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Abstract—Side-channel vulnerabilities in software are caused
by an observable imbalance in resource usage across different
program paths. We demonstrate that just-in-time (JIT) compila-
tion, which is crucial to the runtime performance of modern Java
virtual machines (JVMs), can introduce timing side channels in
cases where the input distribution to the program is non-uniform.
These timing channels enable an attacker to infer potentially
sensitive information about predicates on the program input. We
define three attack models under which such side channels are
harnessable and five vulnerability templates to detect suscepti-
ble code fragments and predicates. We also propose profiling
algorithms to generate the representative statistical information
necessary for the attacker to perform accurate inference. We first
systematically evaluate the strength of JIT-based side channels
on three widely used classes from the Java standard library:
java.lang.Math, java.lang.String, and java.math.BiglInteger. We
then present examples of JIT-based side channels in the Apache
Shiro security framework and the GraphHopper route planning
server, and show that are observable over the public Internet.

I. INTRODUCTION

Cyber-attacks stealing confidential information are becom-
ing increasingly frequent and devastating as modern software
systems store and manipulate greater amounts of sensitive
data. Leaking information about private user data, such as
the financial and medical records of individuals, trade secrets
of companies and military secrets of states can have drastic
consequences. Although programs that have access to secret
information are expected to protect it, many software systems
contain vulnerabilities that leak information.

By observing non-functional side effects of software sys-
tems such as execution time or memory usage, side-channel
attacks can capture secret information. Though side-channel
vulnerabilities have been known for decades [1], they are
still often neglected by software developers. They are com-
monly thought of as impractical despite a growing number
of demonstrations of realistic side-channel attacks that result
in critical security vulnerabilities [2]-[4]. For instance, ex-
ploitable timing-channel information flows were discovered
for Google’s Keyczar Library [5], the Xbox 360 [6], imple-
mentations of RSA encryption [2], the open authorization pro-
tocol OAuth [7], and most modern processors [8], [9]. These
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public bool check(String guess) {
for(int i=0; i<guess.len; i++) {
if (guess|i] != password][i])

public bool check(String guess) {
bool flag=true, fakeFlag=true;
for(int i=0; i<guess.len; i++) {

return false; if (guess|i] != password][i])
1 flag = false;
return true; else
} fakeFlag = false;
return flag;

}
Fig. 1: A naive password-checking method and a “fixed” one.

vulnerabilities highlight the need for preemptive discovery of
side-channel vulnerabilities and their removal from software.

We present a new class of side-channel vulnerabilities
that are due to the optimizations introduced by just-in-time
(JIT) compilation. While the main underlying concepts are
applicable to any JIT-compiled language, in this paper we
focus on Java. JIT compilation is present in all modern Java
Virtual Machine (JVM) implementations, and is crucial to the
performance of Java programs. We show that if the input
distribution to a program is non-uniform, the JVM will be
primed to favor certain paths, resulting in optimizations that
reduce their execution time. This can introduce timing side
channels even in programs traditionally considered “balanced”.

II. AN OVERVIEW OF JIT-BASED SIDE CHANNELS

Consider the naive password-checking algorithm shown in
Figure 1 (left). The password and a guess of matching length
are compared character-wise. As soon as there is a mismatch,
the algorithm returns false. This early return results in a
timing channel enabling an observer to correlate the method’s
execution time with the number of characters matched.

A security-conscious developer might decide that, since the
method handles sensitive data, it is worth sacrificing the early
return in exchange for a more secure function. They might
propose a method like the one shown in Figure 1 (right). In this
new version of check, the same amount of work is performed
regardless of the length of the matching prefix.

The side-channel vulnerability appears to have been fixed in
the new version of the code. However, the source code written
by the developer is not the only factor impacting the execution
time of program paths. The runtime environment itself can
introduce timing side channels into deceptively secure-looking
code fragments when it attempts to optimize paths that it
deems ‘“hot.” For example, the JVM tracks how often each
branch of a conditional branch instruction is taken, and uses
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Fig. 2: Execution time of the “fixed” check method.
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Fig. 3: Attack models

this information when JIT-compiling a method to generate
native code favoring the more frequent branch. If an attacker
is guessing potential passwords randomly, the probability of
missing is much higher than that of matching something. As a
result, the then branch heats up, and JIT introduces a timing
side channel into the supposedly “fixed” version. Figure 2a
depicts the clear separability of the method’s execution time
distributions when the first character misses the first character
of the password (optimized branch) versus when it correctly
matches it (non-optimized branch). Figure 2b shows how the
side channel disappears when JIT is disabled.

The runtime behavior of the program introduces a side-
channel vulnerability, enabling the attacker to learn whether
the first character of the guess matches that of the password.
This predicate is related to the branch condition in Figure 1
(right). We present a guide describing how JIT-based side
channels can enable an attacker to learn sensitive predicates
on input and how to identify potentially vulnerable code. We
assume that the attacker is interested in learning the predicate
¢ of any input from a subset of all possible input to program
p. This subset is defined by any assumptions the attacker can
make about the input (i.e. that the guess is the same length as
the password as in the above example).

A. Attack Models

We now introduce attack models that establish the different
classes of attacks that we explore and their basic assumptions.

Key to inducing and leveraging JIT-based timing channels is
understanding that they arise from a bias in the distribution of
inputs to the program. We refer to the act of interacting with
the JVM in a biased way as priming the JVM. Priming means
repeatedly running a program with inputs that exercise certain
paths, thus heating up the state of optimization in a way that
favors those paths. The JVM can be primed in various ways,
and how we assume it is primed greatly influences what kinds
of JIT-based side channels may be used. Another key aspect
is time measurement—what exactly do we assume that the
attacker is able to time? Lastly, each attack model establishes
the purpose of the attack—what does the attacker learn if
she succeeds? Figure 3 summarizes the attack models whose
details we present in the next sections.

B. Induced-Priming Model

Our first attack model is the induced-priming model (IPM),
in which we assume that the attacker is able to prime the JVM
into a vulnerable state by repeatedly triggering the program p
on an input value (or values) of her choice. The attacker is
then able to time one subsequent call to p made by another
user with a secret value s. The attacker’s goal is to determine
whether s does or does not satisfy some predicate of interest ¢.
This model is only realistic in scenarios where we can assume
that the attacker has dominant control of the JVM.

The goal of priming under IPM is to force the JVM into a
state where the execution time of the call to p on s is correlated
with the value of the predicate ¢ on s. This is done by priming
with input values that induce heavier optimization along paths
where ¢ is satisfied (or, symmetrically, not satisfied). This
results in a “booby-trapped” JVM state in which the timing
of a subsequent invocation of p(s) may leak information
about the value of ¢(s). Imagine, for example, that there is
an ongoing online charity in which participants can donate
to one of two political parties. The attacker knows when a
particular person will donate and wants to know which party
they choose. The attacker can prime the JVM with a flood
of small donations to one party, and then time the victim’s
donation. The execution time of the victim’s donation will
depend on whether or not the victim’s party choice triggers
the more optimized program path.

C. Natural-Priming Model

Our second model does not depend on the attacker’s ability
to control the priming of the JVM. In the natural-priming
model (NPM), the JVM is primed through a natural bias in the
input distribution about predicate ¢. The attacker can measure
the timing of her own call to p (her “probe”) on an input of her
choice. We study two particular cases of this model differing
in what the attacker tries to learn from her probe.

1) Typical Behavior: In the first version (NPM-LTB), the
attacker aims to learn the typical behavior of the program.
From the timing of her own probe p(7), the attacker learns if
her input 7 agrees or disagrees with the typical input to p with
respect to the predicate ¢. Imagine, for example, that there is
an online referendum taking place. The attacker wants to know



what decision is favored by the majority. If enough users have
voted disproportionately in favor of one decision, the JVM
could have been primed to favor that choice. The timing of
the attacker’s probe p(w) could thus leak information about
whether her vote 7 represents the typical case.

