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Abstract
When extremely low-energy processing is required, the choice
of data representation makes a tremendous difference. Each
representation (e.g. frequency domain, residue coded, log-
scale) comes with a unique set of trade-offs — some ope-
rations are easier in that domain while others are harder.
We demonstrate that race logic, in which temporally coded
signals are getting processed in a dataflow fashion, provides
interesting new capabilities for in-sensor processing appli-
cations. Specifically, with an extended set of race logic ope-
rations, we show that tree-based classifiers can be naturally
encoded, and that common classification tasks can be im-
plemented efficiently as a programmable accelerator in this
class of logic. To verify this hypothesis, we design several
race logic implementations of ensemble learners, compare
them against state-of-the-art classifiers, and conduct an ar-
chitectural design space exploration. Our proof-of-concept
architecture, consisting of 1,000 reconfigurable Race Trees
of depth 6, will process 15.2M frames/s, dissipating 613mW
in 14nm CMOS.

CCS Concepts • Computer systems organization →
Architectures; • Computing methodologies→Machine
learning; • Hardware→ Hardware accelerators.

Keywords in-sensor processing, classification, decision trees,
race logic.
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1 Introduction
There is little need to provide motivation for hardware sup-
port for machine learning today. In recent years, we have
seen an explosion of activity in everything, from vision and
speech processing to control and medical diagnostics. All of
this is driven, in part, by an excitement that machine learning
has the potential to unlock new insights in applications from
the largest data center to the smallest embedded system. If
machine learning is the engine, then raw data is the fuel,
and most approaches consume a great deal of it. However,
in embedded applications, where the learning and sensing
are close in both time and space, the exact type of data to be
consumed is something that needs to be considered carefully.
Typically, a sensor gathers analog information from the

physical world and then converts it into a conventional digi-
tal signal. For example, a camera captures incident photons
and, through the photoelectric effect, uses their energy to
guide the charging of a cell. The voltage on the cell is read
out to an Analog-to-Digital Converter that converts the mea-
sured voltage into a stream of zeros and ones, which is then
stored into a memory. While this binary-represented integer
is perfectly efficient for storage as bits in a memory and for
typical general purpose computing operations, it is unclear
that this is the most efficient solution. We posit that there
are other encodings that, while still capturing the relative
values of the data to be encoded, are more efficient for our
target application.

One such possible representation is pure analog signalling.
There is a long history of machine-learning-like computing
with analog devices. While pure analog design is always an
option, there are at least two important reasons to consider
alternatives. First, well-understood analog design rules al-
ways lag far behind digital rules in technology node. High
density, high performance, low energy CMOS parts can be
hard to achieve because of this gap. Second, while analog
design in these aggressive technology nodes is certainly pos-
sible, noise concerns often drive analog designs to use larger
gates than their digital counterparts. If we can get the analog-
like efficient behavior, where the computation matches the
capabilities of the underlying devices, while keeping the
noise tolerance and layout simplicity of digital designs, we
would be well-served.
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One class of logic that attempts to fit this space in a more
domain specific role is race logic [22, 24]. The key idea be-
hind race logic is to encode values as a delay from some
reference. All signals, unlike pure analog approaches, are
supposed to be 0 or 1 at all times. However, the time at which
0 → 1 transition happens encodes the value. Computations
can then be based on the observation of the relative propa-
gation times of signals injected into a configurable circuit.
In prior work, it was shown that these techniques could ef-
ficiently solve a class of dynamic programming algorithms,
and both synchronous and asynchronous versions have been
evaluated [23, 24]. However, many open questions remain
including both the limits of its computational abilities and
the scope of its utility.

In this paper, we explore the intersection of the three para-
graphs above: race logic as a sensor-friendly yet machine-
learning-ready encoding. We argue that race logic fits nicely
with temporally-coded sensing systems, such as 3D depth
perception systems and dynamic vision sensors, where the
time that a signal gets “excited” to a logic-level “1” depends
on the magnitude of the sensor reading. Furthermore, we
demonstrate that the structure of race logic makes it a natural
encoding for decision tree-based approaches, and show how
a programmable accelerator can support this family of ma-
chine learning methods seamlessly from a popular software
framework down to synthesizable implementation.
To experimentally validate this hypothesis, we complete

an end-to-end evaluation that includes energy, throughput,
and area utilization estimates for an ASIC design, a fully
functional RTL implementation working in both simulation
and on FPGA (Zedboard Zynq-7000 development board),
SPICE models of the underlying primitives on which our
system is built, a fully automated toolchain linking scikit-
learn software structures down to device configurations, and
error versus energy analysis across a set of decision tree
ensembles and design parameters. Even without accounting
for the extra energy savings of using an encoding more
natural to the sensor, the presented system dramatically
reduces the total energy usage required for classification
with very low latency.

Overall, the main contributions of this paper are:
• an optimized implementation of the recently intro-
duced INHIBIT operator for race logic and a demon-
stration of its utility to classification problems,

• two different classes of architecture that leverage the
properties of race logic temporal, yet still digital, na-
ture to achieve low-energy classification with tree-
based ensemble learners,

• a fully automated toolchain, linked to the open-source
scikit-learn framework, for (a) the configuration of our
programmable accelerator, or (b) the generation of a
custom RTL-level design and (c) its functional veri-
fication through cross-checking against scikit-learn’s
inference functions,

• detailed sub-component power and area models for
architectural design space exploration and trade-off
analysis.

We start, in the next section, with a discussion of an ex-
tended set of race logic core functions useful for more general
construction. The background required to better understand
tree-based ensemble methods such as Random Forests, Ad-
aBoost, and Gradient Tree Boosting is provided in Section 3.
Section 4 introduces our algorithm-architecture co-design
approach and a custom-optimized implementation of a de-
cision tree in race logic, while Section 5 describes the end-
to-end system, dubbed “Race Trees”, in detail. The toolchain
responsible for optimizing, implementing, and configuring
our architecture directly from a high-level machine learning
framework is presented in Section 6. To evaluate perfor-
mance and analyze the various design trade-offs, Section 7
provides a comparison with state-of-the-art classifiers and an
architectural design space exploration. Finally, concluding
remarks are given in Section 8.

