
Safer Program Behavior Sharing through Trace
Wringing

Deeksha Dangwal
University of California, Santa Barbara

deeksha@cs.ucsb.edu

Weilong Cui
University of California, Santa Barbara

cuiwl@cs.ucsb.edu

Joseph McMahan
University of California, Santa Barbara

jemcmahan@cs.ucsb.edu

Timothy Sherwood
University of California, Santa Barbara

sherwood@cs.ucsb.edu

Abstract
When working towards application-tuned systems, develop-
ers often find themselves caught between the need to share
information (so that partners can make intelligent design
choices) and the need to hide information (to protect pro-
prietary methods or sensitive data). One place where this
problem comes to a head is in the release of program traces,
for example a memory address trace. A trace taken from a
production server might expose details about who the users
are or what they are doing, or it might even expose details
of the actual computation itself (e.g. through a side channel).
Engineers are often asked to make, by hand, “analogs” of
their codes that would be free from such sensitive data or,
may even try to describe behaviors at a high level with words.
Both of these approaches lead to missed opportunities, con-
fusion, and frustration. We propose a new problem for study,
trace-wringing, that seeks to remove as much information
from the trace as possible while still maintaining key charac-
teristics of the original. We formalize this problem and show
that, for a specific instance around memory traces, as little
as a few thousand bits need to be shared. We demonstrate
experimentally that the trace-wrung proxies behave simi-
larly in the context of cache simulation but with bounded
leakage, and examine the sensitivity of wrung traces to a
class of attacks on AES encryption.

CCS Concepts • Security and privacy → Information
flow control.

Keywords Privacy of traces, Synthetic trace generation,
Trace compression

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304074

ACM Reference Format:
Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy
Sherwood. 2019. Safer Program Behavior Sharing through Trace
Wringing. In 2019 Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19), April 13–17, 2019, Providence,
RI, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3297858.3304074

1 Introduction
A quantitative approach to optimizing computer systems
requires a good understanding of the way applications exer-
cise a machine; real program traces taken from production
code, in production environments lead to the clearest under-
standing. Unfortunately, even the simplest program traces,
such as memory access patterns, have the potential to leak
arbitrary information about the system. For example, a trace
can capture the memory access behavior of a critical cryp-
tographic function (which is known to be a function of the
secret key [40]), a set of lookups corresponding to the parsing
of a social security number, or even detailed system configu-
ration parameters that are considered a trade secret. While
the sharing of these traces between technology partners can
lead to more robust and high performance systems, it can
also leak highly sensitive information, and expose user data
to security vulnerabilities.
It has been shown [47, 51] that safe ad-hoc anonymiza-

tion is difficult to achieve. Given the cleverness of attackers
working to undowell-intentioned, but ultimately insufficient,
anonymization techniques [36], many have simply decided
to cease making traces available altogether. Today when such
traces are needed, programmers may be asked to “obfuscate”
the key algorithm behaviors to hide sensitive data or pro-
vide “models” of the system which approximate the same
behavior but omit sensitive parts. Hand-built “models” of
the system are both tedious to code and of limited predic-
tive power. Since there is no well-defined and well-trusted
approach to this problem, developers are often forced to
resort to rough human-language descriptions of the behav-
ior of programs (e.g. “it is 80% pointer-chasing”). This leads
to missed opportunities, frustrated optimization, and the
design process ultimately suffers. Ideally, engineers would

https://doi.org/10.1145/3297858.3304074
https://doi.org/10.1145/3297858.3304074
https://doi.org/10.1145/3297858.3304074

access methods to eliminate any sensitive information from
the traces while still capturing the program behavior and
its interaction with the underlying hardware. However, the
extent to which “sensitive” data influences program behavior
is rarely understood by a single party, and even harder to
argue is that it is completely absent from a trace.

We present a new formulation of this problem where one
knows a priori exactly how much information a trace is giv-
ing away in the worst case. The basic idea is to take a trace
and squeeze it through as small a “hole” as possible to ex-
tract as much information as possible out of the trace without
completely compromising the usefulness of the trace. Like
wringing all of the water from a sponge, in the ideal case
only the structure of the trace (the dry sponge) remains and
all potentially sensitive data has been eliminated. While we
have no mechanism of quantifying the amount of sensitive
data that remains, we do have a way to say how much total
information is provided, which yields a useful upper bound.
In other words, while we cannot say for certain how much
water remains in the sponge, we know that the amount of wa-
ter has to be strictly less than the total volume we squeezed
the sponge into. We observe that when compression is taken
to this extreme and lossy form, it connects to security in
this unexpected way. However, as is often the case in com-
puter architecture, an important tradeoff remains between
information leaked and degree to which the trace accurately
captures the behavior across a suitable domain of possible
options.
We formalize this new approach specifically in the con-

text of memory address traces, as they are well studied and
we have many prior techniques to build from. To explore
the tradeoff exposed by this problem, we examine a new ap-
proach of performing guided memory trace synthesis build-
ing on ideas from signal processing. By projecting the address
space onto a wrapped 2D image, we are able to decompose
memory behavior into an orthogonal set of features that
can then be replayed to reproduce the same “visible” pat-
terns as the traces under examination. Specifically, we use a
Hough-transformed version of the trace to find both constant
and strided access patterns; Hough features are also used to
concisely summarize the trace behaviors. Our contributions:

1. We introduce tracewringing, a new paradigm of anonymity
and privacy in the context of traces where compression
and modeling provide a way to release information
with easily verifiable bounds on leakage.

2. We demonstrate a pipeline instantiating this idea in
the context of address traces and show how signal pro-
cessing techniques can be used to squeeze information
out of traces while maintaining program behavior.

3. We verify through cache-simulation results that trace-
wringing can be achieved as a proof-of-concept. While
the resulting systems may still give away thousands or

Figure 1. Forcing a trace through a channel with a capac-
ity of only a few bits bounds the amount of sensitive data
shared. While any public information such as prior non-
private traces can be used in the creation of the code, the
trace to be coded must not be known to the receiver. The
objective then is to minimize the number of bits shared while
maximizing the utility of the proxy trace. Here, we measure
the utility in terms of whether or not certain tests t1, t2,
and t3 are passed by the proxy test and/or how close to the
original tests results they get.

tens of thousands of bits, it opens the door to further
optimization and refinement.

4. We compare our approach with prior work in address
trace compression and synthetic trace generation. We
are able to construct proxy traces using as few as tens
of thousands of bits which is orders of magnitude fewer
than compressed traces and the profile used in syn-
thetic trace generation.

5. As a first evaluation of security beyond just bit leakage,
we show that a class of existing AES attacks fails to
find useful information in the traces processed in this
way, which illustrates the utility of such an approach.

The rest of the paper is laid out as follows. First, we present
the new problem of “wringing” a trace more completely.
In Section 3, we compare and contrast this problem to its
related work on prediction, compression, and other classic
trace analysis approaches. Section 4 describes our approach
of using signal processing techniques for trace wringing. In
Section 5, we describe our experimental setup, followed by
an evaluation where we compare cache-simulation results.
We summarize and conclude in Section 6.

