
Protecting Page Tables from RowHammer Attacks
using Monotonic Pointers in DRAM True-Cells

Xin-Chuan Wu
University of Chicago

Chicago, Illinois
xinchuan@uchicago

Timothy Sherwood
University of California, Santa Barbara

Santa Barbara, California
sherwood@cs.ucsb.edu

Frederic T. Chong
University of Chicago

Chicago, Illinois
chong@cs.uchicago.edu

Yanjing Li
University of Chicago

Chicago, Illinois
yanjingl@uchicago.edu

Abstract
We identify an important asymmetry in physical DRAM
cells that can be utilized to prevent RowHammer attacks
by adding 18 lines of code to modify the OS memory al-
locator. Our small modification has a powerful impact on
RowHammer’s ability to bypass memory protection mecha-
nisms and achieve a successful attack. Specifically, we iden-
tify two types of DRAM cells: true-cells and anti-cells. In
a true-cell, a leaking capacitor will induce a ‘1’→‘0’ error,
while in anti-cells, errors flow from ‘0’→‘1’. We then create
DRAM cell-type-aware memory allocation which enables a
“monotonicity property” for a given data object. The mono-
tonicity property is able to counter RowHammer attacks (and,
to a broader extent, other memory attacks) by allocating only
one type of cells for an object, thereby restricting error direc-
tion. We apply the monotonicity property to pointers in page
tables by placing all page tables in true-cells that are above a
“low water mark”. We show that this approach successfully
defends against RowHammer PTE-based privilege escala-
tion attacks. Using established RowHammer-induced bit-flip
error statistics, we provide proofs of the soundness and com-
pleteness of our technique and show that with our technique
only one out of 2.04× 105 systems is vulnerable to the attack,
and the expected attack time on the vulnerable system is 231
days. We also provide application performance results from
prototypes implemented through modifications to Linux ker-
nels. Our cross-layer approach avoids undesirable energy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304039

cost, hardware changes, performance overhead, and high
software complexity associated with prior countermeasures.

CCS Concepts • Security and privacy → Security in
hardware; • Software and its engineering→Mainmem-
ory; Allocation / deallocation strategies.

Keywords RowHammerAttacks, DRAMTrue-Cell, Monotonously,
Page Tables, Privilege Escalation, Security

ACM Reference Format:
Xin-ChuanWu, Timothy Sherwood, Frederic T. Chong, and Yanjing
Li. 2019. Protecting Page Tables from RowHammer Attacks using
Monotonic Pointers in DRAM True-Cells. In 2019 Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’19), April 13–17, 2019, Providence, RI, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3297858.3304039

1 Introduction
The RowHammer effect enables a powerful family of at-
tacks [32] with applicability to a broad class of DRAM-based
memory systems. These attacks cause various system se-
curity vulnerabilities by corrupting the isolation of virtual
machines, allowing for the escape from otherwise strong soft-
ware sandboxes, and enabling privilege escalation [5, 7, 10,
12, 13, 17, 26, 28, 30–32, 37, 38], and it is critically important
to eliminate these attacks.
We identify an important asymmetry in physical DRAM

true-cells and anti-cells found in modern DRAM-based mem-
ory systems. In a true-cell a leaking capacitor will induce a
‘1’→‘0’ error, while in anti-cells, such an error flows from
‘0’→‘1’. We harness this asymmetric error behavior to enable
the interesting and elegant property in data objects called
monotonicity, which restricts the direction of errors in the
object by placing them in one type of cells only. Our ap-
proach uses small modifications to the OS memory allocator
to leverage the monotonicity property to mitigate RowHam-
mer attacks as well as other classes of memory attacks.
Of the many ways in which RowHammer achieves un-

scrupulous system effects, privilege escalation attacks are

https://doi.org/10.1145/3297858.3304039
https://doi.org/10.1145/3297858.3304039

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Wu, et al.

the most detrimental to system security and the most chal-
lenging to mitigate. For these reasons we focus our work
on mitigating RowHammer privilege escalation attacks. We
discuss additional ways to apply the monotonicity property
to solve security problems in Section 8.

RowHammer privilege escalation attacks focus on corrupt-
ing page-table entries (PTEs) which provide critical protec-
tion mechanisms in virtual memory systems. In these attacks,
a malicious user-mode process1 induces bit-flips in its own
PTEs through the RowHammer effect. These bit-flips, when
occurring in the right locations of a PTE, allow the malicious
process to gain write access to its own page tables. Once
this step is successful, an attacker can build a custom page
table hierarchy to access all physical memory locations and
obtain escalated privileges (e.g., root access) [13, 37, 38]. Our
approach leverages the monotonicity property to provide a
practical and low cost countermeasure to these PTE-based
privilege escalation attacks.
Our technique is called Cell-Type-Aware (CTA) memory

allocation (or CTA for short). The essence of our technique
is to allow pointers in page tables to achieve the monotonic-
ity property by placing page tables in true-cells above a
“low water mark” only, using minor modifications made to
the OS memory allocator. CTA successfully defends against
PTE-based privilege escalation attacks by destroying a core
property of these attacks we call PTE self-reference defined as
a PTE pointing to another PTE of the same process. We prove
in Section 5 that, based on RowHammer-induced bit-flip er-
ror statistics measured using large scale DRAM experiments
[19, 37], with our CTA technique only one out of 2.04 × 105
systems is vulnerable to these attacks, and the expected at-
tack time on the vulnerable system is 231 days.

To evaluate our approach on working systems, we imple-
ment CTA memory allocation together with the “low water
mark” approach using only 18 lines of code in the Ubuntu
Linux kernel on two actual system prototypes – an Intel
i7-6700 quad-core system with 8GB physical memory and
an Intel Xeon Silver 4110 32-core system with 128GB physi-
cal memory. Our results show that there is no performance
impact for all workloads used in our experiments.

Our CTA approach integrates knowledge of DRAM hard-
ware/computer architecturewith knowledge about operating
systems to defend against RowHammer attacks withminimal
cost. The main contributions of our work are:

• We identify the important asymmetry of errors in dif-
ferent DRAM cell types and its powerful use to safe-
guard system security.

• We establish the CTA memory allocation approach to
leverage such asymmetry and impose monotonicity
in any data object in the presence of charge-leaking-
induced (e.g., RowHammer-induced) DRAM errors.

1in this paper, we use the terms malicious process and attacker
interchangeably.

Figure. 1. DRAM Bank Organization.

• We present a countermeasure to RowHammer PTE-
based privilege escalation attacks based on CTA mem-
ory allocation, and provide mathematical proofs that
our technique renders these attacks impractical.

• We implement CTA for page tables in Linux and show
that there is no system-level performance impact.

Our paper is organized as follows. In Section 2, we intro-
duce background and related work. In Section 3, we describe
our threat model and assumptions. In Section 4, we present
our CTA memory allocation idea, and evaluate its security
property in Section 5. Section 6 provides implementation
details and the evaluation of our technique in actual Linux
system prototypes. We further discuss our technique and its
broader applicability in Section 7 and Section 8, respectively.
We conclude in Section 9.

2 Background and Related Work
In this section, we first provide an overview of the DRAM ar-
chitecture, true-cells/anti-cells, and the RowHammer effect,
topics that are critical for the understanding of our work.
Next, we discuss related work on existing RowHammer at-
tacks and countermeasures.