2 Generalized Race Logic
The core idea behind race logic is to do computation through
the purposeful manipulation of signal delays (either syn-
chronously or asynchronously) rather than final logic lev-
els. The total time that a signal takes to propagate through
the system encodes the “value” of that signal. While tradi-
tional and well-understood CMOS logic can be used to build
such systems, the encoding is extremely important to the
efficiency of the system. As with any information represen-
tation change, some operations become easier to perform,
while others become more difficult. Race logic’s temporal
coding base operations consists of four primary functions:
MAX, MIN, ADD-CONSTANT, and INHIBIT.
While all four operations could be implemented using a

traditional multi-bit binary encoding, an alternate and more
efficient encoding is to use the time of rise for an edge 1 [22].
A value of “2” is represented in this encoding as a signal
that is low until time 2, and then high from then on. Under
this representation, a range of magnitudes can be encoded
on a single wire with a single edge. Smaller delays in rise
time encode smaller magnitudes, while larger magnitudes
are encoded as longer delays.

In this logic, a MAX function should “go high” only when
all of the inputs to the system have arrived (i.e. gone “high”).
Therefore, a single AND gate between two wires is the only
thing needed to implement MAX in the race domain. Figure 1
displays the symmetric nature of this function. The input
that arrives first has to wait for the second one to arrive

1Race logic values are still “binary” in the sense that any given signals will
only ever be “high” or “low”, it is just that the transition time between the
two is what encodes the value, so “high” no longer means “1” but instead
means “the value has already arrived”



before the output responds. In the case of MIN, a first arrival
selection operation, a single OR gate is all that is needed.2
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Figure 1. Panels (a) and (b) show the implementation of
MAX and MIN functions in race logic. Panel (c) represents
an example waveform for x = 2 and y = 4.

Furthermore, since the arrival time of the rising edge is
what encodes information, delaying the 0 → 1 transition
by a fixed amount of time is equivalent to constant addition
(ADD-CONSTANT). Delaying a race logic-encoded input
can be performed in multiple ways depending upon the im-
plementation. In conventional synchronous digital logic, a
sequence of flip-flops can be used, as shown in Figure 2.
Asynchronous delay elements constructed out of current
starved inverters have also been demonstrated to provide
an alternative, more energy efficient method for performing
the desired delay operation [24].
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x δ(x,k)
…

k

clk

Figure 2. In race logic, adding a constant valuek to a variable
x is equivalent to delaying the rising edge of x by k clock
cycles. Panel (a) shows how this delay can be achieved in
conventional synchronous digital logic with the use of a shift
register. Panel (b) shows an example waveform for x = 2
and k = 3.

In addition to the originalMIN,MAX, andADD-CONSTANT
functions above, it was recently proposed that this set could
be meaningfully extended with the addition of an INHIBIT
function [37, 38]. This additional functionality is inspired by
the behaviour of inhibitory post-synaptic potentials, as seen
in the neurons of the neo-cortex. The inhibition of signals
is particularly useful in the context of decision trees and
requires some explanation.

The INHIBIT function has two inputs: an inhibiting signal
and a data signal (that gets inhibited). If the inhibiting signal
arrives first, the output is prevented from ever going high,
which corresponds to∞ in the race logic world. On the other
2The presented approach also enables the reverse encoding, where shorter
delays represent largermagnitudes, due to the duality of race logic operators;
in that case, first arrival will stand for MAX whereas last arrival will denote
MIN.
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Figure 3. Panel (a) introduces the symbol that from now
onwardswewill use to represent the INHIBIT operator. Panel
(b) presents the state diagram of the corresponding Mealy
machine. Each transition edge is labeled with the value of
inputs i and j, and the value of the output. The machine
starts in state s0, which denotes that input j has not been
inhibited by i , while state s1 indicates the opposite; j has been
inhibited. Panels (c) and (d) show the implementation of the
operator in a purely digital context. Finally, the waveform
in Panel (e) depicts INHIBIT’s functionality through two
examples: (1) i = 3 and j = 2, and (2) i ′ = 2 and j ′ = 4.

hand, if the data signal arrives before or at the same time as
the inhibiting signal, the former is allowed to pass through
unchanged. In other words, the inhibiting input acts as a gate
that only allows an earlier arriving or coincident data signal
to pass. Figure 3 shows (a) the symbol used for i inhibiting j ,
(b) the function’s state diagram as a Mealy machine, (c) and
(d) possible fully digital-logic compatible implementations,
and finally (e) a waveform depicting INHIBIT’s functionality
through two examples.
While the implementations above can be fully realized

with existing design tools as standard RTL, even more effi-
cient implementations of the INHIBIT operator are possible
with a little customization. Figure 4 (a) shows an INHIBIT
built with four transistors. In this implementation, a pass
gate, controlled by an inhibiting input i through the inverter,
is used in the data signal path. If i arrives before j, the pass
gate turns off, blocking the flow of j. Otherwise, j can pass
through without getting masked.

A more compact version of the INHIBIT gate can also be
designed. In that case, we leverage the one sided nature of
race logic to reduce the transistor count further. Since we
care only about rising edges, the only important signal to
pass through is the logic 1. This allows us to use a single
PMOS pass gate as an inhibit cell, as shown in Figure 4 (b).
Since both our inputs i and j are using the rising edge,

two possible orderings of arrival exist. We verify the func-
tional correctness for both of these orderings in the Cadence
Analog Design Environment with a SPICE model using the
180nm process standard cell library. In Figure 4 (c), input j
arrives before the controlling input i , and hence it passes



through without being blocked. The late arrival of the in-
hibit signal couples some charge into the output capacitance,
which is visible as a small spike. The charge does not leak
from the output capacitor after the inhibit input arrives
though. Hence, the circuit’s functionality is not affected.
The case where i arrives before j is shown in Figure 4 (d).
Here, the output does not change after input j arrives, as
the controlling input i turns off the pass gates that “controls”
the signal transmission. Similar to the previous case, a small
amount of charge is injected into the output when the late
signal arrives, which can be seen as a small negative voltage,
but this is well within the noise margin and does not cause
any misoperation.
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Figure 4. Panel (a) shows a 4 transistors INHIBIT opera-
tor implemented with a pass gate and an inverter. An even
more compact design using only a single PMOS pass gate
is presented in Panel (b). Panels (c) and (d) provide simula-
tion results for the corresponding SPICE model in a 180nm
process. More specifically, Panel (c) covers the case where j
arrives before i , whereas Panel (d) shows how the controlling
input i blocks j, when the former arrives first.