2 Wringing a trace
A program trace can contain a tremendous amount of in-
formation about the system under evaluation. For example,
memory accesses give away the data (e.g. secret keys) used in
calculating the addresses, simultaneous accesses to different
data storage areas can give away important relationships
(e.g. between an individual’s access rights and fields of a data
structure they are accessing), and so on. But, as we know,
such traces are invaluable for performance evaluation be-
cause they demonstrate the way the system actually behaves
in the face of the workloads it must actually handle.
While the behaviors are important at a high level, rarely

are the specific elements of the trace critical. Rather it is the
relationship between those elements and the proportions
that they appear in the trace that is often the key. This is of
course not a new insight, and many people have attempted
to capture these behaviors with microbenchmarks [28] and
other trace synthesis schemes in the past [53].What we claim
as new is the idea that we can formalize these schemes in
such a way that it bounds the amount of information leaked
about a system being traced.
The argument is simple: if we only share n bits about a

specific trace then we cannot leak more than n bits about
that trace. In practice, this means that if we share only a few
tens of thousands of bits of information about the trace, then
nothing beyond those bits has been leaked. While it is not
a perfect solution (some information might be lost), it says
something useful about the maximum amount of informa-
tion that can be leaked. For example, it should be impossible
to recover an extensive list of social security numbers, sensi-
tive health information, or even an entire set of secret keys
from such a trace. To maximize security one wants to give
away as little data as possible about the trace. However, to
maximize utility the opposite is true. Here is a new question
for computer architects – how little can one give away from
the trace while still being useful?

At first one might consider this to be exactly the problem
of compression, and there definitely is a resemblance. Most
compression schemes seek to perfectly replay a given input
sequence by exploiting the fact that their inputs are far from
completely random [6]. By understanding those common
structures, for example the tendency for repeating patterns
to occur [18], a more concise representation exploiting these
structures is possible. Most modern compression algorithms
start from a relatively blank slate and train a predictor of
some form on the input as they process it. The duality be-
tween compression and prediction is pointed out by Chen et
al. [10], who note that when you predict a value with high
accuracy you can compress by storing an encoding that “the
predictor is correct n times in a row” most of the time. Lossy
compression is then a natural extension of this idea where
the predictor is “close enough n times in a row”.

However, even lossy compression schemes typically seek
to minimize the error between the original trace values and
the compressed trace values [35]. Here we have a problem
that is different in two important aspects. First, while we
want to keep the behavior of the trace to our tests the same,
we may not care that the actual addresses themselves are
similar. Second, we should be able to prime our scheme
with data from other traces that do not contain a secret
that we care about. In this way, we can think about this
problem as attempting to decompose a trace into two aspects:
a trace’s “structure”, and a trace’s “data”. The trace structure
is what defines the hierarchy of patterns inherent to the trace
that are useful for making statements about performance,
while the trace data contains the specific set of addresses
that makes the trace complete. The structure is all we really
care to transmit and, when separated from the data, may be
incredibly compact. The question then becomes, how compact
for how useful?
Answering this question requires an analysis across two

metrics: information and utility, as described in Figure 1.
Information is surprisingly easy to quantify; it is the number
of bits from the secret trace that need to be transmitted. Note
that any number of bits about other traces or training data
can be shared freely and even hard-coded into the receiver.
Our approach is to describe traces as a probabilistic grammar
of generators coupled with very high level accounting of be-
havior over time and account for bits in both the structure
and parameters of this scheme. Quantifying utility is harder
and more use-case specific. We define a distance function
between cache miss-rates of trace vectors as one such func-
tion, but understand there are many other metrics one might
use [2, 43, 53].
While this problem is generalizable, we are considering

address traces for this initial class of experiments. While
many other classes of traces might benefit, address traces are
some of the most well studied and understood, and provide
the most stable foundation for this newwork to be developed
upon and evaluated.

3 Related work
In this paper, we start with a security parameter (the number
of bits we tolerate giving away) and analyze a program’s be-
havior by studying its address trace to eliminate information
that is not essential to describe its behavior down to that
security parameter. At the heart of it, we want to accurately
characterize a program’s trace, and preserve only the bare
minimum information, so as to not leak it unintentionally.
This new problem can then leverage much of the related
problems in the fields of trace compression, statistical pro-
gram profiling, synthetic trace and benchmark generation,
and data privacy and anonymity. In the rest of this section,
we will compare and contrast our work with the large body
of work that precedes it.

3.1 Trace compression and approximation
Trace compression is well studied. TCgen [5] has a compres-
sion ratio as high as 77, 000 for certain benchmarks. Lossless
algorithms exploit sequentiality and spatiality, value pre-
diction [4, 6, 7], perform loop detection and reduction [18],
convert absolute values to offsets [27], and use clustering to
improve compression [24]. ATC [35], a compression tool for
cache-filtered addresses, is capable of both lossless (using
bytesort) and lossy compression (using sorted byte-histograms).
Compressed compact representations are used to under-

stand and predict program behavior. Larus’s work on whole
program paths [30] introduces a method to determine a pro-
gram’s dynamic control flow, using the SEQUITUR [37] com-
pression algorithm. Chilimbi presents a similar scheme to
effectively represent a program’s dynamic data reference be-
havior [11], also using SEQUITUR. Trace Approximation [22]
generates compact summaries of memory accesses of parallel
applications to achieve trace reduction.

3.2 Characterizing program behavior
Eeckhout et al., have described a method to obtain detailed
statistical profiles within program traces [17] with the com-
bination of microarchitecture-dependent and -independent
profiling tools. Their syntactically correct, and representa-
tive synthetic traces can be simulated on existing simulation
tools. Machine learning algorithms are to understand large
scale program behavior by clustering basic block vectors to
find the representative sections of a program [45].
Chen et al., have shown that hardware event profiles for

feedback-directed optimizations, can be improved by using
machine learning and statistical techniques[9]. Oskin et al.
collect statistics from actual program simulation to generate
a synthetic benchmark [39] that is faster to run. While statis-
tical methods are useful in modeling behaviors of programs,
they do not consider the amount of information they inadver-
tently leak. It is worth revisiting these works in the context
of how much total information they leak versus how useful
they are across a range of optimizations. We leave unifying
these approaches in the context of wringing as future work.

3.3 Synthetic trace generation
Synthetic trace generation has been a classic solution to
characterize performance and effectiveness of novel designs
(when workloads do not exist) [49]. To ensure that the syn-
thetic traces behave as expected, Thiebaut et al. adhere to
a hyperbolic probability law [42, 49]. Other methods on ar-
tificial workload generation have been described [19] and
reviewed [20]. PSnAP [38] separates the program structure
from the memory access pattern in two phases: capture,
when PSnAP generates a profile using PMaCInst [50], and
replay, when it produces a synthetic trace based on the cap-
tured profile.

For HPC applications, Weinberg et al. determine memory
signatures and mimic them to generate synthetic traces [54].
They maintain the cache miss rates of the applications under
test with Chameleon [53], a memory locality analysis tool
suite. The tool produces a small seed, which is replicated
to construct an arbitrarily long trace. BenchMaker [28] is a
parameterizable and scalable synthetic benchmark generator,
which can create customized workloads given some (forty)
microarchitecture-independent program characteristics.

