Parallel Bounded Verification of Alloy Models
by TranScoping*

Nicolds Rosner!, Carlos Gustavo Lépez Pombo':2, Nazareno Aguirre®?2,

Ali Jaoua?, Ali Mili®, and Marcelo F. Frias®?

! Department of Computer Science, FCEyN, Universidad de Buenos Aires, Argentina
{nrosner,clpombo}@dc.uba.ar
2 Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
3 Department of Computer Science, FCEFQyN,
Universidad Nacional de Rio Cuarto, Argentina
naguirre@dc.exa.unrc.edu.ar
4 Qatar University, Qatar
jaoua@qu.edu.qa
® New Jersey Institute of Technology, USA
ali.mili@njit.edu
6 Department of Software Engineering,
Instituto Tecnolégico de Buenos Aires (ITBA), Argentina
mfrias@itba.edu.ar

Abstract. Bounded verification is a technique associated with the Alloy
specification language that allows one to analyze Alloy software models
by looking for counterexamples of intended properties, under the as-
sumption that data type domains are restricted in size by a provided
bound (called the scope of the analysis). The absence of errors in the
analyzed models is relative to the provided scope, so achieving verifia-
bility in larger scopes is necessary in order to provide higher confidence
in model correctness. Unfortunately, analysis time usually grows expo-
nentially as the scope is increased. A technique that helps in scaling
up bounded verification is parallelization. However, the performance of
parallel bounded verification greatly depends on the particular strategy
used for partitioning the original analysis problem, which in the context
of Alloy is a boolean satisfiability problem. In this article we present a
novel technique called tranScoping, which aims at improving the scal-
ability of bounded exhaustive analysis by using information mined at
smaller scopes to guide decision making at larger ones. In its applica-
tion to parallel analysis, tranScoping compares different ways to split
an Alloy-borne SAT problem at small scopes, and extrapolates this in-
formation to select an adequate partitioning criterion for larger scopes.
As our experiments show, tranScoping allows us to find suitable criteria
that extend the tractability barrier, and in particular leads to successful
analysis of models on scopes that have been elusive for years.

* This publication was made possible by NPRP grant NPRP-4-1109-1-174 from the
Qatar National Research Fund (a member of Qatar Foundation). The statements
made herein are solely the responsibility of the authors.

E. Cohen and A. Rybalchenko (Eds.): VSTTE 2013, LNCS 8164, pp. 88-107, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Parallel Bounded Verification of Alloy Models by TranScoping 89

Keywords: Alloy Analyzer, Parallel analysis, Bounded verification,
Parallel SAT-solving.

1 Introduction

Software specification is a crucial activity for software development. It consists
of describing software and its intended properties without the operational details
of implementations. By specifying software, and especially if one does so prior to
implementation, one is able to better understand the software to be developed,
and even validate requirements, which would save time and development costs
compared to finding flaws in them in later stages of development. The vehicle
to specify software is the specification language. Some important characteristics
of specification languages are declarativeness, expressiveness and analyzability.
Declarativeness and expressiveness allow one to capture requirements more natu-
rally and precisely, while analyzability allows one to better exploit specifications
by more effectively finding flaws, inconsistencies, etc.

Due to their intrinsic well-defined formal semantics, formal approaches to
specification are usually better suited for analysis. Representatives of formal
specification languages are, for instance, B [1], Z [9], the Object Constraint Lan-
guage (OCL), the Java Modeling Language (JML) [3], and Alloy [14]. Some of
these languages, B and Alloy in particular, have been designed with analysis as a
main concern. A main difference between these two languages is that the analysis
underlying B’s design is heavyweight (semi automated theorem proving, essen-
tially), while Alloy favors fully automated analysis. The main analysis technique
behind Alloy is lightweight, based on boolean satisfiability (SAT). This analysis
turned out to be extremely useful in making subtle modeling errors visible, as is
evidenced by approaches to the analysis of all the aforementioned specification
languages (or, more precisely, fragments thereof) that translate to Alloy in order
to profit from the latter’s analysis mechanism.

The analysis mechanism implemented by the Alloy Analyzer, the tool asso-
ciated with Alloy, is bounded verification. Bounded verification is a lightweight
formal analysis technique that consists of looking for assertion violations of a
model, under the assumption that the data domains in the model are bounded
by a user provided bound (called the scope of the analysis). Thus, the absence
of errors in the analyzed models is relative to the provided scope, and errors
might be exposed in larger scopes. Consequently, confidence in the correctness
of models depends on the scope: the larger the scope, the more confident we
will be that the specification is correct. That is, achieving verifiability in larger
scopes is necessary in order to provide higher confidence on model correctness.
Unfortunately, analysis time usually grows exponentially as the scope increases,
so approaches to increase the scalability of bounded verification are essential. A
technique that helps to increase the scalability of bounded verification is par-
allelization. Essentially, this consists of partitioning the original SAT problem
into a number of different independent smaller problems, which can be solved in
parallel.

90 N. Rosner et al.

Typically, the speed up obtained by parallelization strongly depends on how
the original problem is partitioned. Unfortunately, finding an adequate partition
for a problem is difficult; for problems whose sequential analysis takes hundreds
of hours, most partitions of the original problem often lead to parallel analyses
that still exhaust the available resources (time or memory). In this article, we
study the problem of choosing an appropriate partition of a SAT problem, in
order to analyze it in parallel. We present a novel technique called tranScoping,
which consists of examining alternative partitions for small scopes, and extrap-
olating this information to select an adequate partition for larger scopes. As the
experiments presented in Section 5 show, tranScoping indeed allows us to find
suitable partitions that make the parallel analysis feasible. Moreover, the exper-
iments in Section 5 deal with problems whose sequential analyses take hundreds
of hours, and whose parallel analyses most often timeout as well, but by extrap-
olating analysis information via tranScoping we can efficiently analyze them. In
particular, tranScoping allows us to analyze models on scopes that have been
elusive for years. In Section 6 we discuss related work, and finally, in Section 7
we conclude and present some ideas for further work.

2 Bounded Verification: Alloy and the Alloy Analyzer

Alloy is a formal language based on a simple notation, with a simple relational se-
mantics, which resembles the modelling constructs of less formal object oriented
notations, and therefore is easier to learn and use for developers without a strong
mathematical background. In addition to being a relevant specification language,
Alloy has also received attention as an intermediate language: there exist many
translations from other languages into Alloy. For instance, a translation from JML
(a formal language for behavioral specification of Java programs) to Alloy is im-
plemented as part of the TACO tool [11]. A number of tools have also been devel-
oped for translating OCL-annotated UML models into Alloy (e.g., [2,15]). Alloy
has also been the target of translations from Event-B [17] and Z [16].

There is a good reason for the existence of the above mentioned translations
from other languages into Alloy: Alloy offers a completely automated SAT based
analysis mechanism, implemented in the Alloy Analyzer [13]. Basically, given a
system specification and a statement about it, the Alloy Analyzer exhaustively
searches for a counterexample of this statement (under the assumptions of the
system description), by reducing the problem to the satisfiability of a propo-
sitional formula. Since the Alloy language features quantifiers, the exhaustive
search for counterexamples has to be performed up to certain bound in the
number of elements in the universe of the interpretations, called the scope of
the analysis. Thus, this analysis procedure cannot be used in general to guaran-
tee the absence of counterexamples for a model. Nevertheless, it is very useful
in practice, since it allows one to discover subtle counterexamples of intended
properties, and when none is found, gain confidence in the validity of our specifi-
cations. The existence of the many translations from other languages into Alloy
provides evidence of the usefulness of the Alloy Analyzer’s analysis in practice.

