
TACO: Efficient SAT-Based Bounded
Verification Using Symmetry Breaking

and Tight Bounds
Juan P. Galeotti, Nicolás Rosner, Carlos G. López Pombo, and Marcelo F. Frias

Abstract—SAT-based bounded verification of annotated code consists of translating the code together with the annotations to a

propositional formula, and analyzing the formula for specification violations using a SAT-solver. If a violation is found, an execution

trace exposing the failure is exhibited. Code involving linked data structures with intricate invariants is particularly hard to analyze using

these techniques. In this paper, we present Translation of Annotated COde (TACO), a prototype tool which implements a novel,

general, and fully automated technique for the SAT-based analysis of JML-annotated Java sequential programs dealing with complex

linked data structures. We instrument code analysis with a symmetry-breaking predicate which, on one hand, reduces the size of the

search space by ignoring certain classes of isomorphic models and, on the other hand, allows for the parallel, automated computation

of tight bounds for Java fields. Experiments show that the translations to propositional formulas require significantly less propositional

variables, leading to an improvement of the efficiency of the analysis of orders of magnitude, compared to the noninstrumented

SAT-based analysis. We show that in some cases our tool can uncover bugs that cannot be detected by state-of-the-art tools based on

SAT-solving, model checking, or SMT-solving.

Index Terms—Static analysis, SAT-based code analysis, Alloy, KodKod, DynAlloy

Ç

1 INTRODUCTION

SAT-BASED analysis of code allows one to statically find
failures in software. This requires appropriately trans-

lating the original piece of software, as well as some
assertion to be verified, to a propositional formula. The
use of a SAT-solver then allows one to find a valuation for
the propositional variables that encodes a failure: a valid
execution trace of the system that violates the given
assertion. With variations, this is the approach followed
by CBMC [10], Saturn [47], and F-Soft [28] for the analysis of
C code, and by Miniatur [20] and JForge [15] for the analysis
of Java code.

In the presence of contracts for invoked methods,
modular SAT-based analysis can be done by first replacing
the calls in a method by the corresponding contracts and
then analyzing the resulting code. This is the approach
followed, for instance, in [15]. One important limitation
remains at the intraprocedural level, where the code for a
single method (already including the contracts or the
inlined code for called methods) has to be analyzed. Code

involving linked data structures with rich invariants (such
as circular lists, red-black trees, AVL trees, or binomial
heaps) is hard to analyze using these techniques.

SAT-based analysis of code has been perceived as an

intrinsically nonscalable technique. The reason is that the

translation of a complete system to a propositional formula

and the analysis of such a formula using a SAT-solver are

very likely not to scale. We believe this is mostly true unless

some careful decisions are made. For instance, it is worth

accepting that SAT-based analysis (as described) is not

meant to be a monolithic process to be applied to large

pieces of software. Also, it is important to understand the

reasons for the nonscalability of SAT-solving, and act to

minimize their impact during analysis. Finally, it is essential

to fully understand what the benefits of SAT-based analysis

are when compared to other analysis techniques.
The contribution of this paper is twofold. From the

methodological point of view we make a case for a

responsible adoption of SAT-based analysis of code. From

the technical point of view, we present a novel, general, and

fully automated technique for the intraprocedural analysis

of JML-annotated Java code, in a way consistent with the

methodology hereby presented. Both the methodology and

the technique presented in this paper are supported by our

prototype tool, Translation of Annotated COde (TACO).
It is well known that the SAT problem is NP-complete

[11]. Thus, the time required for solving an instance of this

problem is (provided P 6¼ NP) exponential on the amount

of propositional variables of the formula resulting from the

translation of source code. To improve the analysis time we

can then proceed in two ways:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013 1283

. J.P. Galeotti is with the Department of Computer Science, Saarland
University, Campus E1 1 Zimmer 1.13, Saarbrücken, Saarland 66123,
Germany. E-mail: jgaleotti@dc.uba.ar.

. N. Rosner and C.G. López Pombo are with the Department of Computer
Science, FCEyN, Universidad de Buenos Aires, and with CONICET,
Capital Federal C1428EGA, Argentina.
E-mail: {nrosner, clpombo}@dc.uba.ar.

. M.F. Frias is with the Instituto Tecnológico de Buenos Aires, and with
CONICET, Av. Eduardo Madero 399, Capital Federal C1106ACD,
Argentina. E-mail: mfrias@itba.edu.ar.

Manuscript received 27 Aug. 2012; revised 14 Feb. 2013; accepted 3 Mar.
2013; published online 15 Mar. 2013.
Recommended for acceptance by D. Giannakopoulou.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2012-08-0237.
Digital Object Identifier no. 10.1109/TSE.2013.15.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

. Reducing the number of propositional variables in
the propositional formula result of the translation.

. Reducing the number of valuations to be considered
by the SAT-solver by removing valuations whose
analysis we know in advance will not lead to a fault.

The TACO technique actually combines both approaches

in a synergic and fully automated way. First, it forces a

canonical representation of the Java memory heap by

removing permutations (also called symmetries) of object

references. This greatly reduces the number of meaningful

valuations of the initial state to be considered by the SAT-

solver. Second, and as a consequence of the heap

canonicalization, a simple preprocessing makes it possible

to determine in advance the truth value of a substantial

proportion of the propositional variables. These variables

can be replaced by their predetermined truth value,

yielding a simpler SAT problem.
As a hint of the power of these techniques, symmetry

reduction by itself allows us to reduce the analysis time of a

method for inserting an element in an AVL tree from over

10 hours to approximately 17 minutes. After removing

propositional variables that TACO deemed unnecessary,

the analysis time reduced to 5 minutes. The overall cluster

computing time required by TACO to rule out those

unnecessary propositional variables was only 1 minute

55 seconds.
The contributions of this paper are summarized as follows:

1. We present a novel and fully automated technique
for canonicalization of the memory heap in the
context of SAT-solving, which assigns identifiers to
heap objects in a well-defined manner (to be made
precise in Section 3).

2. Using this ordering, we present a fully automated and
parallel technique for determining which variables
can be removed. The technique consists of computing
bounds for Java fields (to be defined in Section 4.1).
The algorithm only depends on the invariant of the
class under analysis. Therefore, the computed bounds
can be reused across all the analyses in a class, and the
cost of computing the bounds can be amortized.

3. We present several case studies with complex data
structures that show that the technique improves the
analysis by reducing analysis times by several orders
of magnitude in the cases where correct code is
analyzed. We also show that the technique can
efficiently discover faults seeded using mutant
generation [12]. Finally, we report on a previously
unknown [46] fault found in a benchmark presented
in [45]. This fault was not detected by several state-
of-the-art tools based on SAT-solving, model check-
ing, or SMT-solving.

This paper is organized as follows: In Section 2, we

describe the translation of JML-annotated sequential Java

code to a SAT problem. In Sections 3 and 4, we present the

TACO technique for program analysis. In Section 5, we

present the experimental results. In Section 6, we discuss

related work. Finally, in Section 7, we discuss lines for further

work and draw conclusions about the results presented in

this paper.

2 TRANSLATING JML TO ALLOY

In this section, we present an outline of our translation of
JML [22] annotated Java code to a SAT problem. In
intention, the translation is not very different from transla-
tions previously presented by other authors [19] or by some
of the authors of this paper [25]. A schematic description of
TACO’s architecture that shows the different stages in the
translation process is provided in Fig. 1. To simplify writing
properties of linked structures in this paper we use
an extension of JML with a construct \reach(l, T,

[f1,...,fk]) denoting the set of objects of type T

reachable from a location l using fields f1,...,fk.
Our translation uses Alloy [29] as an intermediate

language. This is an appropriate decision because Alloy is
close to JML, and the Alloy Analyzer [29] provides a simple
interface to several SAT-solvers. Also, Java code can be
translated to DynAlloy programs [25]. DynAlloy [23] is an
extension of Alloy that allows us to specify actions that
modify the state in much the same way as Java statements
do. Action behavior is specified by pre and postconditions
given as Alloy formulas. From these atomic actions, we
build complex DynAlloy programs that model sequential
Java code.

DynAlloy is based on first-order dynamic logic [36]. The
aim of this specification language is to provide a formal
characterization of imperative sequential programs. Fig. 2
shows a relevant fragment of DynAlloy’s grammar. It is
worth noticing that more complex programming structures
can be described using these basic logical constructs. For

1284 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

Fig. 1. Translating annotated code to SAT.

example, if B then P else Q fi can be written as the
following DynAlloy program B?;P þ ð:BÞ?;Q. Similarly,
while B do P od can be expressed as ðB?;P Þ�; ð:BÞ?.

As shown in Fig. 1 the analysis receives as input an
annotated method, a scope bounding the sizes of object
domains, and a bound LU for the number of loop
iterations. JML annotations allow us to define a method
contract (using constructs such as requires,ensures,

assignable,signals, etc.) and invariants. A contract
may include normal behavior (how the system behaves
when no exception is thrown) and exceptional behavior
(what is the expected behavior when an exception is
thrown). The scope constrains the size of data domains
during analysis. For example, if we are analyzing a model
for singly linked lists linking nodes of type LNode
containing objects of type Data, the scope constrains the
number of List objects, LNode objects, and Data objects to
be used during analysis (for instance, 1 List, 10 LNode,
10 Data is a plausible scope). This is a restriction on the
precision of the analysis. Failures could be detected by
repeating the analysis using larger scopes; if an analysis
does not find a failure, it means no failure exists within the
provided scope for data domains. Therefore, only a portion
of the program domain is actually analyzed. Fortunately,
using bounded scopes is sufficient to expose many failures
since they can often be reproduced with few data [1].

The annotations are then translated to Alloy formulas
using translation JMLtoAlloyTranslation [25], and the
method under analysis is translated to a DynAlloy program
using translation JavaToDynAlloyTranslation [25].
The resulting translations are joined into a single DynAlloy
model that includes a partial correctness assertion. The
assertion states that every terminating execution of the code
starting in a state satisfying the precondition and the class
invariant leads to a final state that satisfies the postcondi-
tion and preserves the invariant.

To handle loops we constrain the number of iterations by
performing a user-provided number of loop unrolls LU .
Therefore, the (static1) analysis will only expose failures that

could occur performing up to LU iterations at runtime.
Notice that an interaction occurs between the scope and LU .
This is a natural situation under these constraints, and
similar interactions occur in other tools such as Miniatur
[20] and JForge [15].

As shown in Fig. 1, DynAlloy models are translated to
Alloy models using the DynAlloyToAlloyTranslator.
We will not focus on this translation, which has already
been extensively discussed in [24], but rather emphasize the
way in which Java classes are modeled in Alloy as a result
of applying the translations. This will allow us to show how
the technique we will present in Section 4 fits in the code
analysis process.

To describe the translation at a high level of abstraction,
let us consider the following Java classes for implementing
singly linked structures:

public class List {

LNode head;

}

public class LNode {

LNode next;

Integer key;

}

For the above Java classes, the resulting Alloy model
includes the signature definitions shown below:

one sig null {}

sig List {

head : LNode + null

}

sig LNode {

next : LNode + null,

key : Integer + null

}

sig Integer {}

According to Alloy’s semantics, signatures define sets of
atoms. The modifier one in signature null constrains the
signature to have a single datum. Signature List defines
list atoms and also includes a signature field head. Field
head denotes a total function from List atoms to LNode

atoms or null (in Alloy notation, head : List -> one

(LNode+null)). Similarly, we have next : LNode -> one
(LNode+null).

The Alloy language has a relational semantics. This
means that to translate an Alloy specification to a SAT
problem, the technique focuses on the translation of fields
as relations. Given scopes s for signature S and t for
signature T, one can determine the number of propositional
variables required to represent a field f : S -> one

(T+null) in the SAT model. Notice that S and T will
contain atoms S1; . . . ; Ss and T1; . . . ; Tt, respectively. Alloy
uses a matrix Mf holding s� ðtþ 1Þ propositional variables
to represent the field f (see Fig. 3).

