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Recognizing and dealing with storage and timing channels when performing the security analysis of 
a computer system is an elusive task. Methods for discovering and dealing with these channels have 
mostly been informal, and formal methods have been restricted to a particular specification language. 

A methodology for discovering storage and timing channels that can be used through all phases of 
the software life cycle to increase confidence that all channels have been identified is presented. The 
methodology is presented and applied to an example system having three different descriptions: 
English, formal specification, and high-order language implementation. 

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General--se- 
curity and protection; D.4.6 ]Operating Systems]: Security and Protection--information flow 
controls 
General Terms: Security 

Additional Key Words and Phrases: Protection, confinement, flow analysis, covert channels, storage 
channels, timing channels, validation 

1. INTRODUCTION 

W h e n  pe r fo rming  a secur i ty  ana lys i s  of a sys tem,  b o t h  over t  a n d  cover t  c h a n n e l s  
of the  s y s t e m  m u s t  be  cons idered .  Overt c h a n n e l s  use  the  s y s t e m ' s  p r o t e c t e d  da t a  
ob jec t s  to t r ans fe r  i n fo rma t ion .  T h a t  is, one  sub j e c t  wr i tes  in to  a da t a  ob jec t  a n d  
a n o t h e r  sub jec t  r eads  f rom the  object .  S u b j e c t s  in  th is  con tex t  are  n o t  on ly  ac t ive  
users,  b u t  are also processes  a n d  p rocedu re s  ac t ing  on  b e h a l f  of  the  user.  T h e  
channe ls ,  such  as buffers,  files, a n d  I / O  devices,  are  over t  because  the  e n t i t y  used  
to ho ld  the  i n f o r m a t i o n  is a d a t a  object ;  t h a t  is, i t  is a n  ob jec t  t h a t  is n o r m a l l y  
v iewed as a da t a  con ta iner .  Covert channe l s ,  in  con t ras t ,  use  en t i t i e s  n o t  n o r m a l l y  
viewed as da t a  ob jec t s  to t r ans fe r  i n f o r m a t i o n  f rom one  sub j e c t  to ano the r .  T h e s e  
n o n d a t a  objects ,  such  as file locks, device b u s y  flags, a n d  the  pass ing  of t ime,  are  

n e e d e d  to regis ter  the  s ta te  of the  sys tem,  l 

i Note that this definition of covert channels differs from that introduced by Lampson in his original 
note on the confinement problem [1]. The covert channels discussed in this paper include both 
storage and timing channels. 
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Overt channels are controlled by enforcing the access control policy of the 
system being designed and implemented. This policy states when and how overt 
reads and writes of data objects may be made. Part  of the security analysis must 
verify that the implementation of the system correctly implements the stated 
access control policy. An example of verification is the UCLA Data Secure UNIX 2 
project [2]. Access control is not further addressed in this paper. 

Recognizing and dealing with storage and timing channels are more elusive. 
Objects used to hold the information being transferred are normally not viewed 
as data objects, but can often be manipulated maliciously in order to transfer 
information. In addition, the use of a storage or timing channel requires collusion 
between a subject with authorization to signal or leak information and an 
unauthorized subject. Note that  the subject with authorization could be a mali- 
cious program acting without the knowledge of the user. 

There are many examples of these channels and methods for blocking them 
[1, 3-7]. However, methods for discovering these channels have for the most part 
been ad hoc, giving little assurance that  all storage and timing channels have 
indeed been discovered. The most systematic of these methods validates a 
specification for a multilevel, secure version of Multics [6]. In [6] an automated 
tool used formal specifications to generate tables describing which objects were 
read or written by a particular operation. However, before generating the tables 
each operation had to be divided into different parts, each mediated by a different 
subject. Previous work on flow analysis [8, 9] has also located storage and timing 
channels; however, these systems, like [6], were tightly coupled to a restricted 
subset of a particular specification language. 

This paper presents a shared  resource ma t r i x  methodology  that  can be applied 
to a variety of system description forms and which can increase the assurance 
(although it does not guarantee it) that  all channels have been found. It is easily 
reviewed, disregards resources that  are not shared, and is iterative as the design 
is refined or changed. It can be used in all phases of the software life cycle on 
systems whose constituent parts are in varying phases of development. 

The next section introduces the methodology; Section 3 illustrates it, using an 
example system; and the last section discusses experience with the methodology. 

2. THE SHARED RESOURCE MATRIX METHODOLOGY 

Storage and timing channel analysis is performed in two steps in the shared 
resource matrix methodology. First, all shared resources that  can be referenced 
or modified by a subject are enumerated, and then each resource is carefully 
examined to determine whether it can be used to transfer information from one 
subject to another covertly. The methodology assumes that  the subjects of the 
system are processes and that  there is a single processor which is shared by all of 
the processes. The processes may be local or distributed; however, only one 
process may be active at any one time. 

To determine which shared resources can be modified or referenced one must 
first identify the shared resources. A shared  resource is any object or collection 
of objects that may be referenced or modified by more than one process. It is 

2 U N I X  is a t r a d e m a r k  o f  Be l l  L a b o r a t o r i e s .  
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Fig. 1. Resource matrix filled in from English system description. 

necessary to further refine each shared resource by indicating its attributes, 
because two processes may view different attributes of the same shared resource. 
For example, the first process may be able to determine only whether a shared 
file is locked, while the second process may only view the size of the file. 
Attributes of all shared resources are indicated in row headings of the shared 
resource matrix. Figure 1 is a matrix for the sample system discussed in Sec- 
tion 3. 

Next, one must determine all operation primitives of the system being analyzed. 
Some examples of primitives are Write__File, Read__File, Lock__File, and 
File__Locked. The primitives of the system make up the column headings of the 
shared resource matrix. 

