
Distributed SAT-Based Computation of
Relational Tight Bounds

Juan P. Galeotti, Nicolás Rosner, Carlos G. Lopez Pombo, and
Marcelo F. Frias

Department of Computer Science, FCEyN, Universidad de Buenos Aires
e-mail: {jgaleotti, nrosner, clpombo, mfrias}@dc.uba.ar

Abstract. SAT based analysis of code consists on providing an appro-
priate translation of code to a SAT problem, and using a SAT solver to
analyze properties of the source program. This process can be improved
if bounds for relations modeling class fields are introduced ala KodKod.
In this article we present a distributed algorithm for automated inference
of tight field bounds. From a technical point of view, the algorithm relies
on a novel symmetry breaking predicate for program heaps. We present
experimental results that support our claims.

1 Introduction

SAT-solving has been widely used as a tool for automated analysis of code. The
general approach consists on translating source code and some assertion to be
analyzed to a SAT-problem (a propositional formula), and then use an off-the-
shelf SAT solver to look for a satisfying valuation of the propositional variables.
If such valuation is found, it can be transformed into a valid execution of the
source code that falsifies the given assertion. While directly translating code
to a propositional formula is a valid way to proceed, our approach consists on
translating the source code to an Alloy model [4] using the DynJAlloy translator
[3]. Alloy is a modeling language that includes several constructs ubiquitous in
object-orientation. An interesting feature of the current version of Alloy (Alloy
4) is that it translates Alloy models to KodKod [8] models. KodKod, the re-
lational engine of Alloy includes, as a distinguishing feature, the possibility of
introducing bounds for relations occurring in a model. This allows to remove
some propositional variables in the translation of an Alloy mode to a proposi-
tional formula, which simplifies the SAT-solving procedure.

The contribution of this article is a fully automated technique for computing
tight bounds in an Alloy model obtained as the result of the translation of a
piece of JML-annotated code. In order to compute the bounds we introduce a
novel symmetry breaking predicate that is tailored for the description of heaps
in Alloy. Since for many data structures the heap must have certain topological
properties (think for instance of singly linked lists or binary search trees), it is
possible, thanks to the reduction of symmetries, to determine that certain edges
between nodes cannot occur in the data structure (and can therefore be removed
from the bound).

It is well known that less propositional variables in the propositional formula
mean a more analyzable SAT-problem. Therefore, computing tight relational
bounds will result in easier to perform code analyses.

The article is organized as follows. In Section 2 we present a brief introduc-
tion to Alloy, KodKod and DynJAlloy. In Section 3 we introduce the symmetry
breaking predicate and prove some desirable properties. In Section 4 we present
our technique for automated computation of tight relational bounds. In Section
6 we present experimental results showing that the technique presented in Sec-
tion 4 is effective. In Section 7 we compare with the most related work to ours.
Finally, in Section 8 we preset our conclusions and some lines for further work.

2 On Alloy and KodKod and DynJAlloy

We will present Alloy by means of an example. In Fig. 1 we present an Alloy
model for singly linked lists. An Alloy model consists of definitions of data types
(called signatures in Alloy notation), which, like classes in object-oriented pro-
gramming languages, may include fields. Signatures denote sets of atoms. A field
(for instance head in Fig. 1) denotes a relation from atoms of the class the field
belongs to, to elements in the codomain. For example, head is a functional rela-
tion from List atoms to LNode atoms or the null atom. The modifier one before
a signature definition means that the domain corresponding to the signature will
have a single atom. In order to abbreviate and modularize notation it is possi-
ble to define function and predicates. Functions compute relational expressions,
while predicates evaluate a relational formula. Expressions are built from rela-
tions. Signatures are unary relations, and fields head or value are binary relations
(head ⊆ List × (LNode + null)). It is possible to have relations of higher arity
because fields may have relations in their codomain. Alloy operations include
all natural operations on relations. For instance union (+), intersection (&&),
difference (−), composition (.), reflexive-transitive closure (∗) and transitive clo-
sure (ˆ). Besides these operations, whose use is shown in Fig. 1, there is also
the (unary) transposition operation, denoted ∼. Besides, there are also constant
relations such as iden (which stands for the binary identity relation) and univ
(the set of all atoms). For a detailed description of Alloy, see [4].