Parallel Bounded Verification of Alloy Models by TranScoping 91

module addressBook

abstract sig Target {}

sig Addr extends Target {}

sig Name extends Target {}

sig Book { addr: Name -> Target }

fact Acyclic { all b: Book | no n: Name | n in n." (b.addr) }
pred add [b, b’: Book, n: Name, t: Target] { b’.addr = b.addr + n -> t }
fun lookup [b: Book, n: Name]l: set Addr { n."(b.addr) & Addr }

assert addLocal { all b,b’: Book, n,n’: Name, t: Target |
add [b,b’,n,t] and n != n’ => lookup [b,n’] = lookup [b’,n’] }

// This command should produce a counterexample
check addLocal for 3

Fig. 1. An Alloy example: the addressBook sample model from [14, Fig. 5.1]

Let us introduce the Alloy language by means of an example, which will also
serve the purpose of explaining how the Alloy Analyzer performs its analyses. Con-
sider the address book example from [14, Fig. 5.1], presented in Fig. 1. In this ex-
ample, an Alloy model of an address book, consisting of a set of known people and
their corresponding addresses, is proposed. Let us go through the elements of an
Alloy model. Alloy is a rich declarative language. It allows one to define data do-
mains by means of signatures, using the keyword “sig”. An abstract signature
is one whose underlying data set contains those objects belonging to extending
signatures. In the example, the data domain associated with signature Target
is composed of the union of the (disjoint) domains Addr and Name. Signatures
are, in some sense, similar to classes, and may have fields. For instance, signa-
ture Book has a field named addr, which represents the mapping from names to
targets (other names or addresses) that constitutes an address book. According to
Alloy semantics, fields are relations. In this case, since “~>” stands for Cartesian
product, addr C Book x Name x Target. Axioms are provided in Alloy as facts,
while predicates (defined using the keyword “pred”) and functions (defined using
the keyword “fun”), offer mechanisms for defining parameterized formulas and
expressions, respectively. Formulas are defined using a Java-like notation for con-
nectives. Alloy features quantifiers: “all” denotes universal quantification, while
“some” is existential quantification. Terms are built from set-theoretic/relational
operators. They include constants (like “univ”, denoting the set of all objects in
the model, or “none”, which denotes the empty set). Unary relational operators
include transposition (which flips tuples from relations) and is denoted by “~”.
Alloy also includes transitive closure (noted by “~”) and reflexive-transitive clo-
sure (noted by “*”), which apply to binary relations. Relational union is noted by
“+” intersection by “&”, and composition by “.”.

Fact Acyclic in the model specifies that there are no cyclic references in
address books (formula “no n: Name | .7 is equivalent to “all n: Name |
not ...”). Predicate add, on the other hand, is used to capture an operation of
the model — the one corresponding to adding a new entry into an address book.

92 N. Rosner et al.

The formula corresponding to this predicate indicates which is the relationship
between the pre- and post-states of the address book (referred to as b and b’ in
the predicate).

In addition to the described elements, an Alloy model may also have asser-
tions. An assertion represents an intended property of a model, i.e., a model that
is expected to hold as a consequence of the specification. Assertions can be ana-
lyzed, by checking their validity in all possible scenarios within a provided scope.
The “check” command is used to instruct the Alloy Analyzer on how to ana-
lyze an assertion, in particular by specifying the corresponding scope. The Alloy
Analyzer translates the model and the assertion of interest to a propositional
formula. Notice that the model may include explicit facts (the model axioms),
implicit facts (properties that follow from the typing of fields and “subtyping”
between signatures), and the assertion to be analyzed. The Analyzer then pro-
duces a propositional formula representing the conjunction:

Explicit Facts && Implicit Facts && !Assert .

The translation is made possible due to the finitization information provided
by the scopes in the check statement. Notice that if the resulting propositional
formula is satisfiable, then the Alloy Analyzer can retrieve a valuation that
satisfies the facts, yet violates the assertion (a counterexample showing that the
property of interest does not hold in the model). Since the analysis is performed
relative to the prescribed scope, a verdict of unsatisfiability only implies that
counterexamples do not exist within the scope. The assertion under analysis
may be false but larger domains may be necessary to exhibit counterexamples.

3 Parallel SAT-Solving

Parallel SAT solving corresponds to the problem of deciding the satisfiability of
a propositional formula, by dividing the original problem into smaller instances,
and then solving these independently. Parallelization approaches to SAT solv-
ing use a divide-and-conquer pattern: problems that are too hard to be tack-
led directly are split into several (hopefully easier) subproblems, by choosing n
propositional variables, and splitting the problem into the 2™ disjoint smaller
subproblems, where the chosen propositional variables are instantiated with all
possible combinations of boolean values. As we will see, how many non trivial
subproblems are obtained, whether they are in fact easier, or how much easier
than the parent problem these turn out to be, all strongly depend on the branch-
ing variables chosen to partition the search space into disjoint subproblems.

In our case, the splitting process is achieved by means of a mechanism sim-
ilar to guiding paths [25], with some differences that are worth noting. While
one could simply choose n branching variables to split a problem into 2™ dis-
joint smaller ones, our experience working with CNF formulas arising from the
translation of Alloy specifications suggests that the actual number of nontrivial
subproblems is usually small compared to the number of subproblems, and often
significantly smaller. It is worth it to try and filter out subproblems that can

Parallel Bounded Verification of Alloy Models by TranScoping 93

easily be shown to be trivially unsatisfiable during the splitting process, without
ever producing or enqueueing them. For instance, if the n branching variables
happen to be part of the same “row” within the representation of a functional
Alloy relation, a quick round of boolean constraint propagation will easily dis-
card most combinations, and only the n + 1 subproblems where at most one of
the variables is true will “pass the filter” and become new subproblems. This is
the approach we follow.

Two separate parameters control how problems are split. One of them is a
source of branching variables, i.e., a criterion determining which sequence of
decision variables should be considered (but not how many). The second one is
a limit on the number of subproblems to be spawned, i.e., how many new tasks
the system is willing to accept. The actual number of nontrivial subproblems
may greatly vary depending on which variables are chosen. So, an a priori limit
on the number of variables to branch is hard to determine. We therefore generate
subproblems and solve the trivial ones as part of the same process. The following
pseudocode illustrates our resulting approach to splitting a satisfiability problem
into subproblems:

children = [[1]
while varSource.hasMore() and len(children) < children_limit:

var = varSource.next()
newchildren = []

for litlist in children:
for newlit in (-var, +var):
newlitlist = litlist + [newlit]
if not trivially UNSAT(newlitlist):
newchildren.append (newlitlist)

children = newchildren

The above described approach to parallel SAT solving is implemented in our
prototype distributed solving tool ParAlloy. The parallel analysis experiments
featured in this article were run using the latest prototype of ParAlloy, which
runs on any cluster of independent commodity PCs. Its main system require-
ments are a working MPI [6] implementation, a C++ compiler and a Python
interpreter. The latest version of the Minisat [5] solver is used at the core of each
worker process. Python and mpidpy [7] are used to glue the dynamic aspects of
the system together.

The implementation constantly monitors the subproblem solving rate, i.e.,
the average number of tasks that are proved UNSAT (thus closing a branch of
the search space) per unit of time. At regular intervals, said rate is inspected
and compared with a threshold, in order to take action if not enough progress
is taking place. If the rate is below the threshold, the oldest worker process
(whichever has been solving its subproblem for the longest amount of time) is
instructed to split that subproblem. In order to keep efficiency rates high, this
is also done if the UNSAT rate is above the threshold but there are idle workers

94 N. Rosner et al.

(which implies that all pending task queues are empty). In the current version
of the ParAlloy tool, inspection of the UNSAT rate (and possibly corrective
action) takes place every 5 seconds, and the UNSAT rate threshold is set at
0.15 per second per worker. For the 68-worker setup used in the parallel analysis
experiments shown in Section 5, this means that a progress threshold of 10.2
UNSATS per second is enforced.

4 TranScoping

In this section we present tranScoping, the main contribution of the article.
TranScoping is a new technique for improving the scalability of bounded ex-
haustive analysis by using information mined at smaller scopes to guide decision
making at larger ones. This exploits the regularity often observed across scopes
during analysis of an Alloy model.

In this paper we focus on one particular application — that of parallelizing the
analysis. For the problem of parallel bounded exhaustive analysis, transCoping
compares the performance of different alternative ways of splitting a SAT prob-
lem for small scopes, and extrapolates this information to select an adequate
splitting approach to be used with larger scopes.

Let us start by introducing the notion of splitter, corresponding to a criterion
for selecting propositional variables to split a propositional satisfiability problem.

Definition 1. Given an Alloy model A whose translation to conjunctive normal
form (CNF) is a propositional formula P, and a bound b on the number of new
subproblems, a splitter is an algorithm for selecting propositional variables from
P in such a way that the number n of produced subproblems satisfies n < b.

