
Shared Resource Matrix Methodology:
An Approach to Identifying Storage and
Timing Channels

RICHARD A. KEMMERER
University of California, Santa Barbara

Recognizing and dealing with storage and timing channels when performing the security analysis of
a computer system is an elusive task. Methods for discovering and dealing with these channels have
mostly been informal, and formal methods have been restricted to a particular specification language.

A methodology for discovering storage and timing channels that can be used through all phases of
the software life cycle to increase confidence that all channels have been identified is presented. The
methodology is presented and applied to an example system having three different descriptions:
English, formal specification, and high-order language implementation.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General--se-
curity and protection; D.4.6]Operating Systems]: Security and Protection--information flow
controls
General Terms: Security

Additional Key Words and Phrases: Protection, confinement, flow analysis, covert channels, storage
channels, timing channels, validation

1. INTRODUCTION

W h e n pe r fo rming a secur i ty ana lys i s of a sys tem, b o t h over t a n d cover t c h a n n e l s
of the s y s t e m m u s t be cons idered . Overt c h a n n e l s use the s y s t e m ' s p r o t e c t e d da t a
ob jec t s to t r ans fe r i n fo rma t ion . T h a t is, one sub j e c t wr i tes in to a da t a ob jec t a n d
a n o t h e r sub jec t r eads f rom the object . S u b j e c t s in th is con tex t are n o t on ly ac t ive
users, b u t are also processes a n d p rocedu re s ac t ing on b e h a l f of the user. T h e
channe ls , such as buffers, files, a n d I / O devices, are over t because the e n t i t y used
to ho ld the i n f o r m a t i o n is a d a t a object ; t h a t is, i t is a n ob jec t t h a t is n o r m a l l y
v iewed as a da t a con ta iner . Covert channe l s , in con t ras t , use en t i t i e s n o t n o r m a l l y
viewed as da t a ob jec t s to t r ans fe r i n f o r m a t i o n f rom one sub j e c t to ano the r . T h e s e
n o n d a t a objects , such as file locks, device b u s y flags, a n d the pass ing of t ime, are

n e e d e d to regis ter the s ta te of the sys tem, l

i Note that this definition of covert channels differs from that introduced by Lampson in his original
note on the confinement problem [1]. The covert channels discussed in this paper include both
storage and timing channels.

This research has been supported in part by the National Science Foundation under grant ECS81-
06688.
Author's address: Computer Science Dept., University of California, Santa Barbara, CA 93106
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0734-2071/83/0800-0256 $00.75

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983, Pages 256-277.

Shared Resource Matrix Methodology 257

Overt channels are controlled by enforcing the access control policy of the
system being designed and implemented. This policy states when and how overt
reads and writes of data objects may be made. Part of the security analysis must
verify that the implementation of the system correctly implements the stated
access control policy. An example of verification is the UCLA Data Secure UNIX 2
project [2]. Access control is not further addressed in this paper.

Recognizing and dealing with storage and timing channels are more elusive.
Objects used to hold the information being transferred are normally not viewed
as data objects, but can often be manipulated maliciously in order to transfer
information. In addition, the use of a storage or timing channel requires collusion
between a subject with authorization to signal or leak information and an
unauthorized subject. Note that the subject with authorization could be a mali-
cious program acting without the knowledge of the user.

There are many examples of these channels and methods for blocking them
[1, 3-7]. However, methods for discovering these channels have for the most part
been ad hoc, giving little assurance that all storage and timing channels have
indeed been discovered. The most systematic of these methods validates a
specification for a multilevel, secure version of Multics [6]. In [6] an automated
tool used formal specifications to generate tables describing which objects were
read or written by a particular operation. However, before generating the tables
each operation had to be divided into different parts, each mediated by a different
subject. Previous work on flow analysis [8, 9] has also located storage and timing
channels; however, these systems, like [6], were tightly coupled to a restricted
subset of a particular specification language.

This paper presents a shared resource ma t r i x methodology that can be applied
to a variety of system description forms and which can increase the assurance
(although it does not guarantee it) that all channels have been found. It is easily
reviewed, disregards resources that are not shared, and is iterative as the design
is refined or changed. It can be used in all phases of the software life cycle on
systems whose constituent parts are in varying phases of development.

The next section introduces the methodology; Section 3 illustrates it, using an
example system; and the last section discusses experience with the methodology.

2. THE SHARED RESOURCE MATRIX METHODOLOGY

Storage and timing channel analysis is performed in two steps in the shared
resource matrix methodology. First, all shared resources that can be referenced
or modified by a subject are enumerated, and then each resource is carefully
examined to determine whether it can be used to transfer information from one
subject to another covertly. The methodology assumes that the subjects of the
system are processes and that there is a single processor which is shared by all of
the processes. The processes may be local or distributed; however, only one
process may be active at any one time.

To determine which shared resources can be modified or referenced one must
first identify the shared resources. A shared resource is any object or collection
of objects that may be referenced or modified by more than one process. It is

2 U N I X is a t r a d e m a r k o f Be l l L a b o r a t o r i e s .

ACM Transact ions on Compute r Systems, Vol. 1, No. 3, August 1983.

258 R.A. Kemmerer

TIVE

ID

WRITE READ LOCK UNLOCK OPEN CLOSE FILE FILE

FILE FILE FILE FILE FILE FILE LOCKED OPENED

ACCESS
PROCESS

RIGHTS
R R R

BUFFER R M

ID

FILES

SECURITY
R R R

CLASSES

LOCKED
BY R M R

LOCKED R R,M R,M R R

IN-USE
R R R,M R,M

SET

VALUE M R

CURRENT
R R R R R R

PROCESS

Fig. 1. Resource matrix filled in from English system description.

necessary to further refine each shared resource by indicating its attributes,
because two processes may view different attributes of the same shared resource.
For example, the first process may be able to determine only whether a shared
file is locked, while the second process may only view the size of the file.
Attributes of all shared resources are indicated in row headings of the shared
resource matrix. Figure 1 is a matrix for the sample system discussed in Sec-
tion 3.

Next, one must determine all operation primitives of the system being analyzed.
Some examples of primitives are Write__File, Read__File, Lock__File, and
File__Locked. The primitives of the system make up the column headings of the
shared resource matrix.