After determining all of the row and column headings one must determine for 
each attribute (the row headings} whether the primitive indicated by the column 
heading modifies or references that attribute. This is done by carefully reviewing 
the description for each of the primitives, whether it is an English requirement, 
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formal specification, or implementation code. This task is performed differently 
for each phase of the software life cycle. (The example presented in Section 3 
discusses the details of the different approaches.) The matrix generation is 
completed when each element of the matrix has been considered and marked, 
indicating whether a modification or reference could occur. 

The generated matrix is then used to determine whether any channels exist. 
Two types of channels are considered: storage channels and timing channels. 
With a storage channel the sending process alters a particular data item, and the 
receiving process detects and interprets the value of the altered data to receive 
information covertly. With a timing channel the sending process modulates the 
amount of time required for the receiving process to perform a task or detect a 
change in an attribute, and the receiving process interprets this delay or lack of 
delay as information. 

In order to have a storage channel, the following minimum criteria must be 
satisfied: 

(a) The sending and receiving processes must have access to the same attribute 
of a shared resource. 

(b} There must be some means by which the sending process can force the shared 
attribute to change. 

(c) There must be some means by which the receiving process can detect the 
attribute change. 

(d) There must be some mechanism for initiating the communication between 
the sending and receiving processes and for sequencing the events correctly. 
This mechansim could be another channel with a smaller bandwidth. 

If criteria (a)-(c) are satisfied, one must find a scenario that  satisfies criterion 
(d). If such a scenario can be found, a storage channel exists. This last step 
requires imagination and insight into the system being analyzed. However, by 
using the shared resource matrix approach, attributes of shared resources that  do 
not satisfy criteria (a)-(c) can readily be identified and discarded. 

Timing channels are discovered in a similar manner; however, different 
criteria are used. The minimum criteria necessary in order for a timing channel 
to exist are as follows: 

(a) The sending and receiving processes must have access to the same attribute 
of a shared resource. 

(b} The sending and receiving processes must have access to a time reference 
such as a real-time clock. 

(c) The sender must be capable of modulating the receiver's response time for 
detecting a change in the shared attribute. 

(d) There must be some mechanism for initiating the processes and for sequenc- 
ing the events. 

Any time a processor is shared there is a shared attribute: the response time of 
the CPU. A change in response time is detected by the receiving process by 
means of monitoring the clock. 

For a channel to be of concern, the sending and receiving processes must be in 
distinct protection domains and must not be allowed to communicate with each 
other directly. Therefore, any channels that exist between processes in the same 
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protection domain can be ignored. In particular, if a process can sense only 
modifications made by itself, no channel exists. 

Many storage and timing channels are a necessary part of the normal operation 
of the system; therefore, when a channel has been identified it is necessary to 
determine the bandwidth of the channel. That  is, it is necessary to determine 
how many bits per second can be transferred between two cooperating processes 
using the identified channel. By determining the baud rate for a channel, one can 
decide whether to block the channel, add noise to decrease its bandwidth, or 
simply ignore it. 

3. ILLUSTRATING THE METHODOLOGY ON A SAMPLE SYSTEM 

The methodology has been successfully applied to the design of a secure network 
front end [10]; however, because the software architecture is proprietary, it could 
not be reported on in this paper. Instead, a pedagogical example is used. The 
advantage of using a toy system is that  the process of applying the methodology 
is made more obvious to the reader. The danger of this approach is that  the 
example begs the methodology, and the channels discovered may appear to be 
obvious. The example system considered here consists of two types of objects: 
processes and files. A process may read or write a file, open or close a file for 
reading, and lock or unlock a file for writing. It may also query to see whether a 
file is locked or opened. 

The intent of the example is to show how the shared resource matrix approach 
can be used through the entire software life cycle to detect potential storage and 
timing channels. Discovery of a channel in the early phases of the software life 
cycle allows the designer to try to block the channel before too many design 
decisions have been made. However, constructing the matrix from an English 
description or a formal specification cannot uncover all channels. Therefore, it is 
important that the methodology also be applied to later phases of the software 
life cycle, particularly to implementation code. In the following sections an 
English description of the system is considered, then a formal specification, and 
finally implementation code. 

3.1 English Requirements for the Sample System 

Each process has a constant set of access rights. An access r ight  consists of a 
security class and a read/write field. The read /wr i t e  field indicates whether the 
process can read, write, or read and write objects of the indicated security class. 
Each file has a constant set of security classes. A file may be open for reading, 
locked for writing, or not in use. If a file is open for reading, then its in-use set 
contains the id's of the processes that  currently have the file open for reading. If 
a file is locked for writing, then the value of its locked by attribute is the process 
that locked it; only this process can modify or unlock the file. For a process to 
read information from a file, each member of the file's security class set must 
exist in the access rights set of the process with either read or read/write access. 
If this is the case, then the process is said to have read  access for the file. Wri te  
access is similarly defined. 3 

a The  security model  presented  here is not  the  Bel l -LaPadula  security model  [11]; however,  both  the  
*-proper ty  and the  simple security condition can be represented  using the  proposed model. 
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Only one process, the current  process, is act ive a t  a time. Each  opera t ion  is 
unin ter ruptable  and runs  to complet ion before ano the r  is invoked. These  restric- 
t ions avoid the combinator ic  disaster  tha t  m a y  resul t  f rom introducing concur- 
rency. More  important ,  they  are necessary if the sys tem is to be formal ly  verified. 
T h e  operat ions are discussed in more  detail  in the  following paragraphs .  

The Write__File operation is used by  a process to change the contents  of a file. 
I f  the  file is locked by  the  current  process, the  value of the  file is modif ied to 
contain the  contents  of the  current  process 's  buffer. 

The Read__File operation is used by  a process to in terrogate  the  contents  of  
a file. I f  the current  process is included in the in-use set  for the  file specified, the  
value of the  file is copied to the current  process ' s  buffer. 

The Lock__File operation is used by  a process to modify  the contents  of  a 
par t icular  file. A process mus t  lock a file before modifying it and mus t  unlock the  
file af ter  the modificat ion is complete.  I f  the  cur rent  process has  write access for 
the specified file, if the file specified is unlocked, and if its in-use set  is empty ,  
then  the file is locked, and its locked by  a t t r ibute  is set  to the  id of  the cur rent  
process. 