2.1 DRAM Background
ADRAMmodule is structured in a hierarchical manner. Each
DRAM module is physically composed of one or two DRAM
ranks, and each rank contains a number of chips. Logically,
a DRAM module consists of multiple banks (and each bank
physically spans multiple chips). A DRAM bank is the ba-
sic level of abstraction, which logically consists of a two-
dimensional array of cells and a row buffer (Figure 1). The
row buffer consists of sense amplifiers and connects to DRAM
input/output interfaces. To perform read/write operations,
an entire row must first be placed in the row buffer by acti-
vating its wordline using the data’s row address. Reads and
writes are performed on the specific chunk of data (selected
by the data’s column address) in the row buffer.

Protecting Page Tables from RowHammer Attacks using True-Cells. ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Each memory cell includes a capacitor and an access tran-
sistor that connects the associated capacitor to a bitline [22].
A capacitor is electrically charged or discharged to store a
data bit in a memory cell. The charge in DRAM cell capaci-
tors leaks over time and causes loss of data. Retention time is
the length of time that a DRAM cell can keep data before data
loss occurs, usually in the order of milliseconds to seconds
[18]. However, because it is necessary to store data for longer
periods of time in memory, the charge of each DRAM cell
must be refreshed to maintain data integrity [2]. According
to JEDEC specifications, a refresh operation generally takes
place every 64ms. If retention time is less than the refresh
interval, an error may occur in the corresponding memory
cell.
To minimize the manufacturing cost of DRAM modules,

many modern designs have each sense amplifier shared be-
tween two bitlines [21] (Figure 2). Since memory cells on
the complementary bitline can be accessed by driving the
complementary voltage on the corresponding bitline, they
have an inverted relationship between the voltage and logic
values. This design results in two types of memory cells in
modern DRAM chips [18]:

1. True-cells: These are memory cells that store a logic
value of ‘1’ as the charged state and ‘0’ as the dis-
charged state. Charge leaking from true-cells should
induce only ‘1’→‘0’ errors.

2. Anti-cells: These are memory cells that store a logic
value of 0 as the charged state and 1 as the discharged
state. Only ‘0’→‘1’ errors can occur in these cells due
to charge leaking.

To make the design structure uniform and regular, each
DRAM row typically consists of the same type of memory
cells [19].

2.2 System-Level Methods to Identify True-Cell and
Anti-Cell Regions in DRAM

System-level methods have been used to identify true-cell
and anti-cell regions [19]. It is reported that true-cell rows
and anti-cell rows are interleaved every N physical DRAM
rows regularly withN = 512 being a common number [19]. It
is also reported that in certain DRAM modules, the true-cell
to anti-cell ratio can be very large (e.g., 1000:1) [19].

The DRAM cell type can be determined at the system level
bywriting a logical value ‘1’ to eachmemory cell with DRAM
refresh disabled, and then reading out the value after a period
of time that is set to be longer than the retention time of
most cells. At this point, the charge stored in the capacitors
would have leaked. Since true-cells use the charged state to
represent ‘1’, and anti-cells use the charged state to represent
‘0’, a memory cell is identified to be a true-cell if the value of
the read is ‘0’, and an anti-cell if the value of the read is ‘1’.

(a) Activated True-cell (b) Activated Anti-cell

Figure. 2. True-cells and Anti-cells in DRAMModules.

Table 1. Existing RowHammer Attacks.

Techniques Victim Data Attacks Platform
[32] PTEs Privilege Escalation x86
[32] Opcodes Sandbox Escapes x86
[10] PTEs Privilege Escalation x86
[38] PTEs Privilege Escalation VM
[13] PTEs Privilege Escalation x86

[31] RSA Keys Compromised
Authentication VM

[37] PTEs Privilege Escalation ARM

[12] Opcodes Denial-of-Service and
Privilege Escalation x86

[5] RSA Keys Fault Analysis x86
[17] Intel SGX Denial-of-Service x86

2.3 The RowHammer Effect
The RowHammer effect is a hardware reliability issue in
modern DRAM systems that allows an attacker to induce
physical disturbance errors (i.e., bit-flips) without needing to
access the target memory location. This is accomplished by
repetitively reading from the same physical memory address
to cause the corresponding row (called the aggressor row) to
be “open” (connecting the bitlines from the row to the sense
amplifiers) and “closed” (disconnecting the bitlines from the
row to the sense amplifiers). In order to activate a DRAM
row, the row’s wordline voltage must be raised. This causes
voltage fluctuations in the wordline of the aggressor row and
generates disturbances on adjacent rows (i.e., victim rows).
These disturbances accelerate charge leaking in the victim
rows to cause errors [19]. An example of an aggressor row
and its victim rows is shown in Figure 1.

The RowHammer effect exists in different DRAM models
from various vendors and is expected to be more prominent
in the future as technology advancements allow DRAMs to
reach very high densities. A large-scale empirical study [19]
reports that the RowHammer effect is observed in more than
85% of the analyzed DRAM modules. Another study shows
that the RowHammer effect can occur on server systems
with ECC memory modules [1].

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Wu, et al.

Figure. 3. An Example of RowHammer PTE-based Privilege
Escalation Attacks [32].

2.4 RowHammer Exploitation
The RowHammer effect has been successfully exploited in
various attacks. Table 1 provides a summary of existing
RowHammer attacks. Of these existing attacks, RowHammer-
induced PTE-based privilege escalation attacks [32] are the
most prominent and practical, and at the same time difficult
to mitigate.
In our review of existing PTE-based privilege escalation

attacks, we find that in all cases attackers induce bit-flips
in last-level PTEs with the intention of making victim PTEs
erroneously point to other PTEs of the same process, thereby
gaining illegal access to page tables that should be accessible
by the kernel only, which is equivalent to gaining permis-
sions to the entire physical memory 2.

Figure 3 shows one example of PTE-based privilege esca-
lation attacks based on the algorithm presented in Google’s
ProjectZero [32]. In this example, a malicious process maps
a file with read-write permission to physical memory, and
creates many virtual mappings to the file to spray the phys-
ical memory with many page tables. Since there is a high
probability that bit-flips induced by RowHammer can cor-
rupt one of the PTEs so that it points to another PTE owned
by the same process, the attacker obtains read-write permis-
sions to page tables and eventually to the entire memory
space. The attacker therefore obtains root access through the
attack. This attack is one example of probabilistic RowHam-
mer attacks. Other probabilistic RowHammer attacks include
[12, 13, 32, 38].

[37] presents a way to perform deterministic RowHammer
attacks. Using a technique called “memory templating”, the

2Intermediate levels of page tables are not exploitable because the pages
they point to are all accessible by the kernel only even when the pointers
are corrupted (see discussions in Section 7).

attacker figures out which bits can be flipped by RowHam-
mer of all memory locations he can access. The attacker
then forces a victim page table to land in a specific memory
region the attacker chooses. This memory location can be
manipulated based on the attacker’s acknowledge of the OS
memory allocation algorithm which is accessible for many
open-sourced OSs. The attacker chooses memory regions
such that specific bit-flips in the victim page table allow the
attacker to gain access to one of the PTEs he owns. Another
example of a deterministic RowHammer attack is shown in
[10] and the high-level idea is similar.

2.5 RowHammer Countermeasures
The most straight-forward solution to minimize RowHam-
mer effects is to deploy system software updates to increase
the DRAM refresh rate so that accelerated charge leaking is
less likely to cause bit-flips. However, this approach intro-
duces undesirable power consumption, and there is no guar-
antee that it is sufficient to eliminate all RowHammer effects
even in high refresh rates [19]. Another hardware-based so-
lution is for the memory controller to refresh adjacent rows
with some probability whenever it closes a row [19]. This
technique requires modifications to memory controllers or
even DRAM chips, and cannot be applied to legacy systems.