After determining all of the row and column headings one must determine for
each attribute (the row headings} whether the primitive indicated by the column
heading modifies or references that attribute. This is done by carefully reviewing
the description for each of the primitives, whether it is an English requirement,

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 259

formal specification, or implementation code. This task is performed differently
for each phase of the software life cycle. (The example presented in Section 3
discusses the details of the different approaches.) The matrix generation is
completed when each element of the matrix has been considered and marked,
indicating whether a modification or reference could occur.

The generated matrix is then used to determine whether any channels exist.
Two types of channels are considered: storage channels and timing channels.
With a storage channel the sending process alters a particular data item, and the
receiving process detects and interprets the value of the altered data to receive
information covertly. With a timing channel the sending process modulates the
amount of time required for the receiving process to perform a task or detect a
change in an attribute, and the receiving process interprets this delay or lack of
delay as information.

In order to have a storage channel, the following minimum criteria must be
satisfied:

(a) The sending and receiving processes must have access to the same attribute
of a shared resource.

(b} There must be some means by which the sending process can force the shared
attribute to change.

(c) There must be some means by which the receiving process can detect the
attribute change.

(d) There must be some mechanism for initiating the communication between
the sending and receiving processes and for sequencing the events correctly.
This mechansim could be another channel with a smaller bandwidth.

If criteria (a)-(c) are satisfied, one must find a scenario that satisfies criterion
(d). If such a scenario can be found, a storage channel exists. This last step
requires imagination and insight into the system being analyzed. However, by
using the shared resource matrix approach, attributes of shared resources that do
not satisfy criteria (a)-(c) can readily be identified and discarded.

Timing channels are discovered in a similar manner; however, different
criteria are used. The minimum criteria necessary in order for a timing channel
to exist are as follows:

(a) The sending and receiving processes must have access to the same attribute
of a shared resource.

(b} The sending and receiving processes must have access to a time reference
such as a real-time clock.

(c) The sender must be capable of modulating the receiver's response time for
detecting a change in the shared attribute.

(d) There must be some mechanism for initiating the processes and for sequenc-
ing the events.

Any time a processor is shared there is a shared attribute: the response time of
the CPU. A change in response time is detected by the receiving process by
means of monitoring the clock.

For a channel to be of concern, the sending and receiving processes must be in
distinct protection domains and must not be allowed to communicate with each
other directly. Therefore, any channels that exist between processes in the same

ACM Transact ions on Compute r Systems, Vol. 1, No. 3, August 1983.

260 . R.A. Kemmerer

protection domain can be ignored. In particular, if a process can sense only
modifications made by itself, no channel exists.

Many storage and timing channels are a necessary part of the normal operation
of the system; therefore, when a channel has been identified it is necessary to
determine the bandwidth of the channel. That is, it is necessary to determine
how many bits per second can be transferred between two cooperating processes
using the identified channel. By determining the baud rate for a channel, one can
decide whether to block the channel, add noise to decrease its bandwidth, or
simply ignore it.

3. ILLUSTRATING THE METHODOLOGY ON A SAMPLE SYSTEM

The methodology has been successfully applied to the design of a secure network
front end [10]; however, because the software architecture is proprietary, it could
not be reported on in this paper. Instead, a pedagogical example is used. The
advantage of using a toy system is that the process of applying the methodology
is made more obvious to the reader. The danger of this approach is that the
example begs the methodology, and the channels discovered may appear to be
obvious. The example system considered here consists of two types of objects:
processes and files. A process may read or write a file, open or close a file for
reading, and lock or unlock a file for writing. It may also query to see whether a
file is locked or opened.

The intent of the example is to show how the shared resource matrix approach
can be used through the entire software life cycle to detect potential storage and
timing channels. Discovery of a channel in the early phases of the software life
cycle allows the designer to try to block the channel before too many design
decisions have been made. However, constructing the matrix from an English
description or a formal specification cannot uncover all channels. Therefore, it is
important that the methodology also be applied to later phases of the software
life cycle, particularly to implementation code. In the following sections an
English description of the system is considered, then a formal specification, and
finally implementation code.

3.1 English Requirements for the Sample System

Each process has a constant set of access rights. An access r ight consists of a
security class and a read/write field. The read /wr i t e field indicates whether the
process can read, write, or read and write objects of the indicated security class.
Each file has a constant set of security classes. A file may be open for reading,
locked for writing, or not in use. If a file is open for reading, then its in-use set
contains the id's of the processes that currently have the file open for reading. If
a file is locked for writing, then the value of its locked by attribute is the process
that locked it; only this process can modify or unlock the file. For a process to
read information from a file, each member of the file's security class set must
exist in the access rights set of the process with either read or read/write access.
If this is the case, then the process is said to have read access for the file. Wri te
access is similarly defined. 3

a The security model presented here is not the Bel l -LaPadula security model [11]; however, both the
*-proper ty and the simple security condition can be represented using the proposed model.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 261

Only one process, the current process, is act ive a t a time. Each opera t ion is
unin ter ruptable and runs to complet ion before ano the r is invoked. These restric-
t ions avoid the combinator ic disaster tha t m a y resul t f rom introducing concur-
rency. More important , they are necessary if the sys tem is to be formal ly verified.
T h e operat ions are discussed in more detail in the following paragraphs .

The Write__File operation is used by a process to change the contents of a file.
I f the file is locked by the current process, the value of the file is modif ied to
contain the contents of the current process 's buffer.

The Read__File operation is used by a process to in terrogate the contents of
a file. I f the current process is included in the in-use set for the file specified, the
value of the file is copied to the current process ' s buffer.

The Lock__File operation is used by a process to modify the contents of a
par t icular file. A process mus t lock a file before modifying it and mus t unlock the
file af ter the modificat ion is complete. I f the cur rent process has write access for
the specified file, if the file specified is unlocked, and if its in-use set is empty ,
then the file is locked, and its locked by a t t r ibute is set to the id of the cur rent
process.

The Unlock~File operation makes a file accessible when a process is done
modifying its contents. I f the specified file's locked by a t t r ibu te is the current
process, the file is unlocked.

