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Abstract

As deep neural networks (DNNs) continue their reach into a

wide range of application domains, the neural network ar-

chitecture of DNN models becomes an increasingly sensitive

subject, due to either intellectual property protection or risks

of adversarial attacks. Previous studies explore to leverage

architecture-level events disposed in hardware platforms to

extract the model architecture information. They pose the

following limitations: requiring a priori knowledge of victim

models, lacking in robustness and generality, or obtaining

incomplete information of the victim model architecture.

Our paper proposes DeepSniffer, a learning-based model

extraction framework to obtain the complete model architec-

ture information without any prior knowledge of the victim

model. It is robust to architectural and system noises intro-

duced by the complex memory hierarchy and diverse run-

time system optimizations. The basic idea of DeepSniffer is to

learn the relation between extracted architectural hints (e.g.,

volumes of memory reads/writes obtained by side-channel

or bus snooping attacks) and model internal architectures.

Taking GPU platforms as a showcase, DeepSniffer conducts

model extraction by learning both the architecture-level exe-

cution features of kernels and the inter-layer temporal asso-

ciation information introduced by the common practice of

DNN design. We demonstrate that DeepSniffer works exper-

imentally in the context of an off-the-shelf Nvidia GPU plat-

form running a variety of DNNmodels. The extractedmodels

are directly helpful to the attempting of crafting adversar-

ial inputs. Our experimental results show that DeepSniffer

achieves a high accuracy of model extraction and thus im-

proves the adversarial attack success rate from 14.6%∼25.5%
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(without network architecture knowledge) to 75.9% (with

extracted network architecture). The DeepSniffer project has

been released in Github1.
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1 Introduction

Machine learning approaches, especially deep neural net-

works (DNNs), are transforming a wide range of application

domains, such as computer vision [24, 45], speech recogni-

tion [61], and language processing [10, 48, 56]. Computer

vision, for example, has seen commercial adoption of DNNs

with impacts across the automotive industry, business ser-

vice, consumer market, agriculture, government sector, and

so forth [41]. Such maturing DNN technologies start to

power existing industries.

DNN model characteristics, especially, model architec-

tures (e.g., number of layers, layer connection topology, layer

types, and the layer dimension sizes) are critical informa-

tion for deep learning applications. By extracting such infor-

mation, attackers can not only counterfeit the intellectual

property of the DNN design, but also conduct more efficient

adversarial attacks towards the DNN system [28, 44]. Pre-

vious studies have confirmed that the details of the model

architecture information ultimately affect the success rate of

1https://github.com/xinghu7788/DeepSniffer
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adversarial attacks that induce DNNs to misclassify a well-

recognized output. The vulnerability to adversarial examples

becomes one of the major risks for applying DNNs in safety-

critical scenarios. Therefore, model extraction attacks, which

reveal the internal model characteristics information, be-

come an important attack model in DNN systems [44, 55, 57].

Previous algorithm-level studies mainly conduct model ex-

traction through detecting the decision boundary of the vic-

tim black-box DNN models [44]. However, such approaches

demand significant computational resources and huge time

overhead: given the pre-knowledge of the total number of lay-

ers and their type information, it still takes 40 GPU-days to

search a 7-layer network architecture with a simple chained

topology [44]. Even worse, this approach cannot accom-

modate state-of-the-art DNNs with complex topology, e.g.,

DenseNet [20] and ResNet [17], due to the enlarged search

space of possible network architectures.

Due to the limitation of the algorithm-level model extrac-

tion, some studies begin to explore architecture-level events

to extract model-related information. These architecture-

level events disposed in hardware platforms during the execu-

tion of DNN models are referred to as the architectural hints

in the rest of this paper. For instance, Insecure Render [32]

leverages a regression model to learn the number of input

neurons of the Rodinia backpropagation algorithm with per-

formance counter data on GPU. Cache Telepathy [62] focuses

on a specific implementation of DNN on CPU, i.e., GEMM,

and builds an analytical model to estimate the DNN layer

dimension with the number of GEMM calls and their argu-

ments. ReverseCNN [18] targets DNN hardware accelerators

and calculates the possible dimension sizes with the assump-

tion that full feature map and weight data trace are visible

across the memory bus.

Although previous studies provide a great leap as the

initial attempts to extract DNN model information with

architectural hints, they pose the following limitations: 1)

Requiring a priori model knowledge: They often work

with a priori knowledge of the victim models, such as layer

type or DNN architecture [32]. 2) Lack of generality and

robustness: They rely on detailed (ad hoc) characteriza-

tion and analytical modeling of dimension sizes and then

infer the layer type or layer topology based on predicted

dimension sizes. They may work under some specific im-

plementations, but not robust and generally applicable to

common scenarios with diverse runtime system optimiza-

tion and architecture-level noises [18, 62]. 3) Incomplete

model extraction: Their extraction methods obtain incom-

plete information about the DNN model architectures (i.e.,

either dimension sizes or neuron number). Thus, in terms of

effectiveness evaluation, there is no direct evidence to show

the relation between extracted information and end-to-end

attack effectiveness.

In this work, we propose DeepSniffer, a framework to

obtain the complete model architecture with no priori

knowledge of the victim model and it is robust to system-

level and architecture-level noises. The complete model ar-

chitecture extraction includes the following steps: run-time

layer sequence identification, layer topology reconstruction,

and dimension size estimation. Among these steps, the run-

time layer sequence identification is the most fundamental

one and is missing in previous work [18, 32, 62], since they

either take the layer type or neural network architecture as

known information or impractically assume that the single-

layer architecture hints can be easily distinguished. We map

the run-time layer sequence identification to a sequence-to-

sequence prediction problem and address it using learning-

based approaches. One of the most important differences

that DeepSniffer distinguishes from previous work is that

it decouples layer sequence prediction from dimension size

prediction, thus being more generally applicable and robust

to noises.

We further propose and experimentally demonstrate end-

to-end attacks in the context of an off-the-shelf Nvidia GPU

platform with full system stacks, which urges the demand

to design secure architecture and system to ensure the DNN

security. In summary, we make the following contributions:

• We observe that complex system stack, run-time dy-

namics, and optimized memory hierarchy systems in-

troduce both system-level and architecture-level noises

in architectural hints. Previous studies are not feasible

enough to handle such issues.

• We map the fundamental step of model extraction, i.e,

run-time layer sequence identification, to a sequence-

to-sequence prediction problem and adopt learning-

based approaches to conduct accurate and robust run-

time layer sequence prediction.

• We showcase the effectiveness of DeepSniffer to con-

duct model extraction with two sets of architectural

hints under two attack scenarios. We experimentally

demonstrate our methodologies on an off-the-shelf

GPU platform. With the easy-to-get off-chip bus com-

munication information, the extracted network archi-

tectures exhibit very small differences from those of

the victim DNN models.

• We conduct an end-to-end attack to show that the ex-

tracted neural network architectures boost adversarial

attack effectiveness, improving the attack success rate

from 14.6%∼25.5% to 75.9% compared to cases without

neural network architecture knowledge. DeepSniffer

project has been released in the Github.