The fact that such asynchronous implementations of the
inhibit gate do not need a clock brings area and energy gains,
but can also lead to glitches when not used carefully. Ac-
cording to the shown SPICE simulations, there seems to be
no problem when data and inhibiting signals are spaced by
at least one clock cycle. But what happens when they both
arrive at the same time? To ensure that the system does not
glitch in such a case and the gate’s functionality is preserved,
the inhibiting input must be delayed by enough time so the
data signal can pass clearly. This delay can be implemented
with a chain of inverters present inside each INHIBIT cell.
This method, though functionally correct, makes each cell
larger. To avoid this overhead, a solution tailored to our
RaceTrees architecture is presented in Section 4. To demon-
strate the feasibility of such a compact INHIBIT cell, SPICE
simulation results for a simple RaceTree are also provided.
Together this set of four operations allow us to deliber-

ately engineer “race conditions” in a circuit to perform useful
computation at low energy. The resulting systems use only

one wire per operand (leading to both smaller area and ca-
pacitance) and at most one bit-flip per wire to perform the
desired operation (resulting in less switching activity and
dynamic power). While not all computations are amenable
to such an encoding, those that are have the potential to op-
erate with very little energy. An open question answered in
this work is if such logic is amenable to any general learning
or classification tasks.

3 Decision Trees & Ensemble Methods
While monolithic neural networks receive the lion’s share of
machine learning attention from the architecture community,
decision trees have proven to be incredibly useful in many
contexts and a promising solution towards explainable, high-
performing AI systems [16, 17].
A decision tree, as its name denotes, creates a hierarchy

of decisions, which consists of a set of “leaves” (that corre-
spond to target class labels) and a set of decisions to be made
(i.e. “branches”) that lead one to those labels. Each branch
splits the data according to some attribute being above or
below a specified level. Thus, when making a decision tree
we must take into consideration which feature we select
as an attribute for each node and what is the threshold for
classifying each “question” into a yes or no answer.
While decision trees can in theory chain together huge

numbers of decisions to provide an accurate classification,
in reality this is often limited by an important trade-off be-
tween misclassifying outliers and overfitting. This trade-off
is particularly challenging when dealing with complex clas-
sification tasks where the best label is a function of many
dimensions. This is where ensemble methods come in handy.

Ensemble methods are a class of learning algorithms that
construct a number of base learners and integrate them in
some way to obtain a prediction about a new set of data
points. Although the performance of each individual learner
may be weak, ensemble methods increase accuracy, and de-
crease variance and bias through classifiers grouping or
chaining. A visualization of this concept can be found in
Figure 5.

Prediction

Classifier 1

Classifier 2

Classifier 3

Training
data

New
data

Combined 
Classifiers

Figure 5. Ensemble methods combine multiple weak learn-
ers to obtain a better predictive performance.

Random forest is one of the most popular ensemble learn-
ingmethods. Rather than growing a single tree, the algorithm



creates an ensemble of tree predictors, each looking at a ran-
dom subset of features [5]. To classify a new object, the input
vector has to walk through each of the trees in the forest.
The decisions of all these learners are then combined and
the forest chooses the classification having the most “votes”.
An early example of this approach is bagging (bootstrap ag-
gregating). As stated by L. Breiman, “bagging predictors is a
method for generating multiple versions of a predictor and
using these to get an aggregated predictor” [4]. This method
can be improved even further with boosting. Boosting clas-
sifiers are built one-by-one and try to reduce the remaining
bias of the combined estimator. In other words, boosting
strives to improve the ensemble by focusing new learners
on those areas where the system performs worst. One of the
most well-known examples of this technique is AdaBoost;
short for “Adaptive Boosting”.
The AdaBoost algorithm, introduced in 1995 by Freund

and Schapire [14], solved many of the practical difficulties
earlier boosting algorithms faced. The algorithm begins by
fitting a classifier on the original dataset and then fits addi-
tional copies of the classifier on the same dataset but where
the weights of incorrectly classified instances are adjusted
such that subsequent classifiers focus more on difficult cases.

Another popular algorithm, following the same fundamen-
tal boosting idea, is Gradient Boosting [15]. Unlike AdaBoost,
where “shortcomings” are identified by high-weight data
points, in Gradient Boosting the system’s existing inefficien-
cies are identified by gradients. Gradient Boosting builds an
additive model in a forward stage-wise fashion, minimizing
complicated loss functions through gradient descent. One of
the most successful derivatives of this method is XGBoost
(extreme Gradient Boosting) [8], an optimized implemen-
tation of gradient boosted decision trees, that has recently
been dominating applied machine learning and Kaggle com-
petitions for structured or tabular data.

4 Rethinking Decision Trees
Besides the differences in the construction/training phase
of the described ensemble learners, the inference process
is similar for all these approaches. Interestingly, as we will
see, this model of decisions fits nicely with the race logic
encoding and the set of supported operations. To maximize
efficiency, we proceed with an algorithm-architecture co-
design methodology.

Normally, decision trees are thought of in a top down fash-
ion – one starts at the root and branches down the tree to
find the relevant answer. Each node implements a discrimi-
nant function for classification and each leaf is associated to
a given class; therefore, classifying an input pattern reduces
to a sequence of decisions.
In race logic, time is used as a computational resource.