Intuitively, a variable pSi;Tj (1 � i � s; 1 � j � t) models
whether the pair of atoms/identifiers hSi; Tji belongs to f

or, equivalently, whether Si:f ¼ Tj. A variable pSi;null

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1285

1. The use of the term static refers to the fact that code is not executed
during analysis.

Fig. 2. DynAlloy’s grammar.

models whether Si:f ¼ null. Actually, as shown in Fig. 1,
Alloy models are not directly translated to a SAT problem,
but to the intermediate language KodKod [42].

Notice that the translation from Java code to a SAT
problem could be implemented as a one-step transforma-
tion. In this sense, the translation just described does not
depend on Alloy, DynAlloy, or KodKod and can be used in
more general settings. Yet these languages and their
supporting tools offer useful infrastructures to prototype
the translation. Furthermore, we believe these languages
better characterize the several semantic gaps when translat-
ing JML-annotated Java programs to a SAT problem.

3 A NEW PREDICATE FOR SYMMETRY BREAKING

The process of SAT-based analysis relies on an implicit
traversal of the space of plausible models (i.e., those that
satisfy the specification) while looking for a model that does
not satisfy the property being checked. As mentioned before,
if this procedure finds one such model, we know that a
counterexample of the property exists. A model in this
context is a valuation of the propositional variables. Thus, the
size of the search space is exponential in the number
of propositional variables, and we should strive to reduce
its size.

Permutations of signature atoms (also called symmetries)
do not alter the truth value of Alloy formulas. Therefore,
once a valuation � is considered, those valuations origi-
nated from � by permuting atoms should be avoided. One
way to do this is by introducing symmetry-breaking predicates
that rule out certain models. For instance, Alloy includes
general-purpose symmetry-breaking predicates [42].

In this section, we present symmetry-breaking predicates
tailored to avoid permutations in the Alloy representation
of the Java memory heap.

3.1 SAT-Based Symmetry Breaking

To describe predicates concisely we will use Alloy notation,
which is thoroughly described in [29]. Alloy is a relational
language. Terms are built from signature names (which stand
for unary relations –sets), from signature fields (binary
relations in the case of fields coming from Java code), and
from typed variables denoting atoms from the corresponding
signature. There are three constants in the language: univ
(which denotes the set of all atoms in the universe), none
(which denotes the empty set), and iden (which denotes the
binary identity relation over the atoms in univ). If T is a term
that denotes a binary relation, then �T , �T , and ^T denote
transposition, reflexive-transitive closure, and transitive
closure of the relation denoted by T , respectively. Union of
relations is noted as +, intersection as &, difference as –, and
sequential composition as “.”. For instance, the expression
head.� next relates each input list to the nodes in the list or
the value null if the list is acyclic. From terms we build atomic

formulas “T1 in T2” or “T1 ¼ T2” stating that relation T1 is
contained in relation T2, and that T1 and T2 are the same
relation, respectively. From atomic formulas we build
complex formulas using the connectives ! (negation), &&
(conjunction), k (disjunction), and¼> (implication). Existen-
tially quantified formulas have the form “some x : S j �,”
where x ranges over the elements in signature S and � is a
formula. Similarly, universally quantified formulas have the
form “all x : S j �.” For a term T , formula “no T” states that
the relation denoted by T is empty.

The following Alloy predicate

pred acyclic_non_null[l : List] {

all n : LNode |

n in l.head.�next
implies n !in n.^ next and n.key!=null

}

describes acyclic lists that do not store null values. Running

the predicate in the Alloy Analyzer using the command

run acyclic for exactly 1 List,

exactly 4 LNode,

exactly 1 Integer

yields (among others) the instances shown in Fig. 4. Notice
that the list instance in the right-hand side is a permutation
(on signature LNode) of the other one. This shows that
while the symmetry-breaking predicates included in Alloy
remove many symmetries, some still remain. Actually, any
permutation of LNode that stores data in the same order as
any of these lists is also a model. The ability to reduce the
state space is central to scalability. Pruning the state space
by removing permutations on signature LNode contributes
to improving the analysis time by orders of magnitude.

Revisiting the singly linked lists example previously
shown in Section 2, it is easy to see that a predicate forcing
nodes to be traversed in the order LNode0! LNode1!
LNode2! � � � removes all symmetries.

1286 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

Fig. 3. Matrix representation of an Alloy field.

Fig. 4. Two isomorphic list instances found by Alloy Analyzer.

The idea of canonicalizing the heap to reduce symme-
tries is not new. In the context of explicit state model
checking, the articles [27], [38] present different ways of
canonicalizing the heap ([27] uses a depth-first search
traversal, while Musuvathi and Dill [38] use a breadth-first
search traversal of the heap). The canonicalizations require
modifying the state exploration algorithms, and involve
computing hash functions to determine the new location for
heap objects in the canonicalized heap. Notice that:

. The canonicalizations are given algorithmically
(which is not feasible in a SAT-solving context).

. Computing a hash function requires operating on
integer values, which is appropriate in an algorith-
mic computation of the hash values, but is not
amenable to a SAT-solver.

In the context of SAT-based analysis, Khurshid et al. [33]
propose to canonicalize the heap, but the canonicalizations
have to be provided by the user as ad hoc predicates
depending on the invariants satisfied by the heap. JForge
[14] reduces some symmetries by allocating fresh heap
memory objects following a predefined total ordering of the
atoms in the domain.

3.2 An Algorithm for Generating Symmetry
Breaking Predicates

In this section, we present a novel family of predicates that
canonicalize arbitrary heaps.

Our model of Java memory heaps consists of graphs
hN;E;L;Ri, where N (the set of heap nodes) is a set
comprised of elements from signature Object and appro-
priate value signatures (int, String, etc.). E is the set of arcs,
and contains pairs hn1; n2i 2 N �N . L is the arc labeling
function. It assigns Java field names to arcs. An edge
between nodes n1 and n2 labeled fi means that n1:fi ¼ n2.
The typing of fields must be respected. R is the root nodes
labeling function, mapping the receiver variable this,
method arguments, and static class fields to nodes. For
example, a node n labeled this means that in the heap
representation the receiver object is node n.

The algorithm depends on defining an enumeration
function for types, fields, and heap root elements. For the
remainder of this section, we will refer to fTigi2types,
ffigi2fields, and fgigi2roots as the ordered sets for types,
fields and root nodes, respectively.

3.2.1 Instrumenting the Alloy Model

To include the predicates we will instrument the Alloy
model obtained by the translation from the annotated
source code.

Besides the sets of ordered types, fields and root nodes,
it is required to provide the finite scope of analysis for
each type in order to instantiate the axioms and their
auxiliary functions.

Let us consider scopeðT Þ, the function that returns for
each type T the scope of analysis being used. The procedure
instrument_Alloy() (as shown in Fig. 5) starts by introducing
a singleton atom denoting each element of type T within the
scope of analysis.

Once the singletons have been introduced, the procedure
continues by splitting every recursive field. A field is

considered recursive if domain and codomain (minus the
null value) match. For instance, field next: LNode 7!
LNode+null is considered a recursive field.

Each recursive field r from signature T is split into two
partial functions (thus the lone modifier in Fig. 5): fr (the
forward part of the field), mapping nodes to strictly greater
nodes or null, and br (the backward part of the field),
mapping nodes to lesser nodes. Nonrecursive fields are
not modified. As Java fields must be total functions, the
procedure also adds new facts stating that for each
recursive field r, the domains of fr and br form a
partition of r’s domain, making frþ br a well-defined
total function.

The new fields obtained (that substitute for the original
ones) are meant to split the set of the original edges between
“forward” arcs and “backward” arcs. Forward arcs may
only map nodes to greater nodes (in terms of the element
index) or null, while backward arcs go to nodes that are
smaller or equal in the ordering (and cannot go to null).
Notice that forward arcs cannot lead to a cycle.

Because of the presented instrumentation, the set of
original Alloy fields is partitioned into forward fields,
backward fields, and nonrecursive fields.

The instrumentation also modifies the facts, functions,
predicates, and assertions of the original model by repla-
cing each occurrence of a recursive field ri with the
expression fri þ bri.

In the presence of subtypes, a transformation takes place
before procedure instrument_Alloy() is executed. Subtypes
are modeled using the atomization technique from [21].
Basically, an Alloy signature T does not represent the set of
all objects whose Java static type is T, but only those objects
of type T that do not belong to any subtype of T. The
transformation decomposes each Alloy field into partial
fields. Each new partial field maps atoms from a single
Alloy signature to another (possibly equal) Alloy signature
plus null. As with procedure instrument_Alloy(), this
instrumentation also replaces each occurrence of a split
field with the union of the associated partial fields. It also
adds facts that enforce the union of the partial fields
obtained from a split field to be a total function.

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1287

Fig. 5. The instrument_Alloy() procedure.

3.2.2 The Auxiliary Functions

The procedures shown in this section allow us to introduce
the necessary auxiliary functions prior to introducing the
symmetry-breaking axioms.

Procedure local_ordering() (shown in Fig. 7) generates
auxiliary functions for:

. establishing a linear order between elements of
type T (function next_T),

. returning the least object (according to the ordering
next_T) in an input subset (function min_T), and

. returning the nodes in signature T smaller than the
input parameter (function prevs_T).

Notice that all these functions are constrained to
operations among the elements of type T . We will consider
them as “local” ordering auxiliary functions.

On the other hand, procedure global_ordering() (as shown
in Fig. 8) is intended to provide functions which operate on
all heap elements. This procedure defines Alloy functions for:

. establishing a linear order between elements of all
types (function globalNext) and

. returning the least object (according to the ordering
globalNext) in an input subset (function globalMin).

Notice that function globalNext induces an ordering
between types. To effectively remove all symmetries, a
sufficient condition on the ordering between types is the
following:

the ordering is such that whenever a heap may contain an
object o of class T1 pointing to an object o0 of type T2 (the
latter being part of an heterogeneous cycle), type T1 is less
that type T2.

In the previous paragraph, by heterogeneous we mean that
the cycle must involve objects from at least two different
classes. Such orderings are most times easy to find, and
algorithm type_ordering (see Fig. 6) produces appro-
priate orderings for all the classes in the benchmark we will
use in Section 5.

We will consider a node n0 to be a parent of n if there exists
a nonrecursive field or a forward field f such that n0:f ¼ n. A
node may have no parents (in case it is a root node), or have
several parent nodes. In the latter case, among the parents we
will distinguish the minimal one (according to a global
ordering) by calling it the min-parent of n. The procedure
define_min_parent() (as shown in Fig. 9) defines a min-parent

1288 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

Fig. 6. An algorithm for type ordering.

Fig. 7. The local_ordering() procedure.

Fig. 8. The global_ordering() procedure.

function for each type T . If n belongs to type T , minPT ½n�
returns the min-parent of n (if any).

Notice that in the definition of function minPT we are
only considering forward fields and nonrecursive fields
with target type T .

Key to the symmetry-breaking predicates we are intro-
ducing is the notion of reachable objects. We consider a heap
node to be reachable if it may be accessed during the
program execution by traversing the memory heap.

Procedure define_freach() (presented in Fig. 10) defines a
function FReach denoting all objects that may be reachable
by accessing either nonrecursive fields or forward fields.
This definition is a more economical (regarding the
translation to a propositional formula) description of the
reachable heap objects since no mention of the backward
fields is needed.

3.2.3 The Symmetry-Breaking Predicates

The rest of the algorithm outputs axioms that canonicalize
the order in which heap nodes are traversed. Intuitively, we
will canonicalize heaps by ordering nodes according to
their parents in the heap. We will explain the rest of the
algorithm by considering the possibilities depicted in
Fig. 11. Given two nodes of type T , we distinguish the
following cases:

1. Both nodes are root nodes.
2. One node is a root node and the other is a nonroot

node.
3. Both nodes are nonroot nodes with the same

min-parent.
4. Both nodes are nonroot nodes with different min-

parents of the same type T 0.
5. Both nodes are nonroot nodes with min-parents of

different types.