2) Atypical Behavior: In the second version (NPM-LAB),
the attacker aims to learn whether another user’s input to the
program is atypical with respect to a well-established bias.
Again, the attacker uses the timing of her subsequent probe
p(7) to learn this information. As we will see, depending on
which optimizations are involved, a small number of calls or
even a single call to p with an atypical value can change the
state of the JVM. This may significantly affect the timing
of future calls to p. For example, imagine a website where
patients of a clinic can obtain their medical test results for a
life-threatening infectious disease. Most of the time, the results
come out negative. The attacker can find out when someone
else tests positive by repeatedly polling her own negative result
and watching out for changes in timing.

D. Roadmap and Contributions

While details differ, inferring ¢ under each attack model
consists of the same three stages:

1) Priming: p is executed repeatedly with an input distribu-
tion biased with respect to predicate ¢.

2) Timing: The attacker times the execution of p for a
particular input value.

3) Inference: Based on the observed execution time, the
attacker infers the value of the predicate ¢ on unknown
input.

Imbalances introduced through biased behavior at runtime
are related to various JIT optimizations. These optimizations
interact in complex and subtle ways. Combined with noisy
timing, this makes the art of leveraging JIT-based timing side
channels a specialized craft. We identify several vulnerability
templates, each based on exploitable JIT optimizations. These
templates help us identify which predicates related to paths in
p may be amenable to JIT-based vulnerabilities, and guide us
in finding the right priming parameters or requirements.

While many JIT-based imbalances are small, and thus hard
to separate from the noise of a real-world system, we point
out that most large JIT-based imbalances consist of many small
ones combined. Studying the effects of fine-grained JIT-based
vulnerabilities is the initial step toward understanding their
contribution to coarse-grained, sizable phenomena.

We first apply our approach to the fine-grained analysis of
methods from a few widely used classes in the Java standard
library. Since the timing distribution of different execution
paths can overlap, we may not always reach full certainty
about the value of the predicate, even if we induce a strong side
channel. We use the conditional entropy between the timing
information and the value of the predicate to quantify how
much information is leaked about the predicate. We discuss the
results of our most interesting fine-grained experiments, both
successful and unsuccessful, and present the lessons learned.

We then experiment with the Apache Shiro [10] security
framework and the GraphHopper [11] route planning server
to explore how JIT-based side channels can be induced in
large well-known applications. Our results show that they can
indeed be introduced, and that they can be sizeable enough in
magnitude to be observable over the public internet.

Our contributions in this paper are:

« Definition and demonstration of a new class of timing side
channels due to JIT optimizations during runtime.

o Three attack models for learning predicates about secret
inputs using JIT-based side channels.

o Five vulnerability templates to identify code fragments
susceptible to JIT-based timing vulnerabilities.

o A profiling method to gather the statistical information
needed to infer predicate values in noisy environments.

« Experimental evaluation of applying our approach to widely
used methods from the Java standard library.

« Examples and experimental analysis of multiple JIT-based
side channels in two well-known Java frameworks.

The paper is organized as follows: In Sect. III we review JIT
optimizations and introduce related vulnerability templates. In
Sect. IV we present algorithms to effectively use timing in-
formation arising from JIT-based side channels. In Sect. V we
describe our experiments on methods from the Java standard
library. In Sect. VI we discuss the results of said experiments.
In Sect. VII we demonstrate JIT-based side channels in well-
known frameworks. In Sect. VIII we discuss related work. In
Sect. IX we present our conclusions and ideas for future work.

III. VULNERABILITY TEMPLATES FOR JIT-BASED
SIDE-CHANNELS

In this section we review essential characteristics of the Java
Virtual Machine and its Just-In-Time compilation mechanism,
and identify vulnerability templates for timing side channels
based on Just-In-Time compilation techniques.

A. Java and the HotSpot Java Virtual Machine

The Java platform includes the Java Language Specification
and the Java Virtual Machine Specification [12]. The official
reference implementation of the JVM Specification is the
HotSpot virtual machine [13] that we use in this work. HotSpot
was started by Sun [14] and is now maintained by Oracle.
Since 2006, its codebase is open source through the OpenJDK
project [15]. There are only a few subtle differences between
the Oracle and OpenJDK development kits, and no significant
differences between Oracle HotSpot and OpenJDK HotSpot.

The javac tool compiles Java source code to Java bytecode,
which is then executed by the Java virtual machine. Executing
bytecode requires translating it to native machine code for the
platform at hand (e.g., Intel x86). The easiest way to achieve
this is interpretation, i.e., translating bytecode instructions to
native instructions as they are encountered, which is simple
but results in slow performance. When a method is costly and
executed often, it may make economic sense for the virtual
machine to take a moment and permanently compile it into
optimized, reusable machine code that will run faster.
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Fig. 4: Vulnerability templates for each attack model.

B. Just-In-Time (JIT) compilation

Based on the general observation that most of the execution
time is typically spent executing a small fraction of the code,
the HotSpot JVM uses runtime profiling to detect “hot spots”
that are worth feeding into an optimizing compiler. In fact,
modern versions of the JVM attempt to dynamically adjust
the optimization level (and thus the compilation overhead) of
each method in order to maximize the return on investment.

The client-mode JIT compiler (C1) is a fast bytecode-to-
native compiler that only performs a small set of lightweight
optimizations. It thus minimizes compilation overhead at the
expense of runtime efficiency. It was originally designed for
the “client” flavor of the JVM, which favors fast launch times.

The server-mode JIT compiler (C2) is a slow, but highly
optimizing bytecode-to-native compiler that performs a wide
spectrum of costly optimizations. Originally designed for the
“server” JVM [16], it generates the fastest native code at the
expense of higher compilation time and memory overheads.

Starting with Java 7, the JVM supports tiered compilation
mode, which combines the best of both modes. In the server
mode, the VM uses the bytecode interpreter to collect profiling
information about each method. In tiered mode, the VM uses
the C1 compiler to generate compiled versions of methods that
collect profiling information about themselves. Based on that
information, it may decide to recompile a method with the C2
compiler. C1-compiled code is much slower than C2-compiled
code, but substantially faster than interpreted code; thus, the
tiered VM runs the program faster during the profiling phase.
The tiered scheme offers quick startup times like client mode,
and can also achieve better peak performance than server-only
mode because the faster profiling phase allows a longer period
of profiling, which may result in better optimization [17]. In
tiered mode, the C1 and C2 compilers are used as the basis
of a scheme that includes five tiers (levels of compilation)
ranging from purely interpreted (LO) to fully optimized (L4).

C. Vulnerability Templates and JIT Compilation Techniques

We show vulnerability templates centered on different JIT
compilation techniques. This facilitates identification of code
susceptible to a JIT-based side channel and systematic under-
standing of parameters needed to harness the side channel.

Each vulnerability template has:

e A particular kind of optimization that it exploits.

« A code pattern, e.g., that some method m must be called
when ¢ is satisfied and not when ¢ is not satisfied.

o A recipe that guides the search of suitable parameters
for priming: how biased the input distribution must be,
how many calls to p are needed, etc. This describes the
priming the attacker must be able to induce under |IPM
or the natural priming necessary under NPM.

« The attack model(s) for which the template is harnessable.

As we introduce the templates, we provide the necessary
background about the JIT compilation techniques they exploit.

1) Branch prediction (TBRAN): JIT branch prediction uses
counters to track how often each branch of a conditional is
taken. When a method is compiled, this information is used
to generate native code where the most taken branch appears
first, avoiding a jump instruction. Savings are amplified in the
case of loops. This optimization is independent of CPU-level
branch prediction, but can achieve positive synergy with it.

