
Energy Efficient Convolutions with Temporal
Arithmetic

Rhys Gretsch

rhys@ucsb.edu
UC Santa Barbara, USA

Peiyang Song

p_song@ucsb.edu
UC Santa Barbara, USA

Advait Madhavan

amadha1@umd.edu
University of Maryland, USA

Jeremy Lau

lauj@ucsb.edu
UC Santa Barbara, USA

Timothy Sherwood

sherwood@cs.ucsb.edu
UC Santa Barbara, USA

Abstract
Convolution is an important operation at the heart of many 
applications, including image processing, object detection, 
and neural networks. While data movement and coordi-
nation operations continue to be important areas for op-
timization in general-purpose architectures, for computa-

tion fused with sensor operation, the underlying multiply-

accumulate (MAC) operations dominate power consumption. 
Non-traditional data encoding has been shown to reduce the 
energy consumption of this arithmetic, with options includ-
ing everything from reduced-precision floating point to fully 
stochastic operation, but all of these approaches start with 
the assumption that a complete analog-to-digital conversion 
(ADC) has already been done for each pixel. While analog-
to-time converters have been shown to use less energy, arith-
metically manipulating temporally encoded signals beyond 
simple min, max, and delay operations has not previously 
been possible, meaning operations such as convolution have 
been out of reach. In this paper we show that arithmetic 
manipulation of temporally encoded signals is possible, prac-
tical to implement, and extremely energy efficient.

The core of this new approach is a negative log transfor-
mation of the traditional numeric space into a ‘delay space’ 
where scaling (multiplication) becomes delay (addition in 
time). The challenge lies in dealing with addition and sub-
traction. We show these operations can also be done directly 
in this negative log delay space, that the associative and com-

mutative properties still apply to the transformed operations, 
and that accurate approximations can be built efficiently in 
hardware using delay elements and basic CMOS logic ele-
ments. Furthermore, we show that these operations can be 
chained together in space or operated recurrently in time. 
This approach fits naturally into the staged ADC readout

This work is licensed under a Creative Commons Attribution International 
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640395

inherent to most modern cameras. To evaluate our approach,

we develop a software system that automatically transforms

traditional convolutions into delay space architectures. The

resulting system is used to analyze and balance error from

both a new temporal equivalent of quantization and delay

element noise, resulting in designs that improve the energy

per pixel of each convolution frame by more than 2× com-

pared to a state-of-the-art while improving the energy delay

product by four orders of magnitude.

CCS Concepts: •Computer systems organization→ Em-
bedded hardware; •Hardware→ Emerging technolo-
gies.

ACM Reference Format:
RhysGretsch, Peiyang Song, AdvaitMadhavan, Jeremy Lau, and Tim-

othy Sherwood. 2024. Energy Efficient Convolutions with Temporal

Arithmetic. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3620665.3640395

1 Introduction
Convolution is a critical operation for image processing,

being the basis for feature extraction [31], filters [38], and

edge detection [50]. The rise of visual sensor networks [10]

and convolutional neural networks (CNNs) [24] have further

amplified the importance of convolutions. In the domain

of sensor-embedded computation specifically, where con-

volution operations are typically local and resident, energy

consumption is dominated by the cost of converting the data

into a form that can be manipulated digitally and the cost of

multiply and accumulate (MAC) operations [42].

Technology scaling helps reduce energy consumption but

the slowing of traditional computational scaling, coupled

with ever increasing sensor array densities, creates opportu-

nities for non-traditional computing paradigms. While this

can be as simple as reduced-precision floating point [20],

more radical approaches include stochastic computing [47,

48] and race logic [27], which experiment with alternative

data encodings. These data encodings are of particular in-

terest because they leverage the electrical behavior of basic

354

https://doi.org/10.1145/3620665.3640395
https://doi.org/10.1145/3620665.3640395
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640395&domain=pdf&date_stamp=2024-04-27


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

tpixel3tpixel1 tpixel4tpixel2

Intro Diagram

VTC

Convolution 
Engine

Temporal Camera Output

Delay Space 
MAC

nL-
SE

nL-
SE

nL-
SE

D

D

D

VTCVTCVTC

Pixel Array

Figure 1. A full system diagram of our architecture. The

ADCs in the staged pixel readout are replaced with voltage

to time (VTC). An example of the output from one of these

VTCs is shown above the system. This output is then passed

to the hard-coded convolution engine. The core of this ar-

chitecture is our delay space MAC where the output can be

routed back to the input, creating our recurrence architec-

ture.

binary logic gates in new ways. Race logic encodes infor-

mation into the timing of a voltage edge and relies on four

operations: minimum, maximum, (with and and or respec-

tively), delay, and inhibit [27, 43] to perform computation.

These operations are logically complete [41] and have a near

minimal activity factor [28], creating the potential for in-

credibly energy efficient computation. However, to the best

of our knowledge no prior work has demonstrated efficient

arithmetic operations with race logic primitives, limiting the

general applicability of race logic.