Existing race logic implementations, such as the DNA global
sequence alignment engine [22], perform computation by
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Figure 6. Panel (a) presents a decision tree that from now
onward will be used as an example case. Panel (b) shows its
“reverse” equivalent as well as the “flow” of the four tempo-
rally encoded labels for x = 2 and y = 3. Panel (c) displays
the corresponding waveform for the given example. Panel(d)
depicts the race logic implementation of this “reverse tree”.
The leaf label associated with the False branch of a node
plays the role of j in the INHIBIT operator, whereas the
record’s attribute a serves as the inhibiting input i . In re-
spect of the node’s threshold t and race logic limitations (e.g.
we cannot subtract or add variable numbers), the attribute a
routed to an INHIBIT’s controlling input has to be adjusted
accordingly; e.g. y < 2 has to be rewritten as y + 1 < 3.

observing the relative propagation times of signals injected
into the circuit. Following this example of computation, one
approach to implement decision trees is by virtually turning
them upside down, i.e. they can be thought of as trees that
route possible answers from the leaves to the root. Initially,
a unique delay-encoded label is assigned to each leaf. These
labels then race against one another, and where two of them
“meet” only one is allowed to propagate further. In the end,
only the label associated with the “correct” leaf survives 3.
A decision tree that from now onward will be used as

an example case is presented in Figure 6 (a). Figure 6 (b)
shows the “flow” of the four temporally encoded labels in the
“reverse” tree for x = 2 and y = 3, and Figure 6 (c) displays
the corresponding waveform. Its race logic implementation
is depicted in Figure 6 (d). The upper two blocks, colored in
red and blue, correspond to the tree’s internal nodes (x ≤ 1
andy ≤ 1) and are implemented with the use of one INHIBIT
and one MIN operators, while the bottom one, colored in

3Leaf labels can be thought of as packets that are routed through a “reverse
tree” network. Some packets are discarded along the way, but the packet at
the output has been routed unchanged. Externally, the packets are assigned
values that are purely symbolic and contain no useful numerical content –
in much the same way that numbers in sudoku are used symbolically, but
not numerically. However, internal to the network, as part of the routing
architecture, the packet values do take part in numerical operations.



yellow, is slightly more complicated as the label coming from
its False path can take more than one values; either one of
Labels C and D in the given example.

As already discussed, when off-the-shelf digital circuits are
used, shift-registers play the role of delay elements (ADD-
CONSTANT). Therefore, a 2D “matrix”, where each row
(their number is equal to the number of input-features) cor-
responds to a shift register whose length depends on the
trees’ depth and features’ resolution, would be required to
delay input features by an appropriate number of clock cy-
cles in a way that they will serve as the controlling inputs to
the INHIBIT operators; e.g. to implement y + 1 < 3, feature
y must be delayed by 1 clock cycle. However, these clocked
components are relatively “costly”, and ideally their usage
should be constrained.
An alternative way to look at decision trees is as a set

of independent and parallel rather than sequential decision
rules that lead to a final prediction when combined accord-
ingly. Each leaf now can be represented as a logical function
of the binary decisions encountered at the nodes on its path
to the root. In other words, each path from the tree root
to a leaf corresponds to a unique conjunction of attribute
tests. The big idea behind the parallel execution of all these
independent if clauses is shown in Figure 7 (a). For example,
the leftmost leaf is reached only when both n0 and n1 return
True , while the output of n2 is indifferent. The order that
the outcomes of these conditions reveal does not affect the
final decision.
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Figure 7. A decision tree can be viewed as a set of indepen-
dent decision rules that lead to one and only one leaf when
combined accordingly. Hence, these functions can be exe-
cuted in parallel, as shown in Panel (a). Panel (b) depicts the
race logic implementation of this “flattened” decision tree
with the use of INHIBITs, where thresholds play the role
of the gates’ controlling inputs. Panel (c) presents the truth
table that defines decoder’s functionality, which associates
the nodes’ outcomes with one of the leaf labels. Panel (d)
displays the resulting waveform for x = 2 and y = 3.

In a decision tree, each node has a fixed threshold value t ,
assigned to it from the training phase, which is then getting
compared to an attribute a of the provided input record as we
conduct inference. Its function can be expressed as follows:

node(a, t) =

{
True Branch, if a ≤ t

False Branch, otherwise

Considering that the outcome of each node is a binary
decision, decision trees can be considered as networks of
threshold functions [2]. The implementation of these func-
tions in conventional digital logic would be trivial. However,
their size and performance are directly related to the reso-
lution of the associated attribute and threshold values. This
is not the case for a race logic implementation though as a
range of magnitudes can be encoded on a single wire with
a single edge. To better understand how such a threshold
function can be implemented in race logic the definition of
INHIBIT, where i is the controlling input over j, should be
revisited:

i ⊣ j =

{
j, if j ≤ i

∞, otherwise

Interestingly, the two above definitions have significant
similarities, especially when considering that ∞ denotes no
0 → 1 transition, and that the maximum threshold value
across all tree nodes is known at design time. Figure 7 (b)
depicts the race logic implementation of the flat decision
tree found in Figure 7 (a). The decoder that associates nodes’
decisions with one of the leaf labels implements the truth
table presented in Figure 7 (c). Figure 7 (d) shows the resulting
waveform for x = 2 and and y = 3. In that case, x is going to
pass throughn0, but both x andy will be masked inn1 andn2.
Moreover, the maximum threshold value is statically known,
equal to 2. Hence, we can read the outcome of n0, n1, and n2
conditions at any time after that. In that way, the transition
from the temporal to the binary domain happens seamlessly
and without the need of any additional hardware resources.
To recap, this approach requires only one INHIBIT gate per
tree node, the number of the potentially power-hungry shift-
registers is minimized, and no additional logic is required
for the transition from the temporal to the binary domain.
Figure 8 provides SPICE simulation results for the same

example tree implemented with single transistor INHIBITs.
To avoid glitches, a chain of four inverters is used per thresh-
old, when operating at 1GHz, to cause the required delay.
The way Race Trees are designed allows us one more opti-
mization. We observe that in our case only thresholds are
serving as inhibiting signals. Therefore, the inverters that
are typically “inside” the INHIBIT cell can be “pulled out”
and placed at the signal path between the delay-encoded
thresholds and INHIBITs. This change enables the sharing
of the chains of inverters between various INHIBIT cells,
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Figure 8. SPICE simulation results, using a 180nm CMOS
library, for a RaceTree implemented with single transistor
INHIBITs. To reduce the overhead of the chains of inverters,
required for the delay of inhibiting inputs (to avoid glitches in
case both i and j arrive at the cycle), rather than embedding
them in each INHIBIT we place them at the threshold lines
and share them between various cells.

which results in both a glitch free operation of the system
and a more compact design.