Alloy’s relational kernel is called KodKod. While in Alloy 3 models were
directly translated to propositional formulas, in Alloy 4 models are translated to
KodKod models. These models are then translated to SAT problems. A major
characteristic of KodKod is the possibility of defining lower and upper bounds
for relations (relations such as the fields value or next). If a pair is included
in the lower bound, it must be part of any possible semantic interpretation for
that relation. Therefore, the propositional variable representing that pair can be
substituted by the truth value true. Similarly, if a pair is not included in the
upper bound, we know that none of the interpretations of the corresponding
relation may have that pair. Therefore, the propositional variable representing
that pair can be substituted by the truth value false.

sig List {

head : LNode + null

}

one sig null {}

sig LNode {

value : Int,

next : LNode + null

}

fun reachableLNodes[l : List] : set LNode {

l.head.*next - null

}

pred noRepetitions[l : List]{

all n1, n2 : reachableLNodes[l] |

n1.value = n2.value implies n1 = n2

}

fact acyclic { all l : List, n : reachableLNodes[l] | n !in n.^next }

assert noRepetitionsTrue { all l : List | noRepetitions[l] }

check noRepetitionsTrue for 3 but exactly 1 List, 10 LNode, 5 int

Fig. 1. An Alloy model for singly linked lists.

DynJAlloy [2] is our tool for SAT-based Java code analysis. It translates
JML-annotated Java code [6] into DynAlloy, and the resulting DynAlloy model
into an Alloy 4 model. The Alloy Analyzer [4] is then used in order to look for
counterexamples of the JML annotation.

3 A New Predicate for Symmetry Breaking in Heaps

In this section we present a novel predicate for symmetry breaking in heaps. Let
us consider the model for singly linked lists presented in Fig. 1. The following
predicate

pred acyclic[l : List] {
all n : LNode | n in l.head.*next implies n !in n.^next }

describes acyclic lists. Running predicate acyclic using the command

run acyclic for exactly 4 Object,
exactly 1 List,
exactly 3 LNode,
exactly 3 Data

yields the model from Fig. 2. Another run may return the model from Fig. 3.

l
HHj

- - •Data1 Data0 Data2

LNode0 LNode1 LNode2

Fig. 2. An acyclic list.

l
HHj

- - •Data1 Data0 Data2

LNode2 LNode0 LNode1

Fig. 3. Another acyclic list, equivalent to the one in Fig. 2.

Notice that the list in Fig. 3 is equivalent to the one in Fig. 2. Both serve as
“runs” for predicate “acyclic”. At the same time, cyclic lists are not models. And
there are many cyclic lists which are essentially the same up-to permutations of
signature LNode. Pruning the state space by removing permutations on signature
LNode prevents the SAT-solver from trying structures that cannot lead to a valid
model. For singly linked lists, a predicate forcing nodes to be used in the order
LNode0→ LNode1→ LNode2→ . . . removes symmetries. Unfortunately, it will
not work, for instance, with cyclic structures.

In the remaining part of this section we will present a symmetry breaking
predicate that lists nodes in a rooted heap in breadth-first order. Moreover, the
predicate will work even in the presence of cyclic structures. In order to simplify
the presentation, we will do it through an example. Let us consider the Alloy
model for binary trees with information in the nodes presented in Fig. 4.

sig Tree {

root : (TNode + null)

}

sig TNode {

left : (TNode + null),

value : Data,

right : (TNode + null)

}

Fig. 4. A model for binary trees.

Notice that field root provides a handle on the reachable part of the heap.
This is what we will call a rooted heap. Definition 2 formalizes this notion.

Definition 1. Given a class C, a field f : C → D is called recursive if D∩C 6=
∅. For instance, fields left and right are recursive in class TNode.