A primary contribution of this work is a new temporal

value encoding — one that fully leverages the existing race-

logic circuits, but that also allows for efficient arithmetic —

while still representing values as a single edge.

The key insight is to apply a mathematical transformation

under which addition and multiplication are co-transformed

with the encoded values, forming a new mathematical ring

over delays. Data values in traditional importance space are
converted into a delay space with a rising edge occurring

after a delay equal to the negative log of the value. Multiplica-

tion in importance space becomes simple addition in delay

space, which means that multiplication can be implemented

with a simple delay operation. Addition, however, becomes

a negative log sum exponential (nLSE) function. While the

nLSE function initially seems challenging to implement, we

show that the function can be efficiently approximated with

nothing more than min, max, and delay.

While delay space is interesting theoretically and opens

many new avenues for temporal computation, it is also prac-

tical to implement, tolerant to noise, and highly energy effi-

cient in practice. To demonstrate these points, we design and

evaluate a near-sensor architecture operating completely in

delay space, from sensor activation through convolution, as

shown in Figure 1.

This proposed architecture matches the iterative row-by-

row read-out of most sensor arrays with a temporal scaling

and summation that can be applied iteratively as each new

row is read. At the core of this convolution system is an

automated transformation that converts the MAC operations

into nLSE and delay units in a novel recurrence architecture.

This work presents the following contributions:

• A new data encoding that transforms the linear opera-

tions of convolution into new operations in an inverted

logarithmic delay space, significantly expanding the

computational potential of temporal computing.

• Efficient approximations for the new “soft” operations

required in delay space, using existing “hard” temporal

logic primitives, and recurrent hardware implementa-

tions of those approximations to iteratively perform

delay-coded summations.

• An architectural evaluation tool for our convolution ar-

chitecture and the hardware implementations of these

temporal computations. We demonstrate the utility of

this approach by embedding these linear operations

within the natural temporal staging of pixel read-out.

• We quantify the impact of various noise factors on ap-

proximation accuracy and show that realistic designs

can operate with energy efficiencies 8x better than

prior work in the area.

We start with description of the encoding, its properties,

and hardware implementation (Sections 2 and 3) before mov-

ing on to a more complete architecture and evaluation (Sec-

tions 4 and 5), finishing with connections to other work and

final conclusions (Sections 6 and 7).

2 Delay Space Arithmetic
In race logic, a signal’s time of arrival – when a rising or

falling edge occurs – encodes the signal’s value, rather than

the signal’s voltage level. Using just four basic operations

on those signals, first arrival (fa), last arrival (la), inhibit,

and delay [27, 43], arbitrary temporal functions can be con-

structed [41]. If one thinks about the delay in time as linearly

encoding a value (as has been assumed by prior work), then

fa and la execute min and max functions respectively, while

the delay performs simple addition. This makes some intu-

itive sense as a signal computed as fa(𝜏1,delay(𝜏2, 𝛿)) will

appear at time min(𝜏1, 𝜏2 + 𝛿).
This encoding has the advantage of a very simple hard-

ware mapping, with fa and la on rising edges being im-

plemented by simple or and and gates respectively. While

355



Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

not corresponding exactly to existing logic gates, inhibit

only requires two transistors [43], and there are a myriad of

hardware delay elements [30].

In addition to being a complete temporal logic, race logic

has been shown to efficiently implement shortest path graph

algorithms, decision trees, sorting networks, and other useful

constructions [27, 41, 43]. However, efficient implementa-

tions of more general arithmetic operations with race logic

primitives has never been demonstrated, in part due to the

complexity of multiplication and the inability to represent

negative numbers or perform subtraction. Ideally we would

be able to achieve the following properties:

1. Operations directly on encoded form: Given a real

number we need a clear way to get into and out of this

encoding coupled with a way to perform the opera-

tions necessary for convolution (addition, subtraction,

and multiplication) directly in the encoded form, with-
out unnecessary conversions. More formally we could

say we are looking for a bijective ring homomorphism

of the reals.

2. Important values early: Traditionally, a signal of

larger magnitude is represented with a larger number.

When dealing with delays, it would be far more natural

for highly important values to be encoded as shorter
durations of time, so that less important contributions

can be truncated at any time. The more “excited” the

system, the smaller the delay and hence the larger the

importance – meaning the events that occur first are

those that carry the most weight.

3. Broader dynamic range: From image processing to

machine learning, the ability to stretch beyond the

constraints of linear encoding is very useful. This is

particularly critical when dealing with delays because

the execution time and energy consumption is coupled

to the data representation. Most prior “unary” schemes

map values linearly, which makes it difficult to deal

with very large and very small values in the same

computation. An ideal solution would allow a broad

range of values to be operated on in a way similar

in spirit to a floating point representations, without

introducing the problems of normalization.