5 System Architecture
In this section, we present our end-to-end architecture shown
in Figure 9. Initially, we provide our view on our system’s
integration with sensors that encode data in the time do-
main, and then describe in detail the architectural decisions
necessary for the development of a programmable race logic
accelerator targeting tree-based learners. Besides the trees
themselves, the system consists of a block for the temporal
encoding of the referred threshold values as well as some
decoding logic for accessing the contents of the trees’ leaves
once the final decision has been made. Finally, the voting
circuitry, which is directly related to the notion of ensemble
methods, adds all trees’ votes and finds the class with the
highest sum.
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Figure 9. Overview of the presented architecture.

An open-source implementation of race logic primitives
and example Race Trees can be found on github 4 for quick
use and reference.

5.1 From Sensor to Delay Coded Input
Whenever a different encoding is considered, the cost of
“translation” in and out of that encoding has to be taken
into account. However, race logic is such a natural direct
target for sensors that we instead consider a case where
classification tasks are tightly integrated with the sensor.
Since sensory input (e.g. light, sound, humidity, temperature,
chemical potentials) is analog in nature, most sensors begin
with a measured voltage or current. Aside from simple fil-
tering and de-noising tasks, most signal processing is done
after Analog-to-Digital Conversion (ADC).
Analog-to-Digital Converters are key components for a

plethora of applications, and their design optimization, both
in terms of area and power, has been an active research
topic for years. Since design of analog circuits gets more
challenging with reduced supply voltages and short channel
effects in deep sub-micron process nodes, high fidelity analog
amplifiers consume a large amount of power. With power
being a critical constraint, techniques that relax this fidelity
and offload it to digital components allow for more efficient
designs. One such set of techniques involves performing
temporal signal processing, by first converting the analog
signal into the temporal domain. Such an approach leverages
the small delays and high temporal resolution of nano-meter
scale devices to get superior performance over their voltage
domain counterparts [26]. Once faithful temporal coding
has been achieved, various (mostly digital) time-to-digital
conversion strategies allow outputs to be converted to the
digital domain for further processing.

While the typical digital domain, with its well-understood
binary encoding, may be very well-suited for storage and
general-purpose manipulation of data, this is not always the
case for designs with constrained area and power budgets.
For example, there exists a variety of temporal and rate coded
architectures, such as spiking neural networks [34], where
either the arrival time of the first spike or the firing rate
of spikes, which is defined by the intensity of the provided
stimulus, encode the values of data. Given that information
in the time domain is now considered useful for computa-
tion, the above-mentioned time-to-digital conversion (TDC)
of ADCs [9, 18] is redundant and can be skipped. Exam-
ples of systems providing directly time-encoded outputs,
without TDCs, range from visual sensors, such as Dynamic
Vision Sensors (DVS) [21, 35], Asynchronous Time-based
Image Sensors (ATIS)[29], Time To First Spike (TTFS)[30]
and Time-of-Flight (ToF) [12, 27] cameras, to sound sensors;
e.g. the AER (Address Event Representation) Ear [6], which
is a silicon-based cochlea that converts auditory signals from

4https://github.com/UCSBarchlab/RaceLogic



various frequency bands to precise temporally coded out-
puts.
Race logic is built on the idea of encoding information

in timing delay; it uses edges rather than spikes though.
Therefore, the presented architecture can work with any
temporally-coded input provided to it. Considering the na-
ture of the above-described sensing systems, we expect that
with minimal changes in their interfaces [25], raw time-
coded data can be directly fed into our race logic accelerator,
and enable a tighter and more efficient sensor-accelerator
integration.

5.2 Race Trees Architecture
As already discussed, a decision tree can be thought as a set
of independent and parallel decision rules that lead to a final
prediction when combined accordingly. For the realization of
each tree node an INHIBIT operator is used, where a delay-
coded threshold serves as the gate’s controlling input. Figure
10 provides more details regarding the implementation of a
decision tree of depth 2 in a configurable way.

For the temporal encoding of the various threshold values
a shift register is used. Its content is initially set to 0, and a
steady logical high signal is shifted in once the processing
starts. To ensure that any delay-coded threshold value can
be routed to the necessary nodes of the tree a configurable
crossbar is used; colored in blue in our figure. As expected, its
dimensions depend on the length of the shift register, which
is defined by the input features’ resolution, and the total
number of the tree’s nodes. Assuming that input features
are coming from the sensor already delay-coded, another
configurable network, colored in green in our example, must
be used for their routing to INHIBITs’ data signal ports.
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Figure 10. Programmable race logic accelerator for a deci-
sion tree of depth 2. The shown configuration corresponds to
the tree presented in Figure 7. The length of the shift register,
used for the temporal encoding of thresholds, is defined by
the resolution of input features; e.g. if input resolution is 8
bits, a shift register of depth 256 has to be used. The memory
block shown after the decoder is useful in the case of a trees
ensemble, where a weighted voting scheme follows.