Another approach, ANVIL, utilizes hardware performance
counters to detect suspicious RowHammer-like activities
based on heuristics [3]. ANVIL works only on systems where
CPU performance counters are available. It also introduces
performance overhead from tracking events performed by
the performance counters. As it is heuristics-based, it also
suffers from false positives.

Recently, another software-based countermeasure against
RowHammer attacks called CATT was proposed [9]. CATT
designs a sophisticated memory allocator to isolate the mem-
ory of the kernel and user space. The goal is to prevent kernel
memory from being placed physically adjacent to user mem-
ory, and as a result, it is not possible for an attacker to exploit
RowHammer to corrupt kernel memory. However, there are
two problems in the CATT design. First, CATT does not
consider physical row re-mapping which is commonly used
by DRAM manufacturers to replace a faulty row to improve
yield rate. This row re-mapping breaks the kernel-user iso-
lation provided by CATT. Second, an attack can leverage
double-owned memory pages that are shared between the
kernel and user processes, such as video buffers, to allocate
memory in the kernel domain, which allows a malicious
user process to perform RowHammer PTE-based privilege
escalation attacks [10, 12].
A recent RowHammer countermeasure called ZebRam

[20] aims to mitigate all RowHammer attacks, but it is com-
plex and imposes high overhead to the system. Moreover,
similar to CATT, ZebRAM does not consider DRAM row re-
mapping. Physical row re-mapping will break the protection
provided by ZebRAM.

Protecting Page Tables from RowHammer Attacks using True-Cells. ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

3 Threat Model and Assumptions
Our threat model for RowHammer PTE-based privilege es-
calation attacks is aligned with other RowHammer attack
studies in the literature [10, 12, 13, 31, 32, 37, 38]. Our as-
sumptions are:

• The kernel is secure.
• The systems have no dedicated hardware to defend
against RowHammer effects, and the DRAM chips in
the systems are vulnerable to RowHammer effects,
reflecting the observation that a wide variety of DRAM
modules are generally vulnerable [28].

• Large true-cell regions (e.g., each consists of 512DRAM
rows) are identified and known at the system level.
This can be achieved as discussed in Section 2.2.

• An attacker has low (user-mode) privilege with limited
access permissions to the system and wants to perform
a privilege escalation attack to acquire escalated privi-
leges through the RowHammer attack.

4 Cell-Type-Aware Memory Allocation
We identify that the necessary condition for all PTE-based
privilege escalation attacks is a special property we call PTE
self-reference [10, 13, 32, 37, 38], where the “physical page
frame” field of a victim PTE can be corrupted to reference
page table pages, or PTPs (i.e., a physical page that contain
PTEs). Because page tables map virtual addresses to physical
memory pages, obtaining read-write permission to a PTE
is equivalent to obtaining read-write access to all physical
memory pages. Once the attacker corrupts a victim PTE in
this way, the attacker gains the highest privilege (root) access
in the attacked system.

Our goal is to defend against RowHammer PTE-based priv-
ilege escalation attacks by destroying the PTE self-reference
property. Our technique is called Cell-Type-Aware (CTA)
memory allocation. CTA extends the generic memory man-
agement system in an OS with minimal design complexity
and is unique in that it introduces no system-level overhead,
requires no hardware modifications, and is completely trans-
parent to applications.

Overview. Our CTA memory allocation technique destroys
the PTE self-reference property by imposing two key system
invariances. These two invariances make it impossible for
the PTE self-reference property to be true as shown in the
proof of the No Self-Reference Theorem below. These two
system invariances are:

1. All page tables are allocated above a low water mark
in the physical address space3, and all regular data
objects must be allocated below the low water mark.

3Actually, we only require all page tables to be allocated in specific physical
address space where a fixed set of address bits are all ‘1’s. Without loss of
generality, we use the low water mark in this paper for a clear illustration.

2. The PTE pointer (i.e., the physical page frame number)
is monotonic, meaning that the pointer only decreases
in value even in the presence of RowHammer-induced
bit-flips utilizing large memory blocks that contain
only DRAM true-cells.

Theorem (No Self-Reference Theorem). Given that page
tables are stored above a low water mark P, containing point-
ers to pages all below P, and that all pointers in page table
entries are stored in true-cells, then no pointer p can point
back to any page table entry e after a RowHammer attack.

Proof. ∀p ∈ page table, where p are the pointers to the mem-
ory addresses of allocated pages, p < P.

∀e , where e are memory addresses of entries in the page
table, e > P.
Let γ (p) be the value of pointer p after a RowHammer

bit-flip.
For p stored in true-cells, ‘0’ bits in p cannot change to ‘1’

bits.
Therefore, γ (p) ≤ p
Since ∀p < P, then ∀γ (p) < P
Since ∀e > P, then ∀γ (p) < ∀e
Therefore, no γ (p) can point to any page table entry e . □

The LowWaterMark for Page Tables. Figure 4 illustrates
the effects of the low water mark defined in the physical
memory address space, ensuring two properties:
Property (1): The only pages that are allowed to be allo-

cated above the low water mark are pages that contain page
tables. No user-level process can directly access the mem-
ory region above the low water mark, therefore preventing
deterministic RowHammer attacks that rely on memory tem-
plating, such as Drammer [37].

Property (2): All page table pages must be allocated above
the low water mark. Since the low water mark restricts the
physical address space where a page table can reside, an im-
mediate consequence is that there is a much smaller chance
that a RowHammer attack will succeed. In this scenario, it is
less likely for an attacker to find a PTE to physical address
mapping such that specific bits in the PTE will be flipped in
the exact manner intended by the attacker.
Although CTA memory allocation requires a low water

mark, just defining a low water mark is not sufficient, be-
cause a PTE can still achieve the self-reference property (see
Figure 4. In Section 5 we discuss the high probability of such
cases).

With the lowwater mark constraint, one way to guarantee
that the self-reference property cannot be achieved is to
make sure that for every page table access the “physical
frame number” field always points to regions below the low
water mark. This straightforward check involves hardware
changes in systems that use hardware memory management
units to perform page table walk (e.g., all x86 systems), which

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Wu, et al.

(a) PTEs with the Low Water Mark

(b) PTEs without the Low Water Mark

Figure. 4. Illustration on the Effects of the LowWater Mark.

is highly undesirable because they cannot be deployed in
legacy systems where only software changes are possible.
Another approach is to perform target DRAM refresh to

refresh the physical regions above the low water mark more
frequently, thus reducing the occurrence of RowHammer-
induced bit-flips in this region. But this approach also in-
volves hardware and circuit-level changes.

Our novel CTA solution constructs monotonic pointers
in the regions above the low water mark using true-cells in
DRAM only, which does not require any hardware changes.

ConstructingMonotonic Pointers inTrue-cell Regions.
We construct a monotonic pointer by placing it in DRAM
true-cells4. Large blocks of true-cell regions above the low
water mark can be determined in each DRAMmodule by run-
ning a one-time-only system-level DRAM test as discussed
in Section 2.2.
Consider the same RowHammer attack scenario in two

systems: (1) PTEs with monotonic pointers (Figure 5a), and
(2) PTEs without monotonic pointers (Figure 5b). In Fig-
ure 5a, the bit-flip errors in the true-cell row are ‘1’→‘0’,
and hence the corrupted PTE always points to the physical
address which is less than the original correct physical ad-
dress. For example, if the PTE originally references a data
object at physical address 0x01100000, the corrupted PTE
(due to RowHammer-induced charge leaking) can point only
to 0x00100000, 0x01000000, or 0x00000000, because the PTE
is mapped to true-cells. On the other hand, Figure 5b shows
that a victim PTE may point to any physical addresses and
thus compromise system security.

