorem prover does not need to reason at all about other types by default.

Empty structures are handled by this translation. For example, a structure that
represents this case would have no entities of sort Comment be accepted by predi-
cates Comment p and At Comment. Without introducing a predicate Comment p this
would not be the case.

5 Experimental evaluation

In this section we present our experimental evaluation benchmark and our experimen-
tal results. We first describe two sets of experiments that comparatively explore the
advantages and disadvantages of different provers and logics. We then describe our
overall combined experimental results.

@ Springer

Automated Software Engineering

Table 1 Applications in our experimental evaluation benchmark

Application LoC (Ruby) Classes Actions Invariants
Avare 1137 6 26 3
Communautaire 753 5 28 6
Copycopter 3201 6 11 6
CoRM 7745 39 163 32
FatFreeCRM 20,178 32 120 8
Fulcrum 3066 5 40 6
Kandan 1535 5 25 6
Lobsters 5501 17 86 9
Obtvse2 828 2 13 1
Quant 4124 9 38 4
Redmine 84,770 74 264 21
S2L 1334 9 44 4
Sprintapp 3042 15 120 8
Squash 15,801 19 46 18
Tracks 17,562 11 117 9
Trado 10,083 33 66 10
WM-app 2425 18 95 4
Totals 183,085 305 1302 155

5.1 Experimental evaluation benchmark

We analyzed a total of 17 open-source Rails applications. We obtained these appli-
cations from various sources: we looked at the 25 most-starred open-source Rails
applications on GitHub according to the OpenSourceRails.com website (Open Source
Rails 2016), at a compilation of open source Rails applications categorized by domain
Rails (Karaca 2016), and at applications investigated by related work.

We consider that these applications are representative of real-world Rails applica-
tions for several reasons. They vary in size and complexity, their domain of purpose, the
number of developers who developed and maintained them, as well as the technologies
that they utilize.

Table 1 shows the list of applications included in our benchmark. Column LoC
(Ruby) shows the number of Ruby lines of code in these applications; this number
does not include JavaScript, HTML, dynamic HTML generation through irb files,
or configuration files. Columns Classes, Actions and Invariants show the number of
model classes, actions, and invariants, respectively. As invariants are not part of the
core Rails framework, we wrote them manually for each application after investigating
their source code.

@ Springer

Automated Software Engineering

5.2 Examples of detected bugs

Before presenting the experimental evaluation of our techniques, we discuss five exam-
ple bugs that we found using them (Bocic and Bultan 2015b).

FatFreeCRM is the customer relation management application that we described
in Sect. 3.1. One of the bugs that our techniques found in FatFreeCRM is caused
by Todo objects, normally associated with a specific User, not being deleted when
their User is deleted. We call these Todo objects orphaned. Orphaned Todo objects
are invalid because the application assumes that their owner exists, causing crashes
whenever an orphaned Todo’s owner is accessed. Because of its severity, this bug
was acknowledged and repaired by the FatFreeCRM developers immediately after we
submitted a bug report.

Another FatFreeCRM bug that we found relates to Permission objects.
Permission objects define access permissions for either a User or a Group to a
given Asset. Our tool found that it is possible to have a Permi ssion without any
associated User or Group objects. This bug can be replicated by deleting a Group
that has associated Permissions. Although the cause of this bug is similar to that
of the previously described one, its repercussions are very different. If there exists
an Asset object none of whose Permission objects have associated Users or
Groups, it is possible to expose these Assets to the public without any user receiv-
ing an error message, and without any User or Group owning and managing this
Asset.

Tracks is the task and to-do management application that we described in Sect. 2.1.
We now describe three bugs that we found in Tracks using the techniques described
in this paper.

The first bug is related to the possibility of orphaning an instance of a Dependent
class. In the case of this bug, the orphaned objects cannot be accessed by actions in any
way. However, it creates a memory leak that can affect performance by unnecessarily
populating database tables and indices.

Another bug arises when a User is deleted, all Projects of the User are deleted
as well, but Notes of deleted Projects remain orphaned. Similarly to the previous
bug, these orphaned Notes are not accessible in any way, but the orphaned objects
take up space in the database and inflate indices.

Finally, we also found a bug that arose when our techniques reported an inconclusive
result within the action used to create Dependent instances between two given
Todos. Semantically, there must not be dependency cycles between Todos; this is
a structural property of the application. Our method could not prove or disprove that
cycles between Todos cannot be created. Upon manual inspection we found that, while
the UI prevents this, HTTP requests can be made to create a cycle between Todos.
The repercussions of this bug are potentially enormous. Whenever the application
traverses the predecessor list of a Todo inside a dependency cycle it will get stuck
in an infinite loop, eventually crashing the thread and posting an error to the User.
No error is shown when the user creates this cycle, only later upon accessing it. This
creates a situation where repairing the state of the data may be impossible.

@ Springer

Automated Software Engineering

We reported the three bugs described above to the developers of Tracks, and they
have fixed them.