2 Background and Challenges

In this section, we introduce the background of DNN

model characteristics and existing model extraction tech-

niques at architectural perspective.
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2.1 Model Characteristics

Model extraction attacks aim to explore the model charac-

teristics of DNNs for establishing a near-equivalent DNN

model [55], which is the initial step for further attacks. The

model characteristics that an adversary may extract include

the following: (1) network architecture consists of layer

depth and types, connection topologies between layers, and

layer dimensions (including the number of channels, fea-

ture map size, weight kernel size, stride, and padding in each

layer). (2) parameters include the weights, biases, and Batch

Normalization (BN) parameters. They are updated during the

stochastic gradient descent (SGD) in the training process. (3)

hyper-parameters refer to the configurations during train-

ing, including the learning rate, regularization factors, and

momentum coefficients, etc.

Model extraction is the initial step for further adversarial

attacks. With the extracted model characteristics, the adver-

sary is able to build the substitute models for adversarial

examples generation and then use these examples to attack

the victim black-box model [2, 14, 38, 50]. Among all of the

model characteristics, the network architecture is the most

fundamental one for DNN security. Previous studies demon-

strate that with the knowledge of the network architecture,

the adversary is able to explore the extraction of model pa-

rameters, hyper-parameters, and even training data [55, 57].

In addition, previous work [28, 44] also observe that the

network architecture similarity between the substitute and

victim models plays a very important role for the success of

adversarial attacks. Hence, this work mainly focuses on the

neural network architecture extraction.

2.2 Model Extraction Techniques

Due to the importance of the neural network architecture,

some initial studies are proposed to extract model architec-

ture from an architectural perspective [18, 32, 62]. Insecure

Render [32] infers the neuron number with GPU perfor-

mance counter information for the specific algorithm (Ro-

dinia Backpropagation) with the knowledge of the victim

model. ReverseCNN [18] and CacheTelepathy [62] analyti-

cally compute the potential dimension spaces based on ar-

chitectural hints in DNN accelerator and CPU cache. Then,

they infer the layer type and topology based on the predicted

dimension sizes.

These studies pose the following limitations: 1) Require

knowledge or information of the victim model [32], which

raises the difficulty for common use. 2) Rely on accurate

dimension estimation for layer type and topology predic-

tion, which is neither robust nor general applicable. Rever-

seCNN [18] assumes that all the feature maps and weight

data are visible in the memory bus, which is not true in

CPU/GPU platformswith complex system stack. Cache Telepa-

thy [62] considers the scenario that all the Conv and FC

layers are implemented with basic GEMMs (general matrix

multiply). In GPU platforms, such an assumption is not prac-

tical considering there are many diverse implementations

for Conv layers, such as Winograd or FFT-based approaches.

In addition, accurate dimension estimation is extremely chal-

lenging in general purpose platforms with the existence of

both system-level and architecture-level noises (more details

in Section 4). 3) Extract imprecise or incomplete model ar-

chitecture and it lacks evidence to show the effectiveness

of such extracted information. Insecure Render [32] merely

infers the neuron number. ReverseCNN and CacheTelepathy

rely on the dimension sizes to predict the architecture and

only obtain the potential network architecture candidate

space. With the increasing complexity and depth of victim

models, such candidate space may get too large for effective

attacks.

To this end, we propose DeepSniffer, a learning-based

framework to obtain the model architecture with no pri-

ori knowledge of the victim model. It decouples the layer

sequence identification and topology reconstruction from

dimension size prediction, thus being more robust to both

system-level and architecture-level noises and applicable to

more common cases. We also experimentally conduct an end-

to-end attack to show the model extraction effectiveness.

3 Attack Model and Arch-Hints

The methodology of DeepSniffer can leverage available ar-

chitectural hints to conduct model extraction. In this work,

we showcase the adoption of DeepSniffer in GPU platforms.

The threat model of this showcase is as shown in Figure 1,

which mainly focuses on edge security where the adversary

is able to physically access the victim platform. Specifically,

the attacker can physically access one GPU platform encap-

sulating a victim DNN model for model extraction. Such a

physical access based attack is practical and harmful, because

the adversary is able to attack all the other devices sharing

the same DNN model with the extracted model information

from one device. Note that, we consider a threat model in

which the adversary does not have any knowledge about the

victimmodels including what family the DNNmodels belong

to, what software code those models are implemented with,

or any other information about the operation of the device

under attack that is not directly exposed through externally

accessible connections. The extraction attack is fully passive

and only has the ability to observe architectural side-channel

information over time.

To understand what architectural hints can be obtained in

the hardware platforms, we first illustrate the overview of

commonly-used GPU platforms in Figure 1b [42]. The CPU

and GPU are connected by the PCIe bus, and the host and

device memories are attached to the CPU and GPU through

DDR and GDDR memory buses, respectively. This architec-

ture is widely used in many real industrial products, includ-

ing most of the existing L3 autopilot systems [53, 58].
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We consider the following two attack scenarios according

to the obtained architectural hints. Table 1 summarizes the

available architectural hints and the extracted DNN model

types under these two scenarios:

1) Scenario-1 (Side-channel attack): Previous studies show

electromagnetic (EM) emanations can easily obtain the off-

chip events [6] and even perform memory profiling [13].

Therefore, we can obtain the read and write memory access

volume (Rv ,Wv ) by EM side-channel attacks. The kernel

execution time (ExeLat ) can be obtained either by EM side-

channel attacks on interconnections between host and GPU

or co-locating CUDA spy [32]. Under such a attack scenario,

DeepSniffer is able to reconstruct DNN models with simple

chained topology.

2) Scenario-2 (Bus snooping attack): The adversary pas-

sively monitors the memory bus and PCIe events. By observ-

ing the memory access trace through the GDDRmemory bus,

the adversary obtains the kernel read/write access volume

(Rv /Wv ) and memory address traces. Since there are control

messages passing through the PCIe bus when a kernel is

launched and completed, the adversary can determine the

kernel execution latency (ExeLat ) by monitoring the time

between kernel launching and completing. Under this attack

scenario, DeepSniffer is able to reconstruct DNN models

with complex topology, as presented in Section 5.2.

Bus snooping is a well understood, practical, and low-cost

attack that has been widely demonstrated [1, 5, 19, 21]; some

mature prototypes and toolkits have already been developed,

such as HMTT-v4 [1]. We assume that the adversary cannot

access the data passing through buses, can only access the

addresses, and thus the adversary described above can work

even when data is encrypted. The address snooping is also

much easier than the data snooping because of its lower

frequency in GDDR5.

Snooped Bus Info

Device 
Memory

CPU GPU
PCIE GDDR5

(a)

Model

Attacker

Hardware Platform

Network Architecture of the Victim model
(b)

Figure 1. Illustration of the attack model. (a) Hack-one,

attack-all-others with the extracted model. (b) GPU platform

overview.