4In true-cells, while most errors are ‘1’→‘0’ bit-flips, there is a very small
probability that an error can go the other way due to circuit effects such
as voltage coupling [19]. We will show in Section 5 that this probability is
small enough so that it has no practical impact on the effectiveness of our
CTA memory allocation technique.

(a) PTEs with Monotonic Pointers

(b) PTEs without Monotonic Pointers

Figure. 5. Illustrations onVictimPTEs under a RowHammer
Attack. (a) Victim PTEs with monotonic pointers only point to
the addresses lower than the physical address of the target data
object, and there is no security concern. (b) Victim PTEs without
monotonic pointers may point to any physical pages in the system,
compromising system security.

5 Security Evaluation
To test the effectiveness of our CTA mechanism, we per-
formed RowHammer attacks using RowHAmmer, the double-
sided RowHammering tool developed byGoogle’s ProjectZero
[32], in our design. RowHAmmer is one of the best probabilis-
tic RowHammer attack tools that exist. However, because
it cannot induce errors in the region above the low water
mark (which is not accessible by user-level processes), PTEs
cannot be corrupted and the attack will always fail. Also,
deterministic RowHammer attacks such as Drammer [37]
will not work with our technique either because the attacker
does not have access to the region above the low water mark
to perform memory templating.

We present a new probabilistic RowHammer attack algo-
rithm (Algorithm 1) that is tailored to attack a system using
our CTAmechanism. ZONE_PTP in this algorithm is defined
as the memory region above the low water mark.

for each physical page in the system below the low water
mark do

Fill ZONE_PTP with PTEs that point to the same
physical page; (1)

for each row r in ZONE_PTP do
Perform RowHammer on r ; (2)
Check all PTEs in r’s victim rows to see if PTE
self-reference is achieved; (3)

end
end

Algorithm 1: A RowHammer Attack Algorithm to a Sys-
tem Equipped with CTA memory allocation.

Protecting Page Tables from RowHammer Attacks using True-Cells. ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Step (1) may be achieved by first mapping a file into mem-
ory (e.g., using mmap()), and then creating many references
to the same file so many different virtual addresses will point
to the physical address of the same file, similar to [32]. Here
we assume that the attacker is able to map the file to a differ-
ent physical page each time (e.g., perhaps using tricks that
take advantage of specific properties in the memory buddy
allocator), so that the attacker can brute-force through all
physical memory addresses. Step (2) can be done by repeat-
edly accessing virtual memory address va, where va’s physi-
cal address translation is provided in one of the PTEs in r,
and flushing the TLB frequently [37]. Step (3) can be accom-
plished by reading the contents of all the virtual addresses
whose corresponding PTEs are brought into ZONE_PTP, and
then guessing if the data content follows a pattern that is
similar to a PTE, as suggested by [32].

In this algorithm, the reason the attacker must brute-force
through all physical page addresses below the low water
mark is because, the attacker, as a user-level process, does
not have access to the exact physical address a virtual ad-
dress is mapped to (a well-accepted condition in existing
RowHammer attacks [10, 12, 13, 31, 32, 37, 38]). If the at-
tacker were able to figure out the physical address that a
virtual address is mapped to, he could try all combinations of
PTP indicator values, where PTP indicator is defined as the
specific bits in the physical address that must be all ‘1’s in
order for that address to lie in ZONE_PTP. It is not possible
in real-system settings, however, for an attacker to discern
the mapping of a virtual address to a physical address, so
instead the attacker must use brute-force.
We next derive the probability that an attack based on

Algorithm 1will be successful.We also derive expected attack
time to demonstrate that such an attack is impractical.

For an attack to be successful, all bits in the PTP indicator
must be ‘1’s for at least one physical PTE entry in ZONE_PTP
(i.e., satisfying the self-reference property) as a result of
the RowHammer attack. We refer to these PTE locations as
exploitable PTE locations. Let n be the number of bits in PTP
indicator, Pf be the probability that a bit is vulnerable to
RowHammer effects, P0→1 and P1→0 be the probability of a
‘flippable’ bit flipping from ‘0’→‘1’ and ‘1’→‘0’, respectively,
in true-cells. Then the probability that a PTE location is
exploitable is:

Pexploitable =
n∑
i=1

(
n

i

)
(Pf P0→1)

i (1 − Pf P1→0)
n−i

The term (1 − Pf P1→0)
n−i in the formula above accounts

for the cases where the bits are already ‘1’s prior to the
attack and must not be flipped to ‘0’, otherwise the hamming
distance between the physical address in a victim PTE and
the attacker’s desired value (all ‘1’s in the PTP indicator) may
increase. Also, this formula implicitly assumes that a bit-flip

in parts of a PTE that do not belong to the PTP indicator
field do not have any effect on the probability.
In the ideal case, P0→1 = 0 and P1→0 = 1 in true cells.

Therefore, Pexploitable = 0. However, empirical studies found
that P0→1 = 0.2% and P1→0 = 99.8% due to other complex
circuit-level effects (e.g., voltage coupling) [19]. Moreover, Pf
is also experimentally observed to be around 10−4 in a wide
variety of DRAM modules [19, 37]. Using these values, for a
system with 8GB physical memory and 32MB ZONE_PTP (a
configuration used in our implementation and shown to be
sufficient in Section 6.3), n is 8, so Pexploitable = 1.6 × 10−6,
and the total number of PTEs in ZONE_PTP is 32MB/8Bytes
= 4,194,304. The expected value of exploitable PTE locations
is therefore 6.7.

It is possible to enhance our defense by manually restrict-
ing the number of 0’s in the PTP indicator, which decreases
Pexploitable exponentially. Consider the case where physical
memory addresses with less than two 0’s in the PTP indicator
((

8
1)
28 = 3.12% of the total 8GB physical memory) are allocated

only for trusted processes and the kernel only, i.e., there are
at least two 0’s in the PTP indicator in the attacker’s process.
In this case, an exploitable PTE location requires at least two
‘0’ → ‘1’ flips in the PTP indicator. The expected value of
exploitable PTEs is 4.69× 10−6 in systems with 8GB physical
memory and 32MB ZONE_PTP, meaning that an attacker
can expect to attack successfully in one out of 2.04 × 105
systems. The expected number of exploitable PTE locations
for different cases are shown in Table 2.
Now we assess expected attack time for an attack based

on Algorithm 1 assuming that exploitable PTE locations
are randomly distributed. Using our implementation on an
actual i7-6700 quad-core system at 3.4 GHz with 8GB DDR3
physical memory and running Linux, we observe that Step
(1) takes approximately 184ms excluding the time to establish
the desirable virtual to physical mapping. Step (2) takes at
least 64ms, which is the DRAM refresh interval [19]. Step (3)
uses memcmp() and takes approximately 600ns for each PTE
in our implementation (which is similar to existing work
[37]).
Using a typical memory row size of 128KB [37], each

DRAM row contains 16,384 PTEs, and the 32MB ZONE_PTP
contains 256 rows. There are 221−8, 192 physical pages in an
8GB system. In the case where there is no restriction on the
number of ‘0’s in the PTP indicator, the average attack time is
worst −case attack time / (⌈expected number o f PTEs⌉+1)
= (221 − 8, 192) × (184ms + 256(64ms + 16, 384× 600ns))/8 =
57.6 days. In the case where we make sure that there at at
least two 0’s in an attacker’s PTP indicator, given that the
attacker is successful (in one out of 2.04×105 systems), the av-
erage attack time isworst −case attack time/2 = 230.7 days,
assuming that there is exactly one exploitable PTE location
in the system. The expected attack time for different cases
are also summarized in Table 2. Compared to 20 seconds, the

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Wu, et al.