The Open__File operation is used by a process to init iate re t r ieval of the
contents of a file. This pr imit ive guarantees tha t no o ther process is modifying
the contents of the file being interrogated. I f the current process has read access
for the specified file and the file is not locked, the cur rent process ' s id is added to
the in-use set for this file.

The Close__File operation is used when a process has comple ted interrogat ion
of a file and wants to release it so tha t it can be modified. I f the cur rent process ' s
id is an e lement of the in-use set for the specified file, t hen it is r emoved f rom
tha t set.

The File Locked operation is used by a process to de te rmine whe ther a file
is locked. I f the current process has write access for the specified file, then, if the
file is locked, a value of t rue is re turned. I f the file is unlocked the value false is
returned. I f the current process lacks write access for the specified file the resul t
is undefined.

The File__Opened operation is used by a process to de te rmine whe the r a file
is open for reading. I f the current process has write access for the specified file,
then, if the file's in-use set is n o n e m p t y (i.e., the file is open for read), a value of
t rue is returned. I f it is e m p t y the value false is re turned. I f the cur rent process
does not have write access for the specified file, the resul t is undefined.

For all operations, if the required conditions, such as file unlocked, are not met ,
then the operat ion has a null effect.

With this l imited set of operat ions and no mechan i sm to cause a process to
release a file, there is a potent ia l for deadlock. In addition, a real sys t em requires
some fair me thod of scheduling processes, such as allowing each process to
execute n operat ions before switching processes in a round-robin fashion. These
issues, which are of concern in rea l -sys tem design, are, for the mos t part , ignored
in the remainder of the paper. However , an example of a t iming channel p remised
on this approach to scheduling is presented in Sect ion 3.2.3.

ACM Transact ions on Computer Systems, Vol. 1, No. 3, August 1983.

262 R.A. Kemmerer

3.2 Applying the Methodology to the English Requirements

3.2.1 Constructing the Matrix. The first thing to do when applying the shared
resource approach to the English requirements is to determine the objects and
their attributes. There are two types of objects: processes and files. The attributes
of a process are id, access rights, and buffer. The attributes of a file are id, security
classes, locked by, locked, in-use set, and value. In addition, an object current
process indicates which process is currently active.

The operational primitives of the system are the eight operations presented in
the section above. Using this information, the skeleton of the matrix can be
constructed and filled in by carefully determining whether the primitive indicated
by each column heading modifies or references each attribute. When working
with English requirements, keywords such as checks, reads, if, and copy from
lead one to find attributes that are referenced. Keywords such as change, set,
replace, and copy to lead one to attributes that are modified. Consider the
description of Write__File:

I f the file is locked and the current process locked it, then the value of the
file is modified to contain the contents of the current process's buffer.

When encountering the keyword if, one knows that what follows probably
indicates attributes whose values are referenced. Therefore, for this operation the
file's locked and locked by attributes, as well as the current process, are referenced.
The keyword modify alerts one to look for what is modified and by what. For this
operation the file's value attribute is modified using the process's buffer attribute.
Thus the buffer, locked by, locked, and current process rows of the Write__File
column contain Rs for reference, the value row contains an M for modify, and the
other rows of this column remain blank. This process is repeated for all of the
primitives, yielding the matrix of Figure 1.

The attributes referenced by one primitive may have been modified by another
primitive, which referenced additional attributes. In order to illuminate these
more sophisticated channels, involving multiple attributes, it is necessary to
generate the transitive closure of the shared resource matrix. For instance,
suppose an operation login references the password file and modifies the
Active__User attribute. Furthermore, suppose a second operation references the
Active__User attribute. The shared resource matrix for these two operations
would indicate a reference to Active__User, but no reference to the password file
in the column that corresponds to the second operation. However, it may be the
case that the Act ive~User attribute is modified in a manner which compromises
a user's password. Thus, it is necessary to indicate this indirect reference in the
matrix. Then, when analyzing the matrix for possible channels, one must ensure
that the modification to Active__User does not reveal information about user's
passwords.

The transitive closure of the matrix is generated by looking at each entry that
contains an R. If there is an M in the row in which this entry appears, then it is
necessary to check the column that contains the M to see if it references any
attributes that are not referenced by the original primitive. Tha t is, if the column
that contains the M has an R in any row in which there is not an R in the
corresponding row of the original column, then an R must be added to that row
in the original column.

ACM Transact ions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 263

TIVE WRITE READ LOCK UNLOCK OPEN CLOSE

FILE FILE FILE FILE FILE FILE

ID

ACCESS
PROCESS R R R R R R

RIGHTS

BUFFER R R, M

ID

SECURITY
R R R R R R

CLASSES

LOCKED
R R R,M R R R

BY
FILES

LOCKED R R R,M R,M E R

IN-USE
R R R R R,M R,M

SET

VALUE R, M R

CURRENT
R R R R R R

PROCESS

FILE FILE

LOCKED OPENED

R R

R R

R R

R R

R R

R R

Fig. 2. Transitive closure of matrix for English description.

For instance, consider the column for Write__File in Figure 1. The re is an R in
the locked row of this column, and the locked at t r ibute is modified by the
Lock File primitive. Therefore , it is necessary to see which at t r ibutes were
referenced to make this modification. Th e at t r ibutes access rights, securi ty
classes, locked, in-use set, and current process are referenced. Access rights,
security classes, and in-use set are not directly referenced by the Write__File
primitive, so they must be added to tha t column.

This process is repeated until no new entries can be added to the matrix. Th e
resulting matr ix is the transitive closure (with respect to references) of the original
matr ix# The transitive closure matr ix for the example system is shown in Fig-
ure 2.

Although the matr ix construction has been performed manually, much of the
generation could be automated. A prime candidate for au tomat ion is the gener-

Note that this is not the s tandard mathematical transitive closure, since it relates to the modify
operator as well as to the reference operator.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

264 • R.A. Kemmere r

ation of the transitive closure of the matrix. This process is not dependent on the
form of the system description; therefore mechanizing the process would not
restrict the versatility of the approach. A Pascal program for generating the
transitive closure of a matrix is presented in [12].