We propose that a new encoding meeting all of these

requirements is a negative log mapping, where a value 𝑥 in

the original convolution maps to a signal that has a rising

edge after a time delay of 𝑥 ′ where

𝑥 ′ = − ln(𝑥) (1)

Values encoded in this way are in “delay space”, and we

use the notation of primes such as 𝑥 ′ to indicate delay space

values. Given a delay 𝑥 ′ we can map its value back to the

original “importance space” via

𝑥 =
1

𝑒𝑥
′ = 𝑒

−𝑥 ′
(2)

All operations in importance space convolution have di-

rect equivalents in delay space, which can be derived by ap-

plying Equation 1 and logarithmic identities. A delay space

multiplication can be performed using simple addition. Delay

space addition and subtraction map to the negative log sum

exponential (nLSE) and negative log difference exponential

(nLDE) functions respectively:

𝑥 · 𝑦 ↦→ 𝑥 ′ + 𝑦′ (3)

𝑥 + 𝑦 ↦→ − ln(𝑒−𝑥 ′ + 𝑒−𝑦′ ) = nLSE(𝑥 ′, 𝑦′) (4)

𝑥 − 𝑦 ↦→ − ln(𝑒−𝑥 ′ − 𝑒−𝑦′ ) = nLDE(𝑥 ′, 𝑦′) (5)

2.1 Approximate Delay Space Addition
At first glance this negative log space seems awkward –

the nLSE and nLDE functions in particular seem difficult

to efficiently implement in hardware. But delay space has

some nice properties which we can exploit. First, as values

approach infinity in importance space, they approach zero

time in delay space, so more important values have less delay.

Second, because it is a logarithmic encoding, the value

space gives reasonable encodings to a far wider range of

values. Furthermore we can re-scale our values by simply

shifting the reference point for the delay, because addition

or subtraction in delay space is the same as multiplicative

scaling in importance space. This means we have a much

improved range to operate in. Finally, and most critically

from an implementation standpoint, the nLSE function is

a form of “soft min” operation (where LSE is the “real soft

max” used commonly in machine learning [3]) and is asso-

ciative, commutative, and addition distributes through it as

nLSE(𝑎 + 𝛿, 𝑏 + 𝛿) = nLSE(𝑎, 𝑏) + 𝛿 . These properties, along
with its bounds, allow us to come up with arbitrarily tight

approximations for nLSE using only min, max, and delay.

Figure 2 shows the nLSE function (Equation 4). The func-

tion is bounded from above by min(𝑥 ′, 𝑦′) and at the most

extreme points, where one of 𝑥 ′ or𝑦′ is much larger than the

other, the behavior of nLSE(𝑥 ′, 𝑦′) converges to min(𝑥 ′, 𝑦′).
However, as 𝑥 ′ and 𝑦′ become closer in value, nLSE deviates

further and further from min, with worst-case error − ln(2)
when 𝑥 ′ = 𝑦′.

While the “hardmin” ofmin(𝑥 ′, 𝑦′) can serve as an approx-
imation of nLSE, introducing a shifted max-term (max(𝑥 ′ +
𝐶,𝑦′ +𝐷)) under the min adds a valley to the approximation,

which can reduce approximation error. An arbitrary num-

ber of these max-terms can be added, and approximation

error can be made arbitrarily small with more max-terms.

An approximation with 𝑛 max-terms has the form:

min(𝑥 ′, 𝑦′,max(𝑥 ′ +𝐶0, 𝑦
′ + 𝐷0),

. . .

max(𝑥 ′ +𝐶𝑛−1, 𝑦
′ + 𝐷𝑛−1)) (6)

To improve our nLSE approximation with max-terms, we

must find appropriate values for the constants 𝐶𝑖 and 𝐷𝑖 .

356



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

−2 −1 0
1

2

−2−10

1

2

−3

−2

−1

0

1

𝑠′ = −ln(𝑒−𝑥 ′ + 𝑒−𝑦′ ) = nLSE(𝑥 ′, 𝑦′)

𝑥 ′
𝑦′

𝑠′

Figure 2. Plot of 𝑠′ = nLSE(𝑥 ′, 𝑦′). The surface has the same

shape along all planes where 𝑥 ′ +𝑦′ = 𝐾 , for all constants 𝐾 .
The dashed line shows a representative slice of the surface

on the plane where 𝑥 ′ + 𝑦′ = 0. This representative slice is

shown again in Figure 3.

−2

−1

0

−2 −1 0 1 2

𝑦′

𝑥 ′

−ln(𝑒−𝑥 ′ + 𝑒𝑥 ′ ) = nLSE(𝑥 ′,−𝑥 ′)
min(𝑥 ′,−𝑥 ′)

min(𝑥 ′,−𝑥 ′,max(𝑥 ′ − 1,−𝑥 ′ − 1))

Figure 3. Plot of nLSE(𝑥 ′,−𝑥 ′). This is the representative
slice of nLSE from Figure 2, where 𝑥 ′ + 𝑦′ = 0. This graph

also shows how min roughly approximates nLSE, and how

introducing a max-term can improve the approximation.