The Unlock~File operation makes  a file accessible when a process is done 
modifying its contents.  I f  the  specified file's locked by  a t t r ibu te  is the  current  
process, the file is unlocked. 

The Open__File operation is used by  a process to init iate re t r ieval  of the  
contents  of a file. This  pr imit ive guarantees  tha t  no o ther  process is modifying 
the  contents  of the  file being interrogated.  I f  the  current  process has  read  access 
for the specified file and the  file is not  locked, the  cur rent  process ' s  id is added  to 
the in-use set  for this file. 

The Close__File operation is used when  a process has  comple ted  interrogat ion 
of a file and wants  to release it so tha t  it can be modified. I f  the  cur rent  process ' s  
id is an e lement  of  the in-use set  for the specified file, t hen  it is r emoved  f rom 
tha t  set. 

The File Locked operation is used by  a process to de te rmine  whe ther  a file 
is locked. I f  the  current  process has  write access for the specified file, then,  if the 
file is locked, a value of t rue  is re turned.  I f  the file is unlocked the  value false is 
returned.  I f  the current  process lacks write access for the specified file the  resul t  
is undefined. 

The File__Opened operation is used by  a process to de te rmine  whe the r  a file 
is open for reading. I f  the current  process has  write access for the  specified file, 
then, if the file's in-use set  is n o n e m p t y  (i.e., the  file is open for read),  a value of 
t rue is returned.  I f  it is e m p t y  the  value false is re turned.  I f  the  cur rent  process  
does not  have  write access for the specified file, the resul t  is undefined. 

For  all operations,  if the required conditions, such as file unlocked, are not  met ,  
then  the  operat ion has  a null effect. 

With  this l imited set  of operat ions  and no mechan i sm to cause a process to 
release a file, there  is a potent ia l  for deadlock. In  addition, a real  sys t em requires  
some fair me thod  of scheduling processes, such as allowing each  process  to 
execute n operat ions before switching processes in a round-robin  fashion. These  
issues, which are of concern in rea l -sys tem design, are, for the  mos t  part ,  ignored 
in the remainder  of the paper.  However ,  an  example  of  a t iming channel  p remised  
on this approach  to scheduling is presented  in Sect ion 3.2.3. 
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3.2 Applying the Methodology to the English Requirements 

3.2.1 Constructing the Matrix. The first thing to do when applying the shared 
resource approach to the English requirements is to determine the objects and 
their attributes. There are two types of objects: processes and files. The attributes 
of a process are id, access rights, and buffer. The attributes of a file are id, security 
classes, locked by, locked, in-use set, and value. In addition, an object current 
process indicates which process is currently active. 

The operational primitives of the system are the eight operations presented in 
the section above. Using this information, the skeleton of the matrix can be 
constructed and filled in by carefully determining whether the primitive indicated 
by each column heading modifies or references each attribute. When working 
with English requirements, keywords such as checks, reads, if, and copy from 
lead one to find attributes that are referenced. Keywords such as change, set, 
replace, and copy to lead one to attributes that  are modified. Consider the 
description of Write__File: 

I f  the file is locked and the current process locked it, then the value of the 
file is modified to contain the contents of the current process's buffer. 

When encountering the keyword if, one knows that what follows probably 
indicates attributes whose values are referenced. Therefore, for this operation the 
file's locked and locked by attributes, as well as the current process, are referenced. 
The keyword modify alerts one to look for what is modified and by what. For this 
operation the file's value attribute is modified using the process's buffer attribute. 
Thus the buffer, locked by, locked, and current process rows of the Write__File 
column contain Rs for reference, the value row contains an M for modify, and the 
other rows of this column remain blank. This process is repeated for all of the 
primitives, yielding the matrix of Figure 1. 

The attributes referenced by one primitive may have been modified by another 
primitive, which referenced additional attributes. In order to illuminate these 
more sophisticated channels, involving multiple attributes, it is necessary to 
generate the transitive closure of the shared resource matrix. For instance, 
suppose an operation login references the password file and modifies the 
Active__User attribute. Furthermore, suppose a second operation references the 
Active__User attribute. The shared resource matrix for these two operations 
would indicate a reference to Active__User, but no reference to the password file 
in the column that corresponds to the second operation. However, it may be the 
case that the Act ive~User  attribute is modified in a manner which compromises 
a user's password. Thus, it is necessary to indicate this indirect reference in the 
matrix. Then, when analyzing the matrix for possible channels, one must ensure 
that the modification to Active__User does not reveal information about user's 
passwords. 

The transitive closure of the matrix is generated by looking at each entry that  
contains an R. If there is an M in the row in which this entry appears, then it is 
necessary to check the column that  contains the M to see if it references any 
attributes that  are not referenced by the original primitive. Tha t  is, if the column 
that contains the M has an R in any row in which there is not an R in the 
corresponding row of the original column, then an R must be added to that  row 
in the original column. 
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Fig. 2. Transitive closure of matrix for English description. 

For instance, consider the column for Write__File in Figure 1. The re  is an R in 
the locked row of this column, and the locked at t r ibute  is modified by the 
Lock File primitive. Therefore ,  it is necessary to see which at t r ibutes  were 
referenced to make this modification. Th e  at t r ibutes  access rights, securi ty 
classes, locked, in-use set, and current  process are referenced. Access rights, 
security classes, and in-use set are not  directly referenced by the Write__File 
primitive, so they must  be added to tha t  column. 

This  process is repeated  until  no new entries can be added to the matrix. Th e  
resulting matr ix  is the transitive closure (with respect  to references) of the original 
matr ix# The  transitive closure matr ix  for the example system is shown in Fig- 
ure 2. 