3.2.2 Analyzing the Matrix. Now that the shared resource matrix is complete,
it may be used to locate potential storage and timing channels. In this section
only storage channels are considered. An example of a timing channel is given in
Section 3.2.3. From the criteria presented in Section 2 it can be seen that the only
attributes that need be considered are those whose rows contain both an R and
an M. Thus, for the example, only locked by, locked, in-use set, buffer, and value
need to be considered.

For an attribute to be a potential storage channel one must be able to transfer
information from one process to another in a direction that is not allowed by the
access control mechanism. Therefore, it is not necessary to consider cases in
which the access control mechanism requires the sending process to have write
access and the receiving process to have read access to the same object; because,
if they satisfy these requirements, the sender can modify the object and the
receiver can reference the object. Thus, no storage channel is needed to com-
municate.

When analyzing a reference to a shared attribute, one can arrive at four possible
conclusions:

(1) Another legal channel exists between the two communicating processes, so
this channel is of no consequence.

(2) No useful information can be gained from this channel.
(3} The sending and receiving processes are the same.
(4) A potential storage channel exists.

In the following paragraphs an example of each of these conclusions is presented.
The reader who is not interested in the details of the analysis for shared attributes
may skip ahead to the last paragraph of this section, where the analysis is
summarized.

The first attribute considered is the locked by attribute. This attribute can be
modified only by the Lock File primitive, and this requires the process executing
the primitive to have write access to the file. Thus, the sending process must be
in a protection domain that allows write access to the file specified. All of the
primitives can reference the locked by attribute; therefore, it is necessary to
determine for each of these references whether the reference can occur when the
executing process is in a protection domain that does not require read access.

When the Write__File primitive is executed, the locked by attribute is refer-
enced. If the value of the locked by attribute is the current process, then the
locked by attribute was set by the current process (by executing a Lock_Fi le) .
Since the process executing the Write__File primitive does not need read access,
a potential storage channel may exist. However, the current process is the same
process that modified the attribute, and this channel gains nothing. If the current
process did not lock the file, then it can get no new information from the locked
by attribute. That is, the current process only knows that it did not lock the

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 265

file--which it already knows anyway. Thus, no useful information would be
gained by using the Write File primitive to reference the locked by attribute.

The Read File primitive requires the executing process to be in the in-use set.
Since a process can become a member of a file's in-use set only by executing the
Open File primitive, the executing process needs read access in order to refer-
ence the locked by attribute. Therefore, the sending and receiving process can
communicate directly through the specified file, and this is not a candidate
storage channel.

The reference indicated for the Lock__File primitive is a transitive reference
generated because the Lock__File primitive references the locked attribute, which
is modified by the Unlock File primitive, which in turn references the locked by
attribute. The only information transferred by this reference is the fact that the
process that last unlocked the specified file is the same process that locked it.
Since this is always the case, no new information can be obtained from this
indirect reference to the locked by attribute. There are a number of indirect
references generated by the methodology, and each must be checked to see
whether it can be used to transmit information that is not otherwise available.

None of the other references to the locked by attribute yield potential storage
channels.

The in-use set attribute can be modified by the Open__File and Close__File
primitives. The Open__File primitive requires the current process to have read
access for the file in order to modify the in-use set, and the Close__File primitive
requires the executing process to be a member of the in-use set for the modifi-
cation to take place; therefore, the process must have read access for the specified
file. Thus, both primitives require the executing process to have read access for
the modification to take place. Since the protection domain of the modifying
process must have read access, and the in-use set attribute can be referenced by
all of the primitives, all of the primitives must be considered when searching for
potential storage channels that use this attribute.

The Lock__File primitive references the in-use set attribute to determine
whether it is empty. Whether the in-use set is empty can be detected by any
process with write access; therefore, this attribute may be a potentail storage
channel. The following scenario shows that this reference to the in-use set c a n be
used as a storage channel. If the in-use set is empty, a process with read access
could signal a 1 by executing the Open File primitive, or a 0 by not executing
the primitive or by executing a Close__File when the in-use set contains only that
process's id. A process with only write access could then determine the setting by
executing a Lock File primitive and interpreting a successful result as a 0 and
an unsuccessful result as a 1. (Note that this assumes that the file is not locked.
Furthermore, since the Lock__File primitive does not explicitly return a success
or failure code, the process will have to use the File__Locked primitive to check
the result.) By using this procedure on a number of files to which the sender has
read access and the receiver has write access, a large bandwidth channel can be
achieved.

The Open File and Close__File primitives reference the in-use set only to
include/remove the executing process's id in/from the set. This reference provides
no information to the executing process. However, if the in-use set were a finite

ACM Transactions on Computer Systems, Vol. l, No. 3, August 1983.

266 R.A. K e m m e r e r

Table I. Summary of Matrix Analysis

Primitive Write Read Lock Unlock Open Close File File
Sensing Change: File File File File File File Locked Opened

Attribute
Modulated:
Locked By S L N S L L N N
In-Use Set N S P N N N N P
Locked S L P S L L P N
Buffer S S
Value S S

Key for Table:
L Legal channel exists with access control mechanism
N No useful information can be gained from channel
S Same process sending and receiving information
P Potential covert channel

set whose m a x i m u m size was less t han the n u m b e r of processes t h a t were al lowed
read access, then the set could be overflowed, causing a resource error. Thus, a t
the implementa t ion level, where resources are finite and resource exhaust ion can
occur, more storage channels m a y exist.

A comple te analysis of all of the shared a t t r ibu tes is p resen ted in [12]. Tab le 1
contains a s u m m a r y of this s torage channel analysis. T w o a t t r ibu tes t ha t could
be used as potent ia l s torage channels have been discovered. After the s torage
channels are located, each mus t be analyzed to de te rmine its worst-case (i.e.,
largest) bandwidth. A decision is then made to de te rmine whe the r to block the
potent ia l channel or ignore it.

3.2.3 Timing Channels. In order to provide an example of a t iming channel,
assume tha t the processes are scheduled in a round-robin fashion, with each
process being allowed to execute n operat ions before giving up the CPU. In
addition, assume there is ano the r opera t ion called Process__Sleep, which a
process m a y invoke if it wants to give up the C P U before it has executed n
operations. Finally, assume tha t each process has access to a rea l - t ime clock.