Code Pattern: TBRAN can be applied for any predicate
directly related to a conditional statement. The imbalance that
it introduces is small, so that it may only be observable in
specific cases. This template works best in situations where the
conditional is enclosed in a loop (which amplifies the small
difference), or in small programs, where the small difference
achieved is significant w.r.t. the cost of the rest of the program.

Recipe: The amount of priming must be sufficiently
high that JIT deems generating the more efficient native code
worthwhile. Also, priming must be sufficiently biased so that
a high-enough fraction of branching decisions favor one side.

Attack Models: 1PM, NPM-LTB, NPM-LAB.

2) Optimistic compilation (TOPTI): When a method is C2-
compiled, if the counters show that one side of a conditional is
very rare, the branch is not compiled at all—its code is simply
removed. Similarly, if counters show that the same one or
two receivers of a potentially polymorphic call site are almost
always called, these common dispatches are inlined and the
code handling the dispatch of rarely-seen cases is removed.
The resulting optimized code assumes that the rarely-taken
branch or dispatch will never execute, and the missing code
is replaced by a trap that is triggered if the rare case should
occur. This is known as an uncommon trap. If and when the
rare case occurs, the uncommon trap handler must de-optimize
the method and replace the optimistically compiled version
with a more conservative, slower version.

Code Pattern: TOPTI can be applied for any predicate
related to a branching conditional where the choice on that
conditional means that some instructions are never executed or
that some receiver of a polymorphic dispatch is never called.

Recipe: Priming must ensure that (i) the method contain-
ing the conditional is called enough times to be C2-compiled,
and that (ii) by the time that happens, the conditional or
dispatch of interest has behaved almost always uniformly.

Attack Models: 1PM, NPM-LTB, NPM-LAB.

3) Method compilation (TMETH): HotSpot compilation
makes runtime decisions using runtime profiling metrics. One
key factor is the method invocation counter that tracks how of-
ten each method is invoked. When a threshold is reached [18],



the method may be scheduled for compilation, or for recom-
pilation at a higher tier. Another factor that may promote
(re)compilation of a method are back-edge counters that track
how often backward jumps (typically due to loops) are taken.
TMETH exploits the speed difference between interpreted and
compiled (or between Cl-compiled and C2-compiled) code.

Code Pattern: An input satisfying ¢ results in a call to
some method m that is not called when ¢ is unsatisfied.

Recipe: Priming must ensure that m is executed a suf-
ficiently high number of times, so that m is compiled to a
faster version. The speeding up of m thus causes or augments
an observable imbalance in the timing of p.

Attack models: IPM and NPM-LTB. Not exploitable
under NPM-LAB, bar extreme conditions. The attacker can
only determine that an atypical behavior has occurred if the
atypical behavior impacts the JVM state. For TMETH, this
means that calls to p on an atypical value impacts m’s
compilation level. To detect this, the attacker’s probe needs
to execute a path containing m (else the probe’s timing would
be independent of m’s compilation level). But this means
that the attacker needs to ensure that her own probes are
not responsible for the compilation of m, which requires a
very nuanced understanding of the current profile of m. It is
unrealistic for an attacker to have that profile, so we do not
apply TMETH under NPM-LAB.

4) Method compilation due to back-edges (TMETH-BE):
This template, specific to NPM-LTB, exploits method compi-
lation due to back-edge counters rather than method invocation
counters. A method no longer needs to be called for one
predicate value and not the other. Instead, a method m called
the same number of times in both cases is (or is not) compiled
(or is compiled to a different level of optimization) depending
on whether the back-edge counters are sufficiently high.

Code Fattern: The predicate impacts the number of back
edges (jumps to previous code) traversed in a method m, most
commonly due to impact on the number of iterations of a loop.

Recipe: The priming amount must be in the range to
induce a difference between the optimization level of m
according to the two priming scenarios. The ideal probe value
for this vulnerability template is one for which the method m is
expensive—making the difference in execution time between
its differently compiled versions more apparent.

Attack Models: NPM-LTB.

5) Method compilation due to imbalanced invocations
(TMETH-11): This template is specific to NPM-LTB.

Code Pattern: This template applies to any predicate that
impacts the frequency of calls to a method m. The case where
m is never called for one predicate value is a specific one.

Recipe: The priming amount must be in the range so
that the level of compilation of m is different across the two
priming scenarios. The ideal probe value for this case is one

in which calls to m are expensive.
Attack Models: NPM-LAB.

IV. STATISTICAL PROFILING FOR ACCURATE INFERENCE

In this section we discuss how an attacker can use the
timing information she collects to correctly infer predicate

values. Though not always necessary, the attacker’s endeavor
can be greatly aided if she builds an informative profile of the
expected timing distribution under different predicate values.
Two key factors about the predicate ¢ impact the attacker’s
profiling strategy. First, how many paths through program
does the satisfaction of the predicate ¢ (or —¢) correspond
to? Second, if the predicate corresponds to a set of program
paths, are there any additional assumptions the attacker can
make about the value of unknown input to p to reduce that set
of paths? The more limited this set of program paths is, the
simpler it will be to produce a reliable statistical model.

A. Learning under IPM

Under IPM, the attacker primes the JVM into a state where
the execution time of a subsequent call to p on an unknown
value leaks information about whether that value satisfies ¢.
For accurate inference, the attacker can develop a statistical
profile of the execution times of p on inputs satisfiying ¢ and
—¢, respectively, after priming with a chosen priming value.
The more distinguishable the profiles under the two cases, the
more successfully the attacker has booby-trapped the JVM.

Obtaining a statistical profile benefits us twofold. First, time
measurements are affected by nondeterminism from various
sources, from inevitable sytem noise to minor variations in
runtime decisions made by the JIT compiler as to which
optimizations to apply and in what order. The statistical nature
of the profile accounts for such noise. Second, the assumption
that the attacker has complete control over the JVM is often
unrealistic. When we build a statistical profile, we can simulate
an environment where some proportion of calls to p is outside
the control of the attacker. By priming with an « distribution
(with respect to ¢) we mean priming p with inputs satisfying
¢ with probability «, and —¢ with probability 1 —a. When we
build a statistical profile, we prime with o < 1 to simulate a
context where p is occasionally triggered on inputs satisfying
the opposite value to the one we have chosen to heat up.

The pseudocode in Algorithm 2 outlines the above process.
Here, the two priming input values pg,p—4 are chosen such
that (a) both satisfy any assumptions the attacker makes over
the input space, and (b) p, satisfies ¢ whereas p_ satisfies
—¢. The test values ¢4 and ¢—4 are chosen randomly from the
set of possible secret values (Ty and T-) satisfying ¢ and
—¢ respectively (along with any additional assumptions on the
input space) to generate representative timing information for a
secret value. The priming amount n is the total number of calls
to the program p in the Prime subalgorithm (see Algorithm 1)
and the profiling amount N is the number of times the priming
and then timing subroutine is repeated during profiling in order
to generate a statistical profile robust to noise.

Choice of test values can impact the accuracy of the
statistical profile. The more similar the test values ¢y and ¢4
to the actual unknown value, the more accurate the profile
likely is. What we mean here by similar is that modulo branch
decisions correlated with the predicate, the test input follows
a similar program path as the unknown input. Since this
cannot be known beforehand, the attacker’s best option is to



input : n (priming amount), « (ratio), more, Zless (Priming inputs)

numltersBothSides <— 2(n — n - a);
numltersRemaining < (n — numlitersBothSides);
for i < 1 to numltersBothSides do

if ¢ is odd then

‘ call p(xmore)é
else

‘ call p(xlcss);
end
end
for i < 1 to numltersRemaining do

| call p(zmore);
end

Algorithm 1: Prime pseudocode.

generate and profile for a wide set of test values. Likewise,
choice of priming input can impact how successful the attacker
is in booby-trapping the JVM. Ideally the attacker would
choose priming input following the same program path as the
unknown input. If this is not possible, an attacker could vary
her priming input over a set of possible paths. This would
try to avoid introducing a timing channel due to an entirely
different predicate.