The outcome of a decision tree is the contents of the
reached leaf node, and these contents are stored in a mem-
ory in our case. To access this memory, the output of the
array of INHIBITs has to be transformed into a valid address.
Taking into consideration the fact that each leaf is associated
with a unique conjunction of the conditions along its path
to the root, a simple decoder consisting of AND gates and
inverters has to be built. The output of this block is an 1-hot
encoded memory address. At this point, it should be noted
that although INHIBITs are conceptually operating in the
temporal domain, their sampled output will be a typical bi-
nary vector; the maximum number of clock cycles required
to process a tree is defined by the length of the shift register
and is known statically. Hence, only one memory read is
required per input record at the time that the propagating
wavefront reaches the end of the shift register. Prior to the
next computation, our circuit must be reset.
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Figure 11. Lower-level diagram of the architecture pre-
sented in Figure 9. The shown circuit implements a config-
urable race logic accelerator for tree-based ensemble learn-
ers.

Figure 11 presents our system architecture for a tree-based
ensemble learner. To keep the overhead of clocked compo-
nents low, trees are now organized into groups and share the
same shift register and buffer, used for the generation of the
delay-coded thresholds and the local buffering of the delay-
coded input features. Of course the “cost” of the crossbars is
increasing with the size of these groups, and this trade-off
should be further analyzed for maximum efficiency.

Since the data retrieved frommemory are in regular binary
encoding, the implementation of the weighted voting scheme



is based on typical binary adders. Once all prediction values
of all trees have been summed, a comparison between them
takes place to find the class with the highest value, which is
going to be our system’s final “guess”. At this point, it should
be noted that the shown crossbars can be replaced by any
other more efficient configurable routing network without
any effect in our system’s functionality.

Finally, to make this architecture more generally applica-
ble, we need to ensure that the tree structure itself can be
changed. This is done by constructing only full trees with
all their nodes accounted for. Nodes that are necessary for
the correct functioning of the trained network are activated
while the unnecessary ones are statically set to False at con-
figuration time.

6 Race Trees Toolchain
When designing a new system, development time and usabil-
ity are always major concerns. Ideally, the proposed archi-
tecture should be modular for systematic implementation,
and an abstraction layer, hiding the hardware complexity
from domain experts, should also exist. In the case of ma-
chine learning, the vast majority of development happens
with the use of specialized software libraries. To address the
above-mentioned challenges and assist evaluation, a fully
automated toolchain, linked to the open-source scikit-learn
framework, has been developed for Race Trees.

6.1 Implementation & Programming Methodology
One of the first decisions to be made when starting amachine
learning project is selecting the learning method that will
be used as well as its parameters, e.g. number of estimators,
size of the trees. As a next step, training data are provided
to the algorithm to learn from.

In this work, scikit-learn [28] is used for the training part.
Scikit-learn is a free software machine learning library for
the Python programming language and features various clas-
sification, regression and clustering algorithms. Initially, a
set of user-defined parameters is expected, as usual, for the
construction of the desired learning model. Considering that
our goal is to map this model to hardware, and inspired by
recent studies that demonstrate high accuracy number with
even reduced precision inputs [39], features quantization is
given to the user as an option. Once the model is trained,
our tool analyzes the importance of input features, explores
the learner’s performance against lower resolution data, and
proceeds with votes (content of tree leaves) quantization.
Finally, the user has to choose one of the following options:
(a) the generation of a configuration file for the crossbar
networks of a programmable Race Trees accelerator (Figure
10) , or (b) the generation of a custom RTL-level design with
hardwired units.
Figure 12 provides a quick visual overview of our design

flow. The automatic implementation of our architecture in

hardware directly from a typical software machine learning
framework is based on the idea of hardware templates. Syn-
thesizable RTL code is generated out of a simple graph-based
intermediate representation with the use of a set of basic
building blocks (e.g. parametric shift register and buffer, IN-
HIBIT gate, etc.) and “glue” logic. More specifically, once
the training process completes, the learning model contains
information about the total number of nodes per tree, their
interconnection, threshold values, and referenced input fea-
tures, as well as the data of each leaf. Tree’s hierarchy is
used for tagging its nodes accordingly, which directly affects
the structure of its decoder, while the threshold value and
attribute assigned to each node define the connectivity be-
tween the corresponding INHIBIT’s ports and the associated
shift register and inputs buffer.
Regarding the implementation of the weighted voting

scheme that characterizes ensemble methods, the values of
the leaves’ data/votes have to be normalized. In the software
world, where these machine learning models usually live,
leaves’ votes are typically in floating point format. Thus,
their conversion in a hardware-friendly fixed point represen-
tation is necessary. The number of bits used for their storage
affects both the predictive performance of the learner and
the size of the memory. To reduce the quantization error, the
distribution of the votes’ values is first analyzed to detect
outliers (with the use of percentiles), and then the rest of
the data are normalized according to the min-max feature
scaling approach. At this point, it should be noted that race
logic itself does not introduce any new sources of inaccu-
racy, as this kind of data quantization for the votes would
be necessary for any reasonable hardware realization of the
algorithm.

6.2 Area & Power Models
Considering that the main focus of this work is to stretch the
boundaries of race logic, we create analytical and empirical
power and area models for the basic components of the
presented architecture. To do so, we synthesize the RTL of
each sub-component of Race Trees individually, as well as the
RTL of the whole design as generated by our flow. To obtain
the desired area, power, and performance results, we use
an open source tool [40] and the 14nm standard cell library
found in [7]. The operational voltage and frequency are 0.55V
and 1,000MHz, respectively. However, in our energy and
throughput calculations we use a 500MHz clock, without
scaling our power numbers, to compensate for the lack of
a wire load model; under this assumption, each operation
consumes twice its nominal energy [36]. For the switch fabric
included in the analysis, scaled energy results for the 14nm
node from [3] are used. For the interconnect switch block,
we scale the power from 45nm [33] to 14nm.

Besides identifying target components for further opti-
mization, the constructed models can also be used for the
exploration of different design options and their effects. For
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and assists (c) trade-off analysis and (d) design evaluation through an analytical architectural models and cross-checking with
software models, respectively.

example, they do not only help the user understand the accu-
racy versus system performance trade-off for various learn-
ers better, without having to implement each of them, but
also assist in the design of the hardware itself. For example,
defining the size of each group of trees, as shown in Figure
11, is an architectural decision that should compromise the
overhead imposed by the clocked components and the com-
plexity of the required configurable routing networks, and
its optimal value can be computed with the use of known
modeling frameworks [11].