T h e closure of the shared resource mat r ix with the Process___Sleep opera t ion
added is shown in Figure 3. Not ice t ha t a process can modi fy the cur rent process
a t t r ibute by invoking the Process___Sleep operat ion. Thus the cur rent process
a t t r ibute mus t now be analyzed as a candidate channel. In analyzing this a t t r ibu te
for a s torage channel, one discovers t ha t the only informat ion t h a t the executing
process can glean is tha t it (the executing process) is the cur ren t process, which
is not useful information.

Next, this a t t r ibu te is analyzed to de te rmine if it can be used as a t iming
channel. T h e only informat ion t ha t a process can obtain is t ha t it is the current ly
executing process, bu t if the executing process can de te rmine how m u c h t ime has
elapsed since it last had control of the CPU, and if ano the r process can vary this
amoun t of time, then the cur rent process a t t r ibu te can be used as a t iming
channel. The following pa rag raphs presen t a scenario for using this channel.

Consider a sending process S and a receiving process R. Since S and R can
surrender the processor a t will, while remaining ready for re invocat ion a t the next
ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

ITIVE

ID

Shared Resource Matrix Methodology 267

WRITE READ LOCK UNLOCK OPEN CLOSE FILE FILE PROCESS

FILE FILE FILE FILE FILE FILE LOCKED OPENED SLEEP

ACCESS
PROCESS

EIGHTS
R R R R R R R

BUFFER R R,M

ID

FILES

SECURITY
R R R

CLASSES

LOCKED
R R R,M

BY

LOCKED R R R,M

IN-USE
R R R

SET

VALUE R,M R

R R R R R

R R R R R

R,M R R R R

R R,M R,M R R

CURRENT
R R R R R R R R

PROCESS
R,M

R SYSTEM
R R R R R R R R

CLOCK

Fig. 3. Transitive closure of matrix for English description with timing example added.

scheduling slice, and the schedul ing algorithm used is round-robin, S and R can
take turns using the CPU. T h e scenario is as follows. S and R calibrate the
process switch t ime by taking turns for a while. Call this t ime Ts. T~ has some
variance, and could be mul t imodal in a sys tem with recurring regular events , such
as t imer interrupts. S and R agree upon a code for transmitt ing messages , which
m a y be based upon the results of the calibration (in which case S and R must
arrive independent ly at the same code). The code mus t have the property that
the normal variance of the process switch t ime will not result in transmiss ion
errors. Also, some select ive noise reject ion based upon the results of the calibra-
t ion run can remove some regularly-occurring-event noise. (Note that "noise" is
generated w h e n a process other than S or R runs). Furthermore, only a fraction
of the possible distinguishing code values is used to provide some detect ion of

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

2 6 8 • R .A . K e m m e r e r

Table II. Data Rates (baud) for
Message Units (bits)

1 998 9 5952
2 1992 10 4940
3 2976 11 3608
4 3937 12 2354
5 4844 13 1414
6 5639 14 805
7 6205 15 456
8 6369 16 243

noise in transmission (i.e., the code works in the presence of noise to a degree
determined primarily by the redundancy in the code).

Now, S sends a message M by consuming an amount of processor time which
represents the coded version of M. R computes the amount of time which has
passed since R last had control. It subtracts Ts from this. It now reconstructs the
value of M corresponding to this time. Since the code is redundant, the compu-
tation may indicate a value not in the valid code set. To acknowledge M, R could
give up the processor immediately (alternately, a subset of the code could be
used to transmit positive acknowledgment). If the coded value is not a valid
message, R acknowledges receipt negatively by consuming a particular amount of
processor time before giving up the processor. This allows transmission in the
presence of noise. S measures how much time has passed since giving up the
processor. If it corresponds to correct receipt of M by R (e.g., Ts in the simplest
case above), a new message is sent. If not, M is re-sent.

The scheme, if described correctly, transmits a message M only when S and R
are the only ready processes on the processor for 1 cycle of the scheduler. More
robust schemes are possible. The bandwidth of the scheme is related to the
process switch time T~, the processor speed, the resolution of the real-time clock
which R and S use, and the variance of the process switch time and resulting
possible unique code set size, and the amount of redundancy necessary to increase
the probability of detecting noise to a sufficiently high level. For a worst-case
example, assume that S and R are alone on the machine, there is no variance in
the process switch time, there are no recurring events, and no redundancy is used.
Assume that it is known that the computer can execute a specific number of
instructions per second (which determines the resolution which the sender can
use to send a code), and that the code used is simply a number of microseconds
(implying the machine is fast enough to consume time in 1-microsecond units). A
message is sent by breaking the message into small units, and consuming
2message unit value microseconds. Simple coding theory and the measured value of T~
allow one to compute the maximum data rate. Sending 1 bit per T, would allow
a rate limited essentially by T~. Sending more bits per T~ increases the efficiency
at first, but the time it takes to send an additional bit in each message unit grows
a s 2number of bits p it grOWS, SO a medium value must be chosen. For example, if the
process switch time is 1 millisecond, and the code and timer resolution is 1
microsecond, one gets the data rates for the message unit sizes indicated in Table
II. Obviously, these are higher than the rates one can obtain using redundant
coding and operating in the presence of noise. Variance in the switch time will

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology • 269

rapidly lower the reliably distinguishable set of characters tha t can be t ransmit-
ted. Regular noise can be filtered, bu t any noise, since it is generated by usage of
the CPU, will also lower the bandwidth directly. Thus, the values presented are
strict upper bounds for the channel described.

3 3 Formal Speci f icat ions

In this section the shared resource matr ix methodology is applied to a formal
specification of the example system. The formal specifications for the system are
wri t ten in a variant of Ina Jo, 5 which is a nonprocedural assertion language tha t
is an extension of first-order predicate calculus. Th e language assumes tha t the
system is modeled as a state machine. The key elements of the language are
types, constants, variables, definitions, initial conditions, a criterion, and trans-
forms. The criterion is a conjunction of assertions tha t specify what a good state
is. The criterion is often referred to as a state invariant since it must hold for all
states, including the initial state. An Ina Jo language t ransform is a state
transit ion function; it specifies what the values of the state variables will be after
the state transition, relative to what their values were before the transi t ion took
place. A complete description of the Ina Jo language can be found in the Ina Jo
Reference Manual [13].