Notice that any pair of nodes of type T is included in one
(and only one) of these cases.

Procedure order_root_nodes() (presented in Fig. 12) out-
puts an axiom that sorts two root nodes of type T . The
axiom forces every pair of root nodes to obey the ordering

in which formal parameters and static fields (namely, the
root nodes) were declared in the source Java file.

Procedure root_is_minimum() (presented in Fig. 13) creates
an axiom that constrains the first non-null root node of type T
to store the minimum element. The conjunction of this axiom
and the one generated by procedure order_root_nodes() (see
Fig. 12) forces root nodes to always be smaller than nonroot
nodes.

Procedure order_same_min_parent() (shown in Fig. 14)
outputs an axiom that sorts nodes N1; . . . ; Ni of the same
type such that minP½N1� ¼ � � � ¼ minP½Ni� ¼ N . Notice that
since Java fields are functions, there must be i different
fields f1; . . . ; fi such that N:f1 ¼ N1, N:f2 ¼ N2, and so on.
We then use the ordering in which the fields were declared
in the source Java file to sort N1; . . . ; Ni.

Procedure order_same_min_parent_type() (presented in
Fig. 15) creates an axiom that sorts nodes with different
min-parents belonging to the same type T 0. Let N1 (with
min parent N3) and N2 (with min parent N4) be nodes of the
same type. If N3 and N4 are distinct and have the same type,
then the axiom sorts N1 and N2 following the order between
N3 and N4.

Finally, the procedure order_diff_min_parent_types()
shown in Fig. 16 sorts nodes N1 and N2 of type T whose
min parents have different types. Notice that the axiom

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1289

Fig. 9. The define_min_parent() procedure.

Fig. 10. The define_freach() procedure.

Fig. 11. Comparing nodes using their min-parents.

Fig. 12. The order_root_nodes() procedure.

orders the nodes following the order in which the classes of
the parent nodes were defined in the source Java file.

To avoid “holes” in the ordering, procedure avoid_holes()
(presented in Fig. 17) adds in each signature T a fact stating
that whenever a node of type T is reachable in the heap all
the smaller ones in the ordering are also reachable.

3.2.4 Symmetry-Breaking Predicates: An Example

To make the introduction of the symmetry-breaking
predicates more accessible to the reader, we now present
an example. Let us consider the class for red-black trees
presented in Fig. 18.

The scopes for analysis will be:

. one RBTree atom,

. five RBTNode atoms, and

. five Integer atoms.

Following procedure instrument_Alloy() (see Fig. 5), fields
left and right are replaced with fields fleft (the
forward part of field left), bleft (the backward part of
left), fright (the forward part of right), and bright

(the backward part of right), respectively. Only these two
fields are split because these are the only fields that match
the definition of recursive field.

The procedure introduces the following axiom to force
fleft+bleft to be a well-defined total function:

fact {

no (fleft.univ & bleft.univ) and

RBTNode = fleft.univ + bleft.univ

}

A similar Alloy fact is appended to make fright+

bright a total function.
Our model of Java heaps consists of graphs hN;E;L;Ri. In

the present example, nodes are the objects from signatures
RBTree, RBTNode, and Integer, or the value null. Labels
correspond to field names, and R is the receiver variable
this, of type RBTree.

Algorithm type_ordering (see Fig. 6) produces the
following order:

1290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

Fig. 13. The root_is_minimum() procedure.

Fig. 14. The order_same_min_parent() procedure.

Fig. 15. The order_same_min_parent_type() procedure.

Fig. 16. The order_diff_min_parent_types() procedure.

1. RBTree,
2. RBTNode, and
3. Integer.

Also, assume that field declarations appear in the
following order:

1. root : RBTree 7! one (RBTNode+null),
2. fleft : RBTNode 7! lone (RBTNode+null),
3. bleft : RBTNode 7! lone (RBTNode+null),
4. fright: RBTNode 7! lone (RBTNode+null),
5. bright: RBTNode 7! lone (RBTNode+null),
6. value : RBTNode 7! one (Integer+null),
7. is_black : RBTNode 7! one boolean.

Executing procedure local_ordering() introduces new
auxiliary functions. For the example (only for signature
RBTNode), the procedure outputs:

fun next_RBTNode[] : RBTNode -> lone RBTNode {

RBTNode0->RBTNode1

+ RBTNode1->RBTNode2

+ RBTNode2->RBTNode3

+ RBTNode3->RBTNode4 }

fun min_RBTNode[os : set RBTNode] : lone RBTNode

{ os - os.^next_RBTNode[] }

fun prevs_RBTNode[o : RBTNode] : set RBTNode

{ o.^(~next_RBTNode[]) }

Similarly, the procedure outputs function definitions for
types RBTree and Integer.

Procedure global_ordering() (see Fig. 8) outputs the
declaration of function globalNext. This function pro-
vides an ordering on all objects in the heap. As the reader
may notice, each next_T is subsumed in globalNext.

fun globalNext[]: Object -> Object {

RBTree0->RBTNode0 +

RBTNode0->RBTNode1 +� � �+
RBTNode3->RBTNode4 + RBTNode4->Integer0 +

Integer0->Integer1 +� � �+
Integer3->Integer4

}

The following min-parent functions are defined by
procedure define_min_parent() (see Fig. 9). Notice that since
there are no fields having objects of type RBTree in their
range, no minP_RBTree function is defined.

fun minP_RBTNode[o: RBTNode]: Object {

globalMin[(fleft+fright+root).o]

}

fun minP_Integer[o: Integer]: Object {

globalMin[(value).o]

}

Procedure define_freach() (see Fig. 10) yields the definition

of a function that characterizes the reachable heap objects:

fun FReach[]: set Object {

this.�(root + value + fleft + fright)

}

Notice that field is_black is excluded because boo-

lean values are not heap objects and the FReach function

returns a set of heap objects. So far no axioms were

introduced other than those constraining the additions of

forward and backward fields to be total functions.
Procedure order_root_nodes() (see Fig. 12) does not output

any axioms because there is only one root node, namely,

this, of type RBTree. Procedure root_is_minimum() (see

Fig. 13) outputs:

fact { this != null implies this = RBTree_0 }

Regarding procedure order_same_min_parent() (see

Fig. 14), since there is only one field from type RBTree to

type RBTNode, there are no two objects with type RBTNode

with the same min-parent in signature RBTree. The same

reasoning applies to RBTNode and Integer. Notice instead

that there are two forward fields from type RBTNode to type

RBTNode (namely, fleft and fright). The axiom pro-

duced by order_same_min_parent() (described below) orders

objects of type RBTNode with the same min-parent of type

RBTNode:

fact {

all disj o1, o2 : RBTNode |

let p1 = minP_RBTNode[o1] |

let p2 = minP_RBTNode[o2] |

(o1+o2 in FReach[] and

some p1 and some p2 and

p1 = p2 and p1 in RBTNode

) implies

((o1 = p1.fleft and o2 = p1.fright) implies

o2 = o1.next_RBTNode[]

)

}

Procedure order_same_min_parent_type() (see Fig. 14)

yields three axioms. The first one, included below, orders

objects of type RBTNode with different min-parents of type

RBTNode. The other two axioms are similar and sort objects

of type Integer with different RBTNode min-parents, and

objects of type RBTNode with different RBTree min-

parents. Notice that since scopeðRBTreeÞ ¼ 1, the last axiom

is identically true and can be automatically removed.

... 1291

Fig. 17. The avoid_holes() procedure.
Fig. 18. A red-black trees class hierarchy.

fact {

all disj o1, o2 : RBTNode |

let p1 = minP_RBTNode[o1] |

let p2 = minP_RBTNode[o2] |

(o1+o2 in FReach[] and

some p1 and some p2 and

p1!=p2 and p1+p2 in RBTNode and

p1 in prevs_RBTNode[p2]

) implies o1 in prevs_RBTNode[o2]

}

Only one type (RBTNode) satisfies the conditions
required by procedure order_diff_min_parent_types() (see
Fig. 16). In effect, RBTNode is the only type for which there
are fields pointing to it coming from two different types (for
instance, fields fleft and root have the right typing). The
procedure generates the following axiom, which orders
objects of type RBTNode whose min-parents are one of type
RBTree and the other of type RBTNode:

fact {

all disj o1, o2 : RBTNode |

let p1 = minP_RBTNode[o1] |

let p2 = minP_RBTNode[o2] |

(o1+o2 in FReach[] and

some p1 and some p2 and

p1 in RBTNode and p2 in RBTree

) implies o1 in prevs_RBTNode[o2]

}

Procedure avoid_holes() (see Fig. 17) outputs the follow-
ing axiom for signature RBTNode:

fact { all o : RBTNode |

o in FReach[] implies prevs_RBTNode[o] in

FReach[]

}

This procedure also generates similar axioms for
signatures RBTree and Integer. Notice that since
scopeðRBTreeÞ ¼ 1, the resulting fact is identically true and
is automatically removed.

3.3 A Correctness Proof

Theorem 3.1 below shows that the instrumentation does
not miss any bugs during code analysis. If a counter-
example for a partial correctness assertion exists, then there
is another counterexample that also satisfies the instru-
mentation. The proof proceeds by renaming nodes follow-
ing the conditions from Fig. 11 in a way that induces
an isomorphism.

Theorem 3.1. Given a heap H for a model, there exists a heap H 0

isomorphic to H and whose ordering between nodes respects
the instrumentation. Moreover, if an edge hn1; n2i is labeled r
(with r a recursive field), then: If n1 is smaller (according to
the ordering) than n2 (or n2 is null), then hn1; n2i is labeled
in H 0fr. Otherwise, it is labeled br.

Proof. For each signature T , let nroot;T be the number of root
objects from T . For each pair of signatures T; T 0, let nT;T 0

be the number of objects from T whose min-parent has
type T 0 (notice that although min-parent is not fully
defined, we can determine its type due to the linear

ordering imposed on signature names). Assign the first
nroot;T elements from T to root elements. Notice that this
satisfies the condition depicted in Fig. 11a. Use the linear
ordering between types and assign, for each signature T 0,
nT;T 0 objects from T for nodes with min-parent in T 0.
When doing so, assign smaller objects (w.r.t. the linear
ordering nextT) to smaller (w.r.t. the linear ordering on
signature names) T 0 signature names. Notice that this
satisfies the conditions depicted in Figs. 11b and 11e. It
only remains to determine the order between nodes in
the same type and whose min-parents have the same
type. Follow the directions given in Figs. 11c and 11d.
This defines a bijection b between nodes in H and nodes
in H 0. We still have to label heap arcs. Let n1; n2 be nodes
in H connected via an edge labeled r. Notice that bðn1Þ
and bðn2Þ have the same type as n1 and n2, respectively.
Therefore, if r is not recursive, use r as the label for the
edge between bðn1Þ and bðn2Þ. If r is recursive, then n1

and n2 have the same type or n2 ¼ null, and the same is
true for bðn1Þ and bðn2Þ. Thus, since there is a total order
on each type, if bðn1Þ < bðn2Þ or n2 ¼ null, set the label of
the edge between bðn1Þ and bðn2Þ to fr. Otherwise, set it
to br. tu

Definition 3.2. Given a heap H ¼ hN;E;L;Ri for an
instrumented model, its Java-source BFS listing (JBFS listing
for short) is a breadth-first search listing of N that satisfies:

. Root nodes are listed first, following the order they
were declared in the Java source file.

. Given an already listed node n, its children are listed
according to the order in which the fields pointing to
them were declared in the Java source file.

Notice that Definition 3.2 defines the BFS listing
uniquely, and therefore, two heaps H, H 0 are different iff
their JBFS listings are different.