Table 1. Available architectural hints.

Available Architectural Hints Victim Model

Scenario-1 ExeLat , Rv ,Wv Chained DNN

Scenario-2 ExeLat , Rv ,Wv , mem address trace Complex DNN

4 Observation and Design Overview

Understanding the transformation from computational graphs

of DNN models to architectural hints is the initial step to
learn how DeepSniffer works. In the following, we first

present the workflow of DNN system stack dealing with

a DNN model inference, which transforms the DNN compu-

tational graphs to architectural hints. We then present our

observations about the available architectural hints when

executing this flow. Motivated by these observations, we

finally present the design overview of DeepSniffer.

DNN System Stack Noises: The detailed workflow is

shown in Figure 2a. The computational graph of a DNN

model is processed by the deep learning framework, hard-

ware primitive libraries, and hardware platform. First, the

deep learning framework optimizes the network architecture

of the DNN model to form a framework-level computational

graph of layers that is a representation of a composite func-

tion as a graph of connected layer operations. The framework

then transforms this high-level computational graph abstrac-

tion to hardware primitives of run-time layer execution se-

quence. Then, the run-time hardware primitive libraries,

such as cuDNN library [36], launch the well-optimized ker-

nel sequence according to the layer type. Finally, such kernel

sequences are executed on the hardware platform, which

exhibit architectural hints, including the memory access pat-

tern and the kernel execution latency.

It is challenging to recover the model architecture based

on kernel sequences of architectural hints, because of the

existence of architectural and system noises. Architectural

noise: The comprehensive memory system optimization,

such as the shuffling address mapping and complex mem-

ory hierarchy, raises the difficulty to obtain and identify the

complete memory traces for accurate dimension size estima-

tion. System noise: System run-time dynamics introduces

the noises to architectural hint sequence in the further step.

DNN layers are transformed into GPU-kernels dynamically

during run-time, with various implementations (e.g. Wino-

grad and FFT). The dynamic, not one-to-one correspondence

mapping between layers and kernels makes it difficult to

even figure out the number of layers and layer boundary in

a kernel sequence, not to mention the corresponding layer

dimension size.

Observations: To analyze the influence of such dynamics,

we perform experiments on an off-the-shelf GPU platform

with PyTorch [40] and cuDNN [36]. Figure 2b shows the

transformations from the layer sequence of DNN models to

the run-time kernel sequence, taking the VGG and Inception

as illustrative examples. We have the following two observa-

tions. OB-1): Run-time kernel implementations vary across

different models and even across time for the same model.

For example, in the run-time kernel sequence of Figure 2b,

the blue bars represent Conv kernels. The boxed two sets

of Conv kernels in the VGG kernel sequence are different

from each other with different implementions. OB-2): The

kernel sequences of different layers have a static execution

order related to the original computational graph of a DNN

model. Such a characteristic exists in different DNN mod-

els with either a chained topology (e.g., VGG) or a complex
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Figure 2. (a) Computational graph transformations through DNN system stack. (b) System noise during run-time layer

sequence to kernel sequence transformations. (c) DeepSniffer overview.

topology (e.g., Inception). For instance, the highlighted In-

ception block in Figure 2b has 8 layer operations with branch

topology. It is observed that the kernel sequence of every

branch is executed in order when running on the GPU plat-

form. Hence, such simple scheduling method of run-time

layer sequence provide the opportunity to extract the victim

model architecture.

Design Overview: The design overview of DeepSniffer

is shown in Figure 2c. DeepSniffer proposes a run-time layer

sequence identification methodology which learns the single

kernel feature of architectural hints during kernel execution

and inter-kernel/layer context probability for higher predic-

tion accuracy. With the predicted layer sequence, DeepSniff

then conducts the layer topology reconstruction and dimen-

sion size estimation to get the complete DNN architecture.

As the most fundamental step, run-time layer sequence

identification translates the kernel-grained architectural hint

sequence back to run-time layer sequence. Based on the

observation that it can be mapped to a typical sequence-to-

sequence translation problem, we propose a run-time layer

sequence identification methodology based on deep learning

techniques which learns both the single kernel feature and

inter-kernel/layer context association for high prediction

accuracy. Unlike previous work [18, 62], the run-time layer

sequence prediction does not rely on the exact calculation

of the dimension size parameters and is hence more robust

and generally applicable.

Layer topology reconstruction is conducted based on mon-

itoring the read-after-write (RAW) memory access pattern

under the bus snooping attack scenario. To note, suchmethod-

ology only needs partial memory traces for layer dependency

analysis instead of the complete memory trace, which is

much more practical than ReverseCNN [18].

After the first two steps, the skeleton of the DNN architec-

ture is obtained. In observing that the ReLU kernels usually

exhibit very large read cache misses, we estimate the dimen-

sion sizes based on ReLU read volume. The dimension size

prediction is not precise in our work, but we take the dimen-

sion size prediction as a less important step than the other

two and showcase a highly effective end-to-end adversarial

attack with imprecise dimension sizes.

5 DeepSniffer Design

This section introduces the three steps of model extraction

in DeepSniffer: run-time layer sequence identification, layer

topology reconstruction, and dimension size estimation, as

summarized in Figure 2c.

5.1 Run-time Layer Sequence Identification

After comprehensively investigating modern DNN models,

we consider the following layers in this work: Conv (con-

volution), FC (fully-connected), BN (batch normalization),

ReLU (rectified linear unit), Pool (pooling), Add, and Con-

cat (concatenation), because most of the state-of-art neural

network architectures can be represented by these basic lay-

ers [17, 45, 49, 52, 63, 64]. Note that it is easy to integrate

other layers into DeepSniffer if necessary.

5.1.1 Problem Formalization

Formally, the run-time layer sequence identification problem

can be described as follows: We obtain the architectural hint

vectors of kernel sequence X with temporal length of T as

an input. At each time step t , kernel feature Xt (0 ≤ t < T )

can be described as a multiple-dimension tuple of architec-

tural hints. Note that this tuple can be extended if the attack

scenarios expose more architectural hints. The label space is

a set of layer sequences comprised of all typical layers. The

goal is to train a layer sequence identifier h to predict the

run-time layer sequence (L) having the minimal distance to

the ground-truth layer sequence (L∗).

The run-time layer sequence identification involves two

internal correlation models: kernel model and layer-sequence

model. The kernel model correlates the relationship between

the architectural hints and the kernel type. The layer sequence

model correlates the probabilistic distribution between the

layers. We observe that the process of predicting the run-

time layer sequence is similar to that of the speech recogni-

tion, as shown in Figure 3, which also involves two parts: an

acoustic model converting acoustic signals to phonemes and
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Sequence Searching

(a)  (b)  

Figure 3. Context-aware layer sequence identification. (a) Identification flow (map the layer sequence identification to a

speech recognition problem); (b) CTC decoder searches the sequence with highest probability.

a language model computing sequence probabilistic distri-

bution on the words or sentences. Therefore this problem

can be mapped to a speech recognition problem due to the

high similarity of these two problems. Based on this insight,

DeepSniffer leverages the auto speech recognition (ASR)

techniques [15, 16] as a tool for run-time layer sequence

identification. In the following subsection, we first show the

intrinsic features of these two models.