5.3 Comparative evaluation

We conducted two sets of experiments. Both of them involved the verification of
applications shown in Table 1. In total, we had 17,291 data integrity properties to be
verified using theorem proving. We refer to these properties as verification cases or
verification instances. We translated these 17,291 cases into different FOL variants in
order to evaluate the performance using different provers, heuristics and translations:
a total of 69,164 FOL theorems. For each of these cases, we executed the verification
with a time limit of 5 min. If the theorem prover did not deduce a result within 5 min
we treated the result as inconclusive. Given that most verification cases terminate in a
few seconds, we believe that this is a reasonable time limit.

5.3.1 FOL theorem provers

In these experiments, we used Spass (Weidenbach et al. 2009) as our unsorted theorem
prover. Spass is a FOL theorem prover based on superposition calculus. While Spass
supports multiple input formats, we translated the verification cases to Spass’s own
input format (Weidenbach). Spass tries to prove that a conjecture follows from a set
of axioms by negating the conjecture and attempting to deduce a contradiction. If this
contradiction is found, then the conjecture is proven to follow from the axioms.

Note that Spass supports soft sorts (Weidenbach et al. 2009) which are different
than the sorts in many-sorted logic we discussed earlier, and any other sort system we
encountered. Soft sorts do not imply mutually exclusive universes. In a soft sort system
any universe element may be of a sort, of no sort, or of multiple sorts. Semantically,
these sorts are indistinguishable from unary predicates. Furthermore, Spass by default
infers soft sorts even if none are explicitly specified. Spass provides a command option
that allows us to disable the soft sort system, in which case the theorem prover treats
soft sorts as unary predicates. The differences between these soft sorts and sorts as
defined in many-sorted logic have been observed before (Blanchette et al. 2012). In
the following discussion, whenever we refer to sorts we refer to sorts defined by many-
sorted logic. We will use “soft sorts” to refer to Spass’s version of sorts specifically.

We used Z3 (de Moura and Bjgrner 2008) to evaluate effectiveness of data model
verification using many-sorted logic. Z3 is a DPLL(T) (Dutertre and de Moura 2006)
based SMT solver that deals with free quantification and uninterpreted functions using
E-matching (de Moura and Bjrner 2007).

SMT solvers tend to support many different theories, such as arithmetic, arrays
or bit arrays. These theories are combined in propositional logic, which serves to tie
the underlying theories without interpreting them. Instead, predicates in underlying
theories are treated as propositional variables, and left to the underlying provers to be
solved. Partial conclusions from these underlying theories may be propagated to other
underlying provers in DPLL(T) in order to reach other conclusions. When used only

@ Springer

Automated Software Engineering

Table 2 Verification performance summary

Method Number of timeouts ~ Verif. time (s) Unit propagations Memory (Mb)
Avg Median Avg Median Avg Median Max

Spass (soft 2974 (17.20%) 10.05 9.22 n/a n/a 60.97 61.56 86.80
sorts on)

Spass (soft 2707 (15.66%) 12.11 9.43 n/a n/a 60.87 61.56 111.83
sorts off)

73 (many- 23 (0.13%) 0.06 0.04 380.04 23 4.02 3.87 285.64
sorted)

73 (unsorted) 524 (3.03%) 2.37 048 1125.32 84 140.19 46.49 15,490.26

Spass (Soft sorts on) ™ Spass (Soft sorts off) ® Z3 (Many-sorted) ® Z3 (Unsorted)
6000

4000

2000

S A IL‘ | | L | P
® o B > o
o A LA N . RS LR

& @ A® o 0 ob
S ! . T 0¥ @ @

Number of Instances

Verification Time (seconds)

Fig. 10 Verification time distribution

with free quantification, free sorts and uninterpreted functions (which is denoted as
the problem group UF), SMT solvers behave like many-sorted logic theorem provers.

SMT solvers try to find instances that satisfy the specification, so in order to prove
that the conjecture follows from axioms, we negate our conjecture and state it as an
additional axiom. The conjecture follows from the axioms if and only if this resulting
set of axioms is unsatisfiable.

5.3.2 Spass versus Z3 performance

Our first set of experiments compare the performance of Spass and Z3 for the purpose
of data model verification. These experiments were conducted solely to detect whether
73 can sometimes outperform Spass, either by reaching results that Spass could not,
or reaching them in less time. If so, our efforts in translating data models to SMT
would increase the performance and/or reduce the ratio of inconclusive results in
our data model verification efforts, and therefore increase the viability of data model
verification in the real world.

Our results are summarized in Table 2 and Fig. 10. The performance difference was
beyond our initial expectations. Note that the Z3 (Unsorted) entries are only relevant
for the experiment discussed in the next subsection and can be disregarded for now,
as is the case for Unit Propagations columns. With soft sorts enabled, Spass produced
2974 inconclusive results (17.20%). With soft sorts disabled, Spass produced 2707

@ Springer

Automated Software Engineering

Spass (Soft sorts on) Spass (Soft sorts off) ® Z3 (Unsorted)

5000
4000
3000
2000

1000 I
2 2

0_.
21

Number of Instances

2 2 2 Z 2 2"

Slowdown Factor vs Many-sorted Z3

24

Fi

g.11 Distribution of the slowdown factor compared to (many-sorted) Z3

inconclusive results (15.66%). Interestingly, there are 45 cases where enabling sorts
led Spass to a conclusive result where disabling sorts did not, yet there are 309 cases
where the opposite is true. Performance-wise, Spass performed similarly regardless
of the soft sorts setting. For both settings, excluding timeouts, verification took an
average of about 10s per case. The median case is just over 9s. Memory consumption
averaged at around 60 Mb, with the median case of 61.56 Mb. Memory consumption
peaked at just over 100 Mb memory when Spass produced a conclusive result. For
inconclusive results, memory consumption peaked at just over 1 Gb.