Although the matr ix construction has been performed manually,  much  of the 
generation could be automated.  A prime candidate for au tomat ion  is the gener- 

Note that  this is not  the s tandard mathematical  transitive closure, since it relates to the modify 
operator as well as to the reference operator. 
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ation of the transitive closure of the matrix. This process is not dependent on the 
form of the system description; therefore mechanizing the process would not 
restrict the versatility of the approach. A Pascal program for generating the 
transitive closure of a matrix is presented in [12]. 

3.2.2 Analyzing the Matrix. Now that the shared resource matrix is complete, 
it may be used to locate potential storage and timing channels. In this section 
only storage channels are considered. An example of a timing channel is given in 
Section 3.2.3. From the criteria presented in Section 2 it can be seen that  the only 
attributes that need be considered are those whose rows contain both an R and 
an M. Thus, for the example, only locked by, locked, in-use set, buffer, and value 
need to be considered. 

For an attribute to be a potential storage channel one must be able to transfer 
information from one process to another in a direction that  is not allowed by the 
access control mechanism. Therefore, it is not necessary to consider cases in 
which the access control mechanism requires the sending process to have write 
access and the receiving process to have read access to the same object; because, 
if they satisfy these requirements, the sender can modify the object and the 
receiver can reference the object. Thus, no storage channel is needed to com- 
municate. 

When analyzing a reference to a shared attribute, one can arrive at four possible 
conclusions: 

(1) Another legal channel exists between the two communicating processes, so 
this channel is of no consequence. 

(2) No useful information can be gained from this channel. 
(3} The sending and receiving processes are the same. 
(4) A potential storage channel exists. 

In the following paragraphs an example of each of these conclusions is presented. 
The reader who is not interested in the details of the analysis for shared attributes 
may skip ahead to the last paragraph of this section, where the analysis is 
summarized. 

The first attribute considered is the locked by attribute. This attribute can be 
modified only by the Lock File primitive, and this requires the process executing 
the primitive to have write access to the file. Thus, the sending process must be 
in a protection domain that  allows write access to the file specified. All of the 
primitives can reference the locked by attribute; therefore, it is necessary to 
determine for each of these references whether the reference can occur when the 
executing process is in a protection domain that  does not require read access. 

When the Write__File primitive is executed, the locked by attribute is refer- 
enced. If the value of the locked by attribute is the current process, then the 
locked by attribute was set by the current process (by executing a Lock_Fi le) .  
Since the process executing the Write__File primitive does not need read access, 
a potential storage channel may exist. However, the current process is the same 
process that  modified the attribute, and this channel gains nothing. If the current 
process did not lock the file, then it can get no new information from the locked 
by attribute. That  is, the current process only knows that  it did not lock the 
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file--which it already knows anyway. Thus, no useful information would be 
gained by using the Write File primitive to reference the locked by attribute. 

The Read File primitive requires the executing process to be in the in-use set. 
Since a process can become a member of a file's in-use set only by executing the 
Open File primitive, the executing process needs read access in order to refer- 
ence the locked by attribute. Therefore, the sending and receiving process can 
communicate directly through the specified file, and this is not a candidate 
storage channel. 

The reference indicated for the Lock__File primitive is a transitive reference 
generated because the Lock__File primitive references the locked attribute, which 
is modified by the Unlock File primitive, which in turn references the locked by 
attribute. The only information transferred by this reference is the fact that the 
process that last unlocked the specified file is the same process that  locked it. 
Since this is always the case, no new information can be obtained from this 
indirect reference to the locked by attribute. There are a number of indirect 
references generated by the methodology, and each must be checked to see 
whether it can be used to transmit information that  is not otherwise available. 

None of the other references to the locked by attribute yield potential storage 
channels. 

The in-use set attribute can be modified by the Open__File and Close__File 
primitives. The Open__File primitive requires the current process to have read 
access for the file in order to modify the in-use set, and the Close__File primitive 
requires the executing process to be a member of the in-use set for the modifi- 
cation to take place; therefore, the process must have read access for the specified 
file. Thus, both primitives require the executing process to have read access for 
the modification to take place. Since the protection domain of the modifying 
process must have read access, and the in-use set attribute can be referenced by 
all of the primitives, all of the primitives must be considered when searching for 
potential storage channels that  use this attribute. 

The Lock__File primitive references the in-use set attribute to determine 
whether it is empty. Whether the in-use set is empty can be detected by any 
process with write access; therefore, this attribute may be a potentail storage 
channel. The following scenario shows that  this reference to the in-use set c a n  be 
used as a storage channel. If the in-use set is empty, a process with read access 
could signal a 1 by executing the Open File primitive, or a 0 by not executing 
the primitive or by executing a Close__File when the in-use set contains only that  
process's id. A process with only write access could then determine the setting by 
executing a Lock File primitive and interpreting a successful result as a 0 and 
an unsuccessful result as a 1. (Note that this assumes that  the file is not locked. 
Furthermore, since the Lock__File primitive does not explicitly return a success 
or failure code, the process will have to use the File__Locked primitive to check 
the result.) By using this procedure on a number of files to which the sender has 
read access and the receiver has write access, a large bandwidth channel can be 
achieved. 

The Open File and Close__File primitives reference the in-use set only to 
include/remove the executing process's id in/from the set. This reference provides 
no information to the executing process. However, if the in-use set were a finite 
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Table I. Summary  of Matrix Analysis 

Primitive Write Read Lock Unlock Open Close File File 
Sensing Change: File File File File File File Locked Opened 

Attribute 
Modulated: 
Locked By S L N S L L N N 
In-Use Set N S P N N N N P 
Locked S L P S L L P N 
Buffer S S . . . . . .  
Value S S . . . . . .  

Key for Table: 
L Legal channel exists with access control mechanism 
N No useful information can be gained from channel 
S Same process sending and receiving information 
P Potential covert channel 

set whose m a x i m u m  size was less t han  the n u m b e r  of  processes t h a t  were al lowed 
read  access, then  the  set  could be overflowed, causing a resource  error. Thus,  a t  
the implementa t ion  level, where  resources  are finite and resource  exhaust ion can 
occur, more  storage channels  m a y  exist. 