Before giving the specification for the example system, a brief discussion of
some of the Ina Jo notat ion is necessary. Th e following symbols are used for
logical operations:

& Logical AND
I Logical OR

Logical NOT
--~ Logical implication

In addition there is a conditional form

(if A then B else C),

where A is a predicate and B and C are well-formed terms.

The notat ion for set operations is

E is a member of
U set union

~ set difference
{a, b . . c} the set consisting of elements a, b c

{set description} the set described by set description.

The language also contains the following quantifier notation:

V for all
3 there exists.

Two other special Ina Jo symbols tha t may be used are

N" to indicate the new value of a variable (e.g., N " v l is the new value of
variable vl)

NC" which indicates no change to the value of a variable.

Ina Jo is a t r ademark of t he S y s t e m Deve l opmen t Corporation, a Bur roughs Company .

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

270 R.A. Kemmerer

The specification for the example system is shown in Figure 4. The eight
transforms correspond to the eight operations of the English description.

TITLE Confinement
SPECIFICATION Confinement
LEVEL Top_Level

TYPE
Process,
Processes = Set Of Process,
File,
Data

TYPE
Access = (read,write), /* enumerated type */
Accesses = Set Of Access,
Security_Class,
Security_Classes = Set Of Security_Class,
Access_Right,
Access_Rights = Set Of Access_Right

CONSTANT
Acc_Rights(Process):Access_Rights,
Sec_Classes(File):Security_Classes,
Class(Access_Right):Security_Class,
Acc(Access_Right):Accesses

CONSTANT
0K_To(r:aceess,p:Process,f:File):Boolean =

¥s:Security_Class (
s ~ See_Classes(f) ÷

a:Access_.Right (
a ~ Ace_Rights(p)

& Class(a) = s
& r ~ Ace(a)))

VARIABLE
Current_Process:Process,
Locked_By(File):Process,
Locked(File):Boolean,
In_Use_Set(File):Processes,
Value(File):Data,
Buffer(Process):Data,
Result(Process):Boolean

/* The INITIAL and CRITERION sections of the specification are
used for the formal proof of the access control mechanism and
are of no use to the covert channel analysis */

INITIAL
¥f:File (In_Use_Set(f)=Empty & ~Locked(f))

CRITERION
¥p:Process,f:File (

(p ~ In_Use_Set(f) ÷ 0K_To(read,p,f))
& (Locked(f) & Locked_By(f)=p ÷ 0K_To(write,p,f))
& (Locked(f) + In_Use_Set(f)=Empty))

Fig. 4. Ina Jospecification ofexamplesystem.

ACMTransac~onson ComputerSystems, Vol. l, No. 3, August1983.

Shared Resource Matrix Methodology • 271

TRANSFORM Write_File(f:File) External
Effect

Vfl:File (
N~Value(fl)=
(if fl=f

& Locked(f)
& Locked_By(f)=Current_Process

then Buffer(Current_Process)
else Value(fl)))

TRANSFORM Read_File(f:file) External
Effect

Vpl:Process (
NnBuffer(pl)=
(if pl=Current_Process

& Current_Process ~ In_Use_Set(f)
then Value(f)
else Buffer(pl)))

TRANSFORM Lock_File(f:File) External
Effect

(if OK_To(write,Current_Process,f)
& ~Locked(f)
& In_Use_Set(f)=Empty

then Vfl:File (
N~Locked(fl)=

(if fl=f
then true
else Locked(f1))

& NHLocked_By(fl) =
(if fl=f

then Current_Process
else Locked_By(fl)))

else NCH(Locked,Loeked_By))

TRANSFORM Unlock_File(f:File) External
Effect

Vfl:File (
N~Locked(fl)=

(if fl=f
& Locked_By(fl)=Current_Process

then False
else Locked(fl)))

TRANSFORM Open__File(f:File) External
Effect

Vfl:File (
Nnln_Use Set(f1) =

(if fl=f
& OK_To(read,Current_Process,f)
& ~Locked(f)

then In_Use_Set(f1) v {Current_Process}
else In_Use_Set(fl)))

TRANSFORM Close_File(f:File) External
Effect

Vfl:File (
NNln_Use_Set(fl) =

Fig. 4 . (c o n t i n u e d)

ACM Transac~ons on Computer Sys~ms, Vol. 1, No. 3, August 1983.

272 R.A. Kemmerer

(if fl=f
then In_Use_Set(fl)
else In_Use_Set(fl)

{Current_Process}
))

TRANSFORM File_Locked(f:File) External
Effect

Ypl:Process (
N"Result(pl) =

(if pl=Current_Process
& 0K_To(write,Current_Process,f)

then Locked(f)
else Result(pl)))

TRANSFORM File_Opened(f:File) External
Effect

Ypl:Process (
N"Result(pl)=

(if pl=Current__Process
& 0K_To(write,Current_Process,f)

then In_Use_Set(f) m Empty
else Result(pl)))

END Top__Level
END Confinement

Fig. 4. (continued)

3.4 Applying the Methodology to the Formal Specifications

When an Ina Jo specification is used, the variables are the attributes and the
transforms are the primitives. Thus, Acc__Rights and Sec Levels can be elimi-
nated immediately, since they are declared to be constants in the Ina Jo specifi-
cation. Also, since it is necessary to explicitly specify the result of the
File l,ocked and File__Opened transforms, there is an attribute, result, which
was missing from the matrix generated for the English requirements. Therefore,
the row headings of the matrix are Locked__By, Locked, I L U s e _ _ S e t , Value,
Buffer, Result, and Current__Process, and the column headings are the eight
transform names.