To do so, we first observe that the curves of nLSE(𝑥 ′, 𝑦′) in
Figure 2 all have the same shape for any arbitrary constant

𝐾 = 𝑥 ′+𝑦′. The dotted line in Figure 2 shows a representative
slice of this surface, where 𝑥 ′ + 𝑦′ = 0. All slices parallel to

this representative slice have the same shape. Therefore,

without loss of generality, we can set 𝐾 = 0 and focus on

approximating nLSE(𝑥 ′,−𝑥 ′). This observation allows us to

simplify the problem from two inputs 𝑥 ′, 𝑦′ to one input

𝑥 ′. Figure 3 shows nLSE simplified to one input, how min

roughly approximates nLSE, and an improved approximation

with one max-term, where 𝐶0 = 𝐷0 = −1.

−2

−1

0

0 0.5 1 1.5 2

𝑦′

𝑥 ′

−ln(𝑒−𝑥 ′ + 𝑒𝑥 ′ ) = nLSE(𝑥 ′,−𝑥 ′)
Four max-term approximation

Figure 4. Approximating nLSE with four max-terms. We

only approximate positive 𝑥 ′ values because Figure 3 is sym-

metric about the 𝑦′-axis.

Figure 3 reveals that this simplified one-input nLSE is sym-

metric over the 𝑦′-axis, so it is sufficient to approximate only

non-negative 𝑥 ′ values. If negative 𝑥 ′ values are involved, we
can negate the inputs and thus simplify the calculation down

to non-negative nLSE. This same trick works for two-input

nLSE, which can be computed after swapping 𝑥 ′ and 𝑦′ if
𝑥 ′ < 𝑦′, keeping the first operand always greater.

We implement the min-of-max approximation model from

Equation 6 in the Pyomo [4] modeling framework. Themodel

is generalized to represent approximations with any number

of max-terms, so we model several approximations with var-

ious numbers of max-terms, and use the KNITRO solver [5]

to optimize each approximation’s curve fit. Figure 4 shows

a sample optimized approximation with four max-terms. In

Section 5.2 we show that seven max-terms is more than

enough to achieve reasonable accuracy.

2.2 Negative Numbers and Subtraction
While addition and multiplication give us most of what we

need to perform convolution, an additive inverse is required

to handle negative constants common to many convolution

kernels and complete the mathematical ring. To enable sub-

traction and negative value representation we adopt an ap-

proach similar to memristive crossbars [6] or dual rail com-

puting [44], where we split all numbers into non-negative

pairs, ⟨𝑥𝑝𝑜𝑠 , 𝑥𝑛𝑒𝑔⟩. If the value is positive, 𝑥𝑝𝑜𝑠 equals the

value and 𝑥𝑛𝑒𝑔 is 0. For a negative value, 𝑥𝑝𝑜𝑠 is 0 and 𝑥𝑛𝑒𝑔 is

the absolute value. For zero, both 𝑥𝑝𝑜𝑠 and 𝑥𝑛𝑒𝑔 are zero.

With this representation, subtraction simply becomes ad-

dition with the 𝑥𝑛𝑒𝑔 field of the second operand, but we

must re-normalize the result to ensure that at least one of

⟨𝑥𝑝𝑜𝑠 , 𝑥𝑛𝑒𝑔⟩ is zero. This re-normalization only has to oc-

cur at the end of computation and once per convolution.

In importance space this re-normalization is achieved with

357



Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

−2

−1

0

1

2

3

4

0 0.5 1 1.5 2

𝑦′

𝑥 ′

−ln(𝑒𝑥 ′ − 𝑒−𝑥 ′ ) = nLDE(−𝑥 ′, 𝑥 ′)
Four inhibit-term approximation

Figure 5. Approximating nLDE with four inhibit-terms.

nLDE’s shape is more difficult to approximate than nLSE’s

shape, because nLDE converges to infinity as 𝑥 ′ approaches
0, while nLSE converges to − ln(2) as 𝑥 ′ approaches 0 (see
Figure 4).

subtraction:

𝑥𝑝𝑜𝑠 =

{
𝑥𝑝𝑜𝑠 − 𝑥𝑛𝑒𝑔 if 𝑥𝑝𝑜𝑠 ≥ 𝑥𝑛𝑒𝑔
0 if 𝑥𝑝𝑜𝑠 < 𝑥𝑛𝑒𝑔

𝑥𝑛𝑒𝑔 =

{
𝑥𝑛𝑒𝑔 − 𝑥𝑝𝑜𝑠 if 𝑥𝑛𝑒𝑔 ≥ 𝑥𝑝𝑜𝑠
0 if 𝑥𝑛𝑒𝑔 < 𝑥𝑝𝑜𝑠

In delay space we re-normalize with the negative log differ-

ence exponential function nLDE (Equation 5), which is also

symmetric about the 𝑦′-axis. The nLDE function is bounded

by the inhibit function, similar to how the nLSE function

is bounded by min. inhibit(𝑡𝑖 , 𝑡𝑑 ) accepts two inputs, an in-

hibiting event set at time 𝑡𝑖 and a data event arriving at time

𝑡𝑑 , and outputs an event at time 𝑡𝑑 if and only if 𝑡𝑑 < 𝑡𝑖 .