A comple te  analysis of all of  the shared  a t t r ibu tes  is p resen ted  in [12]. Tab le  1 
contains a s u m m a r y  of this s torage channel  analysis. T w o  a t t r ibu tes  t ha t  could 
be used as potent ia l  s torage channels  have  been  discovered. After  the  s torage 
channels  are located, each mus t  be analyzed to de te rmine  its worst-case (i.e., 
largest) bandwidth.  A decision is then  made  to de te rmine  whe the r  to block the  
potent ia l  channel  or ignore it. 

3.2.3 Timing Channels. In  order  to provide an example  of  a t iming channel,  
assume tha t  the processes are scheduled in a round-robin  fashion, with each  
process being allowed to execute  n operat ions  before giving up the  CPU.  In  
addition, assume there  is ano the r  opera t ion called Process__Sleep,  which a 
process m a y  invoke if it wants  to give up the  C P U  before it has  executed  n 
operations.  Finally, assume tha t  each process has  access to a rea l - t ime clock. 

T h e  closure of the shared  resource mat r ix  with the  Process___Sleep opera t ion  
added is shown in Figure 3. Not ice  t ha t  a process  can modi fy  the  cur rent  process  
a t t r ibute  by invoking the  Process___Sleep operat ion.  Thus  the  cur rent  process  
a t t r ibute  mus t  now be analyzed as a candidate  channel.  In analyzing this a t t r ibu te  
for a s torage channel,  one discovers t ha t  the only informat ion  t h a t  the  executing 
process can glean is tha t  it (the executing process) is the  cur ren t  process, which 
is not  useful information.  

Next,  this a t t r ibu te  is analyzed to de te rmine  if it can be used as a t iming 
channel.  T h e  only informat ion t ha t  a process  can obtain  is t ha t  it is the  current ly  
executing process, bu t  if the  executing process  can de te rmine  how m u c h  t ime  has  
elapsed since it last  had  control  of  the  CPU,  and  if ano the r  process  can vary  this 
amoun t  of time, then  the cur rent  process  a t t r ibu te  can be used as a t iming 
channel.  The  following pa rag raphs  presen t  a scenario for using this channel.  

Consider  a sending process S and a receiving process  R. Since S and R can 
surrender  the  processor  a t  will, while remaining  ready  for re invocat ion a t  the  next  
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WRITE READ LOCK UNLOCK OPEN CLOSE FILE FILE PROCESS 

FILE FILE FILE FILE FILE FILE LOCKED OPENED SLEEP 

ACCESS 
PROCESS 

EIGHTS 
R R R R R R R 

BUFFER R R,M 

ID 

FILES 

SECURITY 
R R R 

CLASSES 

LOCKED 
R R R,M 

BY 

LOCKED R R R,M 

IN-USE 
R R R 

SET 

VALUE R,M R 

R R R R R 

R R R R R 

R,M R R R R 

R R,M R,M R R 

CURRENT 
R R R R R R R R 

PROCESS 
R,M 

R SYSTEM 
R R R R R R R R 

CLOCK 

Fig.  3. Transitive closure of matrix for English description with timing example added. 

scheduling slice, and the  schedul ing algorithm used is round-robin,  S and R can 
take turns using the CPU.  T h e  scenario is as follows. S and R calibrate the  
process  switch t ime by taking turns for a while.  Call this t ime Ts. T~ has  some  
variance, and could be mul t imodal  in a sys tem with  recurring regular events ,  such  
as t imer interrupts. S and R agree upon  a code for transmitt ing messages ,  which  
m a y  be based upon the results of  the calibration (in which  case S and R must  
arrive independent ly  at the same code).  The  code mus t  have  the  property that  
the normal  variance of  the process  switch t ime will not  result  in transmiss ion 
errors. Also, some  select ive noise  reject ion based upon the results  of  the calibra- 
t ion run can remove  some  regularly-occurring-event noise.  (Note  that  "noise" is 
generated w h e n  a process  other  than S or R runs). Furthermore,  only  a fraction 
of  the possible distinguishing code values  is used to provide some  detect ion of  
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Table II. Data  Rates (baud) for 
Message Units (bits) 

1 998 9 5952 
2 1992 10 4940 
3 2976 11 3608 
4 3937 12 2354 
5 4844 13 1414 
6 5639 14 805 
7 6205 15 456 
8 6369 16 243 

noise in transmission (i.e., the code works in the presence of noise to a degree 
determined primarily by the redundancy in the code). 

Now, S sends a message M by consuming an amount of processor time which 
represents the coded version of M. R computes the amount of time which has 
passed since R last had control. It subtracts Ts from this. It now reconstructs the 
value of M corresponding to this time. Since the code is redundant, the compu- 
tation may indicate a value not in the valid code set. To acknowledge M, R could 
give up the processor immediately (alternately, a subset of the code could be 
used to transmit positive acknowledgment). If the coded value is not a valid 
message, R acknowledges receipt negatively by consuming a particular amount of 
processor time before giving up the processor. This allows transmission in the 
presence of noise. S measures how much time has passed since giving up the 
processor. If it corresponds to correct receipt of M by R (e.g., Ts in the simplest 
case above), a new message is sent. If not, M is re-sent. 