5.1.2 Kernel and Layer Features

Architectural Hints of A Single Kernel. During DNN

model execution, every layer conducts a series of kernel op-

eration(s) for the input data and delivers output results to

the next kernel(s), thus dataflow volume through kernels

and the computation complexity constitutes the major parts

of kernel features. As introduced in Section 3, we can deter-

mine the following architecture hints in Attack Scenario-1:

1) Kernel execution time (ExeLat); 2) The kernel read volume

(Rv) and write volume (Wv) through the memory bus; We

can also calculate: 3) Input/output data volume ratio (Iv/Ov)

of each kernel, where the output volume (Ov ) is equal to the

write volume of this kernel and input volume (Iv ) is equal

to the write volume of the previous executed kernel. For the

bus snooping attack scenario, we additionally use 4) kernel

dependency distance (kdd) to indicate the topology influ-

ence. kdd is defined as the maximum distance between this

kernel and the previous dependent kernels during the kernel

sequence execution, which is a metric to encode the layer

topology information in the kernel features. We regard this

tuple (ExeLat , Rv ,Wv , Iv/Ov , kdd) as one frame of kernel

features.

We observe that although the kernels of different layers

have their own features according to their functionality, it

is still challenging to predict which layer a kernel belongs

to, based on kernel model only. Our experiment results show

that, on average, 30% of kernels are identified incorrectly

with the executed features only and this error rate increases

drastically with deeper network architectures (above 50%).

The details of the experimental results are shown in Sec-

tion 6.2.5. In summary, it is challenging to accurately predict

layer sequence by considering single kernel architectural

features only.

Inter-Layer Sequence Context.We observe that the tem-

poral association of the layer sequence offers the opportunity

for the better model extraction. Specifically, given the previ-

ous layer, there is a non-uniform likelihood for the following

layer type, which is referred to as the inter-layer context. Such

temporal association information between layers (aka. layer

context) is inherently brought by the DNN model design phi-

losophy. For example, there is a small likelihood that an FC

layer follows a Conv layer in DNN models, because it does

not make sense to have two consecutive linear transforma-

tion layers. Recalling the design philosophy of some typical

NN models, e.g., VGG [45], ResNet [17], GoogleNet [49], and

DenseNet [20], there are some common empirical evidences

in building the network architecture: 1) the architecture con-

sists of several basic blocks iteratively connected, 2) the basic

blocks usually include linear operation first (Conv, FC), pos-

sibly following normalization to improve the convergence

(BN), then non-linear transformation (ReLU), then possible

down-sampling of the feature map (Pool), and possible tensor

reduction or merge (Add, Concat).

Although DNN architectures evolve rapidly, the basic de-

sign philosophy remains the same. Even for the state-of-

the-art autoML technical direction of Neural Architecture

Search (NAS), which uses the reinforcement learning search

method to optimize the DNN architecture, it also follows

the similar empirical experience [64]. Therefore, such layer

context generally exists in the network architecture design,

which can be leveraged for layer identification.

5.1.3 Context-aware Layer Sequence Identification

Based on the analysis of kernel and inter-layer features, we

adopt the Long Short-Term Memory (LSTM) model with

a Connectionist Temporal Classification (CTC) decoder to

build the context-aware layer sequence identifier h. The com-

bination of LSTMmodel and CTC decoder is commonly used

in the automatic speech recognition [15, 16]. As shown in

Figure 3, given the input sequenceX = (X1, ..,XT ), the object

function of training layer sequence identifierh is to minimize
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the CTC cost for a given target layer sequence L∗. The CTC

cost is calculated as follows:

cost (X ) = −loдP (L∗ |h (X )) (1)

where P (L∗ |h (X )) denotes the total probability of an emis-

sion result L∗ in the presence of input X .

An Example for Layer Sequence Prediction. The layer

sequence prediction workflow is simplified as shown in Fig-

ure 3a. For the (i)th frame of the kernel sequence, its kernel

architectural hint vectors are Xi . The layer sequence identi-

fier first conducts the kernel classification based on Xi and

obtains its probability distribution Ki of being Conv, ReLU,

BN, Pool, Concat, Add, and FC.

Ki = {Pconv , Pr elu , Pbn, Ppool , Pconcat , Padd , Pf c }i (2)

The layer sequence identifier then uses a sequence model

to estimate the conditional probability with the probability

distribution of prior kernels: (K0, K1, ..., Ki ). With the whole

kernel feature sequence, the CTC decoder uses the beam

search to find out the layer sequence with the largest condi-

tional possibility as output (L). The layer sequence predictor

has better prediction accuracy when there is less difference

between the predicted layer sequence (L) and the ground-

truth layer sequence (L*). The experimental details of the

model training, validation, and testing are introduced in Sec-

tion 6.1.

In the further step, we illustrate the detailed working

mechanisms of a simplified CTC decoder in Figure 3b. In the

monitor window (Xi , Xi+1, Xi+2), the CTC decoder searches

throughout the searching space containing all of the poten-

tial layer sequences, such as (Conv, ReLU, Pool), (FC, ReLU,

Conv), (Conv, Conv, Conv), etc. Then it outputs the layer se-

quence with the largest probability as output, which is (Conv,

ReLU, Pool) in this case. In real cases, the CTC decoder is

more complex and it considers the reduplication removing

and adopts advanced searching algorithms [15, 16].

5.2 Layer Topology Reconstruction

DeepSniffer reconstructs the layer topology bymonitoring

the memory access pattern of the layers. Under the Attack

Scenario-1, i.e. side-channel attack, the adversary obtains

memory access eventswithout detailedmemory traces. Deep-

Sniffer can reconstruct DNN models with chained topology.

For chained DNN models without shortcut and concat in-

terconnections, the neural network layer topology can be

constructed naturally by connecting the layers in the pre-

dicted layer sequence. Under the Attack Scenario-2 (i.e., bus

snooping attack), by obtaining the memory address trace

in addition to kernel execution latency and read/write vol-

umes, DeepSniffer can reconstruct DNN model architecture

with much more complex topology. In this subsection, we

show how the memory traffic reveals the interconnections

between layers.

In the computational graph of a neural network architec-

ture, if the feature map data of layer a is fed as the input

of layer b, there should be a directed topology connection

from a to b. Since this work focuses on the inference stage,

there is only forward propagation across the whole network

architecture. We first analyze the cache behaviors of feature

map data and report the following observations:

Observation-1: Only feature map data (activation data) can

introduce read-after-write (RAW) memory access pattern in the

memory bus. There are several types of memory traffic data

during the DNN inference: input images, weight parameters,

and feature map data. Only feature map data is updated

during inference. Feature map data is written to the memory

hierarchy and read as the input data of the following layer(s).