When 𝑡𝑑 ≥ 𝑡𝑖 , no event will be output, which is equivalent

to an event at time ∞. We use min-of-inhibit functions to

approximate nLDE:

min(inhibit(𝑥 ′ + 𝐸0, 𝑦′ + 𝐹0),
inhibit(𝑥 ′ + 𝐸1, 𝑦′ + 𝐹1),
. . .

inhibit(𝑥 ′ + 𝐸𝑛−1, 𝑦′ + 𝐹𝑛−1)) (7)

Using the same technique as the nLSE approximation, we

simplify from two inputs to one, modeling min-of-inhibit

approximations from Equation 7 where 𝑥 ′ +𝑦′ = 0 in Pyomo,

and use KNITRO to optimize approximations with various

numbers of inhibit-terms. Figure 5 shows a sample optimized

nLDE approximation with four inhibit-terms.

2.3 Approximation Logic Design
One of the challenges with a delay-based nLSE function is

that its output is always less than or equal to the min of the

inputs. When mapped to times, this would mean the output

needs to fire before any of the inputs have even arrived and

C0 + K

D0 + K

C1 + K

D1 + K

K

K

x’

y’

LA

LA

LA
FA

FA

FA

(a)

C1 + K C0 - C1 K - C0

D0 + K D1 - D0 K - D1

x’

y’
FA FA

FA

LA

LA

LA

(b)

Figure 6. Figure (a) shows A naive circuit implementation

of a 2 max-term nLSE approximation where all of the max-

terms are calculated in parallel. Figure (b) gives an Optimized

hardware implementation of a 2 max-term nLSE approxima-

tion using two chains of delay elements. Since the 𝐶𝑖 and 𝐷𝑖

constants are in opposite order (the largest 𝐶𝑖 pairs with the

smallest 𝐷𝑖 ) the output of the first delay element is matched

with the last delay element. The grey blocks represent fixed

delay elements.

thus the constants in equation 6 are all negative. Instead of

directly implementing nLSE, we implement a time shifted

nLSE (which is the same as rescaling in importance space).

This can be done by adding a constant 𝐾 that is greater than

or equal to the most negative approximation constant:

nLSE(𝑥 ′, 𝑦′) + 𝐾
≈min(𝑥 ′, 𝑦′,max(𝑥 ′ +𝐶0, 𝑦

′ + 𝐷0), . . .) + 𝐾
=min(𝑥 ′ + 𝐾,𝑦′ + 𝐾,max(𝑥 ′ +𝐶0 + 𝐾,𝑦′ + 𝐷0 + 𝐾), . . .)

The now-positive max-term constants can now be imple-

mented with constant delays, and the max and min functions

can be replaced with la and fa gates respectively. Finally, to

handle swapping 𝑥 ′ and 𝑦′, as described in Section 2.1, we

use a temporal comparator circuit [41] at the input to ensure

proper ordering, preventing the need to double number of

max-terms. A naive implementation of this can be seen in

Figure 6a where each max-term has its own dedicated delay.

However, this approach creates redundant delay, wasting

both energy and area. With physical delay elements, energy

consumption scales linearly with the magnitude of delay, so

designs should minimize the number of redundant delays.

This informs an optimized design shown in Figure 6b, where

there is only a single path of delay elements for each input.

The max-term inputs are tapped from the proper location

along the delay chain. Note that as max-terms are added, the

358



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

𝐶𝑖 constants increase and the 𝐷𝑖 constants decrease, so max-

terms are connected in reverse order along their respective

chains. This same shift-and-chain approach can be used to

create a hardware implementation of the nLDE approxima-

tion function (Equation 7).

3 Recurrence Architecture
The accumulation operation in multiply-accumulate implies

many connected summations. This can be achieved by all

inputs arriving at the same time and being summed together.

However, for most systems this is infeasible due to either the

number of inputs or data naturally arriving over time. There-

fore, a stateful system is required, which poses a problem

for delay space. Temporal memories have been proposed in

the past but they all rely on either emerging technologies or

complex and sensitive analog circuits[26, 29, 39, 45]. To solve

this problem we propose an alternative race logic approach

that emulates a stateful system for efficient MACs.

This approach relies on the fact that in temporal systems,

the arrival time of any event, 𝑡𝑥 , is meaningless without

context. There must also be a reference time 𝑡𝑟𝑒 𝑓 , where the

difference between the times 𝑡𝑥−𝑡𝑟𝑒 𝑓 represents 𝑥 ’s value. All
inputs to race logic operations, including our nLSE approx-

imations, must share the same reference time to function

properly. In a systemwith fully parallelized inputs this is sim-

ple with a shared global reference time 𝑡𝑟𝑒 𝑓 = 𝑡𝑠𝑡𝑎𝑟𝑡 . However,

with serialized inputs each input will have a unique local

reference time. Before the data can be processed together

with race logic it must be synchronized to the last input’s ref-

erence time. One method of synchronization is delaying each

input by the difference between their local reference time

and the last input’s reference time: 𝑡𝑥 ′ = 𝑡𝑥 + (𝑡𝑙𝑎𝑠𝑡 − 𝑡𝑙𝑜𝑐𝑎𝑙 ),
where an example using nLSE is shown in Figure 7a. These

delay lines create state by holding in-flight data until all

other inputs have arrived.