Definition 2. Given a class C with recursive fields fi : C → Di (1 ≤ i ≤ k), a
rooted C-heap is a graph 〈N, E,L, R〉, where:

1. N ⊆ C ∪
⋃

1≤i≤k Di.
2. Edges from E are labeled with symbols from the set L = {f1, . . . , fk}.
3. R ∈ N is such that N ⊆ R. ∗ (f1 + · · ·+ fk).

In order to avoid symmetries we will instrument Alloy models resulting from
the translation of code by doing the following:

1. If the scope for signature C is k, we include singletons C0, . . . , Ck−1:

one sig TNode0,...,TNodek-1 extends TNode {}

2. Each recursive field r : C + D from C is split into two fields fr : lone (C
+ D) and br : lone (C + D’) (D′ differs from D in that the null value is
not allowed in D′). In our example the resulting fields are:
– fleft : lone (TNode + null),
– bleft : lone TNode,
– fright : lone (TNode + null), and
– bright : lone TNode.

3. Facts forcing the SAT-solver to choose nodes in a specific order.

The new fields obtained (that substitute the original ones) are meant to split
the behavior of the original fields between “forward” arcs and “backwards” arcs.
Forward arcs map nodes to greater nodes (TNodei → TNodej , with i < j),
while backwards arcs go to nodes that are smaller or equal in the ordering (and
cannot go to null). Notice that forward arcs cannot lead to a cycle.

Since the original fields are all total functions, we need to add new facts
stating that for each recursive field ri, the domains of fri and bri form a partition.
Therefore, fri + bri is a well defined total function. For our example we have:

fact {
no ((fleft.univ) & (bleft.univ)) and
no ((fright.univ) & (bright.univ)) and
TNode = fleft.univ + bleft.univ and
TNode = fright.univ + bright.univ

}

The facts inducing the ordering use auxiliary functions defined as follows.
Function next establishes a linear order between nodes (TNode1 < TNode2
< · · · < TNodek). Function min returns the least node in an input set according
to the next ordering (notice that if the input set is empty, so is the output).
Function prevs returns the nodes smaller than the input parameter.

– fun next[] : TNode -> lone TNode {
TNode0->TNode1 + TNode1->TNode2 + ... + TNodek-2->TNodek-1

}
– fun min [ns: set TNode] : lone TNode { ns - ns.^(next[]) }
– fun prevs[n : TNode] : set TNode { n.^(~next[]) }

The following facts induce the appropriate ordering on the way nodes are
chosen by the SAT-solver.

fact rootIsTheFirstNode { Tree.root in TNode0+null }

fact parentSmallerThanChildren {
all n : Tree.root.*(fleft + fright) - null |

min[fleft.n] in prevs[n] and min[fright.n] in prevs[n]
}

fact howToOrderTwoNodesWithDifferentParents {
all disj n1, n2 : Tree.root.*(fleft + fright) - null |

(some (fleft.n1 + fright.n1) and
some (fleft.n2 + fright.n2) and
min[fleft.n1 + fright.n1] in prevs[min[fleft.n2 + fright.n2]]

) implies n1 in prevs[n2]
}

fact howToOrderTwoNodesWithSameParent {
all disj n1, n2 : Tree.root.*(fleft + fright) - null |
let a = min[fleft.n1 + fright.n1] |
let b = min[fleft.n2 + fright.n2] |
(some (fleft.n1 + fright.n1) and a = b and a.fleft = n1 and a.fright = n2)

implies n2 = n1.next[]
}

fact initialBounds {
fleft in TNode0 -> (TNode1 + ... + TNodek + null) +

TNode1 -> (TNode2 + ... + TNodek + null) +
...
TNodek -> null

and
fright in TNode0 -> (TNode1 + ... + TNodek + null) +

TNode1 -> (TNode2 + ... + TNodek + null) +
...
TNodek -> null

and
bleft in TNode0 -> TNode0 +

TNode1 -> (TNode1 + TNode0) +
...