The scheme, if described correctly, transmits a message M only when S and R 
are the only ready processes on the processor for 1 cycle of the scheduler. More 
robust schemes are possible. The bandwidth of the scheme is related to the 
process switch time T~, the processor speed, the resolution of the real-time clock 
which R and S use, and the variance of the process switch time and resulting 
possible unique code set size, and the amount of redundancy necessary to increase 
the probability of detecting noise to a sufficiently high level. For a worst-case 
example, assume that  S and R are alone on the machine, there is no variance in 
the process switch time, there are no recurring events, and no redundancy is used. 
Assume that  it is known that  the computer can execute a specific number of 
instructions per second (which determines the resolution which the sender can 
use to send a code), and that  the code used is simply a number of microseconds 
(implying the machine is fast enough to consume time in 1-microsecond units). A 
message is sent by breaking the message into small units, and consuming 
2message unit value microseconds. Simple coding theory and the measured value of T~ 
allow one to compute the maximum data rate. Sending 1 bit per T, would allow 
a rate limited essentially by T~. Sending more bits per T~ increases the efficiency 
at first, but the time it takes to send an additional bit in each message unit grows 
a s  2number of bits p . . . .  it grOWS, SO a medium value must be chosen. For example, if the 
process switch time is 1 millisecond, and the code and timer resolution is 1 
microsecond, one gets the data rates for the message unit sizes indicated in Table 
II. Obviously, these are higher than the rates one can obtain using redundant 
coding and operating in the presence of noise. Variance in the switch time will 
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rapidly lower the reliably distinguishable set of characters  tha t  can be t ransmit-  
ted. Regular noise can be filtered, bu t  any noise, since it is generated by usage of 
the CPU, will also lower the bandwidth directly. Thus,  the values presented are 
strict upper  bounds for the channel  described. 

3 3  Formal Speci f icat ions 

In this section the shared resource matr ix methodology is applied to a formal  
specification of the example system. The  formal specifications for the system are 
wri t ten in a variant  of Ina Jo, 5 which is a nonprocedural  assertion language tha t  
is an extension of first-order predicate calculus. Th e  language assumes tha t  the 
system is modeled as a state machine. The  key elements  of the language are 
types, constants, variables, definitions, initial conditions, a criterion, and trans- 
forms. The  criterion is a conjunction of assertions tha t  specify what  a good state  
is. The  criterion is often referred to as a state invariant  since it must  hold for all 
states, including the initial state. An Ina Jo  language t ransform is a state 
transit ion function; it specifies what  the values of the state  variables will be after  
the state transition, relative to what  their  values were before the transi t ion took 
place. A complete description of the Ina Jo  language can be found in the Ina Jo 
Reference Manual [13]. 

Before giving the specification for the example system, a brief  discussion of 
some of the Ina Jo notat ion is necessary. Th e  following symbols are used for 
logical operations: 

& Logical AND 
I Logical OR 

Logical NOT 
--~ Logical implication 

In addition there  is a conditional form 

(if A then  B else C), 

where A is a predicate and B and C are well-formed terms. 

The  notat ion for set operations is 

E is a member  of 
U set union 

~ set difference 
{a, b . .  c} the set consisting of elements  a, b . . . . .  c 

{set description} the set described by set description. 

The  language also contains the following quantifier notation: 

V for all 
3 there  exists. 

Two other  special Ina Jo  symbols tha t  may  be used are 

N" to indicate the new value of a variable (e.g., N " v l  is the new value of 
variable vl) 

NC" which indicates no change to the value of a variable. 

Ina  Jo  is a t r ademark  of t he  S y s t e m  Deve l opmen t  Corporation,  a Bur roughs  Company .  
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The specification for the example system is shown in Figure 4. The eight 
transforms correspond to the eight operations of the English description. 

TITLE Confinement 
SPECIFICATION Confinement 
LEVEL Top_Level 

TYPE 
Process, 
Processes = Set Of Process, 
File, 
Data 

TYPE 
Access = (read,write), /* enumerated type */ 
Accesses = Set Of Access, 
Security_Class, 
Security_Classes = Set Of Security_Class, 
Access_Right, 
Access_Rights = Set Of Access_Right 

CONSTANT 
Acc_Rights(Process):Access_Rights, 
Sec_Classes(File):Security_Classes, 
Class(Access_Right):Security_Class, 
Acc(Access_Right):Accesses 

CONSTANT 
0K_To(r:aceess,p:Process,f:File):Boolean = 

¥s:Security_Class ( 
s ~ See_Classes(f) ÷ 

a:Access_.Right ( 
a ~ Ace_Rights(p) 

& Class(a) = s 
& r ~ Ace(a) )) 

VARIABLE 
Current_Process:Process, 
Locked_By(File):Process, 
Locked(File):Boolean, 
In_Use_Set(File):Processes, 
Value(File):Data, 
Buffer(Process):Data, 
Result(Process):Boolean 

/* The INITIAL and CRITERION sections of the specification are 
used for the formal proof of the access control mechanism and 
are of no use to the covert channel analysis */ 

INITIAL 
¥f:File ( In_Use_Set(f)=Empty & ~Locked(f)) 

CRITERION 
¥p:Process,f:File ( 

(p ~ In_Use_Set(f) ÷ 0K_To(read,p,f)) 
& (Locked(f) & Locked_By(f)=p ÷ 0K_To(write,p,f)) 
& (Locked(f) + In_Use_Set(f)=Empty) ) 

Fig. 4. Ina Jospecification ofexamplesystem. 
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TRANSFORM Write_File(f:File) External 
Effect 

Vfl:File ( 
N~Value(fl)= 
(if fl=f 

& Locked(f) 
& Locked_By(f)=Current_Process 

then Buffer(Current_Process) 
else Value(fl))) 

TRANSFORM Read_File(f:file) External 
Effect 

Vpl:Process ( 
NnBuffer(pl)= 
(if pl=Current_Process 

& Current_Process ~ In_Use_Set(f) 
then Value(f) 
else Buffer(pl) )) 

TRANSFORM Lock_File(f:File) External 
Effect 

(if OK_To(write,Current_Process,f) 
& ~Locked(f) 
& In_Use_Set(f)=Empty 

then Vfl:File ( 
N~Locked(fl)= 

(if fl=f 
then true 
else Locked(f1) ) 

& NHLocked_By(fl) = 
(if fl=f 

then Current_Process 
else Locked_By(fl) )) 

else NCH(Locked,Loeked_By) ) 

TRANSFORM Unlock_File(f:File) External 
Effect 

Vfl:File ( 
N~Locked(fl)= 

(if fl=f 
& Locked_By(fl)=Current_Process 

then False 
else Locked(fl) )) 