This represents an important trick where we can maintain

the proper logical value of a signal with a shifting reference

frame by adding a constant (delay). However, this requires

as many delay lines as inputs, which wastes energy and area,

making it infeasible for large systems. Instead, we propose an

optimization that operates on inputs as they arrive, perform-

ing as many operations as possible on currently available

data. Then, only the required information for the next stage

of computation is passed, minimizing the data that must

be reference shifted. This also allows the required reference

shifting delay to be reduced because each operation has some

inherent delay, either through explicit delay elements or gate

propagation time.

Our nLSE approximations are particularly well suited for

this compute-on-arrival approach because 1) they have a

larger delay due to the addition of a constant 𝐾 , even further

reducing the required frame shift delay, and 2) only accept

two inputs. Figure 7b illustrates this by showing how a large

nLSE operation can be split up and staged across input arrival

times. The equivalence of breaking apart the nLSE operations

can be shown simply:

− ln(𝑒−𝑥 + 𝑒−𝑦 + 𝑒−𝑧) = − ln(𝑒 ln(𝑒−𝑥+𝑒−𝑦 ) + 𝑒−𝑧)
= − ln(𝑒−nLSE(𝑥,𝑦) + 𝑒−𝑧)
= nLSE(nLSE(𝑥,𝑦), 𝑧)

When the calculation being performed is completely as-

sociative, commutative and symmetric then each stage is

composed of identical hardware, such as our nLSE approxi-

mation in Figure 7b. When these conditions are satisfied then

the compute-on-arrival approach can be further optimized

by frame shifting the output and looping it back into its own

input, as shown in Figure 7c. In order for this to operate

properly, three constraints must be met:

• The rise and fall time of the delay elements must be

matched so that the integrity of the voltage pulse is

maintained.

• The value of any input cannot be so large that it ex-

tends past the next value’s reference frame.

• A relaxation period must be introduced between cycles

to ensure that the previous cycle’s falling edge does not

interfere with the computation of the current cycle.

This recurrence takes advantage of reference shifting de-
lay lines and causes the system to act like a classical state

machine, so long as the inputs arrive at evenly spaced time

intervals. This saves both energy and area by limiting the

number and length of delay elements, as well as reducing the

number of nLSE approximation hardware blocks required.

It’s worth noting that this approach is not restricted to a

fully serial input. The two-input nLSE approximation units

can be expanded to a tree of nLSE blocks with any number

of inputs. Regardless of the size of the tree, the output can

still be recurrent, creating a trade-off between the number of

nLSE approximations, the area of the design, the minimum

length of each cycle, and the number of necessary cycles.

4 Rolling Shutter Convolution Architecture
Most cameras rely on a technique called a rolling shutter

[17] where individual columns or rows of pixels are captured

and read out in parallel. This pipelines both the exposure

time and the ADC readout times while causing the inputs

to become available across fixed time intervals. This acts as

a natural serialization for our recurrence architecture and

can be leveraged for convolution. Even in systems without a

rolling shutter, a staged readout is often applied to reduce

the number of necessary ADCs.

4.1 Analog to Delay Space
Traditional camera systems rely on Analog-to-Digital Con-

version (ADC) circuits to read pixel data prior to processing.

However, low power systems have explored converting ana-

log signals into the temporal domain [34, 36] for mixed signal

359



Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

x0’

x1’

x2’

5-input nLSE

t

x4’

x3’

(a)

x0’

x1’

x2’

5-input nLSE

t

x4’

x3’

x0’ x1’

x2’

t

x4’

x3’

nLSE Approx 
(1)

nLSE Approx 
(2)

nLSE Approx 
(3)

nLSE Approx 
(4)

x0’ x1’

x2’

t

x4’

x3’
nLSE Approx 

(1)

nLSE Approx 
(1)

nLSE Approx 
(1)

nLSE Approx 
(1)

(b)

x0’

x1’

x2’

5-input nLSE

t

x4’

x3’

x0’ x1’

x2’

t

x4’

x3’

nLSE Approx 
(1)

nLSE Approx 
(2)

nLSE Approx 
(3)

nLSE Approx 
(4)

x0’ x1’

x2’

t

x4’

x3’
nLSE Approx 

(1)

nLSE Approx 
(1)

nLSE Approx 
(1)

nLSE Approx 
(1)

(c)

Figure 7. Illustrations of different approaches to reference frame synchronization, where the 𝑦-axis indicates time and the

𝑥-axis indicates physical area added to the design. Figure (a) shows how each element can be individually delayed to ensure

the proper reference frame. Figure (b) shows how computation can be performed as inputs arrive, and Figure (c) shows how

the output of this computation can be looped to the same hardware (as shown by the hollow arrow) block with some delay to

prevent hardware replication.