The input image and parameter data are not updated during

the entire inference procedure. Therefore, the RAW memory

access pattern is introduced only by the feature map data.

Observation-2: Feature map data has a very high possibility

to introduce RAW access pattern, especially for the convergent

and divergent layers.We examine the read cache misses of

the feature map data in kernels of convergent and divergent

layers at branches. The convergent layer receives feature

map data from layers in different branches. For example,

Add and Concat are the main convergent layers in neural

network models. The read cache-miss rate of an Add layer is

more than 98% and that of a Concat layer is more than 50%,

as shown in Figure 4. The divergent layer outputs feature

map data to several successor layers on different branches.

We observe that GPU kernels execute the layers through

one branch by one branch manner. Moreover, the memory

traffic volume in the convergent layer and the successors of

divergent layers have much higher memory traffic volume

than the ground-truth weight data size. Since the CUDA

library implements extreme data reuse optimizations that

prioritize the weight tensor, the feature map needs to be

flushed into memory and then read again due to a long reuse

distance [42].

These two observations indicate that the RAW access pat-

tern can be used to determine the interconnections among

different layers. We propose a layer topology reconstruction

scheme as follows: DeepSniffer scans all the layers in the

run-time layer sequence. For layer i , all the addresses of its

read requests constitute ReadSeti and that of write requests

constituteWriteSeti . DeepSniffer searches all its antecedent

layers layer j ∈ (layer0, layer1, ..., layeri−1) in the sequence

and checks whether ReadSeti ∩WriteSetj = ∅. If it is not ∅,

DeepSniffer adds the connection between layer i and layer j .

At the end, DeepSniffer checks whether there is any layer

that doesn’t have any successors in the topology, and elim-

inates the orphan layers by adding the connection to their

following layer in the run-time layer sequence.

Note that, we do not require the complete memory address

trace of all the feature map data, but only partial segments

in order to identify the connections between different layers,

which is robust to the memory traffic filtering.
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Figure 4. Read cache-miss rate of kernels in VGG11,

ResNet18, and Inception.

5.3 Dimension Size Estimation

After completing the first two steps, we obtain the skeleton of

the neural network architecture, based on which the dimen-

sion size estimation is conducted. Dimension size estimation

includes the following two steps: 1) Layer feature map size

prediction; 2) Dimension space calculation. In this section,

we explain how to estimate the dimension size parameters

according to the memory read and write volume.

We first characterize the cache miss rate in the GPU plat-

form. For most DNNmodels, ReLU kernels have a stable high

cache miss rate, surpassing 98%, as shown in Figure 4. Hence,

the read volume through the bus Rv is almost the same as

the input feature map size of the DNN model. Then the write

volumeWv can be estimated which is equal to Rv . Based on

this observation, we can obtain the input and output sizes

of ReLU layers. Dimension parameters of DNN models are

estimated based on the sizes of ReLU layers.

Step-1: Layer feature map size prediction. In neural net-

works, the previous layer’s feature map output acts as the

feature map input of the current layer, and thus the feature

map output size (the feature map height/width and channel

number for Conv or neuron number for FC) of the previous

layer is equal to the feature map input size of the current

layer. Hence, given the input size of a ReLU layer, the output

size of the previous BN/Add/Conv/FC layer and the input

size of the next Conv/FC layer can be estimated. Since the

ReLU layer is almost a standard layer in every basic block,

the feature map sizes of the layers in the victim model can

be estimated by broadcasting the ReLU size to their adjacent

layers. Add and Concat, which are the convergent layers and

only exist in DNN models with complex interconnections,

conduct element-wise add and concatenate operations for

input feature map from different branches. After reconstruct-

ing the layer topology, output size of an Add operation is

calculated as the input feature map size in each branch and

that of a Concat operation is the sum of input feature map

sizes in branches.

Step-2: Dimension Space Calculation.With the constructed

layer topology and input/output size of every layer, we cal-

culate the following dimension space: the input (output)

channel size ICi (OCi ), the input (output) height IHi (OHi ),

the input (output) width IWi (OWi ), the weight size (K × K ),

and the convolution padding P and stride S .

Based on the fact that the input size of each layer is the

same as the output size of the previous layer, and there are

some tensor constraints during computation as shown in

Table 2, we are able to search the possible solution for every

layer. Since we target the computer vision applications, the

IC0 = 3. We assume the feature map height and weight are

the same and stride=1 (which are the common configuration

in lots of DNN models). By iterating over possible kernel

sizes (1, 3, 5 ..), we can estimate the other configuration

parameters with the constraints in Table 2.
Notice that, we neither assure nor aim to obtain the pre-

cise dimension size parameters. Instead, we randomly select

the possible sets of dimension parameters which satisfy the

constraints in Table 2 as the configuration of the extracted

DNN architecture. We conduct empirical experiments show-

ing that with the neural network sequence and topology,

we can achieve good attack effectiveness even though the

dimension parameters are different from the victim model

(More analysis in Section 6.4.2).

Table 2. Dimension space calculation.
Layer OP Constraints & Estimation
Conv OHi = ⌊(IHi + 2P − K)/S⌋ + 1

OWi = ⌊(IWi + 2P − K)/S⌋ + 1
OHi ×OWi ×OCi = Oi/N

Pool OHi = ⌊(IHi + 2P − K)/S⌋ + 1
OWi = ⌊(IWi + 2P − K)/S⌋ + 1

OCi = ICi , OHi ×OWi ×OCi = Oi/N
FC OCi = Oi/N
BN OHI = IHi , OWI = IWi , OCi = ICi

ReLU OHI = IHi , OWI = IWi , OCi = ICi

Add OHi = IHi j , OWi = IWi j , OCi = ICi j
Concat OHi = IHi j , OWi = IWi j , OCi =

∑
j ICi j

6 Experimental Results

In this section, we evaluate the accuracy and robustness of

the proposed network architecture extraction under side-

channel attack and bus snooping attack scenarios.

6.1 Evaluation Methodology

To validate the feasibility of stealing the memory informa-

tion during inference execution, we conduct the experiments

on the hardware platform equipped with Nvidia K40 GPU

[35]. The DNN models are implemented based on PyTorch

framework [40], with CUDA8.0 [60] and cuDNN optimiza-

tion library [36]. We use the GPU performance counter [34]

to emulate bus snooping for kernel execution latency, kernel

write, and read access volume information collection.

As an initial step for network architecture extraction, we

first train the layer sequence identifier based on an LSTM-

CTC model for layer sequence identification. The detailed

training procedure is as follows.
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Training: In order to prepare the training data, we first

generate 8500 random computational graphs of DNN models

and obtain the kernel architectural features. Two kinds of

randomness are considered during random graph genera-

tion: topological randomness and dimensional randomness.

At every step, the generator randomly selects one type of

block from sequential, Add, and Concat blocks. The sequen-

tial block candidates include (Conv, ReLU), (FC, ReLU), and

(Conv, ReLU, Pool) with or without BN. The FC layer only

occurs when the feature map size is smaller than a threshold.