Unlike the previously discussed papers, BenchMaker cre-
ates benchmarks which can then be run on real-hardware (or
simulators) in order to better explore the application space.
Van Ertvelde et al. go further and propose code mutation [52]
for generating benchmarks that hide functional semantics
of proprietary programs. They do this at the binary level of
chosen benchmarks rather than on traces.

3.4 Preserving data privacy
Differential privacy [16] protects anonymity by adding some
amount of carefully calibrated noise to the sensitive data sets
so as to maintain the main properties under study. Access
to the system is metered out carefully to ensure privacy is
maintained while being as true to the original distribution
as possible. It has been pointed out recently [23], that dif-
ferential privacy may introduce an unacceptable amount of
error. Being able to add noise to address traces in this fashion
may not result in similar or expected program characteristics.
Plausible deniability [3] presents a formal framework to

generate synthetic data records efficiently while guarantee-
ing privacy. Their data synthesizer is based on a probabilistic
model; it captures the joint distribution of attributes col-
lected from the real dataset. Their target applications in-
clude machine learning and dataset analyses. Other formal-
izations of privacy are an active area of exploration with k-
anonymity [48], i-diversity [33], t-closeness [31], and many
others.

Traces are inherently time-series data sets. They map less
clearly onto these models where a set of queries are often
asked and answered by someone with the full data set. Uni-
fying trace analysis and these models of privacy appears
to be an open problem and our work stands out from the
ones described here both by its intent and simplicity. We
provide an up-front security parameter, the total amount
of bits to be leaked, and we squeeze our traces to that level.
This approach provides a useful point of comparison as more
advanced techniques linked directly to more specific security
models are developed and evaluated. Drawing inspiration
from information theory, we also try to find an upper-bound
on the information leaked from the system by trying to quan-
tify the number of bits of information given away by our
method while trying to minimize it.

Figure 2. The modulo-memory access heatmap for gcc. The
heatmap is an N × M sized graph, where N is some high
power of 2 and M is the number of 10000 instruction win-
dows in the trace. These modulo-memory access heatmaps
illustrate patterns that exist within program executions, and
give us a visual sense of memory access activity. When map-
ping longer traces, for example, we see phases (as in 4), but
we also observe local patterns within these phases as shown
here.

Another related field is quantitative information flow anal-
ysis; similar to differential privacy it proposes numeric mea-
surements that pertain to privacy. Some examples of its appli-
cations are in producing better bug reports which maintain
user privacy [8] and measuring source-location information
leakage in wireless sensor networks [32] among many oth-
ers. McCamant et al., present a method to determine how
much information real programs leak [34] using a practical
implementation of quantitative information flow which uses
dynamic analysis.

4 A signal processing approach to
wringing

Traces expose the inner workings of a program, its inter-
action with the runtime, and the underlying hardware ar-
chitecture. As such, even the simplest memory traces prove
to be a complex concoction of patterns generated by these
underlying factors. For example, in a memory address trace,
accesses to many different types of objects across both stack
and heap are all interleaved to create the whole. Our goal
of capturing the structure of these traces first requires that
we identify, describe, and quantify the patterns that we care
most about. While understanding the underlying cause of
these patterns requires detailed knowledge of the program,
quantifying the magnitude of these patterns can be done
on the traces alone. In fact, it is observed that even compli-
cated programs exhibit memory access patterns that can be
decomposed into simpler ones.
To get a visual sense for the structure of such traces, we

project the address trace onto a fixed-size modulo-mapping

of the memory space. This heatmap is a graphical repre-
sentation of the memory access behavior over time. Figure
2 shows such a heatmap for gcc where instruction count
(time) runs along the x-axis and the address runs along the
y-axis. If we were to plot this for the entire memory it would
clearly be too large for such a graph (the distance between
the stack and heap would dwarf any local behavior), so we
instead plot the address modulo a large power of two. We
call that the “wrapped address”. This plot of the wrapped
address over time (in terms of instructions) has the advan-
tage of mapping addresses onto a more manageable space,
but at the same time keeps the spatial-temporal structures
that would actually impact a real cache. The darkness of each
pixel is a function of the total number of memory accesses
that happen to that wrapped address during a window of
instructions.
Interesting and intuitive patterns emerge after looking

over this graph. The flat horizontal lines in the graph are
patterns of repeating access to a set of addresses. These are
high temporal locality behaviors. Sharp diagonal lines, on the
other hand, are regions of high spatial locality as addresses
are accessed one after the other in succession. If we can
concisely capture the character of these behaviors, without
transmitting the addresses themselves, we can minimize
the amount of information leaked. Describing an efficient
method for extracting these patterns is exactly the goal of
this section.
Figure 3 gives a high-level overview of the pipeline we

propose to first wring and then expand a trace. There are two
essential subsystems in our pipeline; one for extracting struc-
tural information about the trace from our heatmaps, i.e., for
trace-wringing, and the other for rebuilding a proxy trace
with the same structural information. At one end, as seen in
Figure 1, with the help of some prior reference knowledge
about traces, a full trace is decomposed into its describing
parameters. These parameters are the ones being communi-
cated via a constrained channel to the generator subsystem,
which then uses the same prior reference knowledge and
the descriptive parameters to generate a proxy trace. In our
pipeline, prior reference is used for optimization of encoding
(generation of heatmaps, detection of phases and line seg-
ments within them, and creation of “information packets”),
decoding (proxy trace generation from shared “information
packets”), and the selection of Hough parameters. The gener-
ated proxy trace’s utility is measured by testing its properties
against that of the original full trace.

The modulo-memory heatmaps exhibit hierarchical orga-
nization. Globally, there exists a recurrence of similar pat-
terns in the order of a few tens of thousand instructions,
i.e., the presence of program phases, and within them, we
observe patterns that we associate with the more local mem-
ory access activity. In order to find some representative of
the higher echelons of this hierarchy, we employ k-means
clustering to detect the program phases [45].

Figure 3. Pipeline for our signal processing approach to trace-wringing for proxy trace generation. The problem of sharing
information can be described with two subsystems; at the trace-wringing end, we find parameters that will accurately generate
the trace at the generator subsystem end. The goal is to minimize the size of the packets being sent between the two subsystems,
while still maintaining integrity of the data transmitted.

4.1 Phase detection
While Figure 2 is not the full execution of gcc, we note the
presence of a set of program phases. The first observation
we make is that if we wish to capture the character of these
traces, we need to extract higher level shifts in behavior over
time. If one can group together alike behaviors (for example,
the middle and end of Figure 2) we can then select only a
single representative for each such behavior. Fortunately this
is almost exactly the problem of phase detection [14, 44, 46].
To find the phases, and select a representative, we pose this
as a clustering problem (similar to prior work). We break the
execution up into a set of “chunks” by instructions executed.
The columns of the chunks are then summed together to
form a vector. Each vector thus has a length equal to the
numberN of wrapped line addresses. We can think of each of
these vectors then as a point in N dimensional space. Finding
groups of similar points (our memory vectors) is then exactly
the clustering problem. Here we can simply apply the k-
means algorithm [25] with k equal to the number of phases
we wish to represent in the trace. The k-means algorithm
represents clusters by a set of k cluster centroids which it
then iteratively optimizes. Each iteration alternates between
assigning each point in the space to exactly one centroid,
and updates centroid position to be in the “middle” of the
new set. After k-means, we take each cluster and select one
that is the longest to be the representative cluster.
Figure 4 shows the result of running the phase detector

on the memory address trace for gcc. Each of the 3 colors
labels the trace above it with a unique phase identifier. The
technique does a good job of lining up with the repeating
structures.