VDD

Clk

Vpixel

(a)

VDD

Clk

Vpixel

(b)

Figure 8. Figure (a) Demonstrates a simple starved inverter

that forms the basis of voltage to time converters (VTC).

Figure (b) Shows the circuit diagram of an inverter-chain

delay element with a transistor between the inverter output

and ground to increase the delay of a single inverter.

processing. This approach has shown the potential for signifi-

cant energy savings [16], and allows for temporal processing

of data while in the time domain.

Many of these techniques attempt to achieve a linear map-

ping of input voltage to output timing [13, 34]. However,

this is insufficient for our delay space computation as the

negative log of the input is required. Instead, we require a

voltage to time converter (VTC) that matches the negative

log properties of delay space. This can be achieved by using

a starved inverter, shown in Figure 8a, which is already at

the core of many VTC systems [16].

The pixel voltage controls the current starving transis-

tor, and the read clock acts as the input to the base inverter.

As the pixel voltage increases, the delay of the inverter de-

creases, creating the value inversion necessary for delay

space. Additionally, pixel voltage has a monotonically in-

creasing impact on the delay of the clock signal, allowing it

to approximate negative log for specific regions of interest.

These two properties combined allow for the delay of the

clock signal to be interpreted as a delay space value.

4.2 Delay Elements
Three previous approaches to delay elements for race logic

have been proposed: discrete delay through chained DFFs

[27], inverter chains, and starved inverters [28]. These ap-

proaches all have their advantages, but the discretized ap-

proach would be impractical to integrate with the precise

constant values required for the delay space approximations.

The starved inverter approach surrounds an inverter with

two statically biased transistors [28]. These inverters act as

current sources to reduce the rise and fall time of the output,

resulting in controllable delays based on the bias voltages.

However, this approach requires each starved inverter to be

biased separately, introducing circuit complexity and addi-

tional energy consumption. Also, having a single large delay

element maximizes the impact of random jitter (RJ) from a

single element.

Conversely, an inverter chain uses a large number of iden-

tical inverters, with the effective load capacitance determin-

ing the delay from each individual inverter. In this approach

the RJ for each element is independent and scales with the

magnitude of delay, causing each additional element to re-

duce the overall impact of RJ [33]. In our design we use this

approach and hard-code the load capacitance by adding a

360



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

R
ou

te
r

Multiply Accumulate

nLSE Tree

nLSE Tree

nLSE Tree

Filter 
Weight 
Matrix

Pixel Data

Delay

Delay

Delay

Elementwise Delay

Figure 9.A single, hard-coded, three by three convolution fil-

ter. Data is read through the rolling shutter, then progresses

through the dedicated filter weight delay matrix and finally

to the accumulation nLSE trees. The non-recurrent outputs

from each nLSE tree is combined for a single output. The

multiply and accumulate hardware handles one row of con-

volutions and must be replicated for each necessary row.

transistor between the output of each inverter and ground

as shown in Figure 8b. The load capacitance is varied by

changing the size of the ground transistor, allowing delay

to be hard-coded into the hardware. This chained inverter

approach introduces an area and noise trade-off, as the larger

the output capacitance, the fewer inverters are required for

each chain. We evaluate how RJ impacts the accuracy of our

approximations in section 5.2, which informs the design of

the ground transistor.

4.3 Dedicated Convolution Engine
The core of this architecture is a hard-coded convolution

MAC block shown in Figure 9 which handles all of the con-

volutions along a set of columns equal to the filter width.

This block must be replicated for every filter application

along the row axis of the given pixel array, given by 1 +
𝑝𝑖𝑥𝑒𝑙𝑤𝑖𝑑𝑡ℎ−𝑓 𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ

𝑠𝑡𝑟𝑖𝑑𝑒
.

Once the pixel values have been converted to delay space

through the VTCs, each temporal pixel value is passed to all

MAC blocks that utilize it. Figure 10 illustrates how this pixel

data flows through the MAC block. Each block has a static

matrix of delay lines that includes every filter weight. As the

corresponding pixels are processed by the VTCs they are

passed to this matrix and the input can be distributed to any

or all of the filter’s rows. The number of rows activated in a

given cycle is given by ⌈𝑓 𝑖𝑙𝑡𝑒𝑟𝑙𝑒𝑛𝑔𝑡ℎ/𝑠𝑡𝑟𝑖𝑑𝑒⌉, where a stride
of 1 indicates that every filter row will be used each cycle. 1○
Each activated filter row then performs element-wise delay,

which functions as the multiplication of the MAC operation.

To fully utilize the outputs from the activated rows there

must an accumulation unit for every potentially activated

filter row. 2○ These accumulation units receive the results of

Figure 10. An example of the scheduled pixel information

flow through the system for a filter with 3 rows. Each dif-

ferently colored cube represents a different row in the filter

weight matrix. In subsequent time steps each nLSE tree re-

ceives inputs from next filter row until it has completed a full

filter application. The actions corresponding to the circled

digits are explained in Section 4.3.