The Add block is randomly built based on the sequential

blocks with shortcut connection. The Concat block is built

with randomly generated subtrack number, possibly within

Add blocks and sequential blocks. The dimension size pa-

rameters ś such as the channel, stride, padding, and weight

size of Conv and neuron size of FC layer ś are randomly

generated to improve the diversity of the random graphs.

The input size of the first layer and the output size of the last

layer are fixed during random graph generation, considering

that they are usually fixed in one specific target platform. We

randomly select 80% of the random graphs as the training

set and other 20% as the validation set to validate whether

the training is overfitting or not.

Testing: To verify the effectiveness and generalization of

our layer sequence identifier framework, we examine various

commonly-used DNN models as the test set, including VGG

[45], ResNet [17], and Nasnet [64] to cover the representative

state-of-the-art DNN models.

6.2 Layer Sequence Identification Accuracy

In this section, we first evaluate the layer sequence identi-

fication accuracy. Then we analyze the importance of the

layer context information and the influence of noises in ar-

chitectural hints.

6.2.1 Evaluation Metric

We quantify the prediction accuracy with the layer predic-

tion error rate (LER), similar to those being used in speech

recognition problems. It is the mean normalized edit distance

between the predicted sequence and label sequence which

quantifies the prediction accuracy [15, 16]. The detailed pre-

diction calculation is as follows [15].

LER =
ED (L, L∗)

|L∗ |
(3)

where ED (L, L∗) is the edit distance between the predicted

layer sequences L and the ground-truth layer sequence L∗,

i.e. the minimum number of insertions, substitutions, and

deletions required to change L into L∗. |L∗ | is the length of

ground-truth layer sequence.

6.2.2 Side-Channel Attack Scenario

We first evaluate the accuracy on the randomly generated

DNN models, as the blue bars shown in Figure 5a. For DNN
models with chained topology only, the average prediction

error rate of layer sequence identification is about 0.06. For

neural networks with shortcut and concat topology, the av-

erage LER of layer sequence identification is about 0.07 and

0.12. We then evaluate the accuracy of the typical sequential

DNN models. The LER of AlexNet and VGG19 are 0.02 and

0.017 respectively, as shown in Table 3. Such results indicate

that, under the side-channel attack, the proposed methodol-

ogy can accurately identify the layer sequence. The LER is a

little higher for DNN models with more complex topology.
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Figure 5. (a) Average prediction error rate of layer sequence

identification under side-channel and bus snooping attacks.

(b) Robustness to architectural hint noise under bus snooping

attack scenario.

Table 3. Prediction error rate on typical networks.

Side-Channel Bus Snooping

AlexNet VGG19 ResNet34 ResNet101 ResNet152 Nasnet_large

0.020 0.017 0.040 0.067 0.068 0.144

6.2.3 Bus Snooping Attack Scenario

Under the bus snooping attack scenario, the adversary has

additional kernel dependency distance statistics since they

can obtain memory address traces. Therefore, the adversary

can achievemore accurate identification than that under side-

channel attack scenario. As the red bars shown in Figure 5a,

the average LER of layer sequence identification for random

generated sequential models with chained layer topology,

shortcut models with Add operations, and complex DNN

models with Add and Concat is 0.06, 0.06 and 0.1 respectively.

Furthermore, we evaluate the accuracy in identifying sev-

eral state-of-the-art DNN models, as shown in Table 3. For

ResNet families, the prediction LER is lower than 0.07. For

NasNet, the LER increases slightly due to the much deeper

and complex connections. We take ResNet34 as an example

to present the detailed results in Table 4. In summary, our

proposed method is generally effective in correctly identi-

fying the layer sequence. There may exist small deviation

between the predicted sequence and ground-truth sequence.

Thus we conduct end-to-end experiments in the Section 6.4,

which shows that the extracted neural network architecture,

although having a little deviation from the victim architec-

ture, can still boost the attacking effectiveness.

6.2.4 Robustness to Hint Noises

We conduct experiments to analyze the accuracy sensitivity

of the identifier taking in the kernel features with noises.

Taking the bus snooping attack as an example, When kernel
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Figure 6. (a) Average prediction error rate comparison be-

tween single-kernel identifier and context-aware identifier

during training process. (b) Average prediction rate compar-

ison with different victim DNNs

Table 4. Identification results
DNN
Model

Ground-truth Sequence Predicted Sequence

ResNet18

(ErrorRate

0.032)

Conv BN ReLUMaxPool Conv

BNReLUConv BNADDReLU

Conv BN ReLUConv BNADD

ReLU Conv BN ReLU Conv

BN Conv BN Add ReLU Conv

BNReLUConv BNADDReLU

Conv BNReLUConv BNConv

BN Add ReLU Conv BN ReLU

Conv BNADDReLUConv BN

ReLU Conv BN Conv BN Add

ReLU Conv BN ReLU Conv

BN FC

Conv BNReLUMaxPool Conv

BNReLUConv BNADDReLU

Conv BN ReLUConv BNADD

ReLU Conv BN ReLU Conv

BN Conv BN Add ReLU Conv

BNReLUConv BNADDReLU

Conv BNReLUConv BNConv

BN Add ReLU Conv BN ReLU

Conv BNADDReLUConv BN

ReLU Conv BN Conv BN Add

ReLU Conv BN ReLU Conv

BN ReLU FC

execution feature statistics are affected by random noises

within 5%, 10%, 20%, or 30% of amplitude, the average error

rate of the layer prediction increases from 0.08 to 0.16, as

shown in Figure 5b. The results indicate that the layer se-

quence identifier is not sensitive to architectural hint noises.

6.2.5 Why is Inter-Layer Context Important?

To analyze the importance of inter-layer context information

in this section, we compare the prediction error rate of two

methods: a context-aware identifier considering layer con-

text in our work (bus snooping scenario) and a single-kernel

identifier based on multi-layered perception model. The key

difference between these two identifiers is whether including

the sequence model in Figure 3.

We compare both the prediction error rate along the identi-

fier training processes from the 1st to 100th epochs (Figure 6a

and prediction error rate for DNN models with different ar-

chitectures (Figure 6b). We draw two conclusions from this

experiment: 1) DeepSniffer can achieve much better predic-

tion accuracy with considering the layer context informa-

tion. The results show that the average LER of context-aware

identifier is three times lower than the single-layer identi-

fier (Figure 6a). 2) Layer context information is increasingly

important when identifying more complex network archi-

tectures. As shown in Figure 6b, compared to the simple

network architecture with only chain typologies, the more

complex architectures with remote connections (e.g. Add or

Concat) cause higher error rates. For the single-layer iden-

tifier, the LER dramatically increases when the network is

more complex (from 0.18 to 0.5); while, for the context-aware

identifier, the average LER demonstrates a non-significant in-

crease (from 0.065 to 0.104). The experimental results indicate

that the layer context with inter-layer temporal association

is a very important information source, especially for the

deeper and more complex neural networks.