Now, with these phases marked, rather than encoding the
full trace monolithically, we can encode just the k represen-
tative clusters independently with loд2k bits. The list of the
phase identifiers can then become part of the information

shared. As can be seen in Figure 4, there is a great deal of tem-
poral locality in the phases and can be trivially compressed
by another order of magnitude with run-length encoding.
Given that we now have a set of representative chunks

of execution, we need to efficiently summarize the features
that exist within each chunk. If we look back to Figure 2, we
can see that many of the patterns in the heatmap can, in fact,
be reduced mostly to a set of lines.

4.2 Decomposing with Hough transforms
Concisely summarizing all of the complex patterns of the
trace all at once can be overwhelming. However, if we can
break the pattern down into a set of simpler behaviors, we
can then tackle them one by one. Given that both strong
temporal and spatial locality features show up as lines, de-
composition into a set of line segments is a natural place to
start. However, decomposing the address trace features in
the space ofwrapped_addresses×instruction_count directly
is not easy. Luckily, we can draw upon established methods
in image processing to transform our heatmaps into a space
where such extractions are achievable.

The Hough transform [15] is a popular computer vision
procedure used to detect patterns in images. The technique is
used to find the locations and orientations of certain geomet-
ric primitives in the given space. Hough transforms, being
resilient to noisy images, makes for an ideal feature extrac-
tion candidate for our problem. Geometric primitives such
as lines, ellipses, and circles are supported by Hough trans-
forms, but we find use only for the simplest Hough transform:
the Hough-line Transform.
While standard regression methods are useful fitting a

slope-intercept form of y =mx +b to a set of points, finding
sets of rotated lines from an image is hard in the Cartesian
coordinate system. The Hough-line transform employs the
polar coordinate form and describes lines by their distance
from the origin r and the angle formed between the origin
and the closest point on the line θ : r = x cosθ + y sinθ .

Figure 4. Phases visible in the trace generated by gcc after k-means clustering. Each of the 3 colors in the bottom marks a
unique phase in the trace. Note, importantly, that phases reoccur over time.

Figure 5. We capture information about lines we observe
in trace heatmaps using the Hough Transform. Here, we
demonstrate its working. The points on the test image are
surveyed for parameters in the polar coordinate space de-
scribed as the Hough Transform. The intersections describe
the parameters of the detected lines. The final figure shows
the Probabilistic Hough Lines, the more robust and efficient
algorithm. For our heatmaps, we use the Probabilistic Hough
Line algorithm.

Now, we have two separate coordinate systems in which
we can find the best fit line; the image space, and the <r ,θ>
parameter space. For every point in the image space, the
Hough transform considers every possible rotation of lines
passing through that point. Iterating through the different
possible values of r and θ in the Hough space, the algorithm
forms a sinusoidal curve for each point in the image space.
Each point in the <r ,θ> space corresponds back to one pos-
sible straight line in the image space. This point-to-curve

transformation (where every point in the image space is a
curve in <r ,θ> space) is the Hough-line transform. We do
this for all the points, and the most coincident points (where
the most sine curves intersect) in the <r ,θ> space is the
choice of parameters for a line in the image space. Specifi-
cally, what makes the Hough transform robust is how the
parameter space is set up: it is divided into a mesh of finite in-
tervals or accumulator cells. As the algorithm proceeds from
point-to-point in the (x ,y) (image) space, the accumulators
in the discretized <r ,θ> space are incremented.
For our instance, we use the progressive probabilistic

Hough transform [21], a rendition of the Hough transform
algorithm that only performs voting on a subset of the in-
put points. These input points are chosen based on certain
features of the expected result, such as a threshold of “dark-
ness”, the length of the expected line, interpolation strategies,
and the angle of the line. By interleaving the voting process
with line detection, this algorithm finds the most prevalent
features first, while also minimizing the computational load.
The progressive probabilistic Hough transform returns a

set of lines, with each line’s (x ,y) coordinates in the modulo-
memory heatmap space.We also introduce a variable, “weight”,
for each line, which is a measure of darkness of the line.
The list of phase identifiers (the result of clustering), the

two (x ,y) coordinates of each line detected by the Hough
transformation, and the line’s weight per representative
phase, give us the amount of share-able information.

4.3 Proxy trace generation
Using phase detection and Hough-line transformation, we
end up with a set of Hough lines for each representative
phase. Each phase is also assigned a label indicating to which
cluster it belongs to, i.e., which representative phase “repre-
sents” it. Since the structural information of each phase is
encoded in the the Hough lines, we can generate an “address
tracelet” for each phase using the representative’s Hough
lines.
Phases from the same cluster may occur intermittently

and in different lengths. For all phases in the same cluster,

we generate patterns continuously in a rotating fashion re-
gardless of the length. For example, if phases x1 and x2 are
both represented by representative phase r1 (suppose x1 oc-
curs before x2 and there’s no other phases represented by r1
in between), we then generate a trace for x2 following the
partial patterns we generate for x1 and wrap over if the total
length grows beyond r1, i.e., the starting time step t when
generating addresses for x2 will follow the end time step t −1
when we generate for x1 and wraps over when t becomes
larger than the end time stamp in r1.

Within each phase, we generate addresses by alternatively
picking addresses from the subset of lines that cover each
point in time (each time step t in the projected address space
corresponds to N addresses, in which N is determined by the
window size when the heatmap is generated at first place).
If there are no lines covering the current time step t , we
generate addresses for t from a uniformly distributed noise
function as there is no clear pattern observed by the Hough
transformation and we mimic a random access behavior in
this way.
Upon picking a Hough line at time t , we generate an ad-

dress “segment” from that line based on a fixed segment
length, which captures locality at a small granularity. The
segment length for each workload is hand-picked so that it
best captures characteristics of the trace. Each address gen-
erated from the line is also shifted to the left by the cache
block offset bits (6 bits for a typical 64B line size) since the
purpose of wringing is to preserve the cache-level patterns.
After generating address tracelets for all the phases, we

concatenate them together in the original order of the phase
occurrences to form a complete proxy address trace. The
proxy trace has the same length as the original trace but its
memory footprint is limited to the wrapped address space.

5 Evaluation
To evaluate the effectiveness of the approach, we take a
set of traces, wring them through our pipeline to a target
number of bits, and evaluate the traces across a range of
cache configurations with regards to miss rate. The details
of the parameters and process follow below.
Starting with the full traces, we first convert them into

heatmaps which are parameterized by the number of instruc-
tions from the trace to simulate, the window size, and the
total size of the mapped space. If a map space is chosen to
be too large, the line detection techniques will fail to pick
up useful edges as there is too much white space for them
to operate properly. If the map space is too small then the
addresses will be truncated to such a degree that they will
cease to be useful for evaluating miss rate. For our experi-
ments, the x axis in the modulo-memory heatmap represents
10,000 instructions.