Definition 3.3. Given a heap H ¼ hN;E;L;Ri for an
instrumented model, its min-parent subheap (denoted by
SH) is the restriction of H obtained by only keeping those arcs
satisfying n1 ! n2 iff n1 ¼ minP ½n2�.

Lemma 3.4. Let H be a heap for an instrumented model. Then,
SH is a forest.

Proof. Notice that all nodes have at most one incoming arc.
Only the root nodes do not have incoming arcs. Let us
show thatSH is a forest (set of trees) by showing that there
are no cycles. First, homogeneous cycles (those whose
nodes all have the same type) cannot exist because
forward recursive fields relate nodes with greater nodes.
Second, heterogeneous cycles (those involving nodes
from at least two different types) cannot exist because
(see the paragraph after the definition of function
globalMin) heterogeneous cycles in H must have an input
arc a! b in which a’s type is smaller than b’s type.
Therefore, minP ½b� ¼ a, which is outside the cycle. tu

Lemma 3.5. Let H and H 0 be isomorphic heaps for an
instrumented model. Then, SH and SH 0 are also isomorphic.

Proof. Let i : H ! H 0 be an isomorphism. Let us prove that
i is an isomorphism from SH to SH 0. Let n1; . . . ; ni; . . .
and m1; . . . ;mi; . . . be the JBFS listings of SH and SH 0,

1292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

respectively. If SH and SH 0 are not isomorphic, there
must exist a minimum index j such that iðnjÞ 6¼ mj. But,
by definition of JBFS listing, one of the following
conflictive situations must occur:

1. nj is a root node (and then iðnjÞ ¼ mj), or
2. since by Lemma 3.4 SH and SH 0 are forests, there

is a unique node nk (with k < j) and a field f such
that nk:f ¼ nj. But then, by j’s minimality, it must
be iðnkÞ ¼ mk. Since i is an isomorphism, it must
be iðnjÞ ¼ iðnk:fÞ ¼ mk:f ¼ mj. tu

Lemma 3.6. LetH andH 0 be isomorphic heaps for an instrumented

model. Let n1; . . . ; ni; . . . ; nj; . . . and m1; . . . ; mi; . . . ;mj; . . .

be the JBFS listings of SH and SH 0, respectively. Then,

ni < nj iff mi < mj:

Proof. Let us assume the property is false and let us arrive

at a contradiction. Since the property is false, there must

exist a minimum i0 such that ni0 < nj and mi0 > mj.

Similarly, let j0 be such that it is minimum among the

values of j. Thus, ni0 < nj0
and mi0 > mj0

. We will

consider the following cases:

1. ni0 and nj0
are root nodes. The contradiction is

immediate because root nodes are explicitly
ordered by axiom order_root_nodes (see Fig. 12).

2. ni0 is a root node and nj0 is not. Due to the
isomorphism between SH and SH 0 (Lemma 3.5),
mi0 must be a root node and mj0 must not be a
root node. Axiom root_is_minimum (see Fig. 13)
explicitly establishes that mi0 < mj0

.
3. ni0 and nj0 have the same min-parent nk, and the field

pointing to ni0 is declared before the field pointing to
nj0

. Due to the isomorphism between SH and SH 0

(Lemma 3.5), it must be iðni0Þ ¼ mi0 and iðnj0Þ ¼
mj0

. Similarly, it must be iðnkÞ ¼ mk. Axiom
order_same_min_parent (see Fig. 14) explicitly
establishes that mi0 < mj0 .

4. ni0 and nj0
have min-parents of different types, and

minP ½ni0 �’s type is less than minP ½nj0
�’s type. Due

to the isomorphism between SH and SH 0

(Lemma 3.5), it must be minP ½mi0 �’s type less
than minP ½mj0 �’s type. Thus, by axiom order_
diff_min_parent_types (see Fig. 16), mi0 < mj0

.
5. ni0 and nj0 have different min-parents of the same

type. By axiom order_same_min_parent_type
(see Fig. 15), it must be minP ½ni0 � < minP ½nj0 �
and minP ½mi0 � > minP ½mj0 �. Since the index of
minP ½ni0 � is less than i0, the minimality of i0
is violated. tu

Theorem 3.7 below shows that the instrumentation

indeed yields a canonicalization of the heap. The intuition

behind the proof is that the heap is characterized by its min-

parent subheap. Therefore, canonicity follows from proving

that isomorphic heaps have the same JBFS listings of their

min-parent subheaps.

Theorem 3.7. Let H;H 0 be heaps for an instrumented model. If

H is isomorphic to H 0, then H ¼ H 0.

Proof. SinceH andH 0 are isomorphic it suffices to show that
the JBFS listings of SH and SH 0 are the same. If this is not
the case, there must be a minimum position i0 where the
listings differ. Let n1; n2; . . . ; ni0 ; . . . ; ni; . . . be the listing
of SH, and m1;m2; . . . ;mi0 ; . . . ;mi; . . . be the listing of
SH 0. Since i0 is minimal, it must be n1 ¼ m1, n2 ¼ m2, . . . ,
ni0�1 ¼ mi0�1. Moreover, let us assume without loss of
generality that ni0 > mi0 . Let j > i0 such that

ni0 > nj and mi0 < mj:

Such j exists because by axiom avoid_holes (see
Fig. 17) there are no holes in the listings. This contradicts
Lemma 3.6. tu

Notice that class fields may induce cycles in the heap and
even induce indirect cycles (think, for instance, of fields
f1 : T1 ! T2, f2 : T2 ! T1). In Fig. 19, we present two cyclic
heaps. In the following paragraphs, we will explain how
symmetries are broken in these examples.

Example 3.8. Let us first analyze the heap depicted in Fig. 19a.
This heap configuration corresponds to a circular doubly
linked list from the Apache package commons. collec-
tions (one of the benchmark classes we will use in Section
5). Node Li is the receiver object this, whose type is
AbstractLinkedList. Nodes Nj, Nk, Nm, and Nn have

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1293

Fig. 19. Breaking symmetries in two cyclic heaps.

type LinkedNode. Algorithm type-ordering sets
CyclicList < LinkedNode. Since there is exactly one node
with type CyclicList, by axiom avoid_holes it has to be
nodeL0. Notice that for all nodes of typeLinkedNode but
Nj, their min_parent has type LinkedNode. Since Nj’s
min_parent has type CyclicList, by axiom order_-
diff_min_parent_types must be j < k, j < m, and j < n.
Then, minP½Nk� ¼ minP½Nn� ¼Nj. Assuming that field next
was declared before field previous, by axiom order_same_
min_parent must be k < n. Let us now compare indices n
and m. minP½Nn� ¼ Nj and (since k < n) minP½Nm� ¼ Nk.
Since j < k, by axiom order_same_min_parent_type must be
n < m. We then have j < k < n < m. By axiom avoid_holes
must be j ¼ 0, k ¼ 1, n ¼ 2, and m ¼ 3.

Example 3.9. Let us analyze the heap depicted in Fig. 19b.
Node Ni is the receiver object this. Ni, Nk, and Nn have
type T1. Nodes Mj, Mm, and Mp have type T2. Algorithm
type-ordering sets T1 < T2. Since this is always a root, by
axiom root_is_minimum is i < k and i < n. Since
minP½Mj� ¼ Ni, minP½Mm� ¼ Nk, and minP½Mp� ¼ Nn, by
axiom order_same_min_parent_type is j < m and j < p. Let
us now compare nodes Nk and Nn. minP½Nk� ¼Mj and
minP½Nn� ¼Mm. Since j < m, by axiom order_same_min_
parent_type, must be k < n. Thus, i < k < n, and by axiom
avoid_holes is i ¼ 0, k ¼ 1, and n ¼ 2. Similar reasoning
allows us to conclude that j ¼ 0, m ¼ 1, and p ¼ 2.

4 COMPUTING TIGHT BOUNDS

A distinguishing feature of Alloy’s backend, KodKod, is
that it enables the prescription of partial instances in
models. Indeed, each Alloy 4 field f is translated to a
matrix of propositional variables as described in Fig. 3,
together with two bounds (relation instances) Lf (the lower
bound) and Uf (the upper bound). As we will see, these
bounds provide useful information. Consider, for instance,
relation next from the singly linked list model presented in
Section 2. If a tuple hNi;Nji 62 Unext, then no instance of field
next can contain hNi;Nji, allowing us to replace pNi;Nj

in Mnext (the matrix of propositional variables associated
with relation next) by the truth value false. Similarly, if
hNi;Nji 2 Lnext, pair hNi;Njimust be part of any instance of
field next (allowing us to replace variable pNi;Nj

with the
truth value true). Thus, the presence of bounds allows us to
determine the value of some entries in the KodKod
representation of a given Java field.

Assume that the class invariant for representing a singly
linked list requires lists to be acyclic. Assume also that
nodes have identifiers N0; N1; N2; Thus, a list instance
will have the shape

Notice that since lists are assumed to be acyclic, it is easy
to see that some tuples are deemed to never be contained in
any next relation instance. Since no node may refer to
itself, there is no instance such that any of tuples hN0; N0i,
hN1; N1i, and hN2; N2i are contained in relation next. If we
could determine this before translating to a propositional
formula, then these tuples could be safely removed from the
Unext upper bound. By doing so, propositional variables

representing membership of these tuples (namely, pN0;N0
,

pN1;N1
, and pN2;N2

) could be replaced with value false, leading
to a formula with fewer variables. Since, in the worst case,
the SAT-solving process grows exponentially with respect
to the number of propositional variables, getting rid of
variables often improves (as we will show in Section 5) the
analysis time significantly. In our example, determining
that a pair of atoms hNi;Nji can be removed from the
bound Unext allows us to remove a propositional variable in
the translation process. When a tuple is removed from an
upper bound, the resulting bound is said to be tighter than
before. In this section, we concentrate on how to determine
if a given pair can be removed from an upper bound
relation, therefore improving the analysis performance.

Up to this point in this paper we have made reference to
three different kinds of bounds, namely:

. The bounds on the size of data domains used by the
Alloy Analyzer. Generally, these are referred to as
scopes and should not be confused with the intended
use of the word bounds in this section.

. In DynAlloy, besides imposing scopes on data
domains as in Alloy, we bound the number of loop
unrolls. Again, this bound is not to be confused with
the notion of bound that we will use in this section.

. In this section, we made reference to the lower and
upper bounds (Lf and Uf) attached to an Alloy field f

during its translation to a KodKod model. For the
rest of this section, we use the term bound to refer to
the upper bound Uf .

Complex linked data structures usually have complex
invariants that impose constraints on the topology of data
and on the values that can be stored. For instance, the class
invariant for the red-black tree structure we introduced in
Section 3 states that:

1. For each node n in the tree, the keys stored in nodes
in the left subtree of n are always smaller than the
key stored in n. Similarly, keys stored in nodes in the
right subtree are always greater than the key stored
in n.

2. Nodes are colored red or black, and the tree root is
always black.

3. In any path starting from the root node there are no
two consecutive red nodes.

4. Every path from the root to a leaf node has the same
number of black nodes.

In the Alloy model result of the translation, Java fields
are mapped to total functional relations. For instance,
field left is mapped to a total functional relation. Suppose
that we are interested in enumerating instances of red-
black trees that satisfy a particular predicate. This
predicate could be the above representation invariant or
a method precondition involving red black trees. Let
us assume it is the above invariant. Furthermore, let us
assume that:

1. nodes come from a linearly ordered set, and
2. trees have their node identifiers chosen in a

canonical way (for instance, a breadth-first-order
traversal of the tree yields an ordered listing of the
node identifiers).