73 performed far better than Spass with either heuristic. Z3 produced far fewer
inconclusive results, only 23 (0.13%). In addition, in only 3 cases did Z3 fail to produce
a result when Spass succeeded. In the remaining 20 cases, neither prover could reach
a conclusive result in 300s. On average, Z3 took 0.06s per verification case, with
a median time of 0.04s. Spass outperformed Z3 in only 3 cases in terms of time
performance, while Z3 outperformed both Spass heuristics in 14,260 cases, counting
only cases where all provers produced a result. Furthermore, Z3’s average memory
consumption was just over 4 Mb, with a median under 4 Mb. Memory consumption
peaked at just under 300 Mb. However, Z3 tends to consume far more memory when it
is failing to produce a conclusive result. In one case, Z3 used 35 Gb of memory before
forcefully being terminated after 5 min.

Figure 10 shows the distribution of the verification cases over the verification time
ranges for each theorem prover. For example, the leftmost column (labeled .01) shows
that Z3 produced a verification result in less or equal than 0.01 s 2844 times. Spass
achieved a result within this time only 8§ times, which is not visible on the chart. The
next time range is labeled .02 and shows that Z3 produced a verification result in
more than 0.01 s but less or equal to 0.02s 2712 times, while Spass with soft sorts on
produced a result 131 times within the same timeframe.

We wanted to compare the performance of different provers on case-by-case basis.
For each verification case, we calculated the relative slowdown factor induced by
a prover compared with Z3. So, for example, if a verification case was verified 85
times slower using Spass with sorts enabled when compared with Z3, this counts as a
slowdown factor of 85. Figure 11 and Table 3 summarize this data.

@ Springer

Automated Software Engineering

Table 3 Observed slowdowns with respect to (many-sorted) Z3

Method Average Median Interdecile range
Spass (soft sorts on) 288.84 195.75 20.0-350.6
Spass (soft sorts off) 311.81 200.50 20.0-358.2
Unsorted Z3 82.38 12.50 4.9-48.2

Figure 11 contains the distribution of slowdown factors per prover. For example,
Spass (with and without soft sorts) is most frequently between 28 and 2° times slower
than Z3. Table 3 contains additional information about this slowdown. On average,
7.3 was 288.84 times faster than Spass with soft sorts on, and 311.81 times faster with
soft sorts off. In the median case, Z3 was 197.75 and 200.5 times faster, respectively.

In order to estimate a range of performance increase factor for the majority of
cases, we calculated interdecile ranges of these distributions. The interdecile range of
a sample is the range of values ignoring the lowest and highest 10% of the sample.
It serves to communicate a range of values, ignoring outliers. The interdecile ranges
of performance increases of Z3 over Spass with soft sorts on and off are 20.0-350.6
and 20.0-358.2, respectively. This means that, 80% of the time, Spass was one to two
orders of magnitude slower than Z3.

In summary, our translation to SMT and use of Z3 for verification increased the
performance of verification of our method by two orders of magnitude, and brought
the number of inconclusive results down from around 16 to 0.13%.

5.3.3 Many-sorted versus unsorted performance

We observed a drastic improvement in our method’s performance by utilizing Z3
instead of Spass. However, this difference was beyond our expectations, and we wanted
to investigate the reason behind the performance difference. This is hard to pinpoint
since Spass and Z3 are fundamentally different. They utilize a different approach to
theorem proving and have different optimizations and heuristics.

During manual investigation of Spass’s deduction logs we noticed that Spass was
taking a significant amount of time reasoning about types of quantified variables.
This is true regardless of whether soft sorts are enabled or not. This reasoning about
types would not be necessary or would be drastically reduced if the theorem prover
supported (non-soft) sorts. Even if the model contains a larger number of classes that
inherit from one another, causing us to introduce predicates and axioms that resemble
the ones generated for unsorted logic, this type reasoning is constrained to a smaller
scope of an inheritance cluster instead of the set of all classes.

We implemented an unsorted translation to SMT in order to observe the benefit of
using sorts. Because SMT-LIB requires all predicates and functions to be sorted, we
defined a single sort (called sort) that we used for all language elements. Since this
single sort represents everything, we effectively provide no explicit type information.
On top of this sort(less) system we enforce the type system using predicates and
axioms using the unsorted translation presented in Sect. 4.1. Thereby we specify the

@ Springer

Automated Software Engineering

type system in a way that requires type reasoning in a way that corresponds to the
amount of information we provide to Spass.