B. Learning under NPM

In NPM, the JVM is primed by a natural bias in the input
distribution to p. The attacker then executes and times p(w)
on a probe value 7 of her choice. The timing is used to infer
either a) (NPM-LTB) whether ¢ or —¢ is suficiently dominant
among the input to p, or b) (NPM-LAB) if and when a call
to p that is atypical with respect to ¢ has been made. As
in IPM, we develop a statistical profile to reliably perform
inference when presented with the timing of p(7). Unlike IPM,
the attacker is not in control of the priming and so profiling
requires simulating the natural priming of the JVM.

Learning under NPM-LTB: Here the bias of the natural
priming is unknown. The attacker instead generates two sets of
priming inputs (all values of one set satisfying ¢ and all those
of the other —¢) and primes using those values. Again, we
introduce the ratio o, this time as a ratio of degree of bias in
the input distribution. Different values of « simulate differing
degrees of bias in the natural priming of p. The attacker
generates statistical profiles for the timing of their probe 7
to p under both possible priming scenarios. The profiling
and subsequent inference specific to NPM-LTB is given in
Algorithm 3. The accuracy of this statistical profile depends
on how closely the set of possible priming input resembles the
input actually used to naturally prime the JVM.

Learning under NPM-LAB: Here the bias of the priming
is known. The attacker can bias in favor of the appropriate
value of ¢ using priming values from the corresponding set.
She then generates a statistical profile of the timing of her
probe 7 to p after a call has been made to p using a randomly
chosen test value t4. She then does the same for randomly
chosen t—4. Here ¢4 and ¢4 are drawn from the set of possible
test values satisfying ¢ or —¢ as appropriate. The profiling and
inference code for NPM-LTB is given in Algorithm 4.

input : N (profiling amount), n (priming amount), « (ratio),
Ty, Ty (priming inputs), Ty, T-4 (profiling test input sets)

Vg, Uog $— tWo empty vectors to store timing profiles;

for i < 1 to N do

ty random(T¢);

Prime(n, o, zg, T4 );

vg.append( Time(p(ty)) ) // and start with a fresh JVM
end

for i — 1 to N do

t—4 < random(7-4);

Prime(n, a, zg, T4 );

v-g.append( Time(p(t-p)) ) // and start with a fresh JVM

end

Prime(n, 1.0, x4, null);

timingOfSecretInput <— Time(RealCall);

leakageEst <— InferPred(v¢, Vghs timing OfSecretInput);

Algorithm 2: IPM attack pseudocode

input : N (profiling amount), n (priming amount), « (ratio),
X g, X (profiling priming sets), 7 (probe)

Vg, Vg $— tWo empty vectors to store timing profiles;

for i < 1 to N do

Ty, Tog < random(X ), random(X )

Prime(n, a, Tpy Togp )

vg.append( Time(p(7)) ) // and start with a fresh JVM

end

for i < 1 to N do

Ty, Tog < random(Xy), random(X—4);

Prime(n, o, ¢, T4 );

v g.append( Time(p()) ) // and start with a fresh JVM

end

RealPrime;

timingOfProbeAfterSecretPriming <+ Time(p(m));

leakageEst < InferPred(vy, v, timingOfProbeAfterSecretPriming);

Algorithm 3: NPM-LTB attack pseudocode

V. LIBRARY EVALUATION: SETUP

We describe our subjects, setup, and decisions. In each case,
the program p under test is a method from the standard library.

A. Source of experimental subjects

We evaluated our approach on the java.math.Biglinteger,
java.lang.Math and java.lang.String classes from the Java
standard library (JDK 8, rev. b132) [19]. We removed methods
with no conditionals, native methods not written in Java,
duplicates modulo type (e.g., float vs. double), and those with
isomorphic control-flow structures. For the remaining methods
we applied our approach and chose predicates for conditionals
that satisfied the most relevant templates. In the following
sections we show a selection of our results featuring the cases
(successful and unsuccessful) that we found most interesting
and relevant.

B. Computing information leakage via conditional entropy

For each experimental subject we ran 1000 iterations and,
on each iteration, we primed the system as described in each
of the next subsections and timed a subsequent call to the
method under test. From this data we computed the conditional
entropy between the value of the predicate and the observed
timing distribution. This tells us how many bits of information
about the value of ¢(s) we can expect to be leaked from a
single time measurement. Since the value of ¢ encodes one



input : N (profiling amount), n (priming amount), « (ratio),
X, Xop Ty, T (profiling priming and test sets), 7 (probe)

Vg, Uog < (WO empty vectors to store timing profiles;

for i <~ 1to N do

Ty Togp random(X¢), random(X4);

Prime(n, o, z¢, T4 );

call p(ty « random(Ty)) ;

vg-append( Time(p(w)) ) // and start with a fresh JVM
end

for i <~ 1to N do

T, Tog < random(Xy), random(X - 4);

Prime(n, o, z¢, T4 );

call p(t-g < random(7-.4)) ;

v g.append( Time(p(w)) ) // and start with a fresh JVM

end

RealPrime;

RealCall;

timing OfProbeAfterSecretBehavior < Time(p(T));

leakageEst < InferPred(vy, v, timingOfProbeAfterSecretBehavior);

Algorithm 4: NPM-LAB attack pseudocode

TABLE I: Priming distributions used in our experiments

IPM a-ratio NPM-LTB «-ratio NPM-LAB
TOPTI 0.998 0.998 0.998
TMETH 0.950 0.950 n/a
TBRAN 0.900 0.950 0.900
TMETH-BE n/a 0.950 n/a

bit of information, a value of 0.0 means no leakage, while 1.0
means full leakage of ¢ value from one timing observation.

C. Using priming distributions to simulate noisy triggering

As discussed in Section 1V, the « ratio accounts for the fact
that in a realistic scenario, we will not have exclusive control
over the state of the JVM and the bias under NPM may not
be absolute. Table I shows the distributions that we associated
with each template under each model.

D. IPM experiments

For each case under IPM, we chose two values for prim-
ing: one satisfying ¢ and one satisfying —¢, following the
approach given in Algorithm 2. We then generated two sets of
possible secret inputs satisfying ¢ or —¢ respectively and both
satisfying a set of additional assumptions over the space of all
possible inputs. These assumptions are further discussed in
Section B. We primed the JVM with the priming values using
the priming ratio « indicated by the template.

For TMETH and TOPTI cases we determined the number of
priming iterations as follows: Starting with an initial guess, use
the JITWatch tool [20] to determine whether the optimization
has occurred. If not, increase the number of iterations until it
does. For TBRAN cases we tried priming {1000, 10000, 50000,
100000} times and kept the value that maximizes leakage.

For evaluation, we repeated the following 1000 times. We
primed the JVM using one priming value as described above,
then timed a call to the method on a randomly chosen secret
value satisfying ¢. Then we performed another 1000 iterations
of the experiment, now timing a call to the method on a
randomly chosen secret value satisfying —¢. From this data
we computed the leakage as explained in V-B.

In addition to the aforementioned, we also re-executed all
experiments (and recomputed the leakage each time) for the
following three priming scenarios:

1) Reversed priming: We re-ran all experiments with a ratio
@ = (1 — «) instead of «. In other words, if the JVM was
primed more heavily favoring ¢ in the original experiment, it
is now primed more heavily with input satisying —¢, and vice
versa. This evaluates whether that test subject is reversible.