1294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

In particular, these assumptions may be fulfilled by
using the symmetry-breaking predicates introduced in
Section 3. Following the breadth-first-order heap canoniza-
tion, given a tree composed of nodes N0; N1; . . . ; Nk,
node N0 is the tree root, N0:left ¼ N1, N0:right ¼ N2, and
so on. Observe that the breadth-first ordering allows us to
impose more constraints on the structure. For instance, it is
no longer possible that N0:left ¼ N2. Moreover, if there is a
node to the left of node N0, it has to be node N1 (otherwise
the breadth-first listing of nodes would be broken). At the
Alloy level, this means that hN0; N2i 2 left is infeasible,
and the same is true for N3; . . . ; Nk instead of N2. Recalling
the discussion at the beginning of this section, this means
that we can get rid of several propositional variables in the
translation of the Alloy encoding of the invariant to a
propositional SAT problem. Actually, as we will show in
Section 5, for a scope of 10 red-black tree nodes, this
analysis allows us to reduce the number of propositional
variables from 650 to 200.

The usefulness of the previous reasonings strongly
depends on the following two requirements:

1. being able to guarantee, fully automatically, that
nodes are placed in the heap in a canonical way, and

2. being able to automatically determine, for each class
field f, what the infeasible pairs of values that can be
removed from the bound Uf are.

To cope with requirement 1, we will rely on the
symmetry-breaking predicates we introduced in Section 3.
With respect to requirement 2, in Section 4.1 we will present
a fully automatic and effective technique for checking
feasibility.

4.1 Symmetry Breaking and Tight Bounds

In the previous section, we discussed the representation of
red-black trees. While in the original Alloy model functions
left and right are each encoded using n� ðnþ 1Þ proposi-
tional variables, due to the canonical ordering of nodes and
to the class invariant we can remove arcs from relations. To
determine whether edges Ni ! Nj can be part of field F or
can be removed from UF, TACO proceeds as follows:

1. Synthesizes the instrumented model following the
procedure shown in Section 3.

2. Adds to the model the class invariant as an axiom.
3. For each pair of object identifiers Ni;Nj, it performs

the following analysis:

pred NiToNjInF[]{

Ni+Nj in FReach[] and Ni->Nj in F

}

run NiToNjInF for scopes

In the example, for field fleft we must check, for
instance,

pred TNode0ToTNode1Infleft[]{

TNode0 + TNode1 in FReach[] and

TNode0->TNode1 in fleft

}

run TNode0ToTNode1Infleft for exactly 1 Tree,

exactly 5 TNode,

exactly 5 Data

If a “run” produces no instance, then there is no memory
heap in which Ni->Nj in F satisfying the class invariant.
Therefore, the edge is infeasible within the provided scope.
It is then removed from UF, the upper bound relation
associated with field F in the KodKod model. This produces
tighter KodKod bounds which, when the KodKod model is
translated to a propositional formula, yield a SAT problem
involving fewer variables.

All of these analyses are independent. A naive algo-
rithm to determine feasibility consists of performing all the
checks in parallel. Unfortunately, the time required for
each one of these analyses is highly irregular. Some of the
checks take milliseconds, and others may exhaust available
resources while searching for the complex instances that
have to be produced.

The algorithm for bound refinement we used in [26]
(whose pseudocode is given in Fig. 20) is an iterative
procedure that receives a collection of Alloy models to be
analyzed, one for each edge whose feasibility must
be checked. It also receives as input a threshold time T to
be used as a time bound for the analyses. All the models
are analyzed in parallel using the available resources.
Those individual checks that exceed the time bound T are
stopped and left for the next iteration. Each analysis that
finishes as unsatisfiable tells us that an edge may be
removed from the current bound. Satisfiable checks tell us
that the edge cannot be removed. After all the models have
been analyzed, we are left with a partition of the current set
of edge models into three sets: unsatisfiable checks,
satisfiable checks, and stopped checks for which we do

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1295

Fig. 20. TACO’s algorithm for generational bound refinement.

not have a conclusive answer. We then refine the bounds

(using the information from the unsatisfiable models) for

the models whose checks were stopped. The formerly

stopped models are sent again for analysis, giving rise to

the next iteration. This process, after a number of iterations,

converges to a (possibly empty) set of models that cannot

be checked (even using the refined bounds) within the

threshold T . Then, the bounds refinement process finishes.

Notice that in TACO’s algorithm the most complex

analyses (those reaching the timeout) get to use tighter

bounds in each iteration.
The following theorem shows that the bound refinement

process is safe, i.e., it does not miss faults.

Theorem 4.1. Let H be a memory heap exposing a fault. Then

there exists a memory heap H 0 exposing the bug that satisfies

the instrumentation and such that for each field g, the set of

edges with label g (or bg or fg in case g is recursive) is

contained in the refined Ug.

Proof sketch. Let H 0 be the heap from Theorem 3.1. It

satisfies the instrumentation and, since H 0 is isomorphic

to H, it also exposes the fault. Assume there is in H 0 an

edge Ni ! Nj labeled g, such that Ni ! Nj 62 Ug. Since

during code analysis TACO includes the class invariant

as a part of the precondition, heap H 0 must satisfy the

invariant. But since Ni ! Nj 62 Ug, the Alloy analysis

pred NiToNjInF[]{

Ni in FReach[] and

Ni->Nj in F

}

run NiToNjInF for scopes

must have returned UNSAT. Then, there is no memory
heap that satisfies the invariant and contains the edge
Ni ! Nj, leading to a contradiction. tu
For most of the case studies we report in Section 5 it was

possible to check all edges using this algorithm. Since
bounds only depend on the class invariant, the signatures
scopes, and the typing of the method under analysis, the
same bound is used (as will be seen in Section 5) to improve
the analysis of different methods. By extending TACO’s
architecture, a bound, once computed, is stored in a bounds
repository, as shown in Fig. 21.

It is generally the case that the number of processors is
significantly smaller than the number of analyses that can be
run in parallel. As we have already mentioned, analysis time
for feasibility checks is highly irregular. Thus, by the time an
analysis is allocated to a given processor, verdicts from
previous edges may have already been reported. In the
TACO algorithm presented in Fig. 20, a generational
approach is taken. This means that although an UNSAT
verdict is known for a given edge, this information has no
effect before the current iteration is finished.

An alternative approach for computing bounds is to make
use of UNSAT information as soon as it is available. This
leads to a third algorithm, as shown in Fig. 22. For the
remainder of this paper, we will refer to this alternative
algorithm as the eager algorithm. The main characteristic of
this algorithm is that upper bounds are updated as soon as
an UNSAT certificate is obtained. Therefore, Alloy models
being allocated for analysis make use of the most recent
upper bound information. Also, since the Alloy Analyzer
outputs a model whenever a feasibility check returns SAT,
the algorithm marks as satisfiable all variables correspond-
ing to edges that are reachable in that model from the root

1296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

Fig. 21. TACO architecture extended with a bounds repository.

Fig. 22. TACO’s algorithm for dynamic bound refinement.

nodes. This improves the efficiency of the tool by avoiding
the analysis of those edges.

5 EXPERIMENTAL RESULTS

In this section, we report the results obtained from

conducting several experiments. We analyze seven collec-
tion classes with increasingly complex class invariants.

Using these classes, we will study the performance of TACO

in several ways. We will denote by TACO� the translation
implemented in TACO, but without the symmetry reduc-

tion axioms or the tight bounds. In Section 5.1, we study the
effect that the inclusion of the symmetry-breaking predi-

cates has on the analysis time. This is achieved by
comparing TACO� with TACO. In Section 5.2, we compare

the parallel algorithms for computing bounds presented in
Figs. 20 and 22. Section 5.3 reports on the impact of using

tighter bounds. Finally, in Sections 5.4 and 5.5, we compare
TACO with several tools in two settings. The first one is a

comparison with JForge [19] (a state-of-the-art SAT-based

analysis tool developed at MIT). Since the classes we
analyze are correct,2 this allows us to compare the tools in

a situation where the state space must be exhausted. The
second one is when we study the error-finding capabilities

of TACO against several state-of-the-art tools based on SAT-
solving, model checking, and SMT-solving.

Experimental Setup. In this section, we analyze methods
from collection classes with increasingly rich invariants. We
will consider the following classes:

. LList: An implementation of sequences based on
singly linked lists.

. AList: The implementation AbstractLinkedList

of interface List from the Apache package
commons.collections, based on circular doubly
linked lists.

. CList: A caching circular double linked list imple-
mentation of interface List from the Apache
package commons.collections.

. BSTree: A binary search tree implementation from
[45].

. TreeSet: The implementation of class TreeSet from
package java.util, based on red-black trees.

. AVL: An implementation of AVL trees obtained
from the case study used in [4].

. BHeap: An implementation of binomial heaps used
as part of a benchmark in [45].

In all cases, we are checking that the invariants are
preserved. Also, for classes LList, AList, and CList,
we show that methods indeed implement the sequence
operations. Similarly, in classes TreeSet, AVL, and
BSTree we also show that methods correctly implement
the corresponding set operations. For class BHeap we also
show that methods correctly implement the corresponding
priority queue operations. We also analyze a method for
extracting the minimum element from a binomial heap,
that contains a previously unknown fault (we discuss it
extensively in Section 5.5).

Loops are unrolled up to 10 times, and no contracts for
called methods are used (we inline their code). We set the
scope for signature Data equal to the scope for nodes.
We have set a timeout (TO) of 10 hours for each one of the
analyses. Entries “OofM” mean “out of memory error.”

The parallel algorithms for computing bounds were run
in a cluster of 16 identical quad-core PCs (64 cores total),
each featuring two Intel Dual Core Xeon processors running
at 2.67 GHz, with 2 MB (per core) of L2 cache and 2 GB (per
machine) of main memory. Nonparallel analyses, such as
those performed with TACO after the bounds were
computed or when using other tools, were run on a single
node. The cluster OS was Debian’s “etch” flavor of GNU/
Linux (kernel 2.6.18-6). The message-passing middleware
was version 1.1.1 of MPICH2, Argonne National Labor-
atory’s portable, open-source implementation of the MPI-2
Standard. All times are reported in mm:ss format. Those
experiments for which there exists a nondeterministic
component in the behavior of the algorithm were run 10
times and the value reported corresponds to the average of
all execution times.

5.1 Analysis Using Symmetry-Breaking Predicates

As mentioned before, none of the main contributions of this
paper were implemented in TACO�. In this sense, the
analysis time of TACO� can be used as a reference value
for measuring the improvement produced by the inclusion
of symmetry-breaking predicates as well as by the use of
tight bounds.

In Table 1, we compare the analysis time of TACO�

against a version of TACO that only adds the symmetry-
breaking predicates (we will call this intermediate version
TACOsym). In other words, bounds are neither computed nor
used by TACOsym. The cell highlighting denotes which tool
needed the smaller amount of computing time. If both tools
required the same amount of computing time or both tools
reached the time limit, no cell was highlighted.

Table 2 shows the improvement of using the symmetry-
breaking predicates discussed in Section 3. All methods
under analysis are correct with respect to their specification.
The first column shows the maximum scope for which
TACO� achieves the analysis within the time threshold of
10 hours. Similarly, the second column shows the same
information for TACOsym.

Let s be the maximum scope for which both TACO�

and TACOsym completed the analysis within the time limit.
The third and fourth columns show the analysis times for
both tools in that particular scope. Finally, the last column
shows the ratio between the time required by TACOsym

and TACO� at scope s. As in Table 1, we distinguish the
tool that reached the larger scope of analysis as well as
the one that required less analysis time by highlighting the
corresponding cells.

Observe that in most cases TACOsym outperforms
TACO� both in maximum scope for which the analysis
ends within the time limit and in the amount of time spent
in analysis for the maximum scope for which both tools
finish. This can be seen in the fifth column corresponding
to the analysis times ratio. To summarize the information
of the table, 96 percent of cases show an increase of the
maximum scope of analysis, while this value decreases for
only one case (4 percent). This was calculated on the basis

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1297

2. Actually, as we will show in Section 5.5.3, there is a fault in one
implementation that has not been reported before.

of those cases where at least one of the tools reached the

timeout limit. Considering all the experiments in the

benchmark, TACOsym increases the scope of analysis in

6.57 nodes on average. When comparing the largest

common scope for which both tools finish the analysis

within the time limit, over 80 percent of the experiments

show a dramatic decrease in the analysis time. When

calculating over these cases, the time required by

TACOsym to accomplish the analysis is, on average, only

1.85 percent of the time consumed by TACO�.