6.3 Model Size Estimation

In this section, we show the feature map size estimation

results of the input and output for every layer, which is the

prerequisite for dimension space estimation. For both the

side-channel and bus snooping attacks, the input and output
feature map sizes of every layer in DNNmodel are calculated

based on the ReLU memory traffic volume. Therefore, we

show estimation accuracy under bus snooping scenario as

an example in Figure 7, which is calculated as 1 minus the

deviation between the estimated size and actual size. For

Conv, BN, ReLU, Add, and Concat, the estimation accuracy

can reach up to 98%. The FC presents lower accuracy since

the FC layer is usually at the end of the network and the

neuron number decreases. Thus, the activation data of the

ReLU layer may be filtered, and it is not accurate to use ReLU

read transactions to estimate the FC size. We use the read

access volume to predict the input and output sizes of FC

layers instead. The dimension size prediction results may be

platform-dependent. However, we take the dimension size

prediction as the less important step than the other two and

experimentally validate the effectiveness of the extracted

architectures with imprecise dimension sizes.

Figure 7. Layer input and output feature map size estimation

(normalized to the ground-truth size).

6.4 How Effective are the Extracted Models?

The extracted network architecture can be used to con-

duct further-step attack. In this work, we use the adversarial

attack, one of the most common attacks in the domain of neu-

ral network security, as an end-to-end attack case to show

the effectiveness of the extracted network architecture.

6.4.1 Adversarial Attack with Extracted DNN Archs

In the adversarial attack, the adversary manipulates the

output of the neural network model by inserting small per-

turbations into the input images that remain almost imper-

ceptible to human vision [14]. The goal of adversarial attack

is to search the minimum perturbation on input that can mis-

lead the model to produce an arbitrary (untargeted attack)
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Figure 8. Adversarial attack flow.
[14] or a pre-assigned (targeted attack) [3, 25, 51] incorrect

output. To conduct the adversarial attack against a black-box

model, the adversary normally builds a substitute model first

by querying the input and output of the victim model. Then

the adversary generates the adversarial examples based on

the white-box substitute model [37, 39, 51]. Finally, they use

these adversarial examples to attack the black-box model.

In summary, the transfer-based adversarial attack flow is

illustrated in Figure 8, which consists of the following steps:

1): Build substitute models. In our work, we train substi-

tute models with the extracted network architectures, while

baseline selects the typical network architectures to build

the substitute model, as shown in Figure 8 .

2): Generate adversarial examples. The state-of-art solu-

tion [28] uses an ensembled method to improve the attacking

success rate based on the hypothesis that if an adversarial

image remains adversarial for multiple models, it is more

likely to be effective against the black-box model as well. We

follow the similar techniques to generate adversarial images

for the ensemble of multiple models.

3): Apply the adversarial examples As the final step, the

adversary attacks the black-box model using the generated

adversarial examples as input data.

6.4.2 Adversarial Attack Efficiency

In this section, we show that the adversarial attack efficiency

can be significantly improved with the extracted network

architectures. We follow the same adversarial attack method-

ology in the previous work [28], which achieves better at-

tacking success rate based on the ensemble of four substitute

models. The only difference of our work is that we use the

predicted network architectures to build the substitute mod-

els, as illustrated in the Figure 8.

Setup: In these experiments, we use ResNet18 [17] as the

victim model for targeted attacks. Our work adopts the ex-

tracted neural network architecture to build the substitute

models. For comparison, the baseline examines the substi-

tute models established from following networks: VGG fam-

ily [45] (VGG11, VGG13, VGG16, VGG19), ResNet family [17]

(ResNet34, ResNet50, ResNet101, ResNet152), DenseNet

family [20] (DenseNet121, DenseNet161, DenseNet169,

DenseNet201), SqueezeNet [23], and Inception [49].
Extracted DNN Architectures: Based on the architectural

hints of ResNet18, we extract DNN architectures following

the three steps: run-time sequence identification, layer topol-

ogy reconstruction, and dimension estimation, as shown

in the Figure 9. In the run-time layer sequence identifica-

tion, DeepSniffer accurately predicts the layer sequence with

small errors in red color. In dimension size estimation, we

randomly selects four dimension sets from the potential di-

mension space which satisfy the layer size and constraints in

Table 2. The four dimension sets are different from the origi-

nal victim ResNet18. Therefore, we validate the effectiveness

of these extracted neural network models that are slightly

different from the original victim model in the following.
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Figure 9. Extracted DNN architectures.

Adversarial Attack Effectiveness Results: First, we ran-

domly select 10 classes, each class with 100 images from

ImageNet dataset [12] as the original inputs for targeted

attack tests. Then, we compare the attack effectiveness of ad-

versarial examples generated by the following five solutions:

ensembled substitute models from VGG family, DenseNet

family,Mix architectures (squeezeNet, inception, AlexNet,

DenseNet), ResNet family, and from extracted architectures

using our proposed model extraction.

The attack success rate results are shown in Table 5. We

report several observations: 1) The attack success rate is

generally low for the cases without network architecture

knowledge. The adversarial examples generated by substi-

tute models with VGG family, DenseNet family, and Mix

architectures only complete successful attacks in 14%ś25.5%

of the cases. 2) With some knowledge of the victim architec-

ture, the attack success rate is significantly improved. For

example, the substitute models withinResNet family achieve

the attack success rate of 43%. 3) With our extracted network

architectures ś although it still has differences from the orig-

inal network ś the attack success rate is boosted to 75.9%.

These results indicate that our model extraction significantly

improves the success rate of consequent adversarial attacks.

In a further step, we take a deep look at the targeted

attack which leads the images in Class-755 to be misclassi-

fied as Class-255 in the ImageNet dataset. We explore the

effectiveness of ensembled models with various substitute

combinations, by randomly picking four substitute models

from the candidate model zoo. The results are shown in the

blue bars of Figure 10. We also compare the results to the

cases using substitute models 1) from VGG family; 2) from

DenseNet family; 3) from squeezeNet, inception, AlexNet,

andDenseNet (’Mix’ bar in the figure); 4) fromResNet family;
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and 5) from extracted cognate ResNet18 model (our method)

to generate the adversarial examples. As shown in Figure 10,

the average success rate of random cases is only 17% and the

best random-picking case just achieves the attack success

rate of 34%.We observe that all good cases in random-picking

(attack success rate > 20%) include substitute models from

ResNet family. Our method with accurate extracted DNN

models performs best attack success rate across all the cases,

40% larger than the best random-picking case and ResNet

family cases. To summarize, with the help of the effective

and accurate model extraction, the consequent adversarial

attack achieves a much better attack success rate. Therefore,

it is extremely important to protect the neural network ar-

chitectures in the DNN system stack, which can boost the

adversarial attack effectiveness.

Table 5. Success rate with different substitute models.

VGG DenseNet Mix ResNet Extracted

family family family DNN

Success rate 18.1% 25.5% 14.6% 43% 75.9%
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Figure 10. Explore the targeted attack success rate across

different cases. Our method performs best.