2) Even priming: We re-ran all experiments with a fixed
ratio a = 0.5, i.e., the amounts of priming satisfying ¢ and
—¢ are equal. This evaluates the importance of the imbalanced
priming ratio in introducing a side channel, as opposed to the
more general, overall heating up of the whole method.

3) No JIT: We re-ran all experiments with JIT disabled.
This evaluates the existence of a static (traditional, source-
code level) side-channel vulnerability, which our use of JIT
could augment or mitigate. We still used a very small, fixed,
balanced amount of priming (50 calls on both sides) to avoid
artificial noise from initial class/method loading delays.

E. NPM experiments

For cases evaluated under NPM, we generated two sets of
possible priming values, one satisying ¢ and the other —¢. For
each case, we determined the number of priming iterations in
the same way as for IPM (see V-D), starting with an initial
guess and using JITWatch to guide the search.

NPM-LTB experiments: For evaluation, we repeated the
following experiment 1000 times. We primed the JVM (with
priming parameters obtained as described above) in favor of
priming values satisying ¢, and then timed a subsequent call
on a chosen probe input m. We manually chose 7 such that the
difference between the optimization levels after the two types
of priming would be observable. We experimented again by
priming the system with the same parameters as before, but
in favor of the priming inputs satisfying —¢, and then timed
a subsequent call on the same probe 7. Each experiment was
repeated 1000 times. From this data we computed the leakage
as explained in V-B. Since NPM-LTB is the most expressive
model in terms of the vulnerability templates applicable under
it, we focus our experiments on methods and predicates
satisfying templates un-harnessable under the other models.

NPM-LAB experiments: We additionally generated two
sets of possible secret inputs satisying ¢ or —¢ respectively and
both satisfying a set of additional assumptions over the space
of all possible inputs. For evaluation, we did the following
1000 times. We primed the system (with priming parameters
obtained as above) in favor of the priming values satisying ¢,
then made a call to the method on a randomly chosen secret
value executing the —¢ branch. We then timed a subsequent
call on a chosen probe input 7. Then we performed another
1000 iterations of the experiment, this time calling the method
on a randomly chosen secret value executing the ¢ branch and
timing the subsequent call on the same probe input 7. From
this data we computed the leakage as explained in V-B. We
then re-ran all experiments under the reverse priming model
described in V-D. This evaluates whether the natural priming



needs to be more strongly in favor of one particular value of ¢
for atypical behavior to be detected.

F. Hardware setup

The library experiments were run on an Intel NUC 5i5SRYH
computer (Intel i5-6600K CPU at 3.50 GHz, 32 GB RAM)
running Ubuntu Linux 16.04 (kernel 4.4.0-103) and the Java 8
Platform Standard Edition version 1.8.0_162 from OpenJDK.

VI. EXPERIMENTAL RESULTS

Tables II, III, and IV summarize our results under IPM,
NPM-LTB, NPM-LAB respectively. For each set of experi-
ments we report the method name, location of the selected
branch instruction in the class source code [19] (rev. b132),
the template that was used, other templates (if any) that also
arose accidentally, and the priming parameters used. In all
cases, we report the amount of information leaked about the
predicate value under all evaluated priming scenarios.

A. Optimistic compilation (TOPTI)

When optimistic compilation could be induced, the uncom-
mon trap effect was always at least two orders of magnitude
higher (e.g., see Fig. 5b), resulting in very reliable learning of
@(s) under IPM. Our high-leakage results for Biglnteger.min,
Math.nextAfter, and String.compareTo were obtained in this
way. Leakage is also reliably high for these methods under
NPM-LAB. When the call on the unknown value breaks the
uncommon trap, the JVM must revert to a less optimized
version of the method under test. This results in an observable
difference in the timing of the attacker’s probe to the method
when compared to the case where the uncommon trap is not
broken (and the highly optimized code used). This timing dif-
ference can be augmented by choosing a probe value for which
the method is expensive and the difference between compiled
version is more apparent. Nevertheless, the magnitude of the
timing difference is less than in IPM when the actual execution
time of the call triggering the uncommon trap is measured.

For the other two cases, Math.min and String.equals, our
priming did not succeed in inducing optimistic compilation.
In Math.min, this was due to inlining: Math.min is so small
that it is immediately inlined into its caller (i.e., our driver).
Optimistic compilation could still be induced on the inlined
copy of Math.min, but would not be exploitable in other in-
lined copies. For String.equals, we could not induce optimistic
compilation due to a combination of two facts: (i) optimistic
compilation requires an extremely lopsided history at the
time of C2-compilation, and (ii) String.equals is triggered too
frequently by other parts of our experiment driver. Hence,
this template is suitable for contexts where the attacker has
nearly-exclusive control over the triggering of p. In constrast,
the String.compareTo method, which has an almost identical
structure to String.equals with respect to the selected predicate
and its branches, was much more amenable to an optimistic
compilation exploit due to its less frequent usage elsewhere.

Despite our inability to induce an optimistic compilation of
String.equals, we still achieved very sizeable leakage in this
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Fig. 5: Execution time distributions after priming for the
methods (a) String.equals and (b) String.compareTo.

method thanks to branch prediction, which does not require a
history as strongly lopsided as optimistic compilation.

There was no notable leakage for Math.min or String.equals
under NPM-LAB. This is expected in the case of Math.min
as no optimistic compilation was introduced into the compiled
code. For String.equals, there remained the possibility branch
prediction might allow for a timing channel to infer if atypical
behavior has occured. However, as we will discuss in the
section on TBRAN, no such side channel was created.

Note that when an attacker succeeds in inducing optimistic
compilation, the first call to p that takes the uncommon branch
will trigger the uncommon trap, and de-optimization will only
take place once. Under IPM, this means the attacker must
trigger and time p on the secret input before some other user
triggers and thus “spoils” the uncommon trap. Under NPM-
LAB, this means that the attacker is only able to observe
the first occurence of atypical program behavior. Once the
optimistic compilation has been broken, JIT will not introduce
it again, even under a highly biased input distribution.

B. Method Compilation (TMETH)

Our high-leakage result for Biglnteger.shiftLeft exemplifies
the potential of TMETH under IPM. In shiftLeft, a different
method is called depending on the value of ¢. With JIT
disabled, the execution time does leak information about which
branch was taken. This is not surprising, as it is expectable
that the unoptimized versions of two different methods would
be distinguishable. What we wish to emphasize is that any of
the two callee methods can be made observably faster than
the other through the appropriate priming. Moreover, both of
these priming versions result in stronger side channels than
those that occur with JIT disabled or with an even priming
distribution. This demonstrates how strongly the execution
time of a path can vary depending on how aggressively the
methods called along that path are optimized.