TNodek -> (TNodek + ... + TNode0)
and
bright in TNode0 -> TNode0 +

TNode1 -> (TNode1 + TNode0) +
...
TNodek -> (TNodek + ... + TNode0)

}

fact prefixComplete {
all n : Tree.root.*(fleft + fright) - null |

prevs[n] in Tree.root.*(fleft + fright)
}

Since a node may have multiple parents through fields f1, . . . , fk, in the
breadth-first listing of the nodes we will consider the smallest (according to the
ordering on nodes) parent according to all the fields f1, . . . , fk as the one that
determines the order of the node. We will call that parent the (f1 + · · · + fk)-
min-parent. The axioms are explained in English as follows

parentSmallerThanChildren: Every node is larger than its f -min-parent for
each recursive forward field f .

howToOrderTwoNodesWithDifferentParents: If n1 and n2 are distinct
nodes and the (f1 + · · ·+fk)-min-parent of n1 is less than the (f1 + · · ·+fk)-
min-parent of n2, then n1 is smaller that n2.

howToOrderTwoNodesWithSameParent: In case nodes n1 and n2 have
the same (f1 + · · ·+ fk)-min-parent, then the symmetry is broken by listing
first the one pointed to by field f1, second the one pointed to by field f2,
and so on.

initialBounds: Forward fields point to greater nodes or to null. Backwards
fields point nodes to smaller or equal nodes.

prefixComplete: If a node is in the graph, all smaller nodes are also in the
graph.

Finally, the instrumentation modifies the facts, functions, predicates and as-
serts of the original model replacing each occurrence of a recursive field ri by
the expression fri + bri. For instance, if a fact acyclic is used to state that trees
are acyclic structures:

fact acyclic { all n : Tree.root.*(left + right) - null |
n !in n.^(left + right) }

in the instrumented model it is replaced by the fact

fact acyclic { all n :
Tree.root.*(fleft + bleft + fright + bright) - null |

n !in n.^(fleft + bleft + fright + bright) }

Given a rooted C-heap G = 〈N, E,L, R〉, it is possible to define a new rooted
C-heap G′ whose edges are labeled with forward and backwards recursive fields.
Moreover, G′ satisfies:

1. G is a model if and only if G′ is a model.
2. The nodes in G′ are chosen in breadth-first order.

Theorem 1. Given a rooted C-heap G = 〈N, E,L, R〉, there is a unique rooted
C-heap G′ = 〈N ′, E′, L′, R′〉 such that:

1. R′ is node n0.
2. There is a bijective renumbering function “ren” such that G and G′ are

isomorphic up-to renumbering (i.e., n1 → n2 ∈ E iff ren(n1) → ren(n2) ∈
E′).

3. L′ = {fl : l ∈ L} ∪ {bl : l ∈ L}.
4. Nodes in G′ are listed in breadth-first order.
5. If an edge e = n1 → n2 is labeled l in G, then:

(a) if ren(n1) < ren(n2), then ren(n1)→ ren(n2) ∈ E′ is labeled fl.
(b) if ren(n1) ≥ ren(n2), then ren(n1)→ ren(n2) ∈ E′ is labeled bl.

Proof. We begin by defining function ren. We define ren(R) = N0. We then list
the nodes of G in breadth-first order starting from R, and define ren(n) = Nj

if n is the j-th node in the breadth-first traversal of G. Notice that even though
a node may have multiple parents, it has a unique (f1 + · · · + fk)-min-parent;
therefore, the traversal ordering is well-defined. Since each n ∈ N is visited
exactly once, ren is a bijection. We define L′ = {fl : l ∈ L} ∪ {bl : l ∈ L}. Edge
labels are assigned as follows. If an edge e = n1 → n2 is labeled l in G, then:

1. if ren(n1) < ren(n2), then ren(n1)→ ren(n2) ∈ E′ is labeled fl.
2. if ren(n1) ≥ ren(n2), then ren(n1)→ ren(n2) ∈ E′ is labeled bl.

For each node n ∈ N ′ and non-recursive field f , we define f(n) = f(ren−1(n)).
Uniqueness is guaranteed by construction.

Let M be an Alloy specification, and let M ′ be its instrumented counterpart.
The following theorem shows that the instrumented specification has models
that indeed satisfy the conditions of Thm. 1.