We use signal processing techniques here to collect im-
portant information about the heatmaps. We compute the

Figure 6. Producing probabilistic Hough lines on top of the
heatmap of the SPEC2006 benchmark, gcc. The colors are
used to indicate distinct lines produced by the decomposi-
tion.

Hough transforms, as described prior, to give us the value
of the constants that describe the lines that the algorithm is
able to “see” in the heatmaps. Specifically wemust hand-tune
the progressive probabilistic Hough transform input points
(to reduce the search space of the algorithm) to find the lines
in the midst of all the noise that these heatmaps inherently
have. For our experiments, the parameter threshold ranged
from [20,200], line_lenдth ranged between [10,60], line_дap
ranged between [1,50], and theta ranged between π and
π/2. Specifically, the probabilistic Hough lines [41] are then
generated and remapped back into the address space.

5.1 Measuring bits
While our main goal so far has been to extract and describe
the structure of traces as correctly as possible, we must also
maintain that not too much information is given away. The
information that needs to be transmitted to the trace gener-
ator must contain both the global phase-identifier informa-
tion, and the line coordinates and weights per representative
phase.

Phase_bits = ⌈loд2(#_phases) ∗ len(phase_seq)⌉ (1)

To calculate the bits that are needed to produce the proxy
trace for each workload, we dump all the labels from the
clustering result as well as all the Hough lines detected,
each of which is a 5 tuple of coordinates in the heatmap

space and a weight value. The phase information can be
represented using Phase_bits (Eq. 1). We then apply a variety
of compression techniques to compress the dumped files
and estimate the bits of information by measuring the size
of the compressed file. We push all of the information that
is to be measured into a single file to ensure that no side
information is accidentally shared between the two halves
of the system. We discuss the breakdown effects of each
compression technique in Section 5.4.

5.2 Trace selection
Rather than working on the traces in their entirety, for each
workload, we evaluate from a large SimPoint [45] trace of
the most representative region of 100M instructions, which
results in a variable length of address traces from 30M to
70M accesses for different workloads. We use benchmark
subsetting suggestions [29] to reduce the space of evaluation
to a more manageable level, although our results are limited
to 6 of the 9 suggested due to errors getting the benchmarks
running. Results from all benchmarks run are considered and
the optimal (in terms of bits leaked and accuracy of miss rate)
points at two different levels of bit transmission budget are
shown in Table 1. The time overhead for our pipeline is also
presented in Table 1. Although it varies between different
workloads, we expect this overhead to grow sub-linearly as
the trace becomes longer for any single workload. The time
overhead is linearly correlated with the number of distinctive
phases in the trace and the number of phases tends to grow
very slowly since phases often repeat themselves.

5.3 Measuring utility
As we concentrate on cache behavior as a target for initial
evaluation we use cache miss rates pre-wringing and post-
wringing to evaluate how useful the resulting trace is. The
collected address traces are simulated with different cache
configurations using DineroIV [26]. We use 6 cache con-
figurations in our experiments: direct-mapped and 4-way
associative combined with 3 different cache sizes (8k, 16k
and 32k), and measure their miss rates.
From Table 1, we observe that as the bits of information

leakage increase, the miss rate gets closer to the ground truth
miss rate, which confirms that, with more information going
through the wringing “hole”, the proxy trace we reconstruct
becomes more similar to the original trace in terms of struc-
ture. Some benchmarks such as sjenд and hmmer do not
benefit much from the extra bits, in terms of closeness to the
miss rate, as 10, 000 or even fewer bits are enough to accu-
rately capture their cache behavior, while others including
libquantum perform much better due to the fact that they
have a more complex structure which requires more bits to
encode.
Figure 7 compares the proxy heatmap generated for gcc

against the original. Our wrapped address space is of height
2048 (lines in the heatmap) and each “column” in the heatmap

corresponds to 10,000 memory accesses. The figure illus-
trates that our approach is able to capture all but the subtlest
patterns.

5.4 Comparison to existing compression and trace
generation techniques

We are not aware of any prior methods that have attempted
to bound the information leakage from generated traces.
While our approach to bounding draws from trace compres-
sion and synthetic trace generation techniques, we stand out
in at least the following ways: (a) we seek similar behavior
in our generated traces, rather than similar addresses, (b)
we allow unbounded priors from non-sensitive traces, (c)
our traces are lossy specifically in a way that it maintains
architectural utility, and (d) qualitatively, the target size of
the final “compressed” trace is far smaller than normally
considered. This last point, (d), is something that we can
quantify experimentally.
Specifically, we compare our method against a state-of-

the-art lossy compression and synthetic trace generation in
Figure 8. “ATC” is an open-source implementation of the
address trace compression framework [35], which supports
lossy compression over cache traces. We run both off-the-
shelf ATC, and a hand-tuned version that attempts to fur-
ther minimize the trace size while still decompressing into
useful traces. Although off-the-shelf ATC achieves good ac-
curacy, it requires up to tens of millions of bits to represent
the structure and data of the original trace in most cases.
Even the hand-tuned version, which adjusts the similarity
threshold and reduces the size of the unit of comparison,
does not change the result significantly. This is orders of
magnitude more than the number of bits transmitted in
our trace-wringing framework (note the base 10 log scale).
For synthetic trace generation, we use an open-source im-
plementation of the Chameleon framework [54]. The pro-
files/characterization of traces are quite large even after h5
compression due to the fact that a histogram of address reuse
is entirely captured in order to generate a similar-behaving
synthetic trace. “FP+RLE+BZ2”, our most aggressive post-
wringing compression technique, significantly reduces the
number of bits while maintaining good accuracy. This is
not to say that these and related approaches could never be
improved to be competitive on this new problem, but both
out of the box and with some careful tuning, they do not
appear to be currently.

5.5 Case study: AES attack
While it is impossible to say with certainty what could be
leaked in the resulting bits, it is worthwhile to examine
the technique practically in the context of a known attack.
Specifically, we choose to examine the trace to see if it is
possible to recover an AES key using known attacks. AES
attacks based on cache sets have been well-studied [40]; we
follow a similar process here.

Figure 7. Heatmap for the original gcc trace and the trace-wrung proxy generated for gcc trace from the wrapped address
space. Each pixel corresponds to one wrapped address at one time step. The darker the pixel, the more times that address is
accessed during that time step.