In Math.ulp, we observed a scenario in which a method was
called on input satisfying ¢ but not on input satisfying —¢,
motivating us to apply the TMETH template. We thought that



TABLE II: Experimental results for IPM

Method Branch Template Priming Priming  Leakage  Leakage Leakage  Leakage
name instruction (applied, arisen) amount ratio () under o under o 0.5/0.5 w/o JIT
Biglnteger.min line 3477 TOPTI 100,000 0.998 1.00 1.00 0.02 0.06
Biglnteger.valueOf line 1085 TBRAN 10,000 0.900 0.52 0.16 0.10 0.03
Biglnteger.shiftLeft  line 2908 TMETH 10,000 0.950 0.99 0.95 0.75 0.79
Math.max line 1316 TBRAN 10,000 0.900 0.28 0.25 0.04 0.03
Math.ulp line 1443 TMETH 50,000 0.950 0.05 0.05 0.02 0.25
Math.nextAfter line 1926 TOPTI 100,000 0.998 1.00 0.89 0.02 0.03
Math.min line 1350 TOPTI 100,000 0.998 0.03 0.01 0.02 0.03
String.equals line 976 ToPTI, TBRAN 100,000 0.998 0.44 0.04 0.12 0.04
String.compareTo line 1151 TOPTI 100,000 0.998 0.99 0.03 0.02 0.20
String.startsWith line 1400 TBRAN 1,000 0.900 0.46 0.16 0.21 0.25
TABLE III: Experimental results for NPM-LTB
Method Branch Template Priming Priming  Leakage
name instruction (applied, arisen) amount  ratio («) under «
Biglnteger.mod line 2402 TMETH 10,000 0.950 0.33
Biglnteger.mod line 2402 TMETH 10,000 0.950 1.00
Biglnteger.and line 3054 TMETH-BE 500 0.950 1.00
Math.scalb line 2287 TMETH-BE 5,000 0.950 0.58
String.trim line 2857 TMETH-BE 5,000 0.950 1.00
String.replace line 2060 TMETH-BE, TBRAN 2,000 0.950 0.92
String.replace line 2060 TBRAN 2,000 0.950 0.66
String.Constructor  line 250 TMETH-II 500 0.950 0.08
TABLE IV: Experimental results for NPM-LAB
Method Branch Template Priming Priming  Leakage  Leakage
name instruction (applied, arisen) amount ratio (a) under « under @
Biglnteger.min line 3477 ToPTI 100,000 0.998 1.00 1.00
Biglnteger.valueOf  line 1085 TBRAN 10,000 0.900 0.03 0.03
Math.max line 1316 TBRAN 10,000 0.900 0.03 0.03
Math.nextAfter line 1926 ToPTI 100,000 0.998 1.00 1.00
Math.min line 1350 TOPTI 100,000 0.998 0.04 0.03
String.equals line 976 ToPTI, TBRAN 100,000 0.998 0.04 0.03
String.compareTo line 1151 TopTI 100,000 0.998 1.00 0.03
String.startsWith line 1400 TBRAN 1,000 0.900 0.05 0.03

by compiling that method, we might significantly reduce the
execution time on input satisying ¢. This was not the case. The
method that we aimed at (and succeeded at) compiling was an
extremely inexpensive, constant-time method. Thus the timing
of input satisfying ¢ did not change significantly with its
compilation, and did not fall below that of input satisfying —¢.
The degree to which an application of TMETH can impact the
execution time is bounded by the degree to which compilation
can speed up the method called in the heated-up branch.
This lesson reoccurs for the String constructor, which builds
a string from a sequence of Unicode codepoints. Though we
succesfully found priming values inducing different levels of
optimization in its callee method m (due to a different number
of invocations of m in each priming scenario), hardly any
leakage resulted. This is due to m performing very efficient
constant-time compuation, making the difference in efficiency
between its compiled and un-compiled states indiscernible.
The difference between the results reported for Biglnte-
ger.mod stems from an experiment that allows the attacker
stronger timing abilities. The second row gives the leakage

when we don’t time p itself, but rather its callee m whose
compilation we aim to induce (TMETH). Such refined tim-
ing information substantially increases leakage, but requires
stronger assumptions about the attacker’s timing.

C. Branch Prediction (TBRAN)

Branch prediction introduces considerably smaller timing
differences than other templates (e.g., see Fig. 5a). Never-
theless, it can still sometimes be exploited to great effect.
BiglInteger.valueOf, String.startsWith, and Math.max are ex-
amples of methods that are small enough that the effect of
branch prediction is observable over the computational noise
of the method. Whether or not the branch condition is looped
over can also impact the observability of the side channel.
In NPM-LTB, where we can choose the test value, a looping
construct may enable the choice of a test value for which
the effects of branch prediction are multiplied, i.e., the branch
prediction is repeatedly correct or incorrect across iterations of
the loop. String.replace (discussed in the next section due to
its interaction with TMETH-BE) is an example of this scenario.



Under NPM-LAB, we hoped that branch prediction might
be harnessed to detect if atypical behavior occurs. This would
occur if executing the method on a secret value that causes
the less-seen branch to be taken makes JIT recompile the
code to favor the other branch. Differing distributions in
the time of the attacker’s probe might result. However, our
experiments on Biglnteger.valueOf, Math.max, String.equals,
andString.startsWith showed this to not be the case. In none
of those was the code recompiled giving priority to the other
branch. In fact, we even ran experiments were we repeatedly
executed the method on test input causing the hitherto less
frequent branch to be taken to determine if a heavy change in
profiling behavior of the branch would cause JIT to recompile
the method. In no cases did this occur, leading us to conclude
that the TBRAN template is not effective under NPM-LAB.

D. Method Compilation via Back Edges (TMETH-BE)

This template is specific to NPM-LTB. Every time we tried
to apply TMETH-BE, we successfully found priming amounts
such that the method was compiled to different levels of
optimization. In the Biglnteger.and and String.trim cases, it
was easy to find a probe value that made the method call
expensive enough for differing levels of compilation to be
observable. This is due to the large number of potential loop
iterations within these methods. This was not the case in
Math.scalb, where the maximum possible number of loop
iterations is four. The strength of a side channel introduced
by TMETH-BE is thus bounded by how expensive the method
is question can be made by suitably chosen probe values.

In String.replace we show an interesting example of in-
teraction between back-edge-induced-compilation and branch-
prediction side channels. We again succeed in inducing dif-
fering levels of optimization for the same priming amount.
But that priming also induced a branch-prediction-based side
channel. The timing of p(¢) is thus not only affected by
the compilation level of the method, but also by how t’s
path is affected by branch prediction. Since the priming input
satisfying ¢ induced a higher level of compilaton, we expected
that the timing of the call to p(¢) would be faster. When we
choose t to benefit from the branch prediction induced by
priming on values satisfying ¢, this was the case. This is shown
in our first result for String.replace. However, when we choose
a probing value that was hindered by the branch prediction
induced by priming on input that satisfies ¢, and favored by
branch prediction induced when priming on input satisfying
—¢, the expected outcome was reversed. The timing of the
method call was actually faster under the —¢ priming, even
though the method had not been compiled. The unintended
branch prediction interacted with our intended optimization
in a way contrary to our expectations. The results for this
experiment are shown in our second result for String.replace.

VII. APPLICATION VULNERABILITY EXAMPLES
A. Apache Shiro

Apache Shiro [10] is an easy-to-use, open-source Java
security framework for authentication. It has over 2000 stars

on Github as of this writing. Developers use Shiro to add per-
missions, roles, and session management to their applications.

1) Shiro Tutorial vulnerability: The official tutorial shows
how to integrate Shiro into your application using a simple
user database. Given a username and password, the exam-
ple code performs a Shiro login with the given credentials,
checks them against the database, tests whether the user has a
permission, and reports whether they can perform an action.
Even this very simple example code could entail an NPM-LAB
vulnerability. Let us imagine that the example action is unusual
and of high importance, e.g., triggering a Red Alert. Naturally,
this will only happen if the user has the right permission, as
enforced by the if(currentUser.hasPermission(...)) statement
in the code. However, if an attacker probes the system at
regular intervals by timing her own call to the example code,
she can find out when someone passes the hasPermission test.

We experimentally demonstrate this side channel. Using
the unmodified Shiro tutorial code inside a loop, we make
unprivileged users prime the system by repeatedly logging
in; an unprivileged attacker probe the system in the same
way; and a privileged user log in at some point during the
attacker’s probing. In each trace we prime the system 50000
times, heating up the typical branch (no permission). Then the
attacker probes the system 200 times, also without permission.
Between the attacker’s 100°th and 101’st probe, the atypical
event occurs. Due to JIT nondeterminism, we repeat the
experiment 100 times. Figure 6b shows the 100 superimposed
traces. The point at which the atypical event happens is clearly
visible: the attacker’s 101th probe (first one after the event)
takes an unprecedented amount of time. The following probes
are also more expensive, although the effect soon wears down.