Theorem 2. Let Gr = 〈N, E,L, R〉 be a model for M ′. Then,

1. R = N0,
2. Nodes in Gr are listed in breadth-first order from node N0,
3. Given an edge e = n1 → n2 ∈ E,

(a) if n1 < n2, then e is labeled with a forward label.
(b) if n1 ≥ n2, then e is labeled with a backwards label.

Proof. Fact “rootIsTheFirstNode” guarantees condition 1. We will now show
that nodes are indeed listed in breadth-first order. The proof is by induction on
the position in the breadth-first traversal of Gr. In position 0 we have node N0,
as required. Let us assume that for all positions 0 ≤ j ≤ k, Nj is in position j.
Let us consider n, the node in position k+1. Since nodes N0, . . . , Nk are already
listed, n ≥ Nk+1. Let us suppose that n > Nk+1. Since n is reachable from
the root, by fact “prefixComplete” Nk+1 is also reachable from the root. Notice

that by fact “parentSmallerThanChildren”, pn, the (f1 + · · · + fi)-min-parent
of n, must be between N0 and Nk. Let pNk+1 be the (f1 + · · · + fi)-min-parent
of Nk+1. If pn 6= pNk+1 , by fact “howToOrderTwoNodesWithDifferentParents”,
since n is listed before Nk+1, must be pn < pNk+1 . But then, n < Nk+1. This is
a contradiction. In case n and Nk+1 share the (f1 + · · ·+ fi)-min-parent, since n
is listed before Nk+1, must be n < Nk+1, a contradiction. Therefore, condition
2 is established.

Condition 3 is directly implied by fact “initialBounds”.

The following theorem allows us to show that the instrumentation indeed
reduces the state space.

Theorem 3. Let G = 〈N, E,L, R〉 be a rooted C-heap. Let G′ be constructed
according to Thm. 1. Then, G is a model for the Alloy specification M if and
only if G′ is a model for the specification M ′.

Proof. Let ren be the renumbering function on signature C from Thm. 1. We
extend ren as the identity over the remaining signatures. The proof proceeds by
showing that the extension ren ′ is an isomorphism between G and G′.

4 Using Symmetry Breaking to Compute Tight Bounds

In this section we present an important application of our symmetry breaking
predicate. Let us consider our source Alloy model for binary trees. For some SAT-
solvers (in particular for MiniSat [1]) the Alloy Analyzer allows, given an Alloy
specification, to iterate through all the models for the specification. The Alloy
Analyzer includes (when translating a specification to a propositional formula)
its own symmetry breaking predicate. In Table 1 we compare the number of
models generated from the source model, and from the instrumented model.
The comparison is made varying over the number of nodes in the tree.

#TNode 3 4 5 6 7 8 9

Source 7 24 99 458 2320 12636 73713

Instrumented 5 14 42 133 431 1430 4862

% (I/S) 0.71 0.58 0.42 0.29 0.18 0.11 0.06

Table 1. Comparison of the number of generated models.

Notice that the percentage of instrumented models goes to 0 when the num-
ber of nodes goes to infinity. It is interesting to notice that despite the symmetry
breaking predicate included in the Alloy Analyzer, isomorphic models are gener-
ated. For instance, for 3 nodes, the (isomorphic) models in Fig. 5 were generated
(missing edges go to null).

0

@
@R 1

@
@R

2

1

@
@R 0

@
@R

2

Fig. 5. Two isomorphic binary trees

If we look at the models generated from the instrumented Tree model, no
tree can have an edge TNode1 → TNode0. This would contradict fact “initial-
Bounds”. More important, there are other edges that cannot appear due to the
ordering of nodes. Is it possible to have an edge TNode0 → TNode2 labeled
fleft?. The answer is “no”. The ordering forces TNode0 to be related either to
null or to TNode1.