Table 2. Expected Number of Exploitable PTEs and Expected Attack Time. (Pf = 10−4, P0→1 = 0.2%)

Physical Memory No Restriction in PTP Indicator Restrict ≥ Two ‘0’s in PTP Indicator
32MB PTP 64MB PTP 32MB PTP 64MB PTP

8GB # of Exploitable PTEs 6.7 11.73 4.69 × 10−6 7.04 × 10−6
Attack Time (Days) 57.6 70.3 230.7 457.3

16GB # of Exploitable PTEs 7.54 13.41 6.03 × 10−6 9.38 × 10−6
Attack Time (Days) 102.7 122.4 462.3 918.3

32GB # of Exploitable PTEs 8.32 15.08 7.54 × 10−6 1.20 × 10−5
Attack Time (Days) 185.1 216.5 925.5 1840.3

Table 3. Expected Number of Exploitable PTEs and Expected Attack Time. (Pf = 5 × 10−4, P0→1 = 0.5%)

Physical Memory No Restriction in PTP Indicator Restrict ≥ Two ‘0’s in PTP Indicator
32MB PTP 64MB PTP 32MB PTP 64MB PTP

8GB # of Exploitable PTEs 83.59 146.36 7.3 × 10−4 1.09 × 10−3
Attack Time (Days) 5.42 6.18 230.7 457.3

16GB # of Exploitable PTEs 93.99 167.18 9.40 × 10−4 1.46 × 10−3
Attack Time (Days) 9.73 10.86 462.3 918.3

32GB # of Exploitable PTEs 104.38 187.99 1.17 × 10−3 1.88 × 10−3
Attack Time (Days) 17.46 19.47 925.5 1840.3

fastest RowHammer attack time reported in the literature
[37], our CTA techniques slows down the attack time by six
orders of magnitude for successful attacks, rendering such
attacks impractical.

Note that, without our CTA approach, it is possible for the
32MB ZONE_PTP to consist of anti-cells only. In this case,
the expected number of exploitable PTE locations is 3354.7,
which translates to an expected attack time of 3.2 hours. This
result demonstrates the ineffectiveness of a low water mark
approach alone, as well as the importance of CTA.
Since Pf and P0→1 are important parameters in this anal-

ysis, we consider an extremely pessimistic case where Pf
is increased by 5× and P0→1 in true-cells is increased from
0.2% to 0.5% (more than doubled) to account for possible fu-
ture DRAM technology scaling effects. We report in Table 3
the expected number of exploitable PTE locations as well
as expected attack time. For the “no restriction” case, the
attack time is much reduced to 5.43 days. However, this is
still 2.3 × 104x longer than the fastest RowHammer attack
time of 20 seconds. In this case, it is possible to further couple
our technique with an anomaly detection techniques such as
ANVIL [3], which detects RowHammer-like activities using
hardware performance counters, as well as other zero-day
malware detection techniques [6, 11, 35], which now may be
performed infrequently to significantly reduce their system-
level overheads and/or enhanced with more sophisticated
algorithms to improve their effectiveness, because we are
able to dramatically slow down the attack time.
In the case where we ensure that there are at least two

‘0’s in the PTP indicator, the expected attack time is still
230.7 days which still makes the attack impractical. The
expected attack time did not change because in both Tables

2 and 3, with the number of expected PTE locations being
significantly less than 1, it is not likely that there are more
than 1 exploitable PTE locations in the systems where the
attack is successful. Thus we assume exactly 1 exploitable
PTE location which yields the exact attack time in both cases.

6 CTA Memory Allocation
Implementation and Evaluation

We demonstrate our CTA memory allocation for page tables
above a low water mark in a system prototype by modifying
a Linux kernel for the x86-64 architecture to provide a proof-
of-concept countermeasure to the RowHammer PTE-based
privilege escalation attacks. We implement our approach
on two different systems, (1) Ubuntu 14.04.5 (Linux kernel
4.4.0-124-generic) with Intel i7-6700 quad-core CPU at 3.4
GHz and 8GB physical memory, and (2) Ubuntu 16.04 (Linux
kernel 4.4-0-141-generic) with Intel Xeon Silver 4110 32-core
CPU at 2.1 GHz and 128GB physical memory.

6.1 Implementation Details
Enforcing a Low Water Mark for Page Tables. To allo-
cate all page tables above a low water mark in physical mem-
ory, we make small modifications to the Linux zoned buddy
allocator that manages physical memory pages [4, 8, 23, 24,
37]. The zone buddy allocator divides physical address space
into a number of distinct, non-overlapping zones.
For example, in the 32-bit x86 architecture (Figure 6a),

there are three zones:
• ZONE_DMA. The first 16MB of the physical memory.
• ZONE_NORMAL. The memory region from 16MB to
896MB.

Protecting Page Tables from RowHammer Attacks using True-Cells. ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

(a) 32-bit Memory Zones (b) 64-bit Memory Zones

Figure. 6. Physical Memory Zones.

• ZONE_HIGHMEM. Thememory region from 896MB
to the end of the memory space.

In the x86-64 architecture (Figure 6b) there are also three
zones:

• ZONE_DMA. The first 16MB of the physical memory.
• ZONE_DMA32. The memory region from 16MB to
4GB.

• ZONE_NORMAL. The memory region from 4GB to
the end of the memory space.

When an application (user process) or privilege software
requests a new memory page, a GFP (Get Free Pages) flag is
passed to the allocator to issue the request, which, among
other information, includes a zone flag to indicate that the
allocator must first try to allocate from the particular zone
specified in the flag. The buddy allocator then searches for
free pages in that zone. If the zone is full or its free pages are
not large enough to fulfill the request, the buddy allocator
searches in the next zone in an order specified in zonelist. In
the x86-64 architecture, for example, the zonelist specifies
ZONE_NORMAL, ZONE_DMA32, and ZONE_DMA, in that
order. If the allocator cannot find free pages in all zones
to fulfill the request, the kernel swap daemon (kswapd) is
awakened to swap in free pages for each zone.

In our CTA memory allocation implementation, we define
a new zone, ZONE_PTP, at the end of the physical mem-
ory space (i.e., memory locations with the highest physical
addresses). The OS is also modified to guarantee two rules,
corresponding to Property (1) and Property (2) in the low
water mark discussion in Section 4:

Rule (1): All page table page allocation requests are served
from ZONE_PTP only, and they are not allowed to fall back
to lower order memory zones.

Rule (2): Only page table pages can reside in ZONE_PTP.
Following these rules, the specific modifications we made

in a x86-64 system involve:
(1) Adding the new ZONE_PTP definition to the buddy

allocator, including their size and address range. This zone

Figure. 7. New Linux Buddy Allocator with CTA.