The vulnerable portion of an AES trace lies in the accesses
to the Rijndael substitution function (sbox). This is stored
as a table in memory. In the first round of encryption, the
offset into the table is the result of each byte of the key xor’d
with each byte of the plaintext. When the attacker chooses
or knows the plaintext, the offsets are of obvious impor-
tance — the ability to discover the table offsets directly leads
to discovery of the secret key. Because the post-wringing
trace consists of cache set indices, we limit the attack on the
original trace to cache sets only as well for a fair comparison.
The attack model is as follows. Assume the attacker has

chosen a uniformly random plaintext, and made N calls to
an AES encryption, where each call has 16 bytes of the plain-
text. The attacker can observe the resulting traces, either
pre- or post-wringing. The attacker prepares a table of 256
“candidate” values for each byte of the key. Then, for each key
byte, the attacker considers every address in the traces that
could potentially fall within the sbox table. Each of these
addresses corresponds to an sbox table offset, and, when
xor’d with the appropriate plaintext byte, yield a candidate
key byte. The corresponding entry of the candidate table is
incremented by one. When finished, the key byte with the
highest candidate score is used in the key guess.

The vast majority of addresses processed will not be sbox
accesses; however, because the plaintext is chosen to be
random, these will become uniform random noise. Only the
first-round sbox accesses always come out to the same value
when xor’d with the random plaintext: the correct key byte.
With enough traces, the signal corresponding to the correct
key will rise above the noise and be readily apparent. In our

attack, looking at full addresses, it took only 13 encryptions
to get all bits of the correct 16-byte key.

Since the post-wringing trace is a smaller space of bits, we
are unable to attack full addresses. Instead, we attack the bits
provided; this makes the attack very similar to the original
cache attack [40]. Attacking the first round of AES cannot
yield all the bits of each byte of the key, since the offset
within a given cache set is unknown. Attacking subsequent
rounds of AES can provide the rest of the bits, but requires
that the first round attack is successful. Therefore, showing
that the attacker is unable to succeed in attacking the first
round is sufficient to demonstrate that the attack fails.
We perform this attack on a set of traces collected from

runs of Tiny AES [1] with a random plaintext. We perform
the same attack pre- and post-wringing. In the pre-wringing
trace, we use only 12 bits of the address (the amount of
information contained in the post-wringing trace), masking
the lower three bits and the upper bits of the address.We note
that this trace was wrung with 8-byte cache lines specifically
to give advantage to the attacker and show the usefulness of
the approach; increasing the cache line size only makes the
attack more difficult. Pre-wringing, the attacker correctly
guesses the upper five bits of all 16 key-bytes after 1,838
encryptions. This is the maximal information that can be
learned in a first-round attack with 8-byte cache lines. Post-
wringing, the attack guesses wrong for all 16 bytes of the
key after 50,000 traces.

We performed an entropy calculation on the original traces
based on the distribution of addresses at each time step across
a number of traces. We see that ∼160 addresses have more

Table 1. Best miss rates observed for the benchmarks with three different bit-budgets of information leakage and time overhead
for trace-wringing followed by proxy trace generation. For each cache configuration 4 miss rates are reported. We report:
ground truth miss rate from the original trace, best miss rate using all hough lines, best miss-rate with 100k bits, and best
miss-rate with merely 10k bits. “-” means the most aggressive setting in our experiments requires more bits to construct the
proxy traces.

Benchmark Bit Budget Cache Configs. Time
8k,dm 8k,4w 16k,dm 16k,4w 32k,dm 32k,4w Wringing Decompression

дcc

Orig. 6.88% 3.91% 4.86% 2.79% 3.36% 2.11%

138.55s 123.37sFull 6.10% 3.98% 3.60% 1.27% 1.93% 0.48%
100k 4.82% 2.94% 2.81% 0.72% 1.40% 0.25%
10k - - - - - -

sjenд

Orig. 12.3% 5.01% 6.45% 2.19% 4.24% 0.64%

94.42s 128.08sFull 12.85% 10.16% 8.22% 3.74% 4.26% 0.64%
100k 12.85% 10.16% 8.22% 3.74% 4.26% 0.64%
10k 11.89% 7.78% 1.13% 4.39% 0.25% 2.25%

cactusADM

Orig. 8.29% 7.03% 5.44% 5.29% 2.09% 1.54%

209.94s 918.04sFull 9.35% 4.98% 5.21% 0.85% 2.08% 0.29%
100k 3.73% 0.49% 2.02% 0.14% 0.55% 0.12%
10k - - - - - -

milc

Orig. 7.99% 7.09% 7.68% 7.03% 7.35% 6.94%

336.41s 31.36sFull 7.73% 7.19% 7.11% 6.66% 5.93% 5.69%
100k 7.51% 7.25% 6.75% 6.44% 5.46% 5.44%
10k - - - - - -

hmmer

Orig. 27.8% 2.54% 26.8% 1.20% 17.0% 0.78%

151.79s 287.95sFull 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%
100k 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%
10k 23.6% 7.21% 20.53% 5.05% 10.31% 4.32%

libquantum

Orig. 16.3% 16.2% 16.2% 16.2% 16.2% 16.2%

57.73s 21.89sFull 17.31% 17.27% 14.99% 14.90% 12.10% 11.90%
100k 17.31% 17.27% 14.99% 14.90% 12.10% 11.90%
10k 74.46% 74.44% 69.33% 69.31% 59.31% 59.32%

than 5x the information content of the remaining addresses.
These higher information-content addresses correspond to
the sbox computations. Post wringing, all addresses have
uniform information content, i.e., there is no set of addresses
that is more influenced by the key than others.
Our wringing process was able to produce a new trace

with comparable cache miss rates. We received 0.0% (new
trace) against 0.9% (original trace) for the direct mapped
cache and 0% (both new trace and original trace) on the 4-
way associative caches while completely stopping our AES
cache attack.

6 Conclusion
The conflict between the need to share information (to pro-
vide more optimal performance) and hide information (for
privacy) is becoming increasingly fundamental in the com-
puter system fields. While addresses are one such type of

trace, one can certainly understand how related problems
exist with storage traces, cache coherence traffic, energy us-
age, user interaction data, and certainly location data. Clever,
yet complex, techniques have been developed to address cer-
tain anonymity problems in the past, yet the reality is that
they are often dependent on specific assumptions such as a
lack of prior information, statistical distributions governing
the data, or that number of queries can be tightly bounded.
While our wringing approach is very direct, that directness
also comes with clarity as to what it does and does not do. It
does not guarantee anything about how useful the resulting
trace will really be for optimization. However, it does trans-
form the problem of safe sharing into a measurable systems
problem subject to the myriad tools we have at disposal for
common-case optimization. Furthermore, it does provide a
strong and clear bound on the amount of useful information
given by the trace.