5.2 Computing Tight Bounds

In Section 4, we emphasized the fact that our technique
allowed us to remove variables in the translation to a
propositional formula. Each of the reported classes includes
some field definitions. For each field f in a given class,
during the translation from Alloy to KodKod an upper
bound Uf is readily built. We will call the union of the upper
bounds over all fields the upper bound. In Table 3, we report,
for each class, the following:

1. The number of variables used by TACO� in the upper
bound (# UB). That is, the size of the upper bound
without using the techniques described in this paper.

2. The size of the tight upper bound (# TUB) used by
TACO. The tight upper bound is obtained by
applying the bound refinement algorithm from
Section 4.1 starting from the initial upper bound.
Given a field f , the instance of Uf that contains all
tuples is called initial upper bound. The time required
to build the initial upper bound is negligible.

3. The time required by the iterative algorithm in
Fig. 20 to build the tight upper bound.

4. The time required by the eager algorithm in Fig. 22
to build the same tight upper bound.

Again, we distinguish the algorithm that consumed the
smaller amount of time by highlighting the corresponding
cell. For both algorithms, the initial timeout used during
bound refinement for the individual analyses was set to 20.

Table 3 shows that, on average, over 70 percent of the
variables in the bounds can be removed. Let us now
compare the performance of computing a tight bound by
using the iterative algorithm (see Fig. 20) and the eager
algorithm (see Fig. 22). Observe that, on average, a speed-
up of approximately 1.95 times is achieved by using the
eager algorithm instead of the iterative algorithm for
computing bounds. Both iterative and eager algorithms
exceeded the 10 hour barrier for only one experiment (cyclic

1298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

TABLE 2
Improvement Produced by Using

the Symmetry-Breaking Predicates

TABLE 1
Comparison of Code Analysis Times for 10 Loop Unrolls

Using TACO�ðT�Þ and TACOsymðTsÞ

linked list and cache linked list, respectively, both for a
scope of 20).

Although the aforementioned savings are indeed sig-
nificant, it is worth mentioning that they fail to achieve a
major improvement in asymptotic terms. Figs. 23 and 24 are
introduced as two representative cases of the comparison of
both algorithms. As these figures illustrate, projections of
the same data on a logarithmic scale on the y-axis reveal
some interesting offset shifts, yet there is hardly any impact
on the slopes.

Both techniques suffer from a high number of aborted
partial analysis. We are currently developing strategies to
mitigate this problem. We hope that this will help us in
devising a more scalable algorithm for computing tight
bounds.

5.3 Analyzing the Impact of Using Bounds

In this section, we will show the results of systematically
tightening the bounds to determine the effects of such
change in the SAT-solver behavior. Our hypothesis is that
most times a tighter bound leads to a smaller analysis time.

To study the effect of tightening the bound, we ran the
same analyses, varying only this parameter. Up to this point,
we have referred to two kinds of bounds: the initial bound
(all tuples) and the tightest bound (computed by the
distributed algorithms). To evaluate the impact of using

bounds, we built several approximations ranging from the
initial bound to the tightest bound. We produce a boundBn%

by keeping those edges whose feasibility check was reported
as UNSAT and falls within the n% of the less expensive
checks in terms of analysis time. Given two edges e1 and e2,
we say that e1 is less expensive than e2 if the time needed for
obtaining a verdict for the feasibility of e1 is less than that of
e2. Notice that, using this definition, the B100% bound
corresponds to the tightest bound, while the B0% bound
corresponds to the initial bound.

By using the stored logging information from running
the distributed algorithm we built the following bounds:
B10%, B20%, B30%, B40%, B50%, B60%, B70%, B80%, and B90%.

The reader may notice that computing bounds of
different precisions only makes sense when the iterative
algorithm for computing bounds (see Fig. 20) is used.
This is because in the dynamic algorithm of Fig. 22 the
analysis time for a given check is strongly influenced by
the initial scheduling.

Once the bounds were defined for each collection class,
we reran each experiment varying the bound. The timeout

was again set to 10 hours. We fixed the scope of each method
under analysis to be the maximum value such that TACO
(using any incremental bound) successfully completed the
analysis within the time limit. The rationale behind this
decision is to examine the effect on the hardest problems.

Due to the small analysis times, the case studies
corresponding to class LList were explicitly excluded
from this assessment. For the remaining 19 methods under
analysis, eight exhibited an almost strictly monotonic
decrease in the analysis time required as the bound got
tighter. The improvement is shown in logarithmic scale in
Fig. 25.

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1299

TABLE 3
Analysis Time in mmm:ss for Discovering

Tighter Upper Bounds Using Each Algorithm

Fig. 23. Analysis time (in logarithmic scale) for computing bounds of

TreeSet using the iterative and the eager algorithms.

Fig. 24. Analysis time (in logarithmic scale) for computing bounds of

BinomialHeap using the iterative and the eager algorithms.

For the eight methods under analysis shown in Fig. 26, a
dramatic decrease in analysis time is also exhibited.
Although some oscillations do occur for a couple of cases,
the gain obtained from tightening the bound is clear.

Finally, for the three methods shown in Fig. 27 no
improvement appears to be obtained by increasing the
bound precision. These cases represent the 13 percent of all
methods under analysis. On the contrary, the remaining
87 percent do exhibit an exponential improvement. There-
fore, we conclude that the analysis of the selected bench-
mark is sensitive to tightening the bounds.

It is worth mentioning that, for those methods that do
exhibit an improvement in the analysis as the bound
precision grows, this improvement also occurs in smaller
scopes. To illustrate these improvements to the reader, we
also report the results of the analysis times for the method

insert for the AVL tree and for the cached cyclic linked list.
Figs. 28 and 29 show as a grayscale gradient the analysis
time for both methods as the scope grows.

Figs. 28 and 29 show the relation between a tighter
bound and the analysis time. It is easy to see that tightening
the bound contributes in allowing the analysis to finish
within the time limit for larger scopes.

5.4 Analysis of Bug-Free Code

In this section, we present the results of comparing TACO
with tight bounds with JForge, another SAT-based tool for
Java code analysis. The results are shown in Table 4.

Table 4 shows that as the scope grows, in most cases
(as the cell highlighting shows) TACO requires a smaller
amount of time than JForge. While we will not present a
detailed analysis of memory consumption, it is our experi-
ence that TACO uses less memory than JForge, both during
translation to a propositional formula and during SAT-
solving. The analysis time using TACO reported in Table 4
does not include the cost of computing bounds (the time
spent in discovering tighter bounds was given in Table 3).

1300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

Fig. 25. Analysis time as bound precision is increased.

Fig. 26. Analysis time as bound precision is increased.

Fig. 27. Analysis time as bound precision is increased.

Fig. 28. Analysis time for method insert of AVL as scope and bound

tightness grows.

Still, adding these times does not yield a TO for any of the
analyses that did not exceed 10 hours.

5.5 Bug Detection Using TACO

In this section, we report on our experiments using TACO

to detect faults, and will compare TACO to other tools. We

will analyze method Remove from classes LList and

CList and method ExtractMin from class BHeap. Due to

the similarities in the analysis techniques, we will first

compare TACO with TACO� and JForge, and later in the

section we will also compare TACO with ESC/Java2 [9],

JavaPathFinder [44], and Sireum/Kiasan [13].

5.5.1 Detecting Mutants

To compare JForge, TACO�, and TACO we will generate

mutants for the chosen methods using the muJava [37]

mutant generator tool. After manually removing from

the mutants set those mutants that either were equivalent

to the original methods or that only admitted infinite

behaviors (the latter cannot be killed using these tools), we

were left with 31 mutants for method Remove from class

LList, 81 mutants for method Remove from class CList,

and 50 mutants for method ExtractMin from class BHeap.
For all the examples in this section we have set the

analysis timeout to 1 hour.
In Fig. 30, we report, for each method, the percentage of

mutants that can be killed as the scope for the Node

signature increases. We have set the scope for signature

Data equal to the number of nodes. Notice that while the

three tools behave well in class LList, TACO can strictly

kill more mutants than TACO� and JForge in the CList

example. We can also see that as the scope grows, TACO�

and JForge can kill fewer mutants. This is because some

mutants that were killed in smaller scopes cannot be killed

within 1 hour in a larger scope.

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1301

Fig. 29. Analysis time for method insert of CList as scope and bound

tightness grows.

TABLE 4
Comparison of Code Analysis Times for

10 Loop Unrolls Using JForge (JF) and TACO (T).

Fig. 30. Efficacy of JForge, TACO�, and TACO for mutants killing.

To report analysis times, we will carry out the following
procedure, which we consider the most appropriate for
these tools:

1. Try to kill each mutant using scope 1. Let T1 be the
sum of the analysis times using scope 1 for all
mutants. Some mutants will be killed, while others
will survive. For the latter, the analysis will either
return UNSAT (no bug was found in that scope) or
the 1 hour analysis timeout will be reached.

2. Take the mutants that survived in step 1, and try to
kill them using scope 2. Let T2 be the sum of the
analysis times.

3. Since we know the minimum scope k for which all
mutants can be killed (because TACO reached a
100 percent killing rate without any timeouts in
scope k), repeat the process in step 2 until scope k is
reached. Finally, let T ¼

P
1�i�k Ti.

Notice first that the previous procedure favors TACO�

and JForge. In effect, if a tool is used in isolation we cannot
set an accurate scope limit beforehand (it is the user’s
responsibility to set the limit). If a scope smaller than the
necessary one is chosen, then killable mutants will survive.
If a scope larger than the appropriate one is set, then we will
be adding 1 hour timeouts that will negatively impact the
reported times. Notice also that an analysis that reached the
timeout for scope i < k will be run again in scope iþ 1. This
is because we cannot anticipate if the timeout was due to a
performance problem (the bug can be found using scope i
but the tool failed to find the bug within 1 hour) or because
the bug cannot be found using scope i. In the latter case it
may happen that the mutant can be found in scope iþ 1
before reaching the timeout.

It is essential to notice that the same tight bound is used
by TACO for killing all the mutants for a method within a
given scope. Thus, when reporting analysis times for
TACO in Table 5, we also add the time required to
compute the bounds for scopes 1; . . . ; k. In general, we tried
to use 10 loop unrolls in all cases. Unfortunately, JForge
runs out of memory for more than three loop unrolls in the
ExtractMin experiment. Therefore, for this experiment, we
are considering only three loop unrolls for JForge, TACO�,
and TACO.

To compare with tools based on model checking and
SMT-solving, we will carry out the following experiments.
We will choose the most complex mutants for each
method. For class LList we chose mutant AOIU_1, the
only mutant of method Remove that cannot be killed using
scope 2 (it requires scope 3). For class CList we chose
mutants AOIS_31 and AOIS_37, the only ones that require
scope 7 to be killed. Finally, for class BHeap there are
31 mutants that require scope 3 to be killed (all the others

can be killed in scope 2). These can be grouped into seven
classes, according to the mutation operator that was
applied. We chose one member from each class. In Table 6,
we present analysis times using all the tools. Table 6 shows
that TACO, Java PathFinder, and Kiasan were the only
tools that succeeded in killing all the mutants. Since the
fragment of JML supported by ESC/Java2 is not expressive
enough to model the invariant from class BHeap, we did
not run that experiment.