To fill in the matrix one must determine which attributes are referenced and
modified by each transform. Any variable that occurs in the effects section of a
transform, preceded by the new value notation, is considered to be modified. All
other attributes that are mentioned in the effects section, except those preceded
by the no-change notation, are referenced. Consider the specification for the
Write__File transform in Figure 4. Since the value attribute is preceded by N" ,
it may be modified by this transform. The attributes that occur in the effects
section of the Write__File transform not preceded by N " or N C " are Locked,
Locked Ry, Current Process, Buffer, and Value. Each of these is referenced
by the transform. Thus, the column corresponding to the W r i t L F i l e transform
contains Rs in the Buffer, Locked Ry, Locked, Value, and Current__Process
rows and an M in the Value row.
ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 273

TIVE WRITE

FILE

BUFFER R

PROCESS

RESULT

LOCKED
BY

LOCKED
FILES

IN-USE
R

SET

VALUE R,M

CURRENT
R

PROCESS

READ LOCK UNLOCK OPEN CLOSE FILE FILE

FILE FILE FILE FILE FILE LOCKED OPENED

R,M

M M

R R,M R R R R R

R R,M R,M R R R R

R R R R,M R,M R R

R

R R R R R R R

Fig. 5. Trans i t ive closure of mat r ix for Ina Jo specification.

This process is repeated for each of the t ransforms and the transit ive closure
is computed. The resul tant matr ix is shown in Figure 5.

A problem may occur when the approach outl ined above is used to determine
which at t r ibutes are referenced in an Ina Jo specification. Th e problem arises
because, when using the Ina Jo language, if a variable is to be changed under
certain circumstances, but not others, all circumstances must be described ex-
plicitly. This is not enforced by the specification processor; therefore, the effect
section of an Ina Jo t ransform may not be deterministic. For instance, a possible
specification for the File I,ocked t ransform is

Vpl:Process (
N" Result (pl) =

(if pl = Current__Process
& OK__To(write, Current__Process, f)

then Locked (f)))

Notice tha t this specification differs from the one tha t appears in Figure 4. Th e
interpretat ion of this specification is tha t if the executing process has write access
to file f, then the new value of the executing process's result a t t r ibute will be t rue
if file f is locked and false if it is not locked. Th e problem is tha t it does not
specify what the value of the result a t t r ibute will be if the executing process does
not have write access to file f; nor does it specify what the new value of the result
a t t r ibute for the other processes will be. T h a t is, this specification is equivalent

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

274 R.A. Kemmerer

to the following:

Vpl: Process (
N" Result(pl) =

(if pl -- Current__Process
& OK__To (write, Current__Process, f)

then Locked(f)
else N" Result(pl)))

In the Ina Jo language the meaning of N " v a r = N " v a r is t ha t the var iable var
can assume any value in the new state. Thus, its new value can be the resul t of
referencing any of the s ta te variables. Therefore , when filling in the mat r ix for
this type of specification, one mus t assume the worst case. T h a t is, it is a s sumed
tha t all s ta te var iables are referenced to de te rmine the value of the resul t
a t t r ibute . T h e column tha t corresponds to this t r ans fo rm would have an R in
every row. Thus, whenever the effects section of a t r ans fo rm is nondeterminis t ic ,
the user mus t assume tha t all shared a t t r ibu tes can be referenced.

T h e shared resource mat r ix genera ted f rom the Ina J o specification is analyzed
in the same m a n n e r as described for the English requ i rements matr ix. Therefore ,
the discussion is not r epea ted here.

3.5 Implementation Code

In this section it is shown how the me thodo logy is applied to imp lemen ta t ion
code. Each of the pr imit ives is imp lemen ted as a Pascal procedure, and the
a t t r ibutes are the fields of the variables.

T h e procedure implement ing the Write__File pr imi t ive migh t look as follows:

procedure writefile (fileid: filerange);
begin

if files [fileid].locked and
(files[fileid].lockedby = currentprocess))

then files [fileid].value := processes [currentprocess].buffer
end;

To de termine which a t t r ibutes are modified, one need find only those a t t r ibu tes
tha t appea r on the lef t -hand side of an ass ignment s t a t e m e n t (:=). In a comple te
implementa t ion , however, these ass ignment s t a t emen t s are not only those t ha t
are explicit in the code for the operat ion. Consider an instruct ion t ha t causes a
page fault. Th is m a y result in an ass ignment to a sys t em page table, indicat ing
tha t the desired page is being swapped in or t ha t ano the r page is being swapped
out. Thus , the possible side effects of each opera t ion m u s t also be considered. I t
should also be no ted t ha t these ass ignments are not only to var iables in the
software, but m a y also be the set t ing of some hardware register {e.g., a device
register). For the writef i le procedure the file's value field m a y be modified.

Finding which a t t r ibu tes are referenced by a procedure is more difficult. First,
any a t t r ibute t ha t appea r s on the r ight -hand side of an ass ignment s t a t e m e n t
m a y be referenced, since its value m a y be used to genera te the value assigned.
However , there are addit ional a t t r ibu tes which m a y be referenced to de te rmine
whe ther to make the assignment . These references are usual ly refer red to as

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 275

implicit [14]. That is, any attribute whose value is used to determine which path
to take in the program is referenced.

The attributes that are referenced implicitly by the writefile procedure are the
locked and lockedby fields of files[fileid] and the currentprocess. In addition, the
buffer is referenced directly.

After the direct and implicitly referenced attributes, as well as the modified
attributes, are marked in the matrix, its transitive closure is generated in the
same way as before. The shared resource matrix is now complete, and the analysis
is performed as described in Section 3.2.

It should be mentioned that as the software life cycle progresses and more
detail is added to the system design, the size of the matrix also grows. Therefore,
the shared resource matrix for the implementation code is likely to be much
larger than the matrix derived from the English requirements. The method of
constructing and analyzing the matrix is, however, the same.

3.6 Other Phases of the Software Life Cycle

Although Sections 3.3 and 3.4 deal only with top-level specifications, the shared
resource methodology may be applied to more detailed specifications in the same
manner. The more detailed specification may introduce new attributes (e.g., the
size of a file) and more transforms, and the transforms may have more parameters
(e.g., offset in a file or buffer size). Therefore, the matrix will grow in size.