Figure 8. Breakdown of trace-wringing pipelines and com-
parison against state-of-the-art compression and synthetic
trace generation techniques in the bit-error space. The x-
axis represents number of bits transmitted, y-axis represents
the geometric-mean of error in miss rate. Per workload, we
mark the bit-error points for different techniques; being in
the lower-left is better. A packet contains information about
hough lines and labels. “FP” is fixed-point quantization on
hough lines, “RLE” is run-length encoding on labels, “H5”
is the HDF5 format compressed using h5py [12] for hough
lines. We use a general purpose compressor on our packets,
either Gzip,“GZ”, or Bzip2, “BZ2”. “GZ/ALL” and “GZ/HALF”
indicate Gzip on unquantized packets of either all or highly-
weighted half of the hough lines. “ATC” is the off-the-shelf
lossy compression [35], “ATC_TUNED” is hand-tuned to
minimize information transferred. “CHAMELEON’ is from
the open source implementation of Chameleon [53]

The technique we present here is a proof-of-concept and
we make no claims that it captures anywhere near the true
minimum leakage to utility tradeoff. There is much work left
to be done to bring the number of bits shared compared to the
accuracy lost down into a more appealing tradeoff. 10, 000
bits, let alone 100, 000 bits, is still a tremendous amount of
information to leak and it is far from certain that it can never
be used for anything malicious. From a security standpoint,
we must do far better than that. Despite this gap, we feel
that even these results are better than the other approaches,
which fall to the extreme of either leaking almost no informa-
tion with limited connection to reality or direct connection
to observed behavior and completely unbounded informa-
tion sharing. We establish this experimentally in Section 5
by comparing against existing approaches, which while de-
signed for different purposes, do functionally provide a bit-
reduced trace with diminished fidelity. The specific set of
techniques we propose push the traces to much lower levels
of leakage than these other past works can achieve with only

slight losses in accuracy. This is perhaps not surprising as
the levels of “compression” one needs to achieve to store a
trace efficiently on disk are far less than that needed to have
confidence there is little sensitive information retained.

Looking forward, with this new approach we can build on
years of community experience dealing with address traces
and encode common patterns in a general way. In many
important applications, striding memory behavior is an im-
portant component and we believe we are the first to connect
the address trace analysis problem with the Hough trans-
form. The resulting analysis is surprisingly robust to noise
and can capture general striding behavior. While this ap-
proach is effective for the memory problems we examined,
there is no shortage of opportunity to build on the tech-
niques we lay out to create more robust and higher quality
trace wringing systems. Fully leveraging the best synthetic
trace, trace compression, and statistical modeling techniques
and understanding what they each bring to the problem is
one next step. Bringing the full algorithmic power provided
by the fact that any public trace data can be leveraged in
the compression is also very promising. This opportunity
is particular interesting as it sits outside of any past lossy
compression or synthetic trace scheme’s ability to exploit
(i.e. minimizing total data transferred is different than mini-
mizing sensitive data transferred). Further forward, we see
a set of access behaviors (uniform random, stride, etc) that
might form a set of “basis functions” which then are com-
posed to describe a set of traces. Finding the best set of basis
functions and how to optimally compose them to form good
proxy traces can lead to many interesting follow-on works. It
remains to be seen just how small of a footprint is achievable,
but we believe there are orders of magnitude of improve-
ment left to be had. Luckily, because the data to train such
a wringing approach is generated completely by machine,
this is an area where there is a great opportunity to gather a
great deal of data to inform our models. The exploration of
the hyper-parameter space of the wringing process can be
automated using existing frameworks (e.g., [13]). In the end,
this paper is a stepping stone to more general methods for
trace sharing and we hope the clear metrics for success (e.g.
share as few bits as possible) prompts further discussion and
effort by the community.

Acknowledgments
The authors would like to thank Chandra Krintz, Lieven
Eeckhout, and the anonymous reviewers for their valuable
feedback. This material is based upon work supported by
the National Science Foundation under Grants No. 1763699,
1740352, 1730309, 1717779, 1563935.

References
[1] 2014. Tiny AES in C. https://github.com/kokke/tiny-AES-c
[2] Erik Berg and ErikHagersten. 2004. StatCache: a probabilistic approach

to efficient and accurate data locality analysis. In Performance Analysis

https://github.com/kokke/tiny-AES-c

of Systems and Software, 2004 IEEE International Symposium on-ISPASS.
IEEE, 20–27.

[3] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. 2017. Plausible
deniability for privacy-preserving data synthesis. Proceedings of the
VLDB Endowment 10, 5 (2017), 481–492.

[4] Martin Burtscher. 2004. VPC3: A fast and effective trace-compression
algorithm. InACM SIGMETRICS Performance Evaluation Review, Vol. 32.
ACM, 167–176.

[5] Martin Burtscher. 2006. TCgen 2.0: a tool to automatically generate
lossless trace compressors. ACM SIGARCH Computer Architecture
News 34, 3 (2006), 1–8.

[6] Martin Burtscher, Ilya Ganusov, Sandra J Jackson, Jian Ke, Paruj Ratana-
worabhan, and Nana B Sam. 2005. The VPC trace-compression algo-
rithms. IEEE Trans. Comput. 54, 11 (2005), 1329–1344.

[7] Martin Burtscher and Metha Jeeradit. 2003. Compressing extended
program traces using value predictors. In Parallel Architectures and
Compilation Techniques, 2003. PACT 2003. Proceedings. 12th Interna-
tional Conference on. IEEE, 159–169.

[8] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. 2008. Better
bug reporting with better privacy. ACM SIGARCH Computer Architec-
ture News 36, 1 (2008), 319–328.

[9] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha
Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. 2010.
Taming hardware event samples for FDO compilation. In Proceedings of
the 8th annual IEEE/ACM international symposium on Code generation
and optimization. ACM, 42–52.

[10] I-Cheng K Chen, John T Coffey, and Trevor N Mudge. 1996. Analysis
of branch prediction via data compression. ACM SIGPLAN Notices 31,
9 (1996), 128–137.

[11] Trishul M Chilimbi. 2001. Efficient representations and abstractions for
quantifying and exploiting data reference locality. In ACM SIGPLAN
Notices, Vol. 36. ACM, 191–202.

[12] Andrew Collette. 2013. Python and HDF5: Unlocking Scientific Data. "
O’Reilly Media, Inc.".

[13] W. Cui, Y. Ding, D. Dangwal, A. Holmes, J. McMahan, A. Javadi-Abhari,
G. Tzimpragos, F. Chong, and T. Sherwood. 2018. Charm: A Language
for Closed-Form High-Level Architecture Modeling. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA).
152–165. https://doi.org/10.1109/ISCA.2018.00023

[14] Ashutosh S Dhodapkar and James E Smith. 2003. Comparing program
phase detection techniques. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society,
217.

[15] Richard O Duda and Peter E Hart. 1972. Use of the Hough transforma-
tion to detect lines and curves in pictures. Commun. ACM 15, 1 (1972),
11–15.

[16] Cynthia Dwork. 2008. Differential privacy: A survey of results. In
International Conference on Theory and Applications of Models of Com-
putation. Springer, 1–19.

[17] Lieven Eeckhout, Koen De Bosschere, and Henk Neefs. 2000. Perfor-
mance analysis through synthetic trace generation. In Performance
Analysis of Systems and Software, 2000. ISPASS. 2000 IEEE International
Symposium on. IEEE, 1–6.

[18] EN Elnozahy. 1999. Address trace compression through loop detection
and reduction. In ACM SIGMETRICS Performance Evaluation Review,
Vol. 27. ACM, 214–215.

[19] Domenico Ferrari. 1981. A generative model of working set dynamics.
In ACM SIGMETRICS Performance Evaluation Review, Vol. 10. ACM,
52–57.

[20] Domenico Ferrari. 1984. On the foundations of artificial workload design.
Vol. 12. ACM.