TRANSFORM Open__File(f:File) External 
Effect 

Vfl:File ( 
Nnln_Use Set(f1) = 

(if fl=f 
& OK_To(read,Current_Process,f) 
& ~Locked(f) 

then In_Use_Set(f1) v {Current_Process} 
else In_Use_Set(fl) )) 

TRANSFORM Close_File(f:File) External 
Effect 

Vfl:File ( 
NNln_Use_Set(fl) = 

Fig. 4 . ( c o n t i n u e d )  
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(if fl=f 
then In_Use_Set(fl) 
else In_Use_Set(fl) 

{Current_Process} 
)) 

TRANSFORM File_Locked(f:File) External 
Effect 

Ypl:Process ( 
N"Result(pl) = 

(if pl=Current_Process 
& 0K_To(write,Current_Process,f) 

then Locked(f) 
else Result(pl) )) 

TRANSFORM File_Opened(f:File) External 
Effect 

Ypl:Process ( 
N"Result(pl)= 

(if pl=Current__Process 
& 0K_To(write,Current_Process,f) 

then In_Use_Set(f) m Empty 
else Result(pl) )) 

END Top__Level 
END Confinement 

Fig. 4. (continued) 

3.4 Applying the Methodology to the Formal Specifications 

When an Ina Jo specification is used, the variables are the attributes and the 
transforms are the primitives. Thus, Acc__Rights and Sec Levels can be elimi- 
nated immediately, since they are declared to be constants in the Ina Jo specifi- 
cation. Also, since it is necessary to explicitly specify the result of the 
File l,ocked and File__Opened transforms, there is an attribute, result, which 
was missing from the matrix generated for the English requirements. Therefore, 
the row headings of the matrix are Locked__By, Locked, I L U s e _ _ S e t ,  Value, 
Buffer, Result, and Current__Process, and the column headings are the eight 
transform names. 

To fill in the matrix one must determine which attributes are referenced and 
modified by each transform. Any variable that  occurs in the effects section of a 
transform, preceded by the new value notation, is considered to be modified. All 
other attributes that are mentioned in the effects section, except those preceded 
by the no-change notation, are referenced. Consider the specification for the 
Write__File transform in Figure 4. Since the value attribute is preceded by N" ,  
it may be modified by this transform. The attributes that  occur in the effects 
section of the Write__File transform not preceded by N "  or N C "  are Locked, 
Locked Ry, Current Process, Buffer, and Value. Each of these is referenced 
by the transform. Thus, the column corresponding to the W r i t L F i l e  transform 
contains Rs in the Buffer, Locked Ry, Locked, Value, and Current__Process 
rows and an M in the Value row. 
ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983. 
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Fig. 5. Trans i t ive  closure of mat r ix  for Ina  Jo  specification. 

This  process is repeated for each of the t ransforms and the transit ive closure 
is computed.  The  resul tant  matr ix  is shown in Figure 5. 

A problem may  occur when the approach outl ined above is used to determine 
which at t r ibutes  are referenced in an Ina Jo  specification. Th e  problem arises 
because, when using the Ina Jo  language, if a variable is to be changed under  
certain circumstances, but  not  others, all circumstances must  be described ex- 
plicitly. This  is not  enforced by the specification processor; therefore,  the effect 
section of an Ina Jo  t ransform may  not  be deterministic. For  instance, a possible 
specification for the File I,ocked t ransform is 

Vpl:Process ( 
N"  Result (pl) = 

(if pl = Current__Process 
& OK__To(write, Current__Process, f) 

then Locked (f) )) 

Notice tha t  this specification differs from the one tha t  appears  in Figure 4. Th e  
interpretat ion of this specification is tha t  if the executing process has write access 
to file f, then  the new value of the executing process's result  a t t r ibute  will be t rue 
if file f is locked and false if it is not  locked. Th e  problem is tha t  it does not  
specify what  the value of the result  a t t r ibute  will be if the executing process does 
not  have write access to file f; nor  does it specify what  the new value of the result  
a t t r ibute  for the other  processes will be. T h a t  is, this specification is equivalent  
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to the following: 

Vpl: Process ( 
N"  Result(pl) = 

(if pl  -- Current__Process 
& OK__To (write, Current__Process, f) 

then Locked(f) 
else N"  Result(pl))) 

In  the Ina  Jo  language the  meaning  of N " v a r  = N " v a r  is t ha t  the var iable  var  
can assume any  value in the new state.  Thus,  its new value can be the  resul t  of  
referencing any  of the s ta te  variables.  Therefore ,  when  filling in the mat r ix  for 
this type  of specification, one mus t  assume the  worst  case. T h a t  is, it is a s sumed  
tha t  all s ta te  var iables  are referenced to de te rmine  the  value of the  resul t  
a t t r ibute .  T h e  column tha t  corresponds to this t r ans fo rm would have  an R in 
every row. Thus,  whenever  the  effects section of a t r ans fo rm is nondeterminis t ic ,  
the user  mus t  assume tha t  all shared  a t t r ibu tes  can be referenced.  

T h e  shared  resource mat r ix  genera ted  f rom the Ina  J o  specification is analyzed 
in the  same m a n n e r  as described for the English requ i rements  matr ix.  Therefore ,  
the discussion is not  r epea ted  here. 

3.5 Implementation Code 

In  this section it is shown how the me thodo logy  is applied to imp lemen ta t ion  
code. Each  of the  pr imit ives  is imp lemen ted  as a Pascal  procedure,  and the  
a t t r ibutes  are the  fields of the  variables.  