While in the original Alloy model functions left and right are each one en-
coded using n× (n + 1) propositional variables, due to the ordering of nodes we
can remove arcs from relations. In order to determine wether an arc TNodei →
TNodej can be part of field f , we perform the following analysis:

pred NiToNjInF[] {
Ni+Nj in Tree.root.*(fleft + fright) and Ni->Nj in F

}
run NiToNjInF for exactly 1 Tree, exactly n TNode, exactly n Data

If the “run” command produces no instance, then the edge is unfeasible. Fact
“initialBounds” makes the Alloy bounds to be recognized by KodKod. Therefore,
as soon as an edge is determined to be unfeasible, it can be removed in fact
“initialBounds”. This reduced bounds, when received by KodKod, produce a
SAT problem that involves a lesser number of propositional variables. In Section
5 we will discuss how to use ParAlloy in order to compute tight bounds in
parallel.

5 Computing Tight Bounds with ParAlloy

Notice that computing the bounds requires checking, for each potential edge,
its feasibility. For our Tree model, we must perform (for scope n for signature
TNode), n×(n+1) analyses. Since all these analyses are independent, a naive al-
gorithm consists on performing all the checks in parallel. Unfortunately, the time
required for each one of these analyses is highly irregular. Some of the checks
take milliseconds, while others may take hours. We now present a brief intro-
duction to ParAlloy and describe the technique we currently use for computing
bounds. In Section 5.1 we discuss optimizations to the technique.

ParAlloy is a tool that receives as input an Alloy model to be analyzed. Re-
call that Alloy translates a relational model to a propositional formula, which is

in turn fed to a SAT-solver. ParAlloy translates a relational model to a Boolean
Expression Diagram (BED). BEDs are related to ROBDDs. But, unlike ROB-
DDs, parts of the structure may be kept as propositional formulas. Fig. 6 shows
the structure of a BED in which some variables are as variables in an ROBDD
(dashed arrows denote the false alternative, while full arrows signal the true al-
ternative). BEDs provide operations for lifting a variable from the formula part,
to the BDD part. In doing so, formulas are automatically split. If n variables
are lifted, at most 2n formulas hang from the BED (although experiments show
that this number decreases significantly if appropriate variables are chosen to
be lifted). This provides a controlled way of parallelizing the analysis of a single
Alloy model. Given a certain infrastructure, just enough variables are lifted to
guarantee that all the infrastructure will be used for SAT-solving each of the
hanging formulas. If some of the analyses take longer than a threshold previ-
ously set, new variables are automatically lifted and simpler SAT problems are
generated.

F1
F3

w

v

w

x yz

F2

0 1

Fig. 6. The shape of a BED after some variables v, w, x, y and z were lifted. F1, F2

and F3 are the hanging formulas.

For the sake of computing relational bounds, we modified ParAlloy as follows.
ParAlloy receives now several Alloy models to be analyzed, one for each edge
whose feasibility must be checked. Besides the threshold T1 that is used by Par-
Alloy in order to determine when new variables must be lifted, a new threshold
T2 is added. The new threshold (which satisfies T2 < T1) is used as a timeout
for the analysis. All the models are analyzed in parallel according to ParAlloy

policies. Those checks that exceed T2 are stopped and left for a later stage. Each
analysis that finishes as unsatisfiable tells us that an edge may be removed from
the bound. Satisfiable checks tell that the edge cannot be removed. After all the
models have been analyzed, we are left with a partition of the models in three
sets: unsatisfiable checks, satisfied checks, and stopped checks for which we do
not have a conclusive answer. We then refine the bounds (using the information
from the unsatisfiable models) for the models whose checks were stopped. The
formerly stopped models are sent again for analysis. This leads to an iterative
process that after a few iterations converges to a set (possibly empty) of models
that cannot be checked (even including the previous information) within the
threshold T2. For these models we use the full power of ParAlloy, including lift-
ing variables repeatedly and splitting the models into simpler ones. In Section 6
we will present experiments showing the usefulness of this approach.