Not every variable-selecting algorithm is an appropriate splitter. We require a
splitter S to satisfy the following properties:

— tranScopability: it must be possible for S to extrapolate how to partition a
problem at a larger scope, based on how the problem was partitioned by S
at a smaller scope.

— predictability in a class C' of splitters: if S is the best splitter in C' for scope
k (the one yielding the partition that can be solved the fastest in parallel),
then there exists a scope ¢ (i < k), such that S is the best splitter in C for
all scopes j such that i < j < k.

While tranScopability is in general easy to guarantee (we will discuss this prop-
erty later on, when the splitters are presented), predictability may, on the other
hand, be more intricate. In order to understand why, consider, as an example,
the model of the mark and sweep garbage collection algorithm provided as part
of the Alloy Analyzer’s distribution, and the assertion Soundness2 in it. The se-
quential analysis times (in seconds) for this assertion are 1, 23, 217 and 2855, for
scopes 7, 8, 9 and 10, respectively. Notice that for scope 7 the sequential analysis
takes only 1 second. Therefore, all the splitters will generate partitions whose

Parallel Bounded Verification of Alloy Models by TranScoping 95

problems in general will have a very low analysis time, which prevents us from
perceiving a clear order if one exists. So, we must consider larger scopes in which
the differences between analysis times are easier to perceive. Unfortunately, the
analysis time grows quite fast. Already for scope 10, applying all the available
splitters (that will be presented in Section 4.1) and analyzing the generated sub-
problems in order to define an adequate ordering, is too costly. Therefore, we
will be limited to the conclusions that we can reach by mining the data obtained
for the smallest scopes that are large enough to allow us to differenciate splitters
(e.g., for Soundness2, scopes 8 and 9). As we will show in Section 5, in the case
of Soundness2, this is enough to arrive at valuable conclusions.

4.1 A Portfolio of Splitters

Let us now describe an initial collection of splitters, that we assume that satisfy
tranScopability and predictability. We will present evidence to this effect when
the tranScoping technique is evaluated, in Section 5.

The VSIDS Splitter. VSIDS is a particular decision heuristic that many
modern SAT-solvers (including MiniSat) use in order to select the next variable
to decide, i.e., to be used for splitting (by instantiating it with true and false).
The heuristic keeps track of the number of occurrences of a given literal in the
formula under analysis, a value that is incremented by a fixed amount whenever
new clauses containing the literal are learnt. When a new variable is selected
to be decided, the one with the largest VSIDS ranking is chosen. Given k, the
maximum number of subproblems to be generated, the VSIDS splitter is defined
as follows:

Once the underlying SAT-solver is interrupted, select branching variables
by considering the ranking of the variable activity score in the solving
process, until the number of nontrivial subproblems reaches k.

For the evaluation in Section 5, in order to compute the VSIDS rank we will
analyze the problem sequentially and use the ranking resulting at the end of the
sequential analysis. This forces us to use small scopes during the mining phase
(otherwise the complete sequential analysis becomes infeasible). Alternatively,
we could use an intermediate ranking (for example, the ranking obtained after
10 seconds of analysis), but that would add another dimension to the evaluation,
making it too complex for our purposes. For those scopes in which the complete
sequential analysis is infeasible, we will use the ranking produced after 5 seconds
of SAT-solving (this is the case when analyzing a problem for large scopes after
the mining phase). As we will see in Section 5, this limitation does not affect
the quality of the analysis of the presented examples (or any other example we
used for assessment).

TranScopability is clearly satisfied by VSIDS, since lifting variables from the
VSIDS ranking is algorithmic. Notice that there is no direct relationship between
the variables selected using VSIDS in a small scope, and the variables selected
in larger scopes. As the experiments in Section 5 show, predictability is achieved
just by using the same technique.

96 N. Rosner et al.

The “Field” Family of Splitters. Alloy models include signature fields. Dur-
ing the process of translating a model to a propositional formula, fields are mod-
eled as matrices of propositional variables. Matrix dimensions are determined
by the field typing and the analysis scopes. As an example, consider an Alloy
specification containing the following signature declaration:

sig Source {
field : Target
3

Suppose we want to analyze the command check assertion for k but 4
Source, 5 Target. If the assertion has counterexamples, each counterexample
must provide domains S = {Sp, S1, 52, S3} and T = {To, Ty, To, T3, Ty} for signa-
tures Source and Target, respectively, as well as a binary relation field C S x T,
that make the formula corresponding to the assertion satisfiable. The relation
field is characterized by the following matrix:

PSo,T0|PSo,T1 |PSo,T2|PSo,T5|PSo, Ty
PS,, 1o |PS1,T1 [PS1, T2 |PS,, T3PS, Ty
DS, To|PSa, Ty |PSa,To |PSa,T5|PSa, Ty
PS3,T0|PS3,T1 |[PSs, T2 |PS3,T5 |PS3,Ty

Mferq =

whose entries are propositional variables, and where pgs, 1, = true <= (S;,Tj)
€ field. Different fields have different degrees of relevance on a satisfiability
problem, depending on how the fields are involved in the model. So one may
consider different fields, to choose variables from these fields’ representations in
order to partition the SAT problem. Each model field f gives rise to a different
splitter. The “Field” family of splitters is defined as follows:

select variables from those in matriz My, from the bottom-right entry,
and towards the top-left, while the number of subproblems does not sur-
pass the given bound k.

For the above matrix, the order in which variables would be selected is:

pSg,T4?p53,T33pSS,T23 AR ?pSo,TlapSD,TD'

Other Candidate Splitters. Various other splitters have been devised. How-
ever, for the case studies assessed so far, the Field family and VSIDS are the
most promising ones. The parallel SAT-solver PMSat [12] uses as its variable-
selecting heuristic those variables that occur in more clauses. This could give
origin to a new splitter by selecting those variables that are more frequently
found in the formula. Similarly, one can determine, for a given variable, which
are the variables whose decision propagate the value of more literals. A splitter
is then defined by selecting those variables that propagate the most.

Parallel Bounded Verification of Alloy Models by TranScoping 97

4.2 Selecting the Right Splitter

Given an Alloy model containing an assertion A to be checked, a splitter S and a
bound b on the number of subproblems to generate, S provides an algorithm to
select variables to be used in an initial splitting of the (CNF translation of the)
model. The splitting produces CNF subproblems sp1, . .., spg, with & < b, which
can be SAT-solved sequentially (sp1;--- ;spk), or in parallel (sp1]|---||spk).

Once all the splitters are run on scopes i,7 + 1,..., 7, we must decide which
splitter is going to be used in scopes larger than j. In order to make an informed
decision we will store, for each splitter S and scope ! (i <1 < j), the following
information. Given a problem on scope [,

NUMg,; is the number of subproblems generated by splitter S.

MAXg; is the maximum analysis time incurred by any of the subproblems
generated by splitter S.

AVGyg, is the average time required by subproblems generated by S.

SUMg,; is the sum over the analysis times of the subproblems generated by S.

DEVg, is the standard deviation of the analysis times of the subproblems gen-
erated by splitter S.

MEDyg; is the median of the analysis times of subproblems generated by S.

Our goal is to convey our insight on how the information about how splitters
behave for small scopes has to be interpreted in order to decide which splitter
to use for larger scopes (as opposed to defining a unique mechanism for ranking
splitters based on this information). As we will see in Section 5, based on this
information it is often possible to choose a good splitter.

Of the above listed parameters, M AX is the most important. A high value
of MAX (close to the time required to analyze the source problem before being
splitted), shows that a child subproblem (the one that has MAX as its analysis
time) is likely to be nearly as hard to be analyzed as its parent, deeming the
splitting performed not useful. On occasion, M AX alone is not enough in order
to appropriately comparing splitters. This can be observed in Table 1 (see Sec-
tion 5), where splitters VSIDS and Domain2.dstBinding alternate their order
with respect to MAX, as the scope is increased. By looking at the value of the
SUM parameter in scope 8, one can see that VSIDS has a much lower value than
Domain2.dstBinding (218.29” versus 1678.88”), allowing us to decide between
these splitters. A high sum (compared to the other splitters) usually indicates
a bad splitting, where subproblems share complex portions of the SAT-solving
search space. Therefore, splitters with a high sum are usually demoted to lower
positions in the ordering. The most appropriate ordering in this case would then
be VSIDS < Domain2.dstBinding,

It is important to remark that the heuristics just presented allow us to predict
the best splitter (within the available set) for each of the case studies to be
discussed in Section 5. Moreover, computing the parameters MAX, SUM, etc.
for each splitter in a small scope is inexpensive. We have both a sequential
prototype and parallel prototype that can be used interchangeably depending
on the availability of the cluster infrastructure, in order to compute these values.