5.5.2 Detecting a Seeded Nontrivial Bug

Notice that in the previous section, although we chose the
supposedly most complex mutants, these are still simple in
the sense that they can be killed using small scopes. In this
section, we are interested in studying the performance of
these tools in a context where a larger amount of nodes are
needed to find a violation of the specification. In this sense,
we focus on the linked data structure for class CList. This
data structure is composed of the actual (circular) list and a
singly linked list (the cache). The cache list has a maximum
size, “maximumCacheSize” (maxCS), set in the actual code
to a default value of 20 nodes. When a node is removed
from the circular list, it is added to the cache (unless the
cache is full). Let us consider the code snippet from
remove, presented in Figs. 31a and 31b, gives us a bug-
seeded version. A failure occurs in the bug-seeded code
when a node is removed and the cache is full. In effect, if the
maximum cache size is set to the default of 20, a 21st
element can be added to the cache. This leads to a violation
of the invariant that constrains the cache size to be at most
the value of the maximum cache size field.

In Table 7, we report analysis information after looking
for the bug in the bug-seeded code (BS), for varying
numbers of loop unrolls in method super.removeNode.

1302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

TABLE 5
Analysis Times for Mutant Killing

TACO times reflect the analysis time plus the bounds computation time.

TABLE 6
Comparison of Analysis Behavior for Some Selected Mutants

Analysis time for TACO includes the time required to compute the tight
bound amortized among the mutants in each class.

Fig. 31. (a) Code snippets from CList.remove, and (b) a bug-

seeded version.

We have tailored the bug-seeded code (and its contract) to
be analyzed using the same tool set we have applied in the
previous section for analyzing the more complex mutants.

We computed a bound for TACO in 27:04 using one
iteration of the iterative algorithm of Fig. 20. Table 7 shows
that many times it is not necessary to compute the tightest
bound, but rather thin the initial bound with a few
iterations of the algorithm to achieve a significant speedup
in analysis time. The debugging process consists of running
a tool (such as TACO, JForge, etc.) and, if a bug is found,
correcting the error and starting over to look for further
bugs. Unlike JForge (where each analysis is independent of
the previous ones), the same bound can be used by TACO
for looking for all the bugs in the code. Therefore, the time
required for computing the bound can be amortized among
these bugs. Since the bound does not depend on the
number of unrolls, in Table 7 we have divided 27:04 among
the seven experiments, adding 03:52 to each experiment.
Time is reported as “bound computation time” + “SAT-
solving time.”

We also compared with Boogie [3] using Z3 [16] as the
back-end SMT solver. To produce Boogie code we used
Dafny [35] as the high-level programming and specification
language. When run on the bug-seeded code with 10 loop
unrolls, Boogie produced on the order of 50 warning
messages signaling potential bugs. A careful inspection
allowed us to conclude that all warnings produced by
Boogie were false warnings.

Since most tools failed to find the bug with maxCS = 20,
we also considered a version of the code with up to two
loop unrolls and varying values for maxCS; in this way the
bug can be found in smaller heaps. Table 8 reports the
corresponding analysis times. In TACO, we have restricted
the algorithm that computes the bound for each scope to
run for 30 minutes at most.

The code has a fault that requires building a nontrivial
heap to expose it. The technique introduced in this paper
made TACO the only tool capable of finding the bug in all
cases reported in Tables 7 and 8. When the size of the code
is small (two loop unrolls in Table 8), tools based on model
checking were able to find the bug. They failed on larger

code, which shows that in the example TACO scales better.
Tools based on SMT solving systematically failed to expose
the seeded bug.

5.5.3 Detecting a Previously Unknown Fault

As we mentioned in [26], TACO found a previously
unreported bug in method ExtractMin of class BHeap.
A distinguishing characteristic of this fault is that it cannot
be reproduced using mutation because the smallest input
that produces a failure has 13 nodes, and as we showed
before in Section 5.5.1, all mutants were killed with only
three nodes. Another interesting attribute of this defect is
that it is not easily identified as a bug introduced as a
programmer typo. What is more, the fault is not trivially
discovered by team revision.

The input datum leading to the failure is presented in
Fig. 32. Notice that at least four loop unrolls were required
in TACO to exhibit the failure. In Table 9, we report analysis
times when attempting to discover the bug using all the
tools. TACO is the only tool that succeeded in discovering
the error. The analysis time for TACO reports the time for
computing the bound plus the analysis time using four loop
unrolls.

5.6 Threats to Validity

We begin by discussing how representative the selected
case studies are. As discussed in [45], container classes
have become ubiquitous. Therefore, providing confidence
about their correctness is an important task in itself. But, as
argued in [41], these structures (which combine list-like
and tree-like structures) are representatives of a wider
class of structures including, for instance, XML documents,
parse trees, and so on. Moreover, these structures have
become accepted benchmarks for comparison of analysis
tools in the program analysis community (see, for instance,
[6], [15], [30], [45]).

Despite the proof of correctness presented in Section 3.3,
one might be concerned about the way in which the

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1303

TABLE 7
Outcome of the Analysis maxCS = 20 Ten Hours Timeout

TABLE 8
Up to Two Unrolls and Varying maxCS. 10 Hours Timeout

Fig. 32. A 13-node heap that exhibits the failure in method Extra-

ctMin.

TABLE 9
Analysis of a Nontrivial Bug

generation of the symmetry-breaking predicates was im-
plemented. To validate our prototype we checked the
number of nonisomorphic instances explored by TACO,
against Korat [6]. For each class in the benchmark the
number of valid instances (up to 10 nodes in the heap)
matched. Table 10 contains the number of generated
instances by both tools for instances having from 3 to
10 nodes. In all cases a timeout of 2 hours was set.

In all experiments, we are considering the performance
of TACO� as a control variable that allows us to guarantee
that TACO’s performance improvement is due to the
presented techniques.

In Section 5.4, we analyzed bug-free code. Since the
process of bug finding ends when no more bugs are found,
this situation, where bug-free code is analyzed, is not
artificial. It is a stress test that necessarily arises during
actual bug finding.

In Section 5.5, we compare several tools. It is not
realistic to claim that every tool has been used to the best
of its possibilities. Yet, we have made our best efforts in
this direction. In the case of JForge, since it is very close to
TACO, we are certain we have made a fair comparison.
For Java PathFinder and Kiasan we were careful to write
repOK invariant methods in a way that would return false
as soon as an invariant violation could be detected. For
ESC/Java2, since it does not support any constructs to
express reachability, we used weaker specifications that
would still allow the identification of bugs. For Jahob we
used Jahob’s integrated proof language, and received
assistance from Karen Zee to write the models. More tools
could have been compared in this section. Miniatur and
FSoft are not available for download even for academic
use, and therefore were not used in the comparison. Other
tools such as CBMC and Saturn (designed for analysis of C
code) departed too much from our intention to compare
tools for the analysis of Java code.

Analysis using TACO requires using a cluster of
computers to compute tight bounds. Is it fair to compare
with tools that run on a single computer? While we do
not have a conclusive answer, for the bug in method
ExtractMin (even considering the time required to

compute the bounds sequentially) TACO seems to outper-
form the sequential tools. This is especially clear in those
cases where the sequential tools run out of memory before
finding the bug (as is the case for Kiasan and JForge). More
experiments are required to provide a conclusive answer.

6 RELATED WORK

In Section 3, we analyzed related work on heap canonica-
lization. In Section 5, we compared our tool with several
other state-of-the-art tools for program analysis. In this
section, we review related (but difficult to compare
experimentally) work.

The Alloy Annotation Language (AAL) was introduced
in [32]. It allows the annotation of Java-like code using
Alloy as the annotation language. The translation proposed
in [32] does not differ in major ways from the one we
implement. Analysis using AAL does not include any
computation of bounds for fields.

In [43], Vaziri and Jackson present a set of rules to be
applied along the translation to a SAT-formula to profit
from properties of functional relations. The paper presents a
case study where insertion in a red-black tree is analyzed.
The part of the red-black tree invariant that constrains trees
to not have two consecutive red nodes is shown to be
preserved. In our experiment we verify that the complete
(significantly more complex) invariant is preserved. Actu-
ally, for 8 loop unrolls and scope 7 for nodes and data, the
analysis time decreases from 08:53 (for the property we
analyze) to 0.153 seconds using the weakened property.

Thesis [31] presents the foundations of TestEra [34], and
shows an attempt at automatically eliminating symmetries
from a Java heap. Only heaps with a singly rooted acyclic
backbone are considered, which requires the user to
actually identify the (acyclic) backbone. For instance, class
AList in the benchmark, describing circular, doubly linked
lists, does not possess an acyclic backbone and TestEra
(unlike TACO) will require the user to provide symmetry-
breaking predicates. Although no technical details are
given, the mention of the use of the total-ordering module
provided by Alloy makes the approach unsuitable in the
context of TACO.

Saturn [47] is also a SAT-based static analysis tool for C. It
uses as its main techniques a slicing algorithm and function
summaries. As in our case, sequential code is faithfully
modeled at the intraprocedural level (no abstractions are
used). Unlike TACO, summaries of called functions may
produce spurious counterexamples. Saturn can check asser-
tions written as C “assert” statements. Its assertion language
is not as declarative as our extension of JML.

VCC [7] targets concurrent C code, and uses SMT solving
as the underlying technology.

F-Soft [28] also analyzes C code. It computes ranges for
values of integer valued variables and for pointers under
the hypothesis that runs have bounded length. It is based
on the framework presented in [40]. Our technique
produces tighter upper bounds because it does not compute
feasible intervals for variables, but instead checks each
individual value.

Calysto [2] performs an interprocedural analysis based
on symbolic execution. TACO is evaluated on single
methods as a means to assess its scalability at the
intraprocedural level.

1304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

TABLE 10
Number of Instances Generated and Time Consumed
by TACO and Korat Considering from 3 to 10 Nodes

Jahob [5] allows the unbounded verification of complex
properties over linked data structures (such as binary trees,
red black trees, etc.). As Jahob’s language was designed as a
proof language, it provides language constructs for identi-
fying lemmas, witnesses of existential quantifications,
patterns for instantiating universal quantifiers, proofs by
induction, and so on. Although the expressiveness of this
proof language allows the user to write very useful
annotations for the underlying decision procedures (which
allows the verification of very complex properties), it is easy
to see that the annotation process goes far beyond the
specification of a program’s behavior.

jStar [18] is an automatic tool for modular verification of
sequential Java programs. It is based on the abstraction
techniques for shape analysis developed in [17]. The user
provides specifications in the form of pre/postconditions,
while loop invariants are automatically synthesized. Since
jStar overapproximates the program behavior, the given
verdict does not depend on a user-provided scope of
analysis. Like in the case of Jahob, a jStar user must add
additional annotations beyond those specifying program
behavior. In particular, she or he must provide:

. a logical theory (used by the theorem prover for
deciding entailment and other kinds of implica-
tions), and

. an abstraction function (used to ensure convergence
in the fixed-point computation of loop invariants).

In our experience, by solely providing the program’s
behavior specification, neither Jahob nor jStar succeeded in
verifying the provided specifications, nor provided under-
standable counterexamples.

Unlike Jahob or jStar, TACO does not require user-
provided rules apart from the JML annotations.

7 CONCLUSIONS AND FURTHER WORK

This paper shows that a methodology based on 1) adding
appropriate constraints to SAT problems, and 2) using the
constraints to remove unnecessary variables, makes SAT-
solving a method for program analysis as effective as model
checking or SMT-solving.

The experimental results presented in the paper show
that bounds can be computed effectively, and that once
bounds have been computed the analysis time improves
considerably. This allowed us to analyze real code using
domain scopes beyond the capabilities of current similar
techniques, and find bugs that cannot be detected using
state-of-the-art tools for bug-finding. Still, while this paper
presents an approach to bound computation newer than the
one presented in [26], we are working further on more
efficient methods for distributed bound computation.

We are developing a prototype tool that, using dataflow
analysis [8], propagates the tight bounds computed for the
relational variables representing the initial state, and
generates bounds for subsequent states.