We ran the same suite of application models and action-invariant pairs using the
many-sorted and unsorted translations to SMT. Table 2 summarizes the performance
of many-sorted and unsorted Z3 verification. Unsorted Z3 did not produce a conclusive
result in 524 cases (3.03%). On average, many-sorted Z3 took 0.06 s per case whereas
unsorted Z3 took 2.37s. Median values are 0.04 for the many-sorted logic and 0.48
for the unsorted translation.

The Unit Propagations columns in Table 2 refer to the number of DPLL(T) unit
propagations done by Z3. The number of unit propagations required by the many-
sorted translation before reaching a conclusive result was significantly lower than
that of the unsorted translation. For the many-sorted translation, the mean number of
propagations was 380.04, and the median was 23. For the unsorted translation, the
mean number of propagations was 1125.32, and the median was 84. Therefore, Z3
needed to do more work to reach conclusive results when using unsorted logic.

Finally, the memory footprint of verification suffered as well. The many-sorted
translation used an average of 4.02 Mb of memory per verification case, with a median
of 3.87 Mb. The unsorted translation was drastically more demanding, with an average
of 140.19Mb and a median of 46.49 Mb. Memory consumption peaked at over 15 Gb
of memory for unsorted theorem proving.

Figure 10 contains data for the unsorted Z3 translation in addition to (many-sorted)
73 and Spass results. Similarly, Fig. 11 and Table 3 show the distribution of case-by-
case slowdown factors when comparing unsorted Z3 to many-sorted Z3. On average,
the many-sorted translation resulted in 80.43 times faster verification compared to the
unsorted translation when both methods produced conclusive results. The median case
is 11.8, and the interdecile range is 3.6-47.2.

These results imply a large performance difference between many-sorted and
unsorted logic verification in Z3. While this does not imply that implementing proper
many-sorted logic in Spass would increase Spass’s performance by a similar factor, it
does indicate that the reduction of reasoning induced by many-sorted over unsorted
logic plays a significant role in the performance gain we observed.

5.4 Overall data model verification results

In Sect. 5.3 we presented a comparative analysis of the results obtained using different
provers and logics. We now focus on the overall results of our approach.

To summarize what we explained in Sect. 5.3.1, our tool verifies each extracted ADS
specification using Spass (Weidenbach et al. 2009) and Z3 (de Moura and Bjgrner
2008) for theorem proving. First we translate action/invariant pairs to FOL. These
FOL formulas are sent both to the Z3 SMT solver and to the Spass theorem prover.
We express our FOL theorems in SMT using problem group UF, which includes free
quantification, free sorts and uninterpreted functions. Z3 checks satisfiability, so when
we construct a formula to be sent to Z3, if a satisfying model exists for the formula, then
there exists an execution of the action violates data integrity. If, on the other hand, Z3
reports that the formula is unsatisfiable, then we can conclude that the action correctly

@ Springer

Automated Software Engineering

enforces data integrity. Spass, on the other hand, checks whether a conjecture implies
from a set of axioms. This conjecture is a formula that asserts that data integrity is
preserved. If Spass reports that the conjecture follows from the axioms, then we can
conclude that no execution that violates data integrity exists. However, if Spass reports
that the conjecture does not always follow from the axioms, then we can conclude that
an execution that violates data integrity exists.

We generate formulas without restrictions on quantification nesting, without a
bound on the number of arguments for predicates, and without a bound on the domains.
The formulas we generate are not in a decidable fragment of FOL that we know of.
This implies that Z3 and Spass may not be able to produce a conclusive result for some
of the formulas we generate.

We used Z3 and Spass concurrently, waiting for either theorem prover to produce
a result, after which the other prover is terminated. In our experiments we observed
that Z3 is faster and is more likely to report conclusive results for the formulas we
generate.

Table 4 shows the verification results that we obtained. These experiments were run
on a computer with an Intel Core i7-6850K processor, with 128 GB RAM, running
64 bit Linux. We run a total of 12 processes concurrently to cover the experimental
set.

Column Verified Properties shows the number of action/invariant pairs and autho-
rization properties generated from the application. Each of these properties is translated
to FOL and verified independently. Column Average Predicates shows the average
number of predicates in FOL formulas that we generated. Corm and Redmine have
the highest number because their schemas are the most complicated, increasing the
number of predicates and axioms needed to specify them.

Column Max Memory (Mb) shows the maximum memory a theorem used to produce
a conclusive result. Column Average Time (sec) shows the average time it took before
a theorem prover (Z3 or Spass) took to deduce a conclusive result. Columns Verified,
Falsified, Timeouts and False Positives refer to the number of properties that were
verified, falsified, timed out, or that reported a bug that we found not to be an actual
bug.

From a total of 17,291 properties, we verified 17,133 to be correct. 93 properties
failed verification, which we manually traced to actual bugs in the application. 20
properties timed out for both theorem provers, and there were 45 false positives which
were manually confirmed not to be actual bugs. These false positives are due to the
fact that we are using an abstract data model that does not fully capture the precise
semantics of the application.

Finally, column Bugs lists the number of distinct bugs we identified based on falsi-
fied properties. In some cases, addressing one falsified property will fix other falsified
properties too, as the fix might affect more than one falsified property (one for each
action).