98 N. Rosner et al.

An alternative to the use of the above heuristics for ordering the splitters
is to carry out the actual parallel analysis in smaller scopes. This would allow
us to rank the splitters according to the parallel analysis times they induce,
yielding an ordering that is usually more precise. We will nevertheless stick to
the heuristics presented, resorting to parallel analysis in small scopes only if
required. Although the latter will not be necessary in this article for detecting
the best splitter, we will show in Section 5.5 that performing the parallel analyses
yields a better ordering on the whole set of splitters.

5 Experimental Results

In this section we evaluate the heuristics for choosing an appropriate splitter for
larger scopes, by analyzing the performance of splitters for smaller scopes. Our
evaluation is performed for a number of case studies. For each case study we
discuss how the VSIDS and the Field splitters can be ordered, and show that by
using the best splitter according to the defined ordering we achieve analyzability
in larger scopes. In Section 5.1 we describe the computing infrastructure used in
the evaluation; in Sections 5.2-5.5 we present our case studies, and in Section 5.6
we discuss some possible threats to the validity of our experimental results. Since
the parallel analysis times depend on the actual scheduling of the queued jobs,
we run each experiments 3 times and report the average analysis time. All the
times are given in seconds. In all the experiments we set the maximum number
of generated subproblems to 256. For each experiment we will report the time
required for computing the tranScoping data. This time is almost negligible
when compared to the analysis time in the largest scopes. In all the reported
experiments we were able to analyze assertions in scopes that were infeasible
(analysis would invariably diverge) without tranScoping.

5.1 The Computing Infrastructure

All experiments were run on the CeCAR [26] cluster, which consists of 17 identi-
cal quad-core PCs, each featuring two Intel Dual Core Xeon 2.67 GHz processors
with 2 MB of L2 cache per core and 2 GB main memory per host. Parallel anal-
yses were run as 17x4 jobs, i.e., 17 nodes running one process per core (1 master
+ 68 workers). Sequential analyses were run on a single dedicated CeCAR node.

5.2 A Model of Routing in Heterogeneous Networks

In [24], a model of routing in heterogeneous networks is presented. A compan-
ion Alloy model can be downloaded from the author’s web page. This model is
equipped with an assertion, shown in Fig. 2, that could not be checked for some
relatively small scopes. As explained before, it is important to analyze model
properties on larger scopes, since the larger the analyzed scope, the greater our
confidence will be in the validity of the model. This model is very difficult to an-
alyze; its sequential analysis time grows very steeply, from 308 seconds in scope 8

Parallel Bounded Verification of Alloy Models by TranScoping 99

assert StructureSufficientForPairReturnability {
all g: Agent, al, a2: Address, dl, d2: Domain3 |
StructuredDomain[d1] &&
MobileAgentMove[g,al,a2,d1,d2]
=> ReturnableDomainPair[d1,d2]
}
check StructureSufficientForPairReturnability for 2 but
2 Domain, 2 Path, 4 Agent, 7 Identifier -- checked
check StructureSufficientForPairReturnability for 2 but
2 Domain, 2 Path, 3 Agent, 8 Identifier -- checked
check StructureSufficientForPairReturnability for 2 but
2 Domain, 2 Path, 3 Agent, 9 Identifier -- this one is too big also
check StructureSufficientForPairReturnability for 2 but
2 Domain, 2 Path, 3 Agent, 11 Identifier
-- attempted but not completed at MIT; formula is not that large; results
-- suggest that the problem is very hard, and that the formula is almost
-- certain unsatisfiable [which means that the assertion holds]

Fig.2. Assertion StructureSufficientForPairReturnability and its companion
checks

to over 15 days in scope 10 (cf. Table 4). Problems like this one require strategies
for scaling up bounded analysis, and parallelization could be a valuable tool for
it. Still, the parallel analysis technique presented in Section 3 only allowed us to
complete the analysis for scopes 1 to 10. In fact, before tranScoping, our repeated
attempts to analyze this assertion for scope 11 were unsuccessful. As shown in
Table 4, tranScoping allowed us to select splitter Domain3.srcBinding, and to
analyze successfully the assertion using this splitter.

In order to evaluate which splitter to choose, we started by mining information
about the performance of all splitters, for scopes 6 to 8, shown in Table 1. Using
this information, we discarded for scope 9 those splitters that stand no chance
of becoming best candidates. The possibility of separating viable from inviable
splitters is a good quality of tranScoping, since it allows us to reduce the time
invested in the data computing phase. It took 868.27 seconds to compute this
table. We start by sorting splitters according to M A X, as shown in Table 1. This
is insufficient to decide an adequate splitter. In particular, observe the ordering
between splitters Domain2.dstBinding and VSIDS (the same applies to the or-
dering between splitters Domain2.dstBinding and Domain.routing). For scope
8, Domain2.dstBinding < VSIDS with respect to MAX, but by looking at value
SUM, we see that Domain2.dstBinding has a SUM that is 7.7 times larger
than VSIDS’ SUM. The difference is large enough to justify promoting VSIDS
above Domain2.dstBinding. This decision is backed up by Table 2, which shows
the performance of each of the splitters in the parallel analysis of the assertion.
A timeout (TO) was set at 600 seconds. Notice that the best two splitters (ac-
cording to tranScoping) performed better than the others. At first sight the two
best splitters seem to have performed similarly. In fact, Domain3.srcBinding
performed better than Domain3.BdstBinding, as we expected. Not because the
former took 1 second less to finish the analysis (that difference might even be
reverted if more analyses were made before averaging the results), but because
the number of subproblems that it had to generate (see the UNSATSs column
in Table 2) is definitely smaller than the number of subproblems generated by
the latter. This has a direct correlation with the MAX wvalue: a larger MAX

100 N. Rosner et al.

Table 1. Routing: mined tranScoping information, scopes 6 to 9, sorted by MAX

Scope|Splitter NUM MAX| AVG SUM|DEV | MED
6 Domain3.srcBinding 77 0.08| 0.02 1.45(0.02| 0.01
Domain3.BdstBinding 77| 0.09] 0.02 1.50| 0.02| 0.01
Domain2.dstBinding 192| 0.18| 0.04 7.67| 0.03| 0.03
Domain.routing 102| 0.21f 0.02 1.98(0.03| 0.01
VSIDS 228 0.49| 0.01 3.55| 0.05| 0.00
Domain3.AdstBinding 192| 1.22(0.05 9.78| 0.10| 0.02
Identifier_remainder 64| 2.31| 0.73 46.94| 0.52| 0.59

7 |Domain3.BdstBinding 136] 0.84 0.12 17.00[0.18 0.08
Domain3.srcBinding 141| 0.90(0.10 14.60| 0.19| 0.06
VSIDS 140 3.39| 0.13 19.18| 0.38 0.01
Domain2.dstBinding 192| 3.71f 0.49 94.74| 0.42(0.32
Domain.routing 192| 4.46| 0.14 27.51| 0.40(0.04
Domain3.AdstBinding 192| 13.05| 0.53| 101.28| 1.04| 0.23
Identifier_remainder 128| 25.97| 7.45| 953.82| 6.41| 4.93

8 Domain3.srcBinding 136| 8.09(1.13| 154.17| 1.37[0.51
Domain3.BdstBinding 136| 18.06 1.28| 173.48| 1.95[0.72
Domain2.dstBinding 192| 36.25| 8.74| 1678.88| 7.45[5.78
VSIDS 174| 63.62| 1.25| 218.29| 6.27(0.05
Domain.routing 192| 89.41| 2.18| 418.04| 7.66[0.39
Domain3.AdstBinding 192(288.79| 10.18| 1954.07|22.36| 2.46
Identifier remainder 256|376.70| 86.03(22024.53| 81.98| 56.98

9 |Domain3.srcBinding 365| 7.57|163.47| 2764.89|15.53| 3.68
Domain3.BdstBinding 272| 13.25(360.04| 3603.38|27.38| 5.89

Table 2. Routing: parallel analysis time, scope 9, all splitters. Timeout (TO) set to
600 seconds.