In Figure 6a we show the null version of the experiment:
same conditions, priming, and probing, but the atypical event
is replaced with a typical one. This aims at confirming that the
phenomenon is caused by the presence of the atypical event,
rather than some other aspect of our experimental setup.

We then wrap the same Shiro tutorial program in a simple
TCP server. A TCP client connects to the server from a dif-
ferent computer and issues login/action/logout commands. The
same priming, probing, and atypical event as before are now
executed on the server at the client’s requests. Response times
are measured on the client side. The LAN setup is described
in Section VII-C. Figure 6¢ shows that, even partially fuzzed
by network noise, the phenomenon is still clearly observable
through our LAN. However, it is not strong enough to be
realistically observable through the public Internet.

Optimistic compilation is the enabler of this side channel.
The large majority of users do not have the special privilege,
resulting in C2-compiled code containing an uncommon trap.
When the privileged user logs on, the uncommon trap is
triggered, forcing the JVM to fall back to less optimized
code. The change in the timing of the probes reflects this.
As recompilation happens, the timing of the probes drops.

2) Amplification through computation: The fact that the
previous example leaks is remarkable considering that all it
does is to check a permission. Observability can be amplified
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by calling Shiro’s hasPermission method from a function that
actually computes something—thus increasing the difference
between optimized and unoptimized versions of said function.
We tested a simple function that converts an array of points
from spherical coordinates to Cartesian ones. This is amenable
to optimization because trigonometric functions are optimized
by the C2 compiler. Before the computation, the function calls
if(currentUser.hasPermission(...)), as indicated by the Shiro
documentation, to ensure that the user has proper authoriza-
tion. The code (see Appendix 11) is written in a completely
symmetric way, in an attempt to avoid any imbalance that
could introduce a traditional (non-JIT) timing side channel. It
is nevertheless affected by the same JIT-based side channel
leakage seen in the previous example, now more amplified.

We perform a similar experiment as before. We can use
fewer priming iterations (1000) since additional back-edges
cause the function to compile earlier. Figure 7a shows the
null experiment. Figure 7b shows the results when the atypical
event occurs after the 100th probe. Figure 7c shows that the
effects of reverting to less optimized code are observable over
the public Internet, and last until the method is recompiled.
This increased observability is due to the now larger difference
between the C1- and C2-compiled versions of the function.
While we experimented with a specific non-trivial, highly-
optimizable function, any method involving computation sat-
isfying similar properties and containing a check of a Shiro
permission would be vulnerable to an analogous side channel.

A noteworthy remark is that, to harness these side channels
(or any under NPM-LAB), the attacker only needs to time her
own probes. In contrast to many traditional side channels, the
attacker actually infers sensitive information from a computa-
tion that we would expect to be entirely independent of that
information. While this increases the real-world applicability
of the attack model, the non-resetability of this side channel
also deserves note. Once proven overly-optimistic, optimistic
compilation will not be re-introduced. This means the attacker
can harness this side channel to detect the first occurrence
of the rare event but not subsequent ones. Nevertheless, for
highly sensitive events, this kind of vulnerability is critical.
Additionally, if the attacker is able to force the JVM to reset
(should she be a system admin of a major company or able to
force a reset through an orthogonal denial-of-service attack),
then she can continue her detection of rare behavior.

B. GraphHopper

GraphHopper [11] (GH) is an open-source framework that
computes directions on city maps. It uses maps from the Open-
StreetMap [21] project. The GH server can answer queries like
“best route from A to B by train in Berlin” issued by clients
through a RESTful API. GraphHopper is a well-known project
with over 1,800 stars on Github as of this writing.

We present two examples of optimistic compilation vulner-
abilities in GH under NPM-LAB. One allows an attacker to
discover when someone issues a query in which the origin
and destination points are further than a certain threshold
apart. The second one allows an attacker to find out when

someone issues a query with a certain preference of routing
algorithm. Both side channels ultimately adhere to the TOPTI
template, though their presence in a large application makes
their behavior more intricate. Again since NPM-LAB requires
the fewest assumptions about the attacker’s capabilities, it is
the attack model under which we evaluate.

We did not modify GraphHopper in any way. Our exploits
can be replicated using the unmodified current distribution of
the GH server (VII-C) and the map of Berlin.

1) Distance Threshold: GH has a configurable maximum
separation (graph edges) between allowable from and fo points
for directions. In our experiments we used a limit of 5000
edges. We experimented under the assumption that the ma-
jority of users issued queries within range. We collected 100
traces of the following experiment. We primed the JVM with
3000 routing queries between random locations within range;
probed with a routing query between two fixed locations
within range; and made a routing query between two random
locations outside of the range between the 100’th and 101’st
probe. Figure 8b shows the results over the LAN. Figure 8a
shows the null version. Figure 8c shows the results over
the public Internet. Though not perfectly reliably, this timing
channel is observable over the public Internet and the attacker
is likely able to infer if and when a user makes a routing query
between two locations further apart than the threshold.

2) Routing Algorithm: In the previous example we let
GraphHopper use Dijkstra’s algorithm for routing computa-
tion. The API has an algorithm field that can be used to
select a different one, such as the A* (astar) algorithm. If
the typical case is Dijkstra, an attacker can probe regularly
(ask for directions using Dijkstra) to detect when another user
atypically asks to use the A* algorithm.

We collected 100 traces of the following experiment. We
primed the JVM with 1000 routing queries between random
locations using Dijkstra’s algorithm; probed with a routing
query between two fixed locations using Dijkstra’s algorithm;
and made a routing query on two random locations using the
A* algorithm between the 100’th and 101’st probe. Figure 9b
shows the results over a LAN. Figure 9a shows the null
version. Figure 9c shows the results across the public Internet.
The shift in the timing of the probes is observable over the
public Internet. In fact, the probe following the rare behavior
takes much longer than any prior probe (usually by ~15 msec).
This is due to the less compiled version of the relevent routing-
algorithm-handling code being noticeable more expensive for
probes where many iterations of the algorithm are necessary.
However, using such an expensive means many back edges are
taken, resulting in quick recompilation and a fading effect.

C. Experimental setup

We ran Apache Shiro v1.3.2 and GraphHopper v11.0 on
two Intel NUC 5i5RYH computers. Both machines are on our
Ethernet LAN via a Netgear GS108Ev3 switch. Another five
computers are on the LAN. Under low load, typical round-trip
time between the client and the server machines through the
LAN was 0.27 msec (min 0.25, mean 0.273, max 0.34).



For the public Internet experiments we ran the server on the
same NUC 5iSRYH computer in our lab, and the client on a
remote machine located about 2000 miles away. According to
traceroute, the route comprises 10 hops. The remote machine
is a shared webserver that hosts 20+ live websites. Round-trip
time and noise vary depending on load, but typical RTT was
around 55 msec (min 54.1, mean 55.04, max 57.7).

VIII. RELATED WORK

To the best of our knowledge, the idea that JIT could impact
and potentially introduce timing channel vulnerabilities was
first put forth by Page [22]. Noting that compiled code can
differ from source code, he explores the impact of dynamic
compilation through a case study on his own Java imple-
mentation of a double-and-add-based multiplication program.
Because the doubling method is called more frequently than
the addition method, it is compiled sooner. If an attacker can
obtain a timing profile of the each method called within the
multiplication code, they can infer the order of the sequence of
doublings and additions performed. Page also proposes some
solutions at both the language level and the virtual machine
level for removing side channels of this kind.