Figure. 8. New Memory Zone Map with CTA.

buddy allocator will manage free physical pages in this zone
separately from other zones. We also modify the upper limit
of the memory zone that resides in the highest physical
addresses in the original system (e.g., ZONE_NORMAL in
x86-64 and ZONE_HIGHMEM in x86) so that it does not over-
lap with the new zone. The new buddy allocator is illustrated
in Figure 7.

(2) Extending the GFP flag with a new option, __GFP_PTP
to specify that the request must be fulfilled by allocating free
memory in ZONE_PTP only.

(3) Changing the the kernel function pte_alloc_one, which
is responsible for sending page table page allocation requests
to the buddy allocator whenever a new page for page tables
is needed, to send such requests with __GFP_PTP instead
of trying to obtain free pages from other zones. Since all
page table page requests are initiated in the pte_alloc_one
function, rule (2) is satisfied.

(4) Augmenting the memory allocation procedure to han-
dle memory requests in ZONE_PTP only (and preventing
the search of free pages in any other memory zones) when
it receives a request with __GFP_PTP is received. Note that
there is no change to requests that specify the original zones
in the GFP flag. The algorithm thus satisfies rule (1).

Memory Allocation with True-Cells in ZONE_PTP. As
discussed in Section 2.2, DRAM cell types typically alternate
every N physical DRAM rows with N = 512 being the most
commonly reported number [19]. Under this model and with

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Wu, et al.

DRAM row size of 128KB [37], the size of a consecutive true-
cell/anti-cell region is 512 × 128K = 64MB, meaning that
true-cell and anti-cell regions alternate every 64MB.

For PTEs to achieve the monotonicity property, only true-
cells should be used in ZONE_PTP, and we must marked
any anti-cells as invalid. This is achieved by decomposing
ZONE_PTP into multiple sub-zones specified in a data struc-
ture called zonelist, where each sub-zone contains a con-
secutive true-cell or anti-cell region. The page table page
allocation algorithm in ZONE_PTP proceeds by searching
each true-cell sub-zones (ZONE_TCs in Figure 8) sequen-
tially, and skipping all anti-cell sub-zones. Note that this
implementation works for any value of N .

6.2 Effective Memory Capacity
In our current implementation, the anti-cell sub-zones in
ZONE_PTP are left unused so it can be considered as a cost
due to memory capacity loss. Consider a system where the
size of ZONE_PTP (which counts only the true-cell regions)
is less than or equal to 64MB. In the worst case, an anti-cell
region of 64MB sits at the highest physical address is marked
as invalid, which results in 0.78% DRAM capacity reduction
for an 8GB memory system. Using the same argument, for
every 64MB increment of of ZONE_PTP, we need to add
another 0.78% capacity loss.

It is possible to salvage the anti-cell regions by allocating
them for the kernel or for trusted applications. However, this
makes the implementation more involved and complex. For-
tunately, we find that a 32MB ZONE_PTP is sufficient in com-
mon cases (see Section 6.3). So we do not consider the more
complex allocation algorithm for anti-cells in ZONE_PTP
because the worst-case 0.78% DRAM capacity reduction is
very minimal (in the best case, a true-cell region occupies
the highest address and there is no memory capacity loss).
In the less common case where a DRAM module mostly

consists of true-cells (e.g., true-cell to anti-cell ratio of 1000s:1
as discussed in Section 2.2), our technique works the same
way but imposes much smaller memory capacity loss. We
are not aware of DRAM modules that consist mostly of anti-
cells; in this case, however, the high-level idea and results of
CTA, pointer monotonicicy, and memory zoning still applies:
we just need to use segregated PTP zones whose physical
addresses contain all ‘0’s in a set of PTP indicator bits.

6.3 Performance Evaluation
A limitation of the low water mark approach is that all page
table entries may not fit above the low water mark for ap-
plications that require many entries. As a result, swapping
back and forth between memory and external storage may
occur and potentially impact application performance. This
impact is not typical since programs are fundamentally de-
signed to avoid TLB thrashing to achieve high performance.
In this section, we show in our real-system evaluation that
performance impact is mostly negligible.

Table 4. Benchmark Performance Impact with CTA.

SPEC2006 8GB System 128GB System
perlbench -0.40% 0.66%
bzip2 0.34% 0.00%
gcc -0.24% 0.00%
mcf 0.65% 1.22%
gobmk -1.30% 0.60%
hmmer 0.57% 0.09%
sjeng 0.00% 0.20%
libquantum 0.00% 0.60%
h264ref 0.52% 0.29%
omnetpp 0.00% 0.19%
astar 0.44% -0.18%
xalancbmk -1.40% -0.49%
Mean -0.07% 0.04%

Phoronix 8GB System 128GB System
unpack-linux -1.15% 0.35%
postmark 0.58% 0.00%
ramspeed:INT -0.42% -0.63%
ramspeed:FP -0.31% -0.36%
stream:Copy -0.32% 0.08%
stream:Scale -0.42% 0.31%
stream:Triad -0.16% 0.51%
stream:Add -0.53% 0.54%
cachebench:Read 0.12% 0.34%
cachebench:Write 0.31% 0.84%
cachebench:Modify 0.25% 0.00%
compress-7zip 0.73% 1.34%
openssl -0.03% -0.75%
pybench -0.41% 0.10%
phpbench 0.62% 1.08%
Mean -0.08% 0.25%

We configure a 32MB ZONE_PTP in our evaluation (larger
ZONE_PTPs are expected to have smaller performance im-
pacts). The workloads used in our evaluation include the
SPEC CPU2006 benchmark suite [16] with CPU-intensive
and memory-intensive workloads, and the Phoronix bench-
mark suite [29] which covers more general characteristics of
typical applications.We run each SPEC program 10 times and
each Phoronix program 100 times, and report the average.
Table 4 summarizes the results of our performance eval-

uation (8GB System and 128GB System refer to the system
with 8GB and 128GB physical memory, respectively). In gen-
eral, CTA memory allocation does not introduce measurable
performance overhead in the system. In fact, we observe a
slight performance improvement of 0.07% in SPEC CUP2006
and 0.08% in Phoronix benchmarks in the 8GB System. Im-
provement observed in system performance may be due to
random fluctuations in real-system settings or imprecise ex-
ecution scores measurement. The key point that our results
demonstrate is that our technique does not introduce any

Protecting Page Tables from RowHammer Attacks using True-Cells. ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

performance overhead in a wide range of typical applica-
tions. These results can be explained by obtaining the total
memory space occupied by page tables, which is 26MB in
the x86-64 Linux system. We also perform the same analysis
for a 32-bit ARM architecture with Android Marshmallow. In
a typical mobile use scenario with moderate loads, the space
taken up by page tables is only 8MB. A 32MB ZONE_PTP is
therefore sufficient in these cases.

6.4 Summary
Our complete CTA memory allocation with a PTP low wa-
ter mark involves 18 lines of new or modified code in the
kernel and are completely transparent to applications. Such
minor modifications only affect page table allocation, while
all other memory requests and the general memory man-
agement procedures work the same way as the design in
the original Linux kernel. Thus, our technique introduces
minimal system performance impact, which is confirmed by
our performance evaluation. Although we show the imple-
mentation in Linux, memory zones are generally supported
in modern operating systems (windows, android), and our
implementation may be easily adapted for various systems.