Our criterion for determining which falsified properties correspond to distinct bugs
is based on the fix required to address the falsified property. For example, if multiple
falsified properties can be fixed with a single controller-level change, we consider
all those falsified properties to correspond to the same bug. As another example, if
multiple falsified properties can be fixed at the level of the model class, we consider

@ Springer

Automated Software Engineering

69 Sy 0T €6 €EI'LI 600 98¢ TLTTE 162°L1 [eI0L,
0 0 0 0 88¢C 100 S SIl 88¢ dde-iym
v 4 0 14 v19 60°0 0S 092 029 ope1],
9 I € €1 9¢01 €20 98¢ 88 €501 SyoRI]
v 0 0 14 T8 €0°0 6 SLI 878 ysenbg
€l 0 0 91 16 700 6T S6 096 ddeyuridg
4 4 0 14 891 100 S €zl 9L1 s
L 9 S 1 (4299 S0°0 0T (432 966 auIupay
0 0 0 0 49! 10°0 4 8% 191 juend)
0 0 0 0 ¢l 000 I 01 ¢l 798A190
01 v 14 ¢l €SL LLO 69 10T YLL $1918q0]
T 0 0 ¢ L¥1 100 v ve 0S1 uepues|
4 0 0 L €€¢ 100 v o (044 Wy
T 0 0 4 w6 200 S 161 ¥¥6 Qa1 18]
L (44 8 8 8LIS LO0 o3 X972 91TS wio)
0 0 0 0 99 100 9% Ly 99 1o1dookdo)
0 0 0 91 000 ¢ S 891 neunuwo)
4 0 L 1L 100 S 8¢ 8L QreAy

PoyLIaA (s) awm 3ay (QIA) waw XeAl sajeorpaid Say sonzadoig uoneorddy

sjuowIodxa UOT)EOYLIAA JO §)[NSaI Jo Arewruing 3jqe]

pringer

As

Automated Software Engineering

all those falsified properties to refer to the same bug. We manually analyzed all the
falsified properties based on this criterion, and based on our analysis, we identified 69
bugs that correspond to 93 falsified properties.

6 Related work

This paper builds on and extends the results reported in Bocic and Bultan (2014), Bocic
and Bultan (2015c). Furthermore, it uses the model extraction technique presented in
Bocic and Bultan (2017) and loop verification technique presented in Bocic and Bultan
(2015a).

Verification of software using theorem provers has been explored before in projects
such as Boogie (Barnett et al. 2005), Dafny (Leino 2010), JayHorn (Kahsai et al. 2016),
and ESC Java (Flanagan et al. 2002). These projects focus on verification of languages
such as C, C# and Java, whereas we focus on data model verification. The underlying
type systems are largely different, as their work focuses on manipulating basic types
and pointers, whereas our model is based on manipulating sets and relations. There is
also more focused software verification work based on theorem proving, such as veri-
fication of data structure consistency (Kuncak et al. 2006; Zee et al. 2008), concurrent
data structures (Ball et al. 2014), or software-defined networks (Lesani et al. 2014).
Our approach focuses on MVC frameworks and leverages their inherent modularity to
extract an abstract data model that is different than any prior work that we are aware
of, and leads to scalable verification via theorem proving.

The Unified Modeling Language (UML) is a language commonly used for speci-
fication of object oriented models. The Object Constraint Language (OCL), which is
part of the UML standard, enhances UML with the ability to specify invariants and pre-
and post-conditions of methods (OMG; Warmer and Kleppe 1998). Research on veri-
fication of OCL specifications have ranged from simulation of object oriented models
(Richters and Gogolla 2000), to interactive verification with automated theorem prover
support (Ahrendt et al. 2005). However, UML combined with OCL does not provide
a way to specify method bodies. Hence, because of the semantic gap between the
UML/OCL specifications and actual implementations, the method bodies are unlikely
to be modeled precisely using UML/OCL, which means that the bugs we found are
likely to be missed by a verification approach based on UML/OCL specifications.

Alloy (Jackson 2002, 2006) is a formal language for specifying object oriented
data models and their properties. Alloy Analyzer is used to verify properties of Alloy
specifications using bounded verification. Since Alloy was designed specifically for
data model verification, it supports sorts and single inheritance. However, it does not
support multiple inheritance, which would have to be implemented. Furthermore, the
Alloy Analyzer uses SAT-based bounded verification techniques as opposed to our
FOL based unbounded verification technique.

DynAlloy is an extension of Alloy that supports dynamic behavior (Frias et al. 2005,
2007) by translating dynamic specifications onto Alloy. While the authors of DynAlloy
and related papers talk about actions, those actions do not correspond to actions in web
applications. Instead, they are more similar to individual statements in programming

@ Springer

Automated Software Engineering

languages (Galeotti and Frias 2006). Their work has focused on verification of data
structures, not behaviors in data models of web applications.