6.3 Evaluation of Correctness
For the development and verification of a Race Trees design,
PyRTL [10], a Python embedded hardware design language,
is used. The fact that both scikit-learn and PyRTL are built
around Python makes their integration easier and assists
verification. More specifically, once the PyRTL code for a
specific model is complete, software modules, such as the
predict function of the scikit-learn library, can be used as
the golden reference for the design’s functional verification.
However, scikit-learn does not provide/expect signals in the
temporal domain. To simulate input stimuli, Python’s gen-
erators are used to encode input data while the results can
be directly pulled out of the simulation tracer to facilitate
cross-checking.

7 Performance Evaluation
In this section, we first provide a comparison between the
presented system and other state-of-the-art solutions, and
then perform a trade-off analysis to get deeper insight into
the design space.

7.1 Comparison with State-of-the-Art Classifiers
In recent years, an explosion of hardware accelerated ma-
chine learning activity has resulted in a wide variety of ASIC
architectures to compare against. Based on our experience
and literature survey, MNIST is the most commonly used
dataset in the context of a proof-of-concept prototype. Hence,
we proceed with an MNIST-based evaluation that facilitates
the comparison of the proposed approach with state-of-the-
art low-power classifiers. Figure 13 plots a few of these solu-
tions on an accuracy versus energy plot.
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Figure 13. Accuracy vs energy scatter plot for state-of-the-
art machine learning accelerators: a [41], b [19], c [31], d
[20], e [13], f [13]. For easier comparison, all results have
been scaled to 28nm. Green dots represent Race Trees.

One approach that has tried to tame this massive design
space is Minerva [31], which is represented in Figure 13 by
the letter c. Minerva is an automated co-design approach that



accounts for algorithmic, architectural, and circuit level con-
straints in an attempt to efficiently accelerate Deep Neural
Networks. More specifically, Minerva first performs design
space exploration at the algorithmic and architectural level,
followed by resolution tweaking and pruning of certain un-
necessary energy hungry operations. Moreover, it looks at
circuit level optimizations, such as SRAM fault mitigation,
before reporting accurate chip level performance metrics.
This broad design space exploration and multi-level opti-
mizations allow Minerva to be highly accurate, still energy
efficient, and make it a good starting point for comparison.
Another interesting implementation, represented by the

letter b in Figure 13, is the sparse event-driven neuromor-
phic object recognition processor developed by J. J. Kim et
al. [19]. This solution is composed of the locally compet-
itive algorithm (LCA) inference module [32] (for feature
extraction) and a task-driven classifier. As can be seen, this
spiking neuron architecture allows for a very low energy
cost (≈ 20.7nJ/pred in 65nm). However, it achieves only 84%
accuracy, which is the lowest among the displayed solutions.
At the other extreme, a high performance sparsely con-

nected neural network running on the IBM TrueNorth chip
(28nm) utilizes 64 ensembles and hits very high accuracy
numbers (99.42%) at the the expense of 108µJ/pred [13]. A
more energy efficient version with a single ensemble is also
reported and achieves 92.7% accuracy at 268nJ/pred . These
implementations are represented in Figure 13 by the letters
e and f, respectively. A few other solutions with comparable
accuracy and energy performance, represented by the letters
a [41] and d [20], are displayed, too.

Table 1. Synthesis results for hardwired Race Trees produced
by Yosys [42] with a cell library in 14nm CMOS and power
results using [40].

# Trees Depth Inp. res. Mem. bits Accuracy Latency Power Area Freq.
(bits) (per vote) (CCs) (mW) (mm2) (MHz)

1,000 6 8 8 97.48% 273 521 0.46 1,000
1,000 6 4 4 97.45% 33 475 0.45 1,000
200 8 4 4 96.18% 31 384 0.33 1,000
200 6 4 4 95.72% 31 125 0.13 1,000

Our Race Trees are represented with green dots. As al-
ready described, our architecture can serve any tree-based
ensemble method. The technique used for this comparison is
Gradient Boosting, whose derivatives have recently gained
popularity by winning various Kaggle and other data science
competitions. A classifier consisting of 1, 000 Race Trees of
depth 6 gets 97.45% accuracy, while still maintaining a fairly
low energy expenditure at 31.35nJ/pred . A more efficient
approach, utilizing only a fifth of the number of ensembles,
still achieves a performance of 95.7% with energy numbers
as low as 7.8nJ/pred . By increasing the depth of trees to 8,
the accuracy increments by 0.5% at the expense of 16.1nJ of
additional energy per prediction. At this point, it should be
noted that we are not performing any parameter fine-tuning

to improve the learner’s performance, and that race logic
does not introduce any new sources of inaccuracy. The re-
ported implementation results for the hardwired designs are
produced by Yosys synthesis suite [42] with a standard cell
library in 14nm CMOS [7], while the energy and area of our
programmable architecture are estimated with the use of the
models described in Section 6.2. More information about the
designs under test can be found in Tables 1 and 2.
The total number of execution clock cycles required per

prediction is defined by the following equation:

latency = 2inp_r es + loд2(#ests) + #classes

The first term is related to the maximum possible value of the
thresholds, which also defines the length of the shift register
used for their temporal encoding, whereas the second and
third terms are associated with the voting part (argmax of
the sums of the predicted probabilities). This means that our
Race Trees accelerator can classify 1.83M images/s when 8
bit inputs are used and up to 16.1M images/s for 4 bit inputs.
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Figure 14. Accuracy vs energy-delay product scatter plot
for state-of-the-art machine learning accelerators: b [19], c
[31], e [13], f [13]

Though application specific, a change of information rep-
resentation allows problems to be reformulated in a way that
can be performed both quickly and efficiently, and race logic
does just that. On one hand, the temporal domain represen-
tation, which allows multiple values to be encoded on the
same wire, coupled with simple digital primitives and a low
logic depth, allow high speed. On the other hand, a single
edge transition per computation running down a spatially
laid out architecture allows for superior energy efficiency. A
comparison of RaceTrees to other machine learning imple-
mentations in an accuracy vs energy-delay product scatter
plot is presented in Figure 14, and shows that RaceTrees
achieve both lower delay and energy per operation than
their counterparts.