7 Discussions
Multi-Level Page Tables and Multiple Page Sizes.With
multi-level PTs, if a single page size is used, our CTA tech-
nique that places only the first-level PTs in a true-cell-based
PTP zone is sufficient. Higher-level PTs are not exploitable
in the threat model we considered because all pages pointed
to by these PTs are accessible by the kernel only even if
the pointers are corrupted [25]. Of course, a bit-flip in the
user/supervisor permission (such that a supervisor privilege
is downgraded to user) may result in security vulnerabilities.
However, this is a completely different threat model and is
considered extremely difficult (there is no illustration on
attacks that successfully exploit such vulnerabilities so far).
If multiple page sizes are used, high-level PTEs can also

point to user data. For example, in x86 with PAE paging
or 4-level paging enabled, a ‘0’ in bit 7 (the page size bit)
of a high-level PTE indicates that the PTE is pointing to
a lower-level PT, and a ‘1’ means that it is pointing to a
2MB or 1GB data page [14]. If high-level PTEs are pointing
to user data, RowHammer PTE-based privilege escalation
attacks can be performed in these levels by creating the self-
reference property the same way as done on the first-level
PTEs. Our solution is to use multiple levels of true-cell-based
PTP zones. Each PTP zone is dedicated to a different level
of PTs, and higher-level PTP zones are physically placed
in higher physical memory addresses than the lower-level
ones (the support for multiple-level PTP zones can be easily
extended on top of our CTA implementation discussed in
Section 6). Following the same argument as the proof in

Section 5, we can prove that the self-reference property is
destroyed in all levels of PTEs.
An additional consideration in the multi-level PTP zone

solution is that, a ‘1’→‘0’ flip in the page size bit (which is
valid in true-cells) will create malicious PTEs that allow an
attacker to gain illegal access to the entire physical memory
(since these PTEs are originally user data that can be freely
manipulated by the attacker prior to the bit-flip). However,
just like it is difficult to flip a specific permission bit, it is
difficult to flip the page size bit. To completely eliminate
this attack scenario, we can perform system-level tests to
screen out any “exploitable” physical addresses and prevent
the system from using them to map high-level PTs. This is
possible because, for each PTP zone, we know the exact bit
locations that will correspond to the page size bit in all PTEs.
Virtual Machine Support. Our CTA technique can be ex-
tended in virtual machine environments with appropriate
hypervisor support. To ensure that ZONE_PTP in a guest
OS is mapped to true-cell regions in high physical memory
addresses only, small modifications to the hypervisor are
required: the hypervisor would manage the highest physical
true-cell addresses in a special zone, ZONE_HYPERVISOR,
and assign a section of ZONE_HYPERVISOR to a guest OS
for it to use as ZONE_PTP. All regular data allocation will
be served by physical memory addresses that are below
ZONE_HYPERVISOR. This way, we ensure that PTE self-
reference cannot be achieved between different VMs and
within a VM.
DRAM Row Re-mapping. In the case of row re-mapping
(i.e., a faulty row is mapped to a spare which is commonly
applied by DRAM manufacturers to improve manufacturing
yield [36]), it is necessary to use a spare row with the same
cell type as the original to keep the sense amplifiers working
correctly. Therefore DRAM row re-mapping has no impact
on our CTA memory allocation technique and evaluation.

8 Broader Applicability
Except for RowHammer PTE-based privilege escalation at-
tacks, a number of security and reliability protections can be
achieved with the general monotonicity property and CTA.
We discuss some examples of these case in this section.
Permission Vector Protection. Monotonicity and CTA
memory allocation provides a reliable mechanism to protect
permission vectors. Many security-critical data structures
use bit vectors to represent permission attributes. For exam-
ple, Linux uses a permission field consisting of 3 permission
bits to represent the read, write, and execution permissions
of a file, where ‘1’ in the permission bit means the user is
allowed to do the operation, and ‘0’ means the user is de-
nied from executing the operation. Consider a fault attack
that aims to induce bit-flips in the permission bits used for
authentication purposes (e.g., using RowHammer attacks)
to obtain confidential information. If a bit-flip causes the

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Wu, et al.

corresponding permission bit to change from “denied" to “al-
lowed", confidential information may be disclosed, violating
the confidentiality security property. On the other hand, if
the permission bit is changed from “allowed" to “denied", it
means that a legitimate user is no longer granted access to
the corresponding information, but the confidentiality prop-
erty is not violated. Since most true-cells have ‘1’→‘0’ bit-flip
errors, we can expect with high probability that permission
bits will not flip from “denied” to “allowed” if we allocate
permission vectors on true-cells only. In other words, with
CTA, we are able to predict the error consequences to the
system, and limit the effects of bit-flip errors.

The same protection mechanism applies to other permis-
sion vectors, such as the physical page access permissions
specified in lower bits of a PTE, and access vectors in SELinux
(Security-Enhanced Linux [34]), which achieves mandatory
access control using these vectors for both data objects and
system operations to determine if a subject has the correct
permission to perform a particular operation to an object.
Countermeasures to Coldboot Attacks.Data contents in
DRAM do not disappear immediately after the computer sys-
tem is power-off, and will be kept on DRAM cells as long as
the capacitor is not fully discharged. This process is called
DRAM remanence. If DRAM chips are placed in an environ-
ment with very low temperatures, DRAM remanence can
be observed for up to a few minutes. Coldboot attacks take
advantage of this property to retrieve encryption keys from
a running operating system [15, 27, 33]. Here the assumption
is that the attacker has obtained physical access to a system
with encrypted data. The attacker shuts down the system
while an encryption process is being executed, which means
that encryption keys are placed in DRAM. The attacker than
reboots the system in a very low-temperature environment
(Coldboot) to retrieve the all DRAM contents, including the
encryption key, during boot time.
We can take advantage of the monotonicity property in

true-cells and anti-cells to defend against Coldboot attacks.
We reserve a set of true-cells and anti-cells with long reten-
tion time values for detection purposes (retention time of
each memory cell can be profiled using system-level meth-
ods as well, just like identification of true- and anti-cells).
Every time a system reboots, we mandate a new initial step
in the system for it to read the values of this reserved set of
cells. The bootloader then proceeds with the boot process if
all reserved true-cells are ‘1’ and all reserved anti-cells are ‘0’.
At this point, almost all cells would have lost their capacity
charge from the last power-on session, so it is extremely
unlikely that an attacker can obtain any useful information.
Otherwise, it automatically shuts the system off to prevent
information leakage.
Efficient Error Detection. Error detection and correction
codes are a well-known mechanism to detect and correct
errors in memories. These coding scheme incorporate a num-
ber of redundant bits added to data bits as parity bits.

Since ‘1’→‘0’ bit-flip errors are predominant in true-cells,
the hamming weight of data in true-cells is likely to decrease
monotonically when bit-flip errors occur, where the ham-
ming weight is simply the number of 1’s in the data. By
the same argument, hamming weight of data in anti-cells
is likely to increase monotonically in case of bit-flip errors.
Consider a software coding scheme where we store the data
in true-cells and the hamming weight of the data on anti-
cells. Whenever the data is read from memory, this coding
scheme detects errors accurately with high probability by
simply counting the hamming weight in the data and com-
paring it to the hamming weight value stored previously on
anti-cells. This scheme is quite efficient. Only one instruc-
tion is required (POPCNT in x86, or VCNT in ARM) to count
the hamming weight of the data, and only log(n) additional
bits are required to store the hamming weight of an n-bit
data. This coding scheme may suffer from a small number
of false positives as well as false negatives due to the small
probability that errors can from ‘0’→‘1’ in true-cells and
‘1’→‘0’ in anti-cells, but it offers an interesting design point
for applications that can tolerate small imperfections in data
(e.g., approximate applications) running in environments
with unreliable memories, or for systems with more relaxed
reliability requirements.