Splitter Time|Pending|UNSATSs
Domain3.srcBinding |171.30 0 1562
Domain3.BdstBinding|172.23 0 2117
VSIDS 350.39 0 5974
Domain.routing 562.74 0 4534
Domain2.dstBinding TO 11709 735
Domain3.AdstBinding TO 17268 475
Identifier_remainder TO 7682 32

value implies that there are some subproblems that are more complex and have
to be split more times (thus causing a larger number of UNSATS) in order to be
tamed. In this case this is not reflected in the analysis times because the hard-
ware available was able to cope with the number of subproblems generated by
both splitters. Table 3 reports the parallel analysis times for these two splitters
in scope 10, where the better performance of Domain3.srcBinding can be clearly
appreciated.

By using tranScoping we are able to analyze the assertion for scopes 1 through
11, as Table 4 shows. We set a timeout (indicated as TO when reached) of 15
days. The sequential analysis for scope 10 did not finish in 15 days. Looking at
the progression of sequential values, it is clear that the sequential analysis for
scope 11 may take most probably over a year. Therefore, we use the notation
> to indicate that the actual speed-up is most probably much larger than the
indicated speed up. We do not report parallel analysis times for scopes 6 and 7
because the sequential time is too small and the problem is solved before even
being split.

Parallel Bounded Verification of Alloy Models by TranScoping 101

Table 3. Routing: comparing splitters Domain3.srcBinding and Domain3.BdstBinding
during parallel analysis, scope 10

Splitter Time|Pending|[UNSATS
Domain3.srcBinding |1053.48 0 10231
Domain3.BdstBinding|1129.49 0 10884

Table 4. Sequential versus parallel analysis time, and speed-up obtained by using the
best tranScoped splitter: Domain3.srcBinding. Timeout (TO) = 15 days.

Scope 6 7 8 9 10 11
Sequential time[1.60[18.34|308.26(76168.16 TO TO
Parallel time - -| 26.55] 171.30] 1053.48({10949.72
Speed-up 11X 444X [>1230X| > 118X

5.3 A Model of the Mark and Sweep Garbage Collection Algorithm

Mark and Sweep is a garbage collection algorithm that, as its name conveys, tra-
verses the memory marking those objects reachable from the memory heap, and
then sweeping those objects that are no longer reachable. An Alloy model of the
mark and sweep algorithm comes as a sample model with the Alloy Analyzer’s
distribution. Among the assertions to be checked we have Soundness2. Unlike
assertion Soudnessl in the same model (whose analysis time grows slowly as
the scope increases), assertion Soundness?2 is hard to analyze (Table 7 shows a
growth in the analysis time of at least 10 times from a scope to the next).

We also start with this case study by mining information about the perfor-
mance of all splitters, for scopes 7 to 9, ordered by MAX, and reported in
Table 5. It took 1007.41 seconds to compute this table. While splitter VSIDS ap-
pears to be the best option in scope 7, splitter HeapState.marked takes a clear
lead in scopes 8 and 9. Moreover, as shown in Table 6, the information mined
extrapolates to the parallel analysis: HeapState.marked is the best splitter and
VSIDS comes in second place. Table 7 shows that, resorting to the tranScoped
splitter HeapState.marked, we are able to analyze assertion Soundness?2 for
scopes 1 to 10, obtaining significant speed-ups.

5.4 A Model of the Mondex Electronic Purse

Mondex is a smart card electronic cash system owned by Master Card. A Mondex
smart card allows its owner to perform secure commercial transactions and offers
features similar to those provided by ATM machines (albeit with greater mobil-
ity). An Alloy model of the Mondex electronic purse is provided and analyzed
in [19]. Among the many assertions to be verified, there is assertion Rab_archive.
Table 8 displays the tranScoping information for this assertion. It took 1145.74
seconds to compute this table. The sequential time required to analyze the asser-
tion in scope 4 is 3.62 seconds. Such short time compresses all the information
for the different splitters, preventing us from ordering the splitters precisely.
Still, we can at least separate those splitters whose application is bound to be

102 N. Rosner et al.

Table 5. Mark&Sweep: mined tranScoping information, scopes 7 to 9, sorted by MAX

Scope|Splitter NUM|MAX| AVG SUM|DEV|MED
7 |VSIDS 154 0.12| 0.03 4.14| 0.02f 0.02
HeapState.marked 252 1.75] 0.03 8.50(0.11] 0.03
HeapState.left 192| 3.36| 0.43 82.97| 0.41| 0.31
HeapState.freeList 164| 4.39| 1.49| 245.29| 0.57| 1.38
HeapState.right 192| 4.44| 0.46 87.94| 0.49| 0.32

8 HeapState.marked 254 0.30 0.07 17.67| 0.06] 0.05
VSIDS 200| 2.32(0.19 38.90| 0.25| 0.12
HeapState.right 162| 34.54| 5.65| 914.84| 7.13| 2.78
HeapState.left 162| 45.38| 5.42| 877.34| 7.17| 2.73
HeapState.freeList 146| 50.06| 24.45| 3570.58| 8.32| 22.68

9 HeapState.marked 254 1.73| 0.21 54.65 0.28(0.12
VSIDS 181| 7.78| 0.85| 154.07| 1.06| 0.41
HeapState.freeList 182(260.93|131.26(23890.37| 42.94(131.95
HeapState.right 200|272.34| 32.42| 6483.97|42.99| 14.96
HeapState.left 200|301.02| 31.43| 6285.75|42.22| 15.32

Table 6. Mark&Sweep: parallel analysis time, scope 9, all splitters. Timeout (TO) set
to 600 seconds.

Splitter Time|Pending|UNSATSs
HeapState.marked| 9.95 0 128
VSIDS 184.88 0 2472
HeapState.left TO 16491 726
HeapState.right TO 17064 699
HeapState.freeList TO 7201 1575

expensive. For instance, out of the 16 splitters in Table 8, only 5 seem to have a
chance of producing good parallel analyses. The tranScoping data collected for
these 5 splitters in scopes 5 and 6, allows us to conclude that the best candidate
to use in larger scopes is VSIDS. In effect, in scope 6 VSIDS has a substantially
lower SUM than the other 4 splitters, while having a comparable (even smaller)
MAX as well. The results in Table 9 confirm our prediction, by showing that for
scope 6 VSIDS produces a better parallel analysis. Table 10 shows that, resorting
to the tranScoped splitter VSIDS, we are able to analyze assertion Rab_archive
for scopes 1 to 8. Notice that while the speed-up obtained is modest, it is the
best speed-up that can be obtained with these splitters. Better analyses are per-
haps possible, but they require to devise new splitters that perform better than
VSIDS.

5.5 An Alloy Specification of the XPath Data Model

XPath [23] is a language for querying XML documents. In [22], an Alloy model
for the XPath 1.0 data model is presented. Subelements inside an XML element
cannot be duplicated. As part of the model, assertion nodup_-injective, states
the equivalence between two distinct ways of expressing this fact.