7 Discussion

The standardization through the whole stack of neural net-

work system facilitates such DNN architecture extraction.

The standardized hardware platforms, drivers, libraries, and

frameworks are developed to help machine learning indus-

trialization with user-friendly interfaces. Transforming from

the input neural network architecture to final hardware code

depends on the compilation and scheduling strategies of

DNN system stacks, which can be learned under the simi-

lar execution environment. Therefore, the adoption of these

hardwares, frameworks, and libraries in the development

workflow gives adversary an opportunity to investigate the

execution pattern and reconstruct the network architecture

based on architectural hints.

7.1 Approach Generality

The root cause of hacking the network architecture is to

learn the transformations between framework-level compu-

tational graphs and kernel feature sequence. We discuss the

general applicability of DeepSniffer techniques in terms of

the following perspectives:

1)Different neural network architectures.Ourmethod-

ology is generally applicable to various CNN models with
different neural network architectures. During the training

for the layer sequence predictor, we build the training set

based on random graphs with basic operations provided by

pytorch framework. Hence, the trained layer sequence pre-

dictor can be used to analyze any DNN models that are built

based on the basic operations provide by framework (such as

Conv2d, ReLU, and MaxPool2d, etc in pytorch). In addition,

the predictor can be retrained with the extended training set

that includes the other operations if necessary.

2) Different platforms. The overall model extraction

methodology can be applied to other deep learning frame-

works. As explained in Section 4, the kernel scheduling strate-

gies of the framework give the opportunity to reverse en-

gineer the computation graph of victim DNN models. We

evaluate TensorFlow and Caffe2 (backend of the new Py-

torch version), two other broadly-used frameworks, observ-

ing that they also use the similar scheduling methodology.

The sequence-model-based method can be adopted in these

scenarios because DeepSniffer does not rely on the exact

dimension size that may differ in different frameworks, but

learns the execution pattern in the target deep learning sys-

tems. Validating the proposed methods in mobile GPU plat-

forms would be our future work.

3) Other attackmodels. In this work, we consider model

extraction based on the minimum information that the ad-

versary can get in the edge devices. In some other scenarios,

such as machine learning cloud services [32, 62], other ar-

chitectural hints may be obtained that include the API calls

and GPU performance counters. DeepSniffer framework can

leverage such architectural hints to explore the model ex-

traction potentialities.

4) Algorithm optimization influence. Recently, many

network quantization techniques are proposed for perfor-

mance and energy optimization [22, 54]. Adopting low-precision

data representations is the potential quantization method

in GPU platforms. For example, users can simplify the net-

work with int8, float16, or float32 operations provided by

TensorFlow lite [54]. Our method can be applicable to such

cases that don’t introduce big changes the framework sched-

uling strategies. We still can identify the victim model ar-

chitectures by learning the execution patterns in such DNN

systems.

7.2 Defence Strategies

Microarchitecture Methodologies. There are a few ar-

chitectural memory protection methods. Oblivious Memory:

To reduce the information leakage on the bus, previous

work proposes oblivious RAM (ORAM) [26, 27, 46], which

hides the memory access pattern by encrypting the data

addresses. With ORAM, attackers cannot identify two op-

erations even when they are accessing the same physical

address [46]. However, ORAM techniques incur a signifi-

cant memory bandwidth overhead (up to an astonishing

10x), which is impractical for bandwidth-sensitive GPUs.

Dummy Read/Write Operations: Another potential defence
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solution is to introduce fake memory traffic to disturb the

statistics of memory events. Unfortunately the noises exert

only a small degradation of the layer sequence prediction

accuracy, as illustrated in Section 6.2.4. As such, fake RAW

operations to obfuscate the layer dependencies identification

may be a more fruitful defensive technique to explore.

System Methodologies. The essence of our work is to

learn the compilation and scheduling graphs of the system

stack. Although the computational graphs go through multi-

ple levels of the system stack, we demonstrate that it is still

possible to recover the original computational graph based

on the raw information stolen from the hardware. At the

system level one could: 1) customize the overall NN system

stack with TVM, which is able to implement the graph level

optimization for the operations and the data layout [8]. The

internal optimization possibly increases the difficulty for the

attackers to learn the scheduling and compilation graph, or 2)

make security-oriented scheduling between different batches

during the front-end graph optimization. Although such op-

timizations may have negative impact on performance, they

may obfuscate the adversary a view of kernel information.

8 Related Work

Exploring machine learning security issues is an important

research direction with the industrialization of DNNs tech-

niques. The related existing work mainly comes from the

following two aspects.

Algorithm perspective:Adversarial attacking is one of the

most important attackmodel which generates the adversarial

examples with invisible perturbation to confuse the victim

model for wrong decision. These adversarial examples can

produce either the targeted [4, 7, 9, 11, 14, 33, 43, 51], or un-

targeted [25, 29ś31, 47] output for further malicious actions.

The state-of-art transfer-based adversarial attacks observe

that adversarial examples transfer better if the substitute

and victim model are in the same network architecture fam-

ily [28, 44]. Therefore, the extracting inner network structure

is important for attacking effectiveness. Consequently, model

extraction work are emerged to explore the model character-

istics. Previouswork steal the parameter and hyperparameter

of DNN models with the basic knowledge of NN architec-

ture [55, 57]. Seong et al. explore the internal information of

the victim model based on meta-learning [44].

Hardware perspective: Several accelerator-based attacks

are proposed, either aiming to conduct model extraction [18]

or input inversion [59]. However, their methodologies rely

on the specific design features in hardware platforms and

cannot be generally applicable to GPU platforms with full

system stack. Some studies explore the information leak-

age in general purpose platforms. CathyTelepathy [62] ex-

plores side-channel techniques in caches to reduce the hyper-

parameter space of victim DNN models by inferring the con-

figurations of GEMM operations. Naghibijouybari et al. show

that side-channel effect in GPU platform can reveal the neu-

ron numbers [32]. However, no direct evidence shows that

how these statistics are useful to the attacking effectiveness.

Targeting at the security in the edge (e.g.automotive), this

work is the FIRST to propose the DNN model extraction

framework and experimentally conduct an end-to-end at-

tack on an off-the-shelf GPU platform immune to full system

stack noises.

9 Conclusion

The widespread use of neural network-based applications

raises stronger and stronger incentive for attackers to extract

the neural network architectures of DNN models. In observ-

ing the limitations of previous work, we propose a robust

learning-based methodology to extract the DNN architecture.

Through the acquisition of memory access events from bus

snooping, layer sequence identification by the LSTM-CTC

model, layer topology connection according to the mem-

ory access pattern, and layer dimension estimation under

data volume constraints, we demonstrate one can accurately

recover a similar network architecture as the attack start-

ing point. These reconstructed neural network architectures

present significant increase in attack success rates, which

demonstrate the importance of establishing secure DNN sys-

tem stack.
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