Near and Jackson (2012) developed Rubicon, a web application verification tool that
adds quantification to unit tests and translates tests into verifiable Alloy specifications
using symbolic execution. Rubicon uses the Alloy Analyzer for bounded verification
of generated specifications. Since their approach requires the developer to write tests,
it requires more effort than our automated method and may miss bugs.

iDaVer (Nijjar and Bultan 2011, 2012; Nijjar et al. 2013) represents a set of tech-
niques for verification of data model schemas. Among other features, it is able to
translate data model schemas into SMT for unbounded verification. Our models focus
on behaviors in data models, even they encompass the static data model schema. In
addition, our solution supports multiple inheritance. Their solution does not address
the problem of sorts and empty universes, making their verification unsound. Finally,
their work does not delve into the difference between logics and their implied encod-
ings.

There are previous results on unbounded verification of data-driven web applica-
tions based on high-level specifications (Deutsch et al. 2007, 2006; Deutsch and Vianu
2008). Deutsch et al. model actions as input/output rules instead of specifying them
procedurally, creating a semantic gap between the implementation and the specifica-
tion of the actions. Note that this line of work is done at the specification level and does
not address verification of actual code. Due to the semantic gap between their high-
level specification of input/output rules and the actual implementations of actions,
their work is not directly applicable (without combining it with either a code synthe-
sis or specification extraction approach) to verification of actual implementations of
web applications. Additionally, these verification techniques impose restrictions on
the use of quantification in their properties, whereas ours does not impose any such
restrictions.

As part of a research effort to use Spass as the theorem prover engine for interactive
theorem proving (Blanchette et al. 2012), Spass was modified to support many-sorted
logic. This was done in order to make deduction logs sort aware, which in turn makes
it possible to reconstruct readable proofs from these logs and show them to the user for
the purpose of interactive theorem proving. They observed an increase in the number
of theories Spass could solve. However, this modification was done for performance
reasons, making it reasonable to expect an even larger performance gain from sorts
in Spass. The source of this Spass modification is not available, and so we could not
include it as part of our experiments.

There are other theorem provers that can be used for data model verification. Vam-
pire (Kovécs and Voronkov 2013) is a high performance FOL theorem prover that
supports sorts. Snark (Stickel et al. 1994) is another FOL theorem prover, also sup-
porting sorts. We plan to, as part of our future work, implement automatic translation
of data models into TPTP syntax (Sutcliffe et al. 1994; TPTP Syntax 2015), the syn-
tax of the test suite that is used by the annual World Championship for Automated
Theorem Proving (Pelletier et al. 2002; Sutcliffe and Suttner 2006). This language
is readable by many theorem provers, including Spass and Z3. However, given that
many-sorted logic has only recently been added to TPTP (Sutcliffe et al. 2012), we
expect that the highest performing theorem provers are optimized for unsorted logic.

@ Springer

Automated Software Engineering

Unless the theorem prover integrates sorts within its resolution engine, we can expect
many-sorted logic to perform no better than unsorted logic. Support for many-sorted
logic is possible to implement syntactically (e.g., by treating sorts as predicates and
implicitly introducing axioms that define disjoint universes), however, this would not
result in the performance gains we observed.

In addition to unsorted and many-sorted logic, there exists order-sorted logic
(Goguen and Meseguer 1992). Order-sorted logic defines a partially ordered set of
sorts, and the universes that correspond to these sorts are such that universe of class
c1 is a subset of the universe of class ¢ if ¢ < ¢2. While order-sorted logic is highly
similar to our data-models involving multiple inheritance, we are not aware of theorem
provers that support it in first order logic with free quantification.

7 Conclusion

Cloud-based software applications store their data on remote servers and use data
models to capture the interface between the back-end data store and the rest of the
application. In this paper, we presented techniques for verification of actions that
update the back-end data store in such applications. We achieve this by first automat-
ically extracting a formal data model from a given application and then translating
verification queries about the data model to FOL formulae and then using a FOL
theorem prover.

We investigated the differences between first order logic (FOL) variants used by
theorem provers and the implications of these differences on data model verification.
We identified two major differences: (1) the treatment of the type system, and (2) the
possibility of empty structures satisfying a given FOL theorem. We formally defined
these differences and devised encodings that reconcile them for the purposes of data
model verification.

After implementing translations based on these encodings we observed that Z3, an
SMT solver, outperformed Spass, a FOL theorem prover, on almost all fronts. Using a
many-sorted logic translation that targets Z3, we were able to increase the verification
performance by two orders of magnitude, while decreasing the number of inconclusive
results by one order of magnitude. With further experiments we showed that encoding
our type system using sorts is the cause of this improvement.