Table 11 reports the values computed for the different parameters in scopes
6 and 7, for the XPath case study. It took 609.02 seconds to compute this data.
Based on the retrieved information, some of the splitters can be immediately

Parallel Bounded Verification of Alloy Models by TranScoping 103

Table 7. Mark&Sweep: parallel analysis time and speed-up obtained by using the best
tranScoped splitter, HeapState.marked

Scope 6 7 8 9 10
Sequential time|0.25(1.37|22.98]|217.31{2855.30
Parallel time - -110.13| 9.95| 28.35
Speed-up 2X| 21X]| 100X

Table 8. Mondex: mined tranScoping information, scopes 4 to 6, sorted by MAX

Scope|Splitter NUM|MAX|AVG SUM|DEV | MED
4 [common/TransferDetails.from 149| 1.20| 0.38 56.58| 0.26| 0.31
common/TransferDetails.to 149 1.82]| 0.84| 124.58| 0.41| 0.85
a/AbPurse.abLost 256 2.80| 0.35 88.82| 0.27 0.29
common/TransferDetails.value 256| 2.84| 1.86| 475.69| 0.41| 1.92
c¢/ConPurse.status 256| 3.04| 0.69| 176.87| 0.93| 0.17
cw/ConWorld.archive 256 3.19| 0.12 30.81| 0.31| 0.02
¢/ConPurse.nextSeqNo 256| 4.00| 0.69| 177.98| 1.00| 0.16
cw/ConWorld.ether 128 4.21| 0.91| 117.11| 1.00{ 0.52
¢/PayDetails.toSeqNo 149| 4.39| 1.44| 215.03| 1.08| 1.33
c/PayDetails.fromSeqNo 149| 4.46| 1.72| 255.81| 1.14| 1.62
c¢/ConPurse.pdAuth 256 4.55| 2.15| 549.94| 0.38| 2.08
a/AbPurse.abBalance 256| 4.61| 0.56| 144.19| 0.61| 0.42
VSIDS 184| 4.84| 0.14 25.50| 0.43| 0.01
cw/ConWorld.conAuthPurse 224| 5.57| 0.28 63.38| 0.60| 0.05
¢/ConPurse.exLog 256| 6.16| 0.80| 204.89| 1.02| 0.35
c¢/ConPurse.balance 256| 9.92| 1.34| 342.87| 1.06| 1.18

5 [common/TransferDetails.from 131] 16.05| 7.52| 984.80| 3.46| 7.04
VSIDS 138| 28.08| 1.77| 244.26| 4.44| 0.09
cw/ConWorld.conAuthPurse 200| 36.92| 1.94| 388.25| 5.46| 0.12
a/AbPurse.abLost 256| 39.81| 2.90| 742.30| 5.66 1.50
cw/ConWorld.archive 256| 49.69| 2.72| 696.12] 5.39| 0.79

6 VSIDS 176|202.18| 2.83| 498.34|21.12(0.048
common/TransferDetails.from 151(206.73|89.23({13473.59| 38.86(90.19
a/AbPurse.abLost 256(423.67(20.37| 5215.74(62.26| 5.02
cw/ConWorld.conAuthPurse 164(506.25(12.34| 2024.09(51.73| 0.35
cw/ConWorld.archive 256(559.32|40.79({10442.80| 66.75| 16.36

ruled out as best candidates in larger scopes. This is the case for instance for split-
ters Name . NSName, Node . stringvalue, Name .Localname, PI.expanded name and
PI.target, whose SUM value is much larger than those for the other splitters.
The remaining splitters (those that were not discarded) are listed in Table 12,
and their parallel analysis times are reported along other useful information.
In this table, splitters are listed in the order inferred from Table 11, follow-
ing the heuristics discussed in Section 4.2. Notice that the ordering thus de-
termined is flawed; splitter VSIDS appears in a better place than it should.
At the end of Section 4.2 we proposed to perform the parallel analysis in a
small scope in order to tranScope the ordering more accurately. We performed
the corresponding analyses for scope 7, and VSIDS now falls behind splitter
NodeWithChildren.chseq, which is consistent with the ordering expected from
observing the results reported in Table 12. The results obtained with the selected
splitter, and the corresponding speed-up with respect to sequential analysis, are
reported in Table 13.

104 N. Rosner et al.

Table 9. Mondex: parallel analysis time, scope 6. Timeout (TO) = 600 seconds.

Splitter Time|Pending[UNSATS
VSIDS 170.18 0 2185
cw/ConWorld.conAuthPurse TO 5551 4385
common/TransferDetails.from| TO 5499 4619
cw/ConWorld.archive TO 13160 2233
a/AbPurse.abLost TO 9627 2576

Table 10. Mondex: parallel analysis time and speed-up obtained by using the best
tranScoped splitter: VSIDS)

Scope 6 7 8
Sequential time[456.33|8111.65(149678.26
Parallel time 170.18(1643.91| 78685.75
Speed-up 2X 5X 2X

5.6 Threats to Validity

TranScoping is a heuristic for deciding which splitter to use along the analysis of
an assertion in a large scope. While we perceive the technique as a breakthrough
that allowed us to analyze assertions in scopes in which the analysis (even the
parallel one) was previously infeasible, tranScoping is so far only supported ex-
perimentally. As such, it requires more experiments. We tried tranScoping in
the assertions packed within the sample problems distributed with the Alloy
Analyzer as well as in selected interesting models downloaded from the Internet.
For assertions whose analyses in large scopes are beyond the capabilities of the
Alloy Analyzer, tranScoping gave us useful insights into how to choose a splitter,
usually leading to parallel analyzability in larger scopes.

The information compiled in Tables 1, 5, 8 and 11 is based on splitting the
root problem just once (with each splitter). Our hypothesis is that a good initial
splitting propagates its advantages to the rest of the parallel analysis (or, con-
versely put, that a bad initial splitting will ruin the parallel analysis altogether).
This is confirmed in our case studies, since we were always able to predict the
best splitter amongst the ones available in each experiment. But, as discussed in
Section 5.5, a more accurate ordering (one not just focusing on the best splitter)
is obtained if the complete parallel analysis is performed on the smaller scopes.

The variables selected by the VSIDS splitter strongly depend on how long is the
analysis allowed to run before observing the ranking. Therefore, different query
times may produce quite distinct sequences of variables. This did not prevent
tranScoping from predicting the best splitter in the case studies in this article
and other examples we ran. Yet we noticed that the different runs of the VSIDS
splitter (whose times are averaged when reported in the tables), yielded analysis
times with significant variation.

Finally, we are presenting a very limited, albeit useful, set of general purpose
splitters. Further research has to be conducted in order to identify other general
purpose splitters, or new domain-specific ones.

Parallel Bounded Verification of Alloy Models by TranScoping 105

Table 11. XPath: mined tranScoping information, scopes 6 and 7, sorted by MAX

Scope|Splitter NUM MAX|AVG SUM|DEV|MED
[§ Node.parent 150/ 0.56| 0.18 26.42| 0.09| 0.17
VSIDS 166 1.42| 0.04 8.02| 0.19| 0.01
NodeWithChildren.ch 144| 2.99| 0.13 18.94| 0.28| 0.06
NodeWithChildren.chseq 129| 4.12| 0.05 6.75| 0.36] 0.01
Attribute.name 98| 4.51| 0.12 11.51| 0.48| 0.01
Element.nss 134 4.68| 0.10 14.01| 0.42| 0.02
Pl.expanded_name 135 4.83| 0.64 87.65| 0.55 0.45
Element.gi 133| 5.24| 4.12| 548.67| 0.83| 4.28
Pl.target 135 5.44| 0.69 93.61| 0.56| 0.51
Name.Localname 150| 5.84(2.77| 416.77| 2.20| 4.19
Node.stringvalue 150| 5.88(4.72| 708.71| 1.03| 4.95
Name.NSName 147 6.22| 5.01f 735.98(0.38| 4.94

7 Node.parent 155 8.51| 1.43| 222.15(1.38| 1.11
VSIDS 168| 53.34| 0.84| 141.39(4.23| 0.02
NodeWithChildren.ch 192| 67.32| 0.95| 182.98(5.00(0.15
Attribute.name 99| 92.43| 1.38| 136.37| 9.33| 0.05
Pl.target 178(109.93| 7.40(1317.73| 8.70| 5.25
NodeWithChildren.chseq 171(129.51| 0.80(137.17(9.90(0.03
Pl.expanded_name 178|134.24| 8.24| 1466.69|10.21| 6.36
Element.nss 140|201.73| 1.73| 241.64|17.05| 0.02
Name.Localname 153|235.16(83.57|12786.90| 65.44|110.10

Table 12. XPath: parallel analysis time, scope 8, only splitters that are viable candi-
dates according to tranScoping. Timeout (TO) set to 600 seconds.

Splitter Time|Pending|]UNSATSs
Node.parent 98.61 0 1231
VSIDS TO 13160 5698
NodeWithChildren.ch 227.09 0 4456
Attribute.name 286.32 0 1384
NodeWithChildren.chseq|548.66 0 7947
Element.nss 419.45 0 1926

6 Related Work

Parallel bounded verification has been used mainly in the context of program
static analysis. For example, [21] proposes to split the program control flow
graph and use JForge [10] (a tool for program bounded verification) to analyze
each slice. An approach to parallelizing scope-bounded program analysis based
on data-flow analysis was presented in [20].