The shared resource matrix is also useful during the debugging and mainte-
nance phases of the life cycle. If one wants to know which elements are affected
by a particular attribute, it is only necessary to consult the matrix. For instance,
before modifying a variable one can immediately determine which other attributes
would be affected by the modification. Finally, if it is desirable to change the
structure of some variable, one can determine from the matrix which procedures
would be affected by the change.

As the system is modified, any changes in the attributes that are referenced or
modified should be reflected in the shared resource matrix, and the changes to
the matrix should be analyzed for possible storage and timing channels.

4. CONCLUSIONS

The shared resource matrix methodology has been successfully applied to the
design of a secure network front-end [10]. This application has revealed a number
of storage and timing channels. Of the channels discovered the worst-case
bandwidth was 5000 bits per second, with a typical bandwidth of 20 bits per
second. However, in practice, the bandwidth of these channels is much less, owing
to the presence of noise and interference from other than the cooperating
processes. As a result of the analysis the front end was redesigned to block or
reduce the bandwidth of the channels discovered.

There are several advantages to using the shared resource attribute matrix to
locate storage and timing channels, as opposed to searching for these channels in
an ad hoc fashion. The first advantage is that by using the matrix, attributes that
do not meet the preliminary criteria of being modified or referenced by a process
are quickly discarded.

ACM Transact ions on Computer Systems, Vol. 1, No. 3, August 1983.

276 R.A. Kemmerer

Another advantage is that, by presenting the shared resource information in
graphical form, the information can be checked easily by those persons partici-
pating in the design, imp lemen ta t ion , test ing, and m a i n t e n a n c e o f the sys tem,
w h e t h e r or no t t h e y are involved d i rec t ly in the secur i ty analysis .

T h e mat r ix also serves as an excel lent design tool. B y indica t ing w h i c h at t r i -
bu tes are af fec ted by a primit ive, design overs ights t h a t m a y have b e e n left ou t
of the p re l imina ry design m a y be discovered. Also, if a p r imi t ive is to be changed ,
the a t t r ibu te s t h a t m a y be af fec ted are read i ly d e t e r m i n e d f r o m the matr ix .

Finally, since the process of genera t ing the ma t r ix is an i tera t ive process , t he
mat r ix can be used t h r o u g h o u t the sof tware life cycle o f the p ro jec t as a design
tool, as well as a secur i ty analysis tool. As the specif icat ions b e c o m e m o r e
detailed, m o r e a t t r ibu te s and pr imi t ives are a d d e d to the matr ix . F u r t h e r m o r e ,
since the m e t h o d o l o g y is no t t ied to a pa r t i cu la r descr ip t ion form, it can be
appl ied to a descr ip t ion whose cons t i t uen t pa r t s are descr ibed in d i f ferent fo rms
{e.g., Engl i sh r equ i r e m e n t s and formal specif icat ions) . T h a t is, p a r t o f the s y s t e m
m a y be i m p l e m e n t e d while o t h e r pa r t s are on ly descr ibed b y Engl i sh r e q u i r e m e n t s
or fo rmal specifications; bu t the m e t h d o l o g y can be appl ied to the col lect ion o f all
descript ions.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge Tom Aycock, Francis Chan, Tom Hinke, and John
Scheid, who participated in the original development and application of this
methodology to the secure network front-end design, and also Paul Eggert, Dino
Mandriol i , S teve Bunch , and G a r y Grossman , who rev iewed earl ier draf t s of the
pape r and p rov ided helpful c o m m e n t s .

REFERENCES
1. LAMPSON, B.W. A note on the confinement problem. Commun. ACM 16, 10 (Oct. 1973), 613-

615.
2. WALKER, B.J. KEMMERER, R.A., AND POFEK, G.J. Specification and verification of the UCLA

Unix Security Kernel. Commun. ACM 23, 2 (Feb. 1980), 118-131.
3. LIPNER, S.B. A comment on the confinement problem. In Proc. 5th Symp. Operating Systems

Principles. (Austin, Tex., Nov. 19-21), ACM, New York, 1975.
4. MILLEN, J.K. Security kernel validation in practice. Commun. ACM 19, 5 (May 1976), 243-250.
5. SCHAEFER, M., GOLD, B., LINDE, R., AND SCHEID, J. Program confinement in KVM/370. In

Proc. 1977Ann. ACM Conf., (Seattle, Wash., Oct.), ACM, New York, 1977, pp. 404-410.
6. AMES, S.R., AND MILLEN, J.K. Interface verification for a security kernel. In System Reliability

and Integrity, vol. 2, Infotech State of the Art Rep., INFOTECH Int., Ltd., Maidenhead,
Berkshire, UK, 1978.

7. KLINE, C.S. Data security: Security, protection, confinement, covert channels, validation. Ph.D
dissertation, Computer Science Dept., Univ. of California, Los Angeles, 1980.

8. MILLEN, J.K., HUFF, G.A., AND GASSER, M. Flow table generator. MITRE Working Paper, WP-
22554, The MITRE Corp., Bedford, Mass., Nov. 1979.

9. FEIERTAG, R.J. A technique for proving specifications are multilevel secure. CSL-109, SRI
International, Menlo Park, Calif., Jan. 1980.

10. GROSSMAN, G.R. A practical executive for secure communications. In Proc. 1982 Syrup. Security
and Privacy, (Oakland, Calif., April 26-28, 1982). IEEE, New York, pp. 144-155.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Shared Resource Matrix Methodology 277

11. BELL, D.E., AND LAPADULA, L.J. Secure computer systems. ESD-TR-73-278, vols. 1-3, The
MITRE Corp., Bedford, Mass., June 1974.

12. KEMMERER, R.A. Shared resource matrix methodology: A practical approach to identifying
covert channels. Rep. TRCS81-10, Computer Science Dept., Univ. of California, Santa Barbara,
Nov. 1981.

13. LOCASSO, R., SCHEID, J., SCHORRE, V., AND EGGERT, P. The Ina Jo Specification Language
Reference Manual. SDC Document TM-6889/000/01, System Development Corp., Santa Monica,
Calif., Nov. 1980.

14. DENNING, D.E. A lattice model of secure information flow. Commun. ACM 19, 5 (May 1976),
238-243.

Received September 1982; revised April 1983; accepted May 1983

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