T h e  procedure  implement ing  the  Write__File pr imi t ive  migh t  look as follows: 

procedure writefile (fileid: filerange ); 
begin 

if files [fileid].locked and 
(files[fileid].lockedby = currentprocess ) ) 

then files [fileid].value := processes [currentprocess ].buffer 
end; 

To de termine  which a t t r ibutes  are modified, one need find only those a t t r ibu tes  
tha t  appea r  on the  lef t -hand side of  an ass ignment  s t a t e m e n t  (:=). In  a comple te  
implementa t ion ,  however,  these ass ignment  s t a t emen t s  are not  only those  t ha t  
are explicit in the  code for the  operat ion.  Consider  an instruct ion t ha t  causes  a 
page fault. Th is  m a y  result  in an ass ignment  to a sys t em page table,  indicat ing 
tha t  the  desired page is being swapped  in or t ha t  ano the r  page is being swapped  
out. Thus ,  the  possible side effects of  each opera t ion  m u s t  also be  considered. I t  
should also be no ted  t ha t  these ass ignments  are not  only to var iables  in the  
software, but  m a y  also be  the set t ing of some hardware  register  {e.g., a device 
register). For  the writef i le procedure  the file's value field m a y  be modified. 

Finding which a t t r ibu tes  are referenced by  a procedure  is more  difficult. First, 
any  a t t r ibute  t ha t  appea r s  on the  r ight -hand side of  an ass ignment  s t a t e m e n t  
m a y  be referenced,  since its value m a y  be used to genera te  the  value assigned. 
However ,  there  are addit ional  a t t r ibu tes  which m a y  be referenced to de te rmine  
whe ther  to make  the  assignment .  These  references  are usual ly  refer red  to as 
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implicit [14]. That  is, any attribute whose value is used to determine which path 
to take in the program is referenced. 

The attributes that are referenced implicitly by the writefile procedure are the 
locked and lockedby fields of files[fileid] and the currentprocess. In addition, the 
buffer is referenced directly. 

After the direct and implicitly referenced attributes, as well as the modified 
attributes, are marked in the matrix, its transitive closure is generated in the 
same way as before. The shared resource matrix is now complete, and the analysis 
is performed as described in Section 3.2. 

It should be mentioned that  as the software life cycle progresses and more 
detail is added to the system design, the size of the matrix also grows. Therefore, 
the shared resource matrix for the implementation code is likely to be much 
larger than the matrix derived from the English requirements. The method of 
constructing and analyzing the matrix is, however, the same. 

3.6 Other Phases of the Software Life Cycle 

Although Sections 3.3 and 3.4 deal only with top-level specifications, the shared 
resource methodology may be applied to more detailed specifications in the same 
manner. The more detailed specification may introduce new attributes (e.g., the 
size of a file) and more transforms, and the transforms may have more parameters 
(e.g., offset in a file or buffer size). Therefore, the matrix will grow in size. 

The shared resource matrix is also useful during the debugging and mainte- 
nance phases of the life cycle. If one wants to know which elements are affected 
by a particular attribute, it is only necessary to consult the matrix. For instance, 
before modifying a variable one can immediately determine which other attributes 
would be affected by the modification. Finally, if it is desirable to change the 
structure of some variable, one can determine from the matrix which procedures 
would be affected by the change. 

As the system is modified, any changes in the attributes that  are referenced or 
modified should be reflected in the shared resource matrix, and the changes to 
the matrix should be analyzed for possible storage and timing channels. 

4. CONCLUSIONS 

The shared resource matrix methodology has been successfully applied to the 
design of a secure network front-end [10]. This application has revealed a number 
of storage and timing channels. Of the channels discovered the worst-case 
bandwidth was 5000 bits per second, with a typical bandwidth of 20 bits per 
second. However, in practice, the bandwidth of these channels is much less, owing 
to the presence of noise and interference from other than the cooperating 
processes. As a result of the analysis the front end was redesigned to block or 
reduce the bandwidth of the channels discovered. 

There are several advantages to using the shared resource attribute matrix to 
locate storage and timing channels, as opposed to searching for these channels in 
an ad hoc fashion. The first advantage is that by using the matrix, attributes that  
do not meet the preliminary criteria of being modified or referenced by a process 
are quickly discarded. 
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Another advantage is that, by presenting the shared resource information in 
graphical form, the information can be checked easily by those persons partici- 
pating in the  design, imp lemen ta t ion ,  test ing,  and  m a i n t e n a n c e  o f  the  sys tem,  
w h e t h e r  or  no t  t h e y  are  involved  d i rec t ly  in the  secur i ty  analysis .  

T h e  mat r ix  also serves  as  an  excel lent  design tool. B y  indica t ing  w h i c h  at t r i -  
bu tes  are  af fec ted  by  a primit ive,  design overs ights  t h a t  m a y  have  b e e n  left  ou t  
of  the  p re l imina ry  design m a y  be discovered.  Also, if a p r imi t ive  is to  be changed ,  
the  a t t r ibu te s  t h a t  m a y  be af fec ted  are  read i ly  d e t e r m i n e d  f r o m  the  matr ix .  

Finally,  since the  process  of  genera t ing  the  ma t r ix  is an  i tera t ive  process ,  t he  
mat r ix  can  be used  t h r o u g h o u t  the  sof tware  life cycle  o f  the  p ro jec t  as a design 
tool, as well as a secur i ty  analysis  tool. As  the  specif icat ions  b e c o m e  m o r e  
detailed,  m o r e  a t t r ibu te s  and  pr imi t ives  are  a d d e d  to  the  matr ix .  F u r t h e r m o r e ,  
since the  m e t h o d o l o g y  is no t  t ied to  a pa r t i cu la r  descr ip t ion  form,  it can  be 
appl ied to a descr ip t ion  whose  cons t i t uen t  pa r t s  are  descr ibed  in d i f ferent  fo rms  
{e.g., Engl i sh  r equ i r e m e n t s  and  formal  specif icat ions) .  T h a t  is, p a r t  o f  the  s y s t e m  
m a y  be i m p l e m e n t e d  while o t h e r  pa r t s  are  on ly  descr ibed  b y  Engl i sh  r e q u i r e m e n t s  
or  fo rmal  specifications;  bu t  the  m e t h d o l o g y  can  be appl ied  to  the  col lect ion o f  all 
descript ions.  
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