5.1 Optimized Algorithms for Bound Computation

In this section we present optimizations to the analysis process that have not
yet been implemented. Since these optimizations present obvious advantages,
they will be implemented in the near future. Notice first that the burden of the
analysis procedure lies on the number of edges that must be checked. So far
we are checking each edge independently. But, whenever a check for an edge
TNodei → TNodej is satisfied, most probably more edges appear in the config-
uration returned by the check. These edges need not be analyzed, since they can
obviously be satisfied by the model just found. Another optimization consists
on, whenever the iterative process finishes and we are left with a nonempty set
of edges that could not be analyzed, generate two models from each pending
model. In one model we assume the edge cannot occur, and in the other we
assume that the edge indeed occurs. Notice that in the propositional formula
obtained from the models, the variable that models the edge is replaced by a
constant value. Clearly the number of models grows exponentially, but we hope
(and this is confirmed by the current experiments) that the number of checks
that are pending at this stage will be small.

6 Experimental Results

In this section we present two nontrivial case-studies and present information
related to their analysis. We will compute the bounds for a simpler model for
doubly linked lists, and afterwards we will present a more complicated case-study
based on AVL trees.

6.1 Computing Tight Bounds for Doubly Linked Lists

The (instrumented) invariant for Doubly Linked Lists is presented in Fig. 7. The
experimental results are computed relative to a scope of 15 LNodes.

fact DLLInv {

let next = fnext+bnext |

let prev = fprev+bprev |

// no cycles

all n: thiz.head.*next-null | n !in n.next.*next and

// symmetry

all n: thiz.head.*next-null |

(n.next=null implies thiz.tail=n) and

(n.next!=null implies n.next.prev=n) and

all n: thiz.tail.*prev-null |

(n.prev=null implies thiz.head=n) and

(n.prev!=null implies n.prev.next=n)

}

Fig. 7. Invariant for Doubly Liked Lists

In order to determine which edges remain, there is to perform 480 checks.
For this case study, only 58 edges are considered feasible (12% of the original
edges). The feasible edges of relation fnext are of the form

DLLNodei → (DLLNodei+1 + null) for 0 ≤ i ≤ 14.

For relation fprev the feasible edges are

DLLNodei → (DLLNodei−1 + null) for 0 ≤ i ≤ 14.

The backwards fields do not have admissible edges.
In Table ?? we present analysis times. Each line in the table refers to one

phase in the iterative process. For each phase we report the time consumed
for finishing that phase, the number of analyzed edges in that phase, and the
number of timed-out edges that move to the next phase. The threshold time in
this experiment was set to 40 seconds. The experiments were run on a cluster
with Double Intel Dual Core Xeon processors running at 2.67 GHz. Each node
has 2 Gb of RAM. Nodes are connected through a low latency Infiniband switch.
For this experiment there were 48 available cores.

phase # # edges # solved # timeouts time

1 450 199 251 320”

2 251 155 96 203”

3 96 96 0 13”

Total 797 450 347 8’ 56”

Table 2. Analysis times for doubly linked lists

6.2 Computing Tight Bounds for AVL Trees

The (instrumented) invariant for AVL trees is presented in Fig. 8. The experi-
mental results are computed relative to a scope of 15 AVLNodes.

fact AVLInv {

let left = fleft + bleft |

let right = fright + bright |

all x: thiz.root.*(left+right) - null |

// no cycles

x !in x.^(left + right) and

// ordered

(all y: x.left.*(left+right) - null | lt[y.key ,x.key]) and

(all y: x.right.*(left+right) - null | lt[x.key, y.key]) and

// definition h

(x.left=null and x.right=null) implies x.h=0 and

(x.left=null and x.right != null) implies (x.h=1 and x.right.h=0) and

(x.left != null and x.right=null) implies (x.h=1 and x.left.h=0) and

(x.left != null and x.right != null) implies

(x.h = add[larger[x.left.h, x.right.h],1] and

(lte[-1,sub[x.left.h,x.right.h]] and lte[sub[x.left.h,x.right.h],1]))

}

Fig. 8. Invariant for AVL trees

In order to determine which edges remain, there is to perform 480 checks.
For this case sutdy, only 129 edges are considered feasible (27% of the original
edges). The backwards fields do not have any admissible edges.