An alternative to tranScoping is the use of a large-scale parallel SAT-solver.
Unfortunately, while multi-core tools are starting to take off, distributed parallel
SAT-solvers are still scarce. CryptoMiniSat2 [8] is an award-winning open source
solver with sequential and parallel operation modes. The author also mentions
distributed solving among its long-term goals. No public release or other news
about this have been announced. GrADSAT [4] reported experiments showing an
average 3.27X and a maximum 19.9X speed-up using various numbers of workers
ranging between 1 and 34. C-sat [18] is a SAT-solver for clusters. It reports linear
speed-ups, but the tool is not available for experimentation. PMSat [12], an MPI-
based, cluster-oriented SAT-solver is indeed available for experimentation, but
reports generally small speed-ups.

106 N. Rosner et al.

Table 13. XPath: parallel analysis time and speed-up obtained by using the best
tranScoped splitter: Node.parent

Scope 6 7 8 9
Sequential time|5.15[140.90|2560.17(19559.49
Parallel time —| 23.95| 98.61| 1473.32
Speed-up 6X 26X 13X

7 Conclusions and Further Work

We presented TranScoping, a technique for principled selection of splitting heuris-
tics in parallel bounded verification. This approach exploits information from
simple analyses in small scopes of a model under analysis, in order to give the
user of the technique the insight necessary to infer an adequate splitter for larger
scopes. We evaluated this approach on a number of case studies, showing that
by tranScoping we are able to analyze assertions in scopes where we failed be-
fore many times. As these experiments show, for many problems the enormous
growth of the analysis times causes them to have a bad initial splitting, resulting
in diverging analysis. We believe tranScoping is a useful tool, that helps us make
an informed decision about the most critical point in the parallel SAT solving
analysis process.

TranScoping opens a new research line, namely, the search for new splitters
that may produce better speed-ups than the general purpose splitters we pre-
sented in this article. Also, it may be possible to find splitters tailored to specific
domains (SAT based program analysis, parallel test generation using SAT, etc.).
We plan to work on defining and evaluatiing such new splitters.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model trans-
formation from UML to Alloy. Software and Systems Modeling 9(1), 69-86 (2010)

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 342-363. Springer, Heidelberg (2006)

4. Chrabakh, W., Wolski, R.: GrADSAT: A Parallel SAT Solver for the Grid. In:
UCSB Computer Science Technical Report Number 2003-05

5. Eén, N., Sérensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004)

6. MPI2: A Message Passing Interface Standard. Message Passing Interface Forum,
High Performance Computing Applications 12, 1-2, 1-299 (1998)

7. Dalcin, L., Paz, R., Storti, M., D’Elia, J.: MPI for Python: Performance improve-
ments and MPI-2 extensions. J. Parallel Distrib. Comput. 68(5), 655-662

8. http://www.msoos.org/cryptominisat?2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Parallel Bounded Verification of Alloy Models by TranScoping 107

Davies, J., Woodcock, J.: Using Z: Specification, Refinement and Proof. Interna-
tional Series in Computer Science. Prentice Hall (1996)

Dennis, G., Chang, F., Jackson, D.: Modular Verification of Code with SAT. In:
ISSTA 2006, pp. 109-120 (2006)

Galeotti, J.P., Rosner, N., Pombo, C.L., Frias, M.F.: Analysis of invariants for
efficient bounded verification. In: ISSTA 2010, pp. 25-36 (2010)

Gil, L., Flores, P., Silveira, L.M.: PMSat: a parallel version of MiniSAT. Journal
on Satisfiability, Boolean Modeling and Computation 6, 71-98 (2008)

Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the alloy constraint analyzer. In:
Proceedings of ICSE 2000, Limerick, Ireland (2000)

Jackson, D.: Software Abstractions. MIT Press (2006)

Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class Diagrams Analysis Using
Alloy Revisited. In: Whittle, J., Clark, T., Kiihne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 592-607. Springer, Heidelberg (2011)

Malik, P., Groves, L., Lenihan, C.: Translating Z to Alloy. In: Frappier, M., Glasser,
U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 377—
390. Springer, Heidelberg (2010)

Matos, P.J., Marques-Silva, J.: Model Checking Event-B by Encoding into Alloy.
In: Borger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238,
pp. 346-346. Springer, Heidelberg (2008)

Ohmura, K., Ueda, K.: c-sat: A Parallel SAT Solver for Clusters. In: Kullmann, O.
(ed.) SAT 2009. LNCS, vol. 5584, pp. 524-537. Springer, Heidelberg (2009)
Ramananandro, T.: Mondex, an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Aspects of Computing 20(1),
21-39 (2008)

Shao, D., Gopinath, D., Khurshid, S., Perry, D.: Optimizing Incremental Scope-
Bounded Checking with Data-Flow Analysis. In: ISSRE 2010, pp. 408-417 (2010)
Shao, D., Khurshid, S., Perry, D.: An Incremental Approach to Scope-Bounded
Checking Using a Lightweight Formal Method. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 757-772. Springer, Heidelberg (2009)
Sperberg-McQueen, C.M.: Alloy version of XPath 1.0 data model,
http://www.blackmesatech.com/2010/01/xpath10.als

World Wide Web Consortium (W3C), XML Path Language (XPath) Version 1.0,
W3C Recommendation (November 16, 1999)

Zave, P.: Compositional binding in network domains. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 332-347. Springer, Heidelberg
(2006)

Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21, 4-6 (1996)
http://cecar.fcen.uba.ar/

	Preface
	Organization
	Program Committee
	Additional Reviewers

	Using Learning Techniques in Invariant Inference
	F*: Certified Correctness for Higher-Order
	Stateful Programs
	How to Explain Cyber-Physical Systemsto Your Verifier
	A Tutorial on the CompCert Verified Compiler
	Table of Contents
	Classifying and Solving Horn Clauses for Verification
	1 Introduction
	2 Related Work
	3 Example
	4 Formulae and Horn Clauses
	4.1 Horn Clauses

	5 The Relationship between Craig Interpolation and Horn Clauses
	5.1 Binary Craig Interpolants [10, 25]
	5.2 Inductive Sequences of Interpolants [20, 27]
	5.3 Tree Interpolants [19, 24]
	5.4 Restricted (and Unrestricted) DAG Interpolants [1]
	5.5 Disjunctive Interpolants [30]

	6 The Complexity of Recursion-Free Horn Clauses over Quantifier-Free Presburger Arithmetic
	7 Towards a Library of Interpolation Benchmarks
	8 From Recursion-Free Horn Clauses to Well-Founded Clauses
	9 Conclusion
	References

	Static Analysis of Programs with Imprecise
Probabilistic Inputs
	1 Introduction
	2 Related Work
	3 Concrete Semantics
	4 Abstract Semantics
	4.1 Dempster-Shafer Structures
	4.2 Abstract Domain: Probabilistic Affine Forms

	5 Correctness Proofs
	5.1 Concretization
	5.2 Correctness Results

	6 Experimentations
	6.1 Running Example
	6.2 Ferson Polynomial
	6.3 Tank Filling

	7 Conclusion
	References
	A OperationalSemantics
	B Adequacy Theorem

	Effect Analysis for Programs with Callbacks
	1 Introduction
	2 Overview of Challenges and Solutions
	3 Effect Analysis for Mutable Shared Structures
	3.1 Intermediate Language Used for the Analysis
	3.2 Effects as Graph Transformers
	3.3 Composing Effects

	4 Compositional Analysis of Higher-Order Code
	4.1 Control-Flow Graph Summarization
	4.2 Partial Unfolding
	4.3 Combining Unfolding and Summarization
	4.4 Controlled Delaying
	4.5 Handling Recursion
	4.6 Instantiation for Effect Graphs

	5 Producing Readable Effect Summaries
	6 Evaluation on Scala Library
	6.1 Overall Results
	6.2 Selected Examples

	7 Related Work
	8 Conclusion
	References

	Compositional Network Mobility
	1 Introduction
	2 The Geomorphic View of Networking
	2.1 Components of a Layer
	2.2 Layers Within a Network Architecture