9 Conclusion
RowHammer attacks are a serious threat to all modernDRAM-
based memory systems. In the context of DRAM systems,
we identify an interesting asymmetry due to the presences
of true-cells and anti-cells, which imposes monotonicity in
data objects as charge in capacitors leaks. Based on this ob-
servation, we present an elegantly simple, yet extremely
effective countermeasure to RowHammer PTE-based privi-
lege escalation attacks called CTA memory allocation. This
defense mechanism allocates page table pages in true-cells
above a low water mark only to achieve monotonicity in PTE
pointers under a RowHammer attack, which breaks the PTE
self-reference property. Our proofs show that CTA memory
allocation renders PTE-based privilege escalation attacks
impractical, and our implementation of CTA memory alloca-
tion in the Linux operating system further demonstrates the
practicality of our approach.

While we focus here on RowHammer PTE-based privilege
escalation attacks, we also discuss other scenarios in which
the monotonicity property can defend against other memory
attacks. In future work, we plan to investigate the effective-
ness of the monotonicity property and formalize their roles
in defending other attacks. A new insight we have gained
through the development of this work is that asymmetry
or monotonicity can be potentially applied to other secu-
rity problems broadly, and we also plan to extend this work
beyond memory attacks.

Protecting Page Tables from RowHammer Attacks using True-Cells. ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

References
[1] Barbara Aichinger. 2015. DDR memory errors caused by Row Hammer.

In HPEC. IEEE, 1–5.
[2] JEDEC Solid State Technology Association. 2012. DDR3SDRAM Spec-

ification.
[3] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-

parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL:
Software-Based Protection Against Next-Generation Rowhammer At-
tacks. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’16). ACM, New York, NY, USA, 743–755.

[4] Raghu Bharadwaj. 2017. Mastering Linux Kernel Development. Birm-
ingham : Packt Publishing.

[5] Sarani Bhattacharya and Debdeep Mukhopadhyay. 2016. Curious Case
of Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In CHES (Lecture Notes in Computer Science), Vol. 9813. Springer, 602–
624.

[6] Leyla Bilge and Tudor Dumitras. 2012. Before we knew it: an empirical
study of zero-day attacks in the real world. In Proceedings of the 2012
ACM conference on Computer and communications security. ACM, 833–
844.

[7] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2016. Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, 987–1004.

[8] Daniel Bovet and Marco Cesati. 2005. Understanding The Linux Kernel.
Oreilly & Associates Inc.

[9] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. 2017. CanâĂŹt touch this: Software-only
mitigation against rowhammer attacks targeting kernel memory. In
Proceedings of the 26th USENIX Security Symposium (Security). Vancou-
ver, BC, Canada.

[10] Yueqiang Cheng, Zhi Zhang, and Surya Nepal. 2018. Still Hammerable
and Exploitable: on the Effectiveness of Software-only Physical Kernel
Isolation. CoRR abs/1802.07060 (2018).

[11] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. 2012. Riskranker: scalable and accurate zero-day android mal-
ware detection. In Proceedings of the 10th international conference on
Mobile systems, applications, and services. ACM, 281–294.

[12] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
2017. Another Flip in the Wall of Rowhammer Defenses. CoRR
abs/1710.00551 (2017).

[13] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016.
Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript.
In DIMVA (LNCS), Vol. 9721. Springer, 300–321.

[14] Part Guide. 2011. Intel® 64 and IA-32 Architectures Software De-
veloperâĂŹs Manual. Volume 3B: System programming Guide, Part 2
(2011).

[15] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, JosephA. Calandrino, Ariel J. Feldman, JacobAppelbaum,
and Edward W. Felten. 2009. Lest we remember: cold-boot attacks on
encryption keys. Commun. ACM 52, 5 (2009), 91–98.

[16] John L. Henning. 2007. SPEC CPU2006 Memory Footprint. SIGARCH
Comput. Archit. News 35, 1 (March 2007), 84–89.

[17] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In Pro-
ceedings of the 2nd Workshop on System Software for Trusted Execution.
ACM, 5.

[18] Brent Keeth, R. Jacob Baker, Brian Johnson, and Feng Lin. 2007. DRAM
Circuit Design: Fundamental and High-Speed Topics (2nd ed.). Wiley-
IEEE Press.

[19] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.

Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In ISCA. IEEE Computer Society,
361–372.

[20] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis An-
driesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. 2018. Ze-
bRAM: Comprehensive and Compatible Software Protection Against
Rowhammer Attacks. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad,
CA, 697–710.

[21] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu.
2013. An experimental study of data retention behavior in modern
DRAM devices: implications for retention time profiling mechanisms.
In ISCA. ACM, 60–71.

[22] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. 2012. RAIDR:
Retention-aware intelligent DRAM refresh. In ISCA. IEEE Computer
Society, 1–12.

[23] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and
Chengyong Wu. 2012. A software memory partition approach for
eliminating bank-level interference in multicore systems. In PACT.
ACM, 367–376.

[24] Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley
Professional.

[25] David Mosberger and Stephane Eranian. 2001. IA-64 Linux Kernel:
Design and Implementation. Prentice Hall PTR, Upper Saddle River, NJ,
USA.

[26] Onur Mutlu. 2017. The RowHammer problem and other issues we
may face as memory becomes denser. In DATE. IEEE, 1116–1121.

[27] Moni Naor and Gil Segev. 2009. Public-key cryptosystems resilient
to key leakage. In Advances in Cryptology-CRYPTO 2009. Springer,
18–35.

[28] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. 2016. DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks. In USENIX Security Symposium. USENIX Associa-
tion, 565–581.

[29] Phoronix. 2016. https://www.phoronix-test-suite.com/. Phoronix test
suite.

[30] Rui Qiao and Mark Seaborn. 2016. A new approach for rowhammer
attacks. In HOST. IEEE Computer Society, 161–166.

[31] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida,
and Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the
Software Stack. In USENIX Security Symposium. USENIX Association,
1–18.

[32] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM
rowhammer bug to gain kernel privileges. Black Hat (2015), 7–9.

[33] Patrick Simmons. 2011. Security through amnesia: a software-based
solution to the cold boot attack on disk encryption. In ACSAC. ACM,
73–82.

[34] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implement-
ing SELinux as a Linux security module. NAI Labs Report 1, 43 (2001),
139.

[35] Jason Syversen. 2008. Method and apparatus for defending against
zero-day worm-based attacks. US Patent App. 11/632,669.

[36] A. J. van de Goor and Ivo Schanstra. 2002. Address and Data Scram-
bling: Causes and Impact on Memory Tests. In DELTA. IEEE Computer
Society, 128–136.

[37] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In ACM Conference on
Computer and Communications Security. ACM, 1675–1689.

[38] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
2016. One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In USENIX Security Symposium. USENIX
Association, 19–35.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DRAM Background
	2.2 System-Level Methods to Identify True-Cell and Anti-Cell Regions in DRAM
	2.3 The RowHammer Effect
	2.4 RowHammer Exploitation
	2.5 RowHammer Countermeasures

	3 Threat Model and Assumptions
	4 Cell-Type-Aware Memory Allocation
	5 Security Evaluation
	6 CTA Memory Allocation Implementation and Evaluation
	6.1 Implementation Details
	6.2 Effective Memory Capacity
	6.3 Performance Evaluation
	6.4 Summary

	7 Discussions
	8 Broader Applicability
	9 Conclusion
	References