References

Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hahnle, R., Menzel, W., Mostowski, W., Roth, A.,
Schlager, S., Schmitt, P.H.: The KeY tool. Softw. Syst. Model. 4(1), 32-54 (2005)

Ball, T., Bjgrner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira, M., Valadarsky, A.:
Vericon: towards verifying controller programs in software-defined networks. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’ 14),
pp. 282-293. ACM, New York (2014)

Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier
for object-oriented programs. In: Proceedings of the 4th International Symposium on Formal Methods
for Components and Objects (FMCO 2005), pp. 364-387 (2005)

@ Springer

Automated Software Engineering

Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with isabelle—superposition with
hard sorts and configurable simplification. In: Interactive Theorem Proving—Third International Con-
ference (ITP 2012), Princeton, NJ, USA, August 13-15, 2012. Proceedings, pp. 345-360 (2012)

Bocic, I.: Data model verification via theorem proving. PhD thesis, University of California, Santa Barbara,
Sept. 2016

Bocic, 1., Bultan, T.: Inductive verification of data model invariants for web applications. In: 36th Interna-
tional Conference on Software Engineering (ICSE 2014), Hyderabad, India—May 3 1-June 07, 2014,
pp. 620-631 (2014)

Bocic, L., Bultan, T.: Coexecutability for efficient verification of data model updates. In: 37th International
Conference on Software Engineering (ICSE 2015) (2015a)

Bocic, 1., Bultan, T.: Data model bugs. In: NASA Formal Methods—7th International Symposium, NFM
2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, pp. 393-399 (2015b)

Bocic, 1., Bultan, T.: Efficient data model verification with many-sorted logic. In: 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering ASE 2015, Lincoln, Nebraska, USA, 9-13
Nov. (2015¢)

Bocic, 1., Bultan, T.: Symbolic model extraction for web application verification. In: Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, pp. 724-734 (2017)

Claessen, K., Lilliestrom, A., Smallbone, N.: Sort it out with monotonicity—translating between many-
sorted and unsorted first-order logic. In: Automated Deduction—CADE-23-23rd International
Conference on Automated Deduction, Wroclaw, Poland, July 31-August 5, 2011. Proceedings, pp.
207-221 (2011)

de Moura, L., Bjrner, N.: Efficient e-matching for SMT solvers. In: Automated Deduction—CADE-21, 21st
International Conference on Automated Deduction, Bremen, Germany, July 17-20,2007, Proceedings,
volume 4603 of Lecture Notes in Computer Science, pp. 183—198. Springer, Berlin (2007)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings, pp. 337-340 (2008)

Deutsch, A., Vianu, V.: WAVE: automatic verification of data-driven web services. IEEE Data Eng. Bull.
31(3), 35-39 (2008)

Deutsch, A., Sui, L., Vianu, V., Zhou, D.: A system for specification and verification of interactive, data-
driven web applications. In: SIGMOD Conference, pp. 772-774 (2006)

Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web applications. J. Comput.
Syst. Sci. 73(3), 442-474 (2007)

Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Computer Aided Verification,
18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, pp.
81-94 (2006)

Karaca, E.: A collection/list of awesome projects, sites made with Rails, Jan. 2016. https://github.com/
ekremkaraca/awesome-rails

Fat Free CRM - Ruby on Rails-based open source CRM platform, Sept. 2013. http://www.fatfreecrm.com

Fielding, R.T.: Architectural styles and the design of network-based software architectures. PhD thesis,
University of California, Irvine (2000)

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking
for java. In: Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pp. 234-245 (2002)

Frias, M.F,, Galeotti, J.P., Pombo, C.L., Aguirre, N.: Dynalloy: upgrading alloy with actions. In: 27th
International Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri,
USA, pp. 442-451 (2005)

Frias, M.E,, Pombo, C.L., Galeotti, J.P., Aguirre, N.: Efficient analysis of DynAlloy specifications. ACM
Trans. Softw. Eng. Methodol. 17(1), 4:1-4:34 (2007)

Galeotti, J.P., Frias, M.F.: Dynalloy as a formal method for the analysis of java programs. In: Software
Engineering Techniques: Design for Quality, SET 2006, October 17-20, 2006, Warsaw, Poland, pp.
249-260 (2006)

Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, over-
loading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217-273 (1992)

@ Springer

https://github.com/ekremkaraca/awesome-rails
https://github.com/ekremkaraca/awesome-rails
http://www.fatfreecrm.com

Automated Software Engineering

Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. (TOSEM
2002) 11(2), 256-290 (2002)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge (2006)

Kahsai, T., Rimmer, P., Sanchez, H., Schif, M.: Jayhorn: a framework for verifying java programs. In:
Computer Aided Verification—28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I, pp. 352-358 (2016)

Kovics, L., Voronkov, A.: First-order theorem proving and vampire. In: Proceedings of the 25th International
Conference on Computer Aided Verification (CAV 2013), Saint Petersburg, Russia, July 13-19, 2013,
pp. 1-35 (2013)

Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user interface paradigm in
Smalltalk-80. J. Object Oriented Program. 1(3), 26—49 (1988)

Kuncak, V., Lam, P., Zee, K., Rinard, M.C.: Modular pluggable analyses for data structure consistency.
IEEE Trans. Softw. Eng. 32(12), 988-1005 (2006)

Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Proceedings of the 16th
International Conference on Logic Programming, Artificial Intelligence, and Reasoning (LPAR), pp.
348-370 (2010)

Lesani, M., Millstein, T.D., Palsberg, J.: Automatic atomicity verification for clients of concurrent data
structures. In: Computer Aided Verification—26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pp.
550-567 (2014)

Near, J.P., Jackson, D.: Rubicon: bounded verification of web applications. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on Foundations of Software Engineering (FSE 2012), pp.
60:1-60:11 (2012)