Table 2. Estimated power and resource utilization for various sub-units of the Race Trees architecture.

# Trees Depth Inp. res. Mem. bits Groups Tech. node Thresholds Inp. Buffers Trees & Dec. Memory Voting Progr. Intercon. Total
P (µW ) A (mm2) P (µW ) A (mm2) P (µW ) A (mm2) P (µW ) A (mm2) P (µW ) A (mm2) P (pW ) A (mm2) P (mW ) A (mm2)

1,000 6 8 8 10 14nm 7,237 1.1e-2 21,999 3.5e-2 529,603 0.5 111,492 0.05 2,008 0.03 0.252 – 673 0.63
1,000 6 4 4 10 14nm 359 7.5e-4 21,999 3.5e-2 529,603 0.5 59,289 0.03 1,673 0.03 0.016 – 613 0.59
200 8 4 4 10 14nm 359 7.5e-4 21,999 3.5e-2 452,701 0.38 35,715 1.5e-2 321 5.8e-3 0.013 – 511 0.44
200 6 4 4 10 14nm 359 7.5e-4 21,999 3.5e-2 105,921 0.1 11,857 5.6e-3 321 5.8e-3 0.003 – 140 0.15

7.2 Design Space Exploration & Performance
Analysis

The main focus of this work is to stretch the boundaries
of race logic and demonstrate the effectiveness of classifi-
cation accelerators that leverage its properties. Thus, we
believe that it is important to understand where and why
the majority of power is consumed. Table 2 provides area
and power estimates for each of our system’s main blocks
for four Gradient Boosting classifiers of different size.

To obtain these results, we synthesize each sub-component
of the Race Trees architecture individually, as described in
Section 6.2. In this analysis, for the realization of the INHIBIT
operators, we use off-the-shelf CMOS components (Figure
3), rather than any of the custom implementations presented
above (Figure 4). The cost of the programmable intercon-
nect is calculated based on the results from [3]. As a sanity
check, we compare the sum of area and power results of all
these components for each classifier against the complete
synthesized design results, shown in Table 1. The differences
observed are expected as all the trees are now considered
fully-grown to cover the most general case.

In Figure 15, the energy vs accuracy trade-off for a variety
of Random Forest, AdaBoost, and Gradient Boosting imple-
mentations, is illustrated. The number of estimators, trees’
max depth, and the learning rate were considered as parame-
ters for all three algorithms. For the cases of Random Forest
and AdaBoost, the numbers of estimators, trees’ max depth
and learning rate range from 20 to 200, 6 to 10, and 0.3 to
0.8, respectively. In the case of Gradient Boosting Classifiers,
the upper bound for the number of estimator was set to 100
(consisting of 10 trees each, so 1,000 trees in total). In fact, we
observe that the prediction performance of the latter does
not change significantly, for the MNIST dataset at least, as
the depth of trees increases.

8 Conclusion
As machine learning techniques continue to find new and
compelling application across a wide range of computing
tasks, the desire to bring that computational power into even
our lowest power devices will only continue to grow. Apply-
ing these complex algorithms without resorting to the use
of significant amounts of energy remains an important chal-
lenge, and the choice of data representation is an important
cross-layer factor that impacts everything from the sensor
to the end product of learning.

Figure 15.Accuracy vs power scatter plot for various config-
urations of Random Forest, AdaBoost and Gradient Boosting
Classifiers.

While each representation embodies a different set of
trade-offs based on the algebraic operations that are either
easy or hard in that domain, machine learning algorithms
themselves have a degree of malleability that has yet to be
fully exploited. We show that the natural relationship be-
tween modern decision tree algorithms, new advances in
race logic, and the underlying sensors themselves provide
such an opportunity. Although, it is rare to come across
a change that appears simultaneously beneficial across all
three of these different layers, sensor, architecture, and learn-
ing algorithm, a delay code seems to be exactly such a rarity.
Others have already shown the analog advantage of avoiding
the final step of converting input signals to a pure digital rep-
resentation — instead leaving them as a variable delay which
can be trivially converted to a race encoding. At the algo-
rithm level, little is needed in the way of changes other than
being mindful of the depth and configuration of the existing
decision tree algorithms. We present an interface to the user
that is identical to that used already by the well-loved scikit-
learn package. At the architecture level the improvements for
these considerations are dramatic both in hardwired and pro-
grammable configurations. The resulting computation has a
shallow critical path and induces exceedingly few bit transi-
tions as the computation propagates through Race Trees.

To demonstrate that this approach could be useful in prac-
tice we design and analyze, at the hardware level, two dif-
ferent approaches across a set of inputs. Because each and
every wire of the entire accelerator, besides clock, flips from



0 to 1 at most once across the entire computation, the re-
quired energy per image classification can be as low as 7.8
nJ, while still achieving a 95.7% accuracy and 16.1M predic-
tions/s throughput for the MNIST dataset. Assuming fully-
grown race trees, the routing crossbars are the only parts
that need to be configured to support arbitrary branching
over features.
While the resulting system already performs admirably

as measured by energy, area, and performance, there is still
room for further exploration and improvement. The evalu-
ation here has yet to take advantage of a) the asymmetric
nature of the logic level transitions (meaning that only 0
to 1 transitions are performance sensitive), b) the true mal-
leability afforded by the decision tree algorithms and the
co-design it enables, and c) the ability of delay and INHIBIT
operations to be even more efficiently implemented by less
traditional technologies. Lastly, the integration of race logic-
based accelerators with other circuits operating purely on the
time-domain, such as the recently proposed vector-matrix
multiplier presented in [1], is another interesting path for
exploration towards the construction of more complicated,
energy-efficient machine learning systems.
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