[21] C Galamhos, Jose Matas, and Josef Kittler. 1999. Progressive proba-
bilistic Hough transform for line detection. In Computer Vision and
Pattern Recognition, 1999. IEEE Computer Society Conference on., Vol. 1.

IEEE, 554–560.
[22] Xiaofeng Gao, Allan Snavely, and Larry Carter. 2006. Path grammar

guided trace compression and trace approximation. In High Perfor-
mance Distributed Computing, 2006 15th IEEE International Symposium
on. IEEE, 57–68.

[23] Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. 2011.
Differential Privacy Under Fire.. In USENIX Security Symposium.

[24] O Hammami. 1995. Taking into account access patterns irregularity
when compressing address traces. In Southeastcon’95. Visualize the
Future., Proceedings., IEEE. IEEE, 74–77.

[25] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A
k-means clustering algorithm. Journal of the Royal Statistical Society.
Series C (Applied Statistics) 28, 1 (1979), 100–108.

[26] Mark D Hill. 1998. DINERO IV trace-driven uniprocessor cache simu-
lator. http://www. cs. wisc. edu/˜ markhill (1998).

[27] Eric E Johnson and Jiheng Ha. 1994. Lossless address trace compres-
sion for reducing file size and access time. In International Phoenix
Conference on Computers and Communications, IEEE Press, Los Alamitos,
CA, USA. 213–219.

[28] Ajay Joshi, Lieven Eeckhout, and Lizy John. 2008. The return of
synthetic benchmarks. In 2008 SPEC Benchmark Workshop. 1–11.

[29] J Yi Joshua, Resit Sendag, Lieven Eeckhout, Ajay Joshi, David J Lilja,
and Lizy K John. 2006. Evaluating benchmark subsetting approaches.
InWorkload Characterization, 2006 IEEE International Symposium on.
IEEE, 93–104.

[30] James R Larus. 1999. Whole program paths. In ACM SIGPLAN Notices,
Vol. 34. ACM, 259–269.

[31] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-
closeness: Privacy beyond k-anonymity and l-diversity. In Data Engi-
neering, 2007. ICDE 2007. IEEE 23rd International Conference on. IEEE,
106–115.

[32] Yun Li, Jian Ren, and Jie Wu. 2012. Quantitative measurement and
design of source-location privacy schemes for wireless sensor net-
works. IEEE Transactions on Parallel and Distributed Systems 23, 7
(2012), 1302–1311.

[33] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthu-
ramakrishnan Venkitasubramaniam. 2006. l-diversity: Privacy beyond
k-anonymity. In Data Engineering, 2006. ICDE’06. Proceedings of the
22nd International Conference on. IEEE, 24–24.

[34] Stephen McCamant and Michael D Ernst. 2008. Quantitative informa-
tion flow as network flow capacity. In ACM SIGPLAN Notices, Vol. 43.
ACM, 193–205.

[35] Pierre Michaud. 2009. Online compression of cache-filtered address
traces. In Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on. IEEE, 185–194.

[36] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-
anonymization of large sparse datasets. In Security and Privacy, 2008.
SP 2008. IEEE Symposium on. IEEE, 111–125.

[37] Craig G Nevill-Manning and Ian H Witten. 1997. Linear-time, in-
cremental hierarchy inference for compression. In Data Compression
Conference, 1997. DCC’97. Proceedings. IEEE, 3–11.

[38] Catherine Mills Olschanowsky, Mustafa M Tikir, Laura Carrington,
and Allan Snavely. 2009. PSnAP: Accurate Synthetic Address Streams
through Memory Profiles.. In LCPC. Springer, 353–367.

[39] Mark Oskin, Frederic T Chong, and Matthew Farrens. 2000. HLS:
Combining statistical and symbolic simulation to guide microprocessor
designs. Vol. 28. ACM.

[40] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks
and countermeasures: the case of AES. In CryptographersâĂŹ Track at
the RSA Conference. Springer, 1–20.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Ma-
chine learning in Python. Journal of machine learning research 12, Oct

https://doi.org/10.1109/ISCA.2018.00023

(2011), 2825–2830.
[42] Juan Rodriguez-Rosell. 1976. Empirical data reference behavior in data

base systems. Computer 9, 11 (1976), 9–13.
[43] Andreas Sembrant, David Black-Schaffer, and Erik Hagersten. 2012.

Phase guided profiling for fast cache modeling. In Proceedings of the
Tenth International Symposium on Code Generation and Optimization.
ACM, 175–185.

[44] Xipeng Shen, Yutao Zhong, and Chen Ding. 2004. Locality phase
prediction. ACM SIGPLAN Notices 39, 11 (2004), 165–176.

[45] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
2002. Automatically characterizing large scale program behavior. ACM
SIGARCH Computer Architecture News 30, 5 (2002), 45–57.

[46] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and
Brad Calder. 2003. Discovering and exploiting program phases. IEEE
micro 23, 6 (2003), 84–93.

[47] Latanya Sweeney. 2000. Simple demographics often identify people
uniquely. Health (San Francisco) 671 (2000), 1–34.

[48] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 10, 05 (2002), 557–570.

[49] Dominique Thiebaut, Joel L. Wolf, and Harold S. Stone. 1992. Synthetic
traces for trace-driven simulation of cachememories. IEEE Transactions
on computers 41, 4 (1992), 388–410.

[50] Mustafa M Tikir, Michael Laurenzano, Laura Carrington, and Al-
lan Snavely. 2006. PMaC Binary Instrumentation Library for Pow-
erPC/AIX. In Workshop on Binary Instrumentation and Applications.

[51] New York Times. 2006. A Face Is Exposed for AOL Searcher No.
4417749. https://www.nytimes.com/2006/08/09/technology/09aol.
html

[52] Luk Van Ertvelde and Lieven Eeckhout. 2008. Dispersing proprietary
applications as benchmarks through code mutation. In ACM SIGARCH
Computer Architecture News, Vol. 36. ACM, 201–210.

[53] JonathanWeinberg and Allan Snavely. 2008. Chameleon: A framework
for observing, understanding, and imitating the memory behavior of
applications. In PARA08: Workshop on State-of-the-Art in Scientific and
Parallel Computing, Trondheim, Norway.

[54] JonathanWeinberg and Allan Edward Snavely. 2008. Accurate memory
signatures and synthetic address traces for HPC applications. In Pro-
ceedings of the 22nd annual international conference on Supercomputing.
ACM, 36–45.

https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.nytimes.com/2006/08/09/technology/09aol.html

	Abstract
	1 Introduction
	2 Wringing a trace
	3 Related work
	3.1 Trace compression and approximation
	3.2 Characterizing program behavior
	3.3 Synthetic trace generation
	3.4 Preserving data privacy

	4 A signal processing approach to wringing
	4.1 Phase detection
	4.2 Decomposing with Hough transforms
	4.3 Proxy trace generation

	5 Evaluation
	5.1 Measuring bits
	5.2 Trace selection
	5.3 Measuring utility
	5.4 Comparison to existing compression and trace generation techniques
	5.5 Case study: AES attack

	6 Conclusion
	Acknowledgments
	References