Nijjar, J., Bultan, T.: Bounded verification of Ruby on Rails data models. In: Proceedings of the 20th
International Symposium on Software Testing and Analysis (ISSTA 2011), pp. 67-77 (2011)

Nijjar, J., Bultan, T.: Unbounded data model verification using SMT solvers. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2012), pp. 210-219
(2012)

Nijjar, J., Boci¢, L., Bultan, T.: An integrated data model verifier with property templates. In: Proceedings
of the ICSE Workshop on Formal Methods in Software Engineering (FormaliSE 2013), pp. 23-35.
IEEE (2013)

Object Management Group: UML Specification. http://www.omg.org

Open Source Rails, Jan. 2016. http://www.opensourcerails.com

Pelletier, F., Sutcliffe, G., Suttner, C.: The development of CASC. AI Commun. 15(2-3), 79-90 (2002)

Quine, W.V.: Quantification and the empty domain. J. Symb. Log. 19(3), 177-179 (1954)

Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In: Proceedings of the 3rd Inter-
national Conference on Unified Modeling Language (UML 2000), LNCS 1939 (2000)

Ruby on Rails, Feb. 2013. http://rubyonrails.org

SimilarTech: Website technology detection and tracking, Oct. 2018. https://similartech.com/

SMT-LIB, 2016. http://www.smtlib.org/

Spring Framework | SpringSource.org, Feb. 2013. http://www.springsource.org

Stickel, M.E., Waldinger, R.J., Lowry, M.R., Pressburger, T., Underwood, I.: Deductive composition of
astronomical software from subroutine libraries. In: Automated Deduction—CADE-12, 12th Interna-
tional Conference on Automated Deduction, Nancy, France, June 26-July 1, 1994, Proceedings, pp.
341-355 (1994)

Sutcliffe, G., Suttner, C.: The state of CASC. AT Commun. 19(1), 35-48 (2006)

Sutcliffe, G., Suttner, C.B., Yemenis, T.: The TPTP problem library. In: Automated Deduction—CADE-
12, 12th International Conference on Automated Deduction, Nancy, France, June 26-July 1, 1994,
Proceedings, pp. 252-266 (1994)

Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic.
In: Logic for Programming, Artificial Intelligence, and Reasoning - 18th International Conference,
LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings, pp. 406—419 (2012)

The Web framework for perfectionists with deadlines | Django, Feb. 2013. http://www.djangoproject.com

TPTP Syntax, Jan. 2015. http://www.cs.miami.edu/~tptp/ TPTP/SyntaxBNF.html

Tracks, Sept. 2013. http://getontracks.org

Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML. Addison-Wesley,
Boston (1998)

@ Springer

http://www.omg.org
http://www.opensourcerails.com
http://rubyonrails.org
https://similartech.com/
http://www.smtlib.org/
http://www.springsource.org
http://www.djangoproject.com
http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
http://getontracks.org

Automated Software Engineering

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In:
Proceedings of the 22nd International Conference on Automated Deduction (CADE 2009), LNCS
5663, pp. 140-145 (2009)

Weidenbach, C.: SPASS input syntax version 1.5, 2016. http://www.spass-prover.org/download/binaries/
spass-input-syntax15.pdf

Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In: Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08),
pp- 349-361. ACM, New York, NY (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Ivan Boci¢! - Tevfik Bultan? . Nicolas Rosner?

Ivan Bocié
bocic.ivan@ gmail.com

Tevfik Bultan
bultan @cs.ucsb.edu

1 Google, Inc., Mountain View, CA, USA
University of California, Santa Barbara, USA

@ Springer

http://www.spass-prover.org/download/binaries/spass-input-syntax15.pdf
http://www.spass-prover.org/download/binaries/spass-input-syntax15.pdf
http://orcid.org/0000-0002-0742-8101

	Inductive verification of data model invariants in web applications using first-order logic
	Abstract
	1 Introduction
	2 Abstract data stores
	2.1 Data models in Ruby on Rails
	2.2 A formal data model: abstract data stores
	2.2.1 Classes and objects
	2.2.2 Associations and tuples
	2.2.3 Actions
	2.2.4 Extraction of abstract data store models from web applications
	2.2.5 Invariants
	2.2.6 Behaviors

	2.3 Data store correctness

	3 Verification via first order logic
	3.1 Translation of abstract data stores to first order logic
	3.1.1 Schema translation
	3.1.2 Action translation
	3.1.3 Object set translation
	3.1.4 Boolean expression translation
	3.1.5 Translation of state migrations
	3.1.6 Invariant translation

	4 Verification via many-sorted logic
	4.1 Many-sorted logic
	4.2 Empty logic
	4.3 Translation of abstract data stores to many-sorted logic
	4.3.1 Empty logic and empty structures

	5 Experimental evaluation
	5.1 Experimental evaluation benchmark
	5.2 Examples of detected bugs
	5.3 Comparative evaluation
	5.3.1 FOL theorem provers
	5.3.2 Spass versus Z3 performance
	5.3.3 Many-sorted versus unsorted performance

	5.4 Overall data model verification results

	6 Related work
	7 Conclusion
	References