We have obtained encouraging results on parallel
analysis of code by conveniently splitting tight bounds into
tighter bounds.

None of the container classes presented in Section 5
possesses a complex class hierarchy. More experiments are

required to assess the performance of our approach under
such circumstances.

The techniques presented in the paper are quite
general. We plan to test the effect of these techniques on
related tools. Explicit state model checkers (such as Java
Pathfinder) can use tight bounds to prune the state space
when a state contains edges that lay outside the bound.
Korat [6] can avoid evaluating the repOk method
whenever the state is not contained in the bounds.
Running a simple membership test will often be less
expensive than running a repOk method. Tools that are
similar to TACO (such as Miniatur and JForge) can make
direct use of the presented techniques. Similarly, Squander
[39], a tool for execution of Alloy-like Java specifications,
could profit from applying both the specialized symmetry
breaking and the propositional variables reduction.

ACKNOWLEDGMENTS

The authors would like to thank Elena Morin for proof-
reading this paper. They also wish to thank all the reviewers
for their comments and suggestions. They thank Greg
Dennis and Kuat Yessenov for their timely help on using
JForge and JMLForge. They thank Robby for answering their
questions about Sireum/Kiasan. They also thank Esteban
Mocskos for his support on using the CeCAR cluster. This
article is a revised and extended version of [26].

REFERENCES

[1] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov, “Evaluating
the ‘Small Scope Hypothesis’,” http://sdg.csail.mit.edu/
publications.html, 2013.

[2] D. Babi�c and A.J. Hu, “Calysto: Scalable and Precise Extended
Static Checking,” Proc. 30th Int’l Conf. Software Eng., 2008.

[3] M. Barnett, B.E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino,
“Boogie: A Modular Reusable Verifier for Object-Oriented
Programs,” Proc. Fourth Int’l Conf. Formal Methods for Components
and Objects, pp. 364-387, 2005.

[4] J. Belt, Robby, and X. Deng, “Sireum/Topi LDP: A Lightweight
Semi-Decision Procedure for Optimizing Symbolic Execution-
Based Analyses,” Proc. Seventh Joint Meeting of the European
Software Eng. Conf. and the ACM SIGSOFT Symp. The Foundations
of Software Eng., pp. 355-364, 2009.

[5] C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M.C. Rinard,
“Using First-Order Theorem Provers in the Jahob Data Structure
Verification System,” Proc. Eighth Int’l Conf. Verification, Model
Checking, and Abstract Interpretation, pp. 74-88, 2007.

[6] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated
Testing Based on Java Predicates,” Proc. ACM SIGSOFT Int’l Symp.
Software Testing and Analysis, pp. 123-133, 2002.

[7] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, “VCC: A Practical System for
Verifying Concurrent C,” Proc. 22nd Int’l Conf. Theorem Proving in
Higher Order Logics, 2009.

[8] P. Cousot and R. Cousot, “Systematic Design of Program Analysis
Frameworks,” Proc. Sixth ACM SIGACT-SIGPLAN Symp. Principles
of Programming Languages, pp. 269-282, 1979.

[9] P. Chalin, J.R. Kiniry, G.T. Leavens, and E. Poll, “Beyond
Assertions: Advanced Specification and Verification with JML
and ESC/Java2,” Proc. Fourth Int’l Conf. Formal Methods for
Components and Objects, pp. 342-363, 2005.

[10] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking
ANSI-C Programs,” Proc. Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 168-176, 2004.

[11] S. Cook, “The Complexity of Theorem-Proving Procedures,” Proc.
Third Ann. ACM Symp. Theory of Computing, pp. 151-158, 1971.

[12] R.A. deMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test
Data Selection: Help for the Practicing Programmer,” Computer,
vol. 11, no. 4, pp. 34-41, Apr. 1978.

GALEOTTI ET AL.: TACO: EFFICIENT SAT-BASED BOUNDED VERIFICATION USING SYMMETRY BREAKING AND TIGHT BOUNDS 1305

[13] X. Deng, Robby, and J. Hatcliff, “Towards a Case-Optimal
Symbolic Execution Algorithm for Analyzing Strong Properties of
Object-Oriented Programs,” Proc. Fifth IEEE Int’l Conf. Software
Eng. and Formal Methods, pp. 273-282, 2007.

[14] G. Dennis, “A Relational Framework for Bounded Program
Verification,” PhD thesis, MIT Press, Sept. 2009.

[15] G. Dennis, F. Chang, and D. Jackson, “Modular Verification of
Code with SAT,” Proc. Int’l Symp. Software Testing and Analysis,
pp. 109-120, 2006.

[16] L. Mendonça de Moura and N. Bjørner, “Z3: An Efficient SMT
Solver,” Proc. 12th Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 337-340, 2008.

[17] D. Distefano, P. O’Hearn, and H. Yang, “A Local Shape Analysis
Based on Separation Logic,” Proc. 12th Int’l Symp. Software Testing
and Analysis, pp. 287-302, 2006.

[18] D. Distefano and M. Parkinson, “Jstar: Towards Practical Verifica-
tion for Java,” Proc. 23rd ACM SIGPLAN Conf. Object-Oriented
Programming Systems Languages and Applications, pp. 213-226, 2008.

[19] G. Dennis, K. Yessenov, and D. Jackson, “Bounded Verification of
Voting Software,” Proc. Second Int’l Conf. Verified Software: Theories,
Tools, Experiments, Oct. 2008.

[20] J. Dolby, M. Vaziri, and F. Tip, “Finding Bugs Efficiently with a
SAT Solver,” Proc. Sixth Joint Meeting of the European Software Eng.
Conf. and the ACM SIGSOFT Symp. The Foundations of Software Eng.,
pp. 195-204, 2007.

[21] J. Edwards, D. Jackson, E. Torlak, and V. Yeung, “Subtypes for
Constraint Decomposition,” Proc. Int’l Symp. Software Testing and
Analysis, July 2004.

[22] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R.
Stata, “Extended Static Checking for Java,” Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, pp. 234-
245, 2002.

[23] M.F. Frias, J.P. Galeotti, C.G. Lopez Pombo, and N. Aguirre,
“DynAlloy: Upgrading Alloy with Actions,” Proc. 27th Int’l Conf.
Software Eng., pp. 442-450, 2005.

[24] M.F. Frias, C.G. Lopez Pombo, J.P. Galeotti, and N. Aguirre,
“Efficient Analysis of DynAlloy Specifications,” ACM Trans.
Software Eng. and Methodology, vol. 17, no. 1, 2007.

[25] J.P. Galeotti and M.F. Frias, “DynAlloy as a Formal Method for the
Analysis of Java Programs,” Proc. IFIP Working Conf. Software Eng.
Techniques, 2006.

[26] J.P. Galeotti, N. Rosner, C.G. López Pombo, and M.F. Frias,
“Analysis of Invariants for Efficient Bounded Verification,” Proc.
19th Int’l Symp. Software Testing and Analysis, pp. 25-36, 2010.

[27] R. Iosif, “Symmetry Reduction Criteria for Software Model
Checking,” Proc. Ninth Int’l SPIN Workshop Model Checking of
Software, pp. 22-41, 2002.

[28] F. Ivan�ci�c, Z. Yang, M.K. Ganai, A. Gupta, I. Shlyakhter, and P.
Ashar, “F-Soft: Software Verification Platform,” Proc. 17th Int’l
Conf. Computer Aided Verification, pp. 301-306, 2005.

[29] D. Jackson, Software Abstractions. MIT Press, 2006.
[30] D. Jackson and M. Vaziri, “Finding Bugs with a Constraint

Solver,” Proc. ACM SIGSOFT Int’l Symp. Software Testing and
Analysis, pp. 14-25, 2000.

[31] S. Khurshid, “Generating Structurally Complex Tests from
Declarative Constraints,” PhD thesis, MIT, http://sdg.csail.mit.
edu/pubs/theses/khurshid.phd.pdf, Feb. 2003.

[32] S. Khurshid, D. Marinov, and D. Jackson, “An Analyzable
Annotation Language,” Proc. 17th ACM SIGPLAN Conf. Object-
Oriented Programming, Systems, Languages, and Applications,
pp. 231-245, 2002.

[33] S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jackson, “A Case
for Efficient Solution Enumeration,” Proc. Sixth Int’l Conf. Theory
and Applications of Satisfiability Testing, pp. 272-286, 2003.

[34] S. Khurshid and D. Marinov, “TestEra: Specification-Based
Testing of Java Programs Using SAT,” Automated Software Eng.
J., vol. 11, no. 4, pp. 403-434, 2004.

[35] K.R.M. Leino, “Specification and Verification of Object-Oriented
Software,” Marktoberdorf Int’l Summer School, 2008.

[36] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. Foundations of
Computing. MIT Press, 2000.

[37] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: An Automated
Class Mutation System,” J. Software Testing, Verification, and
Reliability, vol. 15, no. 2, pp. 97-133, 2005.

[38] M. Musuvathi and D.L. Dill, “An Incremental Heap Canonicaliza-
tion Algorithm,” Proc. 12th Int’l Conf. Model Checking Software,
pp. 28-42, 2005.

[39] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson, “Unifying
Execution of Imperative and Declarative Code,” Proc. 33rd Int’l
Conf. Software Eng., May 2011.

[40] R. Rugina and M.C. Rinard, “Symbolic Bounds Analysis of
Pointers, Array Indices, and Accessed Memory Regions,” Proc.
ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation, pp. 182-195, 2000.

[41] J.H. Siddiqui and S. Khurshid, “An Empirical Study of Structural
Constraint Solving Techniques,” Proc. 11th Int’l Conf. Formal Eng.
Methods: Formal Methods and Software Eng., pp. 88-106, 2009.

[42] E. Torlak and D. Jackson, “Kodkod: A Relational Model Finder,”
Proc. 13th Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, pp. 632-647, 2007.

[43] M. Vaziri and D. Jackson, “Checking Properties of Heap-
Manipulating Procedures with a Constraint Solver,” Proc. Ninth
Int’l Conf. Tools and Algorithms for the Construction and Analysis of
Systems, pp. 505-520, 2003.

[44] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
Checking Programs,” Automated Software Eng., vol. 10, no. 2,
pp. 203-232, 2003.

[45] W. Visser, C.S. P�as�areanu, and R. Pelánek, “Test Input Generation
for Java Containers Using State Matching,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 37-48, 2006.

[46] W. Visser, private communication, second, Feb. 2010.
[47] Y. Xie and A. Aiken, “Saturn: A Scalable Framework for Error

Detection Using Boolean Satisfiability,” ACM Trans. Programming
Languages and Systems, vol. 29, no. 3, 2007.

Juan P. Galeotti is a postdoctoral researcher at
Saarland University, Saarbrücken, Germany.
His research interests include software verifica-
tion, program analysis, automatic test case
generation, and programming languages design.
He has been awarded the José A. Estenssoro
doctoral grant by the YPF Foundation.

Nicolás Rosner is a currently working toward
the doctorate degree in computer science in the
Department of Computer Science, FCEyN,
Universidad de Buenos Aires, where he is also
a teaching assistant. His research interests
include relational model finding, cluster comput-
ing, and distributed SAT-solving.

Carlos G. López Pombo is an assistant
professor in the Department of Computer
Science, FCEyN, Universidad de Buenos Aires,
and an assistant researcher at CONICET. His
research centers on formal methods for software
verification and validation, and he is currently
working on formal foundations for component-
based software design and on formal frame-
works supporting service oriented architecture.
His research interests also include the develop-

ment of automatic and interactive tools for software verification.

Marcelo F. Frias is a professor of computer
science at the Buenos Aires Institute of Tech-
nology. His interests range from formal logic and
universal algebra, to relational methods and their
application for (semi-)automated software vali-
dation and verification. He is a member of IFIP
Working Group 2.2.

1306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