	3 Implementations of Mobility
	3.1 Dynamic-Routing Mobility
	3.2 Mobility in the Model of Shared State
	3.3 Session-Location Mobility

	4 Composition of Mobility Implementations
	4.1 The Design Space of Mobility
	4.2 An Example of Composition

	5 Verification of Compositional Properties
	5.1 Composition of Control States
	5.2 Composition in the Model of Shared State

	6 Related and Future Work
	References

	Parallel Bounded Verification of Alloy Modelsby Tran Scoping
	1 Introduction
	2 Bounded Verification: Alloy and the Alloy Analyzer
	3 Parallel SAT-Solving
	4 TranScoping
	4.1 A Portfolio of Splitters
	4.2 Selecting the Right Splitter

	5 Experimental Results
	5.1 The Computing Infrastructure
	5.2 A Model of Routing in Heterogeneous Networks
	5.3 A Model of the Mark and Sweep Garbage Collection Algorithm
	5.4 A Model of the Mondex Electronic Purse
	5.5 An Alloy Specification of the XPath Data Model
	5.6 Threats to Validity

	6 Related Work
	7 Conclusions and Further Work
	References

	Extending the Theory of Arrays:
memset, memcpy, and Beyond
	1 Introduction
	2 Preliminaries
	3 TheTheory
	4 Applications of TλA
	4.1 Loop Summarization Using TλA
	4.2 Further Uses

	5 Deciding TλA
	5.1 Eager Reduction
	5.2 Using Quantifiers
	5.3 Instantiating Quantifiers

	6 Implementation and Evaluation
	6.1 Loop Summarization in LLBMC
	6.2 Evaluation

	7 Related Work
	8 Conclusions and Further Work
	References

	An Improved Unrolling-Based Decision
Procedure for Algebraic Data Types
	1 Introduction
	2 Preliminaries
	2.1 Parametric Logic
	2.2 Catamorphisms

	3 Properties of Trees and Shapes in the Parametric Logic
	3.1 Properties of Trees
	3.2 Properties of Tree Shapes

	4 Unrolling-Based Decision Procedure Revisited
	5 Monotonic Catamorphisms
	5.1 Definition
	5.2 Examples of Monotonic Catamorphisms

	6 Unrolling Decision Procedure - Proof of Correctness
	6.1 Some Properties of Monotonic Catamorphisms
	6.2 Proof of Correctness of the Unrolling-Based Decision Procedure

	7 Associative-Commutative (AC) Catamorphisms
	7.1 Definition
	7.2 AC Catamorphisms are Monotonic
	7.3 Exponentially Small Upper Bound of the Number of Unrollings
	7.4 Combining AC Catamorphisms

	8 The Relationship between Abstractions
	9 Experimental Results
	10 Related Work
	11 Conclusion
	References

	Program Checking with Less Hassle
	1 The Trouble with Specs
	2 Overview and Illustrative Examples
	3 Implicit Contracts
	3.1 Targets Non-Void
	3.2 Routine Calls in Contracts
	3.3 Array Accesses
	3.4 Arithmetic Expressions

	4 Inlining and Unrolling
	4.1 Inlining
	4.2 Unrolling

	5 Two-Step Verification
	5.1 With Inlining
	5.2 With Unrolling
	5.3 Bounds for Nesting and Loops
	5.4 Examples

	6 Evaluation
	7 Related Work
	References

	Verified Calculations
	1 Introduction
	2 Background and Motivation
	2.1 Proofs in an Auto-Active Program Verifier
	2.2 Calculational Proofs

	3 Calculations in Dafny
	3.1 Contextual Information
	3.2 Structuring Calculations

	4 Encoding
	4.1 Partial Lines

	5 Experiments and Discussion
	5.1 Case Studies
	5.2 Comparison with Other Proof Notations
	5.3 Irrelevant Hints and Bogus Steps

	6 Related Work
	7 Conclusions and Future Work
	References

	Preserving User Proofs across Specification Changes
	1 Introduction
	2 Proof Sessions: Static Model
	3 Session Updates
	3.1 Goal Shape
	3.2 Matching Algorithm

	4 Script Updates for Interactive Provers
	5 Environment Changes
	6 Conclusions, Related Work, and Perspectives
	References

	An Automatic Encoding from VeriFast
Predicates into Implicit Dynamic Frames
	1 Introduction
	2 Background
	2.1 VeriFast Predicates, in and Out Parameters
	2.2 Chalice Predicates and Functions
	2.3 Running Example

	3 Approach
	3.1 From out Parameters to Abstraction Functions
	3.2 From in Parameters to Ghost State
	3.3 Initial Translation
	3.4 Inferring Abstraction Functions
	3.5 Introducing Ghost Fields
	3.6 Translating Programs
	3.7 Usage of Predicate Analysis

	4 Core Analysis
	4.1 Our Core Analysis
	4.2 Value Facts
	4.3 Analysis of Boolean Expressions
	4.4 Permission Facts
	4.5 Equation Solver

	5 Results and Evaluation
	6 Conclusions and Future Work
	References

	Automated Code Proofs on a Formal Model of the X86
	1 Introduction
	2 Motivation
	3 ACL2: A Brief Introduction
	4 Executable FormalModel of the X86 ISA
	5 Reasoning about X86 Binaries
	6 Conclusion and Future Work
	References
	A Appendix

	Verification of a Virtual Filesystem Switch
	1 Introduction
	2 Scope and Approach
	2.1 Formalism
	2.2 Separation Logic

	3 POSIXSpecification
	3.1 Data Structures
	3.2 Operations and Error Handling
	3.3 Invariants
	3.4 Related Work

	4 VFS and AFS Models
	4.1 Interplay
	4.2 State
	4.3 Operations
	4.4 Related Work

	5 Abstraction Relation
	5.1 Directory Abstraction
	5.2 File Abstraction

	6 Proofs
	6.1 Proof Strategy for Directories
	6.2 Proof Strategy for Files
	6.3 Related Work

	7 Discussion and Conclusions
	References

	Verifying Chinese Train Control System undera Combined Scenario by Theorem Proving
	1 Introduction
	1.1 Related Work
	1.2 Structure of the Paper

	2 Preliminaries
	2.1 Hybrid CSP Language
	2.2 Hybrid Hoare Logic

	3 A Combined Scenario of CTCS-3 and Its HCSP Model
	3.1 Movement Authority Scenario
	3.2 Level Transition
	3.3 Mode Transition
	3.4 Combined Scenario and Model

	4 Isabelle Implementation
	4.1 Assertion Language
	4.2 HCSP Syntax
	4.3 Verification Condition
	4.4 Soundness

	5 Proof of the Combined Scenario
	6 Conclusion and Future Work
	References

	Formal Verification of Loop Bound Estimation
for WCET Analysis
	1 Introduction
	2 A Loop Bound Estimation for WCET Analysis
	2.1 Overview
	2.2 RTL Semantics with Counters
	2.3 Soundness of Loop Bound Estimation

	3 LoopNestings
	3.1 Axiomatization of Loop Nestings
	3.2 Computation of Loop Nestings

	4 Program Slicing
	4.1 Soundness Theorems
	4.2 A Posteriori Validation of Program Slicing
	4.3 Proof by Simulation

	5 Bound Calculation
	5.1 The Header Counter Dominates the Other Counters in the
	5.2 Relating Global and Local Counters
	5.3 Bounding Local Counters

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	Result Certification of Static Program Analysers with Automated Theorem Provers
	1 Introduction
	1.1 Overview
	1.2 Organisation

	2 Language, Syntax and Semantics
	3 Defining a Family of Analyses
	3.1 Parametrised Analyses
	3.2 Bytecode Verification
	3.3 Null Pointer Analysis

	4 Generating Tractable Verification Conditions
	4.1 Almost Effectively Propositional Logic
	4.2 Abstract Verification Conditions

	5 Experiments
	6 Related Work
	7 Conclusion and Further Work
	References

	A Formally Verified Generic Branching
Algorithm for Global Optimization
	1 Introduction
	2 Generic Branch and Bound Algorithm
	2.1 Generic Types
	2.2 Inputs to the Algorithm
	2.3 The Branching Algorithm

	3 Correctness of the Algorithm
	4 Branch and Bound Algorithm for Interval Expressions
	5 Conclusion
	References

	Author Index