Our work goes beyond the observation that dynamic com-
pilation may introduce side channels by demonstrating how to
systematically induce JIT-based runtime-behavior-dependent
side channels into the JVM state through a bias in the input
distribution of a program. We show how to actively exploit
JIT’s focus on optimization to create side channels, enabling
an attacker to learn predicates about secrets and show the
applicability of our approach in real applications.

In work complementary to ours, Cleemput et al. [23]
propose leveraging the statistical profiling information used in
dynamic compilation to mitigate timing side channels. Starting
from a developer-chosen root method, profiling information on
the number of back edges taken or method call invocations
is collected for each value in a training input set. Based
on this process, a set of methods potentially vulnerable to
timing channels is selected. Control-flow and data-flow trans-
formations are then applied to those methods to reduce their
susceptibility to side channels. Control-flow transformations,
such as if-conversion, from their paper would aid in protecting
sensitive Java functions from JIT-based side channels. In fact,
there is existing work on compiler based strategies for miti-
gating side-channel vulnerabilities which might be germane to
that purpose [24]-[26]. However, none of the solutions they
offer have been integrated into HotSpot, which remains both
vulnerable to the JIT-based side channels we discuss and the
most widely used JVM. In a similar vein, Frassetto et al. [27]
propose JITGuard, a guard for JIT compilers againsts code-
injection, code-reuse and data-only attacks. However, side-
channel vulnerabilities are out of scope of their work.

Static Side-Channel Analysis: The problem of statically
determining the presence of side channels in software has
been widely addressed. Antopoulos et al. [28], Chen et al.
[29] and Brennan et al. [30] propose techniques to detect
imbalanced paths through the control flow graph of a method.

More expensive techniques requiring symbolic execution and
model counting enable quantifying the amount of information
leaked [31] and even synthesizing input so as to maximize the
amount of information that can be extracted through the side
channel [32], [33]. These approaches rely on a cost model that
statically approximates observable information (e.g., execution
time) along a program path. What our work demonstrates is
that such a cost model is insufficient. The execution time of a
path depends not only on the instructions along that path but
also, and to a great extent, on the state of the JVM. The state of
the JVM is in turn influenced by all previous invocations of the
code under test. Currently no static approach to side channel
detection even attempts to model this complex interaction.
In fact, many programs that would be pronounced ‘“safe”
by all the static techniques above, including those claiming
soundness, would be vulnerable to a JIT-induced side channel
captured by one of our templates. Some approaches to side-
channel analysis include a dynamic component where runtime
information is collected and statistical inference performed
[34], [35]. However, none consider the space of possible
primed runtime environments.

Runtime-based CPU-induced side channels: Branch pre-
diction analysis (BPA) attacks and cache attacks are side-
channel attacks which leverage runtime-dependent behavior of
CPUs. Cache-based side-channel attacks [3], [36]-[40] have
been theorized for years and have increasingly been shown as
a powerful technique for recovering sensitive information in
practical scenarios. Aciigmez et al. first demonstrated that the
CPU’s branch predictor could be leveraged to introduce timing
channels in security-related code [41]-[43]. Since then, the
CPU’s Branch Prediction Unit has been exploited to introduce
various flavors of timing channel vulnerabilities [44]-[46].
While these classes of side-channel attacks focus on runtime
behavior due to the state of the processor, we focus on runtime
behavior determined by the state of the Java Virtual Machine.

IX. CONCLUSIONS AND FUTURE WORK

We presented a new class of runtime-behavior-dependent
timing side channels that are fundamentally different from
traditional, static-code-dependent side channels. JIT compila-
tion introduces these side channels due to non-uniformity in a
program’s input distribution with respect to certain predicates.
We proposed three attack models under which these side
channels are harnessable and five vulnerability templates to de-
tect susceptible code fragments and predicates. We presented
a fine-grained analysis of JIT-based side channels on three
classes from the Java standard library. We then demonstrated
sizeable JIT-based timing channels in well-known frameworks
and showed their observability over the public Internet.

As future work, we will further automate our technique. A
fuzzing strategy over possible primings could detect potential
JIT-based side channels. We plan to develop an online statisti-
cal strategy for detection of atypical behavior under NPM-
LAB, and for quantification of partial leakage. We believe
that with robust statistical models and enough engineering



effort, JIT-based side channels can be used to learn sensitive
information in the wild and are worth continued exploration.
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if (currentUser.isPermitted ("seeSecretData")) {
log.info ("Secret data being accessed");

} else {

log.info ("Public data being accessed");

}

Fig. 10: Code example of Apache Shiro permissions checking.

public static double[]

compute (PointPair[] points,

Subject currentUser) {

double x=1, y=1, z=1;
double a=1, b=1l, c=1;
double[] result = new double[points.length];

// Use Shiro to check permission as seen in the tutorial.
if (currentUser.isPermitted("seeSecretData")) {
log.info ("Secret data being accessed");

} else {

log.info ("Public data being accessed");

}

for (int i=0; i<points.length;
// Convert first

i++) |

point to rectangular
x = points[i].pl.r*Math.sin(points[i]
y = points[i].pl.r*Math.sin(points[i].pl.theta) *xMath.

z = points[i].pl.r*Math.cos (points[i].pl.theta);

// Convert second point

to rectangular coordinates
a = points[i].p2.r*Math.sin(points[i].p2.theta) *Math.
b = points[i].p2.r+Math.sin(points[i].p2.theta) «Math.

coordinates

.pl.theta)*Math.cos (points[i].pl.phi);
sin(points[i].pl.phi);
cos (points[i].p2.phi);
sin(points[i].p2.phi);

c = points[i].p2.rxMath.cos (points[i].p2.theta);

result[i] = Math.sqgrt ((x+a)* (x+a)+ (y+b) x (y+b) +(z+c) x (z+c)) ;

}

return result;

Fig. 11: Code example from the Apache Shiro Tutorial augmented by performing some computation.

APPENDIX
A. Other JIT optimizations

We briefly overview other JIT optimization techniques,
which, though not directly exploited in any of our vulnerability
templates, may nevertheless interact with the JIT optimizations
above to augment a side channel.

If a method is deemed small enough, it may be inlined
into its callers, thus avoiding the overhead of a method call.
This deceptively simple-looking optimization is in fact one of
the most complex ones in the scheme, as it interacts with
others in nontrivial ways. For instance, when m calls m/,
inlining m’ into m can impact ulterior optimizations of m,
and the same effect may cascade to deeper levels. While none
of our exploits is based solely on inlining, we do use this
optimization in combination with other ones (see Section VI).
HotSpot JIT compilation features many other optimizations,
e.g., loop unrolling, escape analysis, dead code elimination,
etc. Some are essentially akin to those present in modern static
optimizing compilers, while many others are truly adaptive in

nature and can only be performed in a context where they
may be de-optimized as needed. For further details we refer
the reader to the documentation [13].

B. Assumptions on Input Space

We evaluate the IPM and NPM-LAB cases with secret test
values that satisfy a certain set of assumptions. In some cases,
there were no assumptions made. In the majority of cases,
the assumptions amounted to ensuring that the input satisfies
certain sanity checks. For example, that the input is not null;
that it is not an extreme value such as NaN, positive or negative
infinity; or that the length of two strings being compared is
equal. This observation also makes more reasonable the NPM-
LTB assumption that the values we choose for priming are rep-
resentative of the set of possible priming values satisying the
assumptions and agreeing on ¢ more reasonable. Even in the
few cases where the assumptions were more nuanced, such as
String.replace, they were still very reasonable (the character to
be replaced must not be the same as the one it will be replaced
by). The only case where we used a stronger assumption about



the set of secret values is Biglnteger.shiftLeft where the test
set of values was constrained in a non-trivial way. When a test
value was above a certain threshold, it introduced unexpected
behavior into the program. Thus we placed an upper limit on
the magnitude of the test values. Nevertheless, we had both
positve and negative test values that different by thousands.