In Table 3 we present analysis times. Each line in the table refers to one
phase in the iterative process. For each phase we report the time consumed
for finishing that phase, the number of analyzed edges in that phase, and the
number of timed-out edges that move to the next phase. The threshold time in
this experiment was set to 40 seconds. The experiments were run on a cluster
with Double Intel Dual Core Xeon processors running at 2.67 GHz. Each node
has 2 Gb of RAM. Nodes are connected through a low latency Infiniband switch.
For this experiment there were 48 available cores.

7 Related Work

There are two approaches to reduction of symmetries that are close to ours. The
first approach is the one used in Alloy 3, and discussed in [7]. Reduction of sym-
metries takes place at the relation level; that is, symmetries are reduced for each
relation in isolation, and symmetries are broken only for relations having certain
predefined properties (acyclic, permutation, functional, etc...). These properties

phase # # edges # solved # timeouts time

1 450 200 250 300”

2 250 72 178 210”

3 178 51 127 160”

4 127 35 92 165”

5 92 36 56 107”

6 56 24 32 61”

7 32 22 10 48”

8 10 8 2 45”

9 2 2 0 18”

Total 1197 450 747 18’ 34”

Table 3. Analysis times for AVL trees

have to be declared at modeling time for the translator to recognize them. In
building the symmetry breaking predicate it does not use the constraints derived
from the property under analysis. A similar situation occurs with the symmetry
breaking predicate included in KodKod [8]. Notice that this is the expected sce-
nario when designing symmetry breaking predicates for arbitrary models. Our
models have restrictions and this allows us to use the particular symmetry break-
ing predicates presented in this article. Moreover, the methodology we devised
for using the symmetry breaking predicate allows us to use the properties of
the model under analysis. This allows us to prune the upper bounds of relations
significantly better than the previous predicates. This is shown for instance in
Table 1. An even closer approach to ours is presented in [5], where the idea of
using predicates that linearize the data structure is presented. The proposal does
not present a generic predicate to this end, but rather recommends to look for
new predicates depending on the structure. It does not generate bounds as we
do.

8 Conclusions and Further Work

SAT-based automated program verification has clear limitations. Reasonable
pieces of code yield very hard SAT problems. It is therefore essential to find
optimizations that will improve the analysis. We present one such optimization.
Finding tight relational bounds leads to a SAT problem that involves less vari-
ables. For the case studies we presented, the number of removed propositional
variables is very significative. This has a huge impact in SAT-solving.

In Section 5.1 we propose some optimizations that will be implemented before
the workshop takes place. Also, at the workshop we will report on the impact
this technique has on automated verification of object-oriented programs.

References

1. N. Een and N. Sorensson. An extensible SAT solver. In International Conference
on Theory and Applications of Satisfiability Testing, pages 502–518, May 2003.

2. M. Frias, J.P. Galeotti, C. López Pombo and N. Aguirre, Efficient Analysis of
DynAlloy Specifications, to appear in ACM Transactions on Software Engineering
and Methodology (TOSEM), ACM Press.

3. Galeotti J.P., and Frias M.F., DynAlloy as a Formal Method for the Analysis of
Java Programs, in Proceedings of IFIP Working Conference on Software Engineer-
ing Techniques (SET06), Warsaw, 2006, Springer.

4. Jackson, D. Software Abstractions. 2006, The MIT Press.
5. Khurshid S., Marinov D., Shlyakter I., Jackson D., A Case for Efficient Solution

Enumeration, in Proceedings of the 6th. International Conference on Theory and
Applications of Satisfiability Testing (SAT 2003).

6. Leavens, G., Baker, A., and Ruby, C. JML: a Notation for Detailed Design. In Haim
Kilov, Bernhard Rumpe, and Ian Simmonds (editors), Behavioral Specifications for
Businesses and Systems, chapter 12, 1999, pages 175–188.

7. Shlyakhter I., Generating Effective Symmetry Breaking Predicates for Search Prob-
lems, in Discrete Applied Mathematics, VOl. 155, No. 12, pp. 1539–1548, 2007.

8. E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS ’07). Braga, Portugal,
March 2007.