= Weight/Delay

= nLSE tree

tn tn+1 tn+2

= In-flight 
partial sum

Completed 
Sum

①

②

③ ④

⑤

= Pixel

the filter rows and subsequently sums the incoming values

in delay space. The core of the accumulation unit is a tree of

two-input nLSE approximation units performing delay space

addition. Whenever the tree is not fully symmetric, gaps in

the tree must be path balanced by with a delay equal to the

delay of the nLSE approximation hardware to maintain the

proper reference frame. This delay is added as deep in the

tree as possible to minimize the number of extra delay lines.

When an image begins to be processed only one accumu-

lation unit is activated, with the next one being activated

every stride cycles. Eventually they will all be activated and

operating in parallel, similar to a systolic array.

3○ The result of this nLSE tree is then looped back as the

recurrence discussed in Section 3. This loop must have a

delay equal to the cycle time minus the inherent delay of the

nLSE tree. 4○ Once an nLSE tree has received an input from

each of the filter rows it passes its result to the output instead

of being looped for recurrence. Then, in the next cycle 5○
the outputs of the filter rows are rotated so that each nLSE

receives the next necessary input for their application of the

filter. This ensures that there will be an output produced

every stride cycles.

4.4 Split Value Representation
The split value representation presented in section 2.2 re-

quires each MAC block to have multiple kernels to handle

each combination of {positive, negative} {input, weight}. The

361



Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

temporal outputs of the VTCs are always non-negative, so

we only need two kernels (positive input, positive weight

and positive input, negative weight). If the inputs could be

negative then we would need a total of four kernels to handle

the two additional cases.

Since the weights are hard-coded, the filter weight matrix

is split between the positive and negative sides. Weights that

are zero in importance space, either because of the pos/neg

split or the actual value is zero, become infinity. An infinite

delay is the same as the path not existing, allowing the num-

ber of weight multiplications (delays) to stay constant with

filter size, unaffected by the split value representation. Ad-

ditionally, the number of nLSE approximations performed

remains the same, the only extra operations are any required

tree balancing and the recurrence delay lines.

Once a convolution have been completed, both positive

and negative kernels must be routed to a delay space sub-

traction unit to re-normalize the values as described in Sec-

tion 2.2. The subtraction unit evaluates an nLDE approxima-

tion (Section 2.3) on two inputs, and the result can be fed

directly to the output. This output can either remain in delay

space for further temporal computation, or be converted to

the digital domain for traditional processing.

5 Evaluation and Results
5.1 Architectural Simulator
To explore the architectural space we created an architectural

simulator that takes a system description as its input and

produces a software representation of the architecture. The

system description includes the image dimensions, the ker-

nel shape, the number of kernels and the convolution stride.

This architecture can be configured to change the unit scale,

the maximum supply voltage swing, and the magnitude of

each inverter’s delay (as amultiplier of theminimum inverter

delay). We use the unit scale to indicate the connection be-

tween theoretical delay values and physical time values: for

example an abstract delay of 1 could map to 5ns.

These parameters are then used to estimate the area and

energy consumption for the given system description. The

energy estimates are based on SPICE simulations for delay

lines using 65nm predictive technology models [49]. Area

estimates are dependent on typical transistor sizes for 65nm

nodes and an estimation for the total number of transistors

in the system. We assume that the delay elements dominate

both the energy and area and assume that the control logic

is negligible. The architectural parameters are also used to

implement noisy versions of delay and our approximations

based on noise values from [33].

The generated architecture can be executed given an im-

age data set and filter. The convolution is performed ac-

cording to the compiled architecture with programmable

multiplication, addition and subtraction functions. We use

these programmable functions to ensure that when using

importance space operations the architecture produces the

exact same result as software convolution. We also verify

that using exact delay, nLSE and nLDE provides the same re-

sult as software convolution when the results are converted

from delay space to importance space.

5.2 Approximation Accuracy and Noise
To evaluate our approximation accuracy, we generate two

uniform random values between zero and one, which cor-

respond to positive values in delay space. The values are

converted to delay space, the approximation is applied, and

the result is then converted back to importance space. This

approximation result is then compared to the exact opera-

tion being performed in importance space. We perform this

operation a million times, then take the range-normalized

RMS error (RMSE) to determine the overall accuracy.

We use this approach to evaluate how the number of ap-

proximation terms impacts the accuracy of our nLSE and

nLDE approximations with infinite precision, shown in Fig-

ure 12a. The graph shows that additional approximation

terms significantly increase the approximation accuracy un-

til 7 or 8 terms where they start to provide diminishing

returns. However, when implemented in hardware, the ac-

curacy of the approximation is also impacted by hardware

timing noise. We use the noisy approximation simulator de-

scribed in Section 5.1 to evaluate the two major sources of

noise: power supply induced jitter (PSIJ) and random jitter

(RJ) [33]. PSIJ is a product of the power delivery network

(PDN) and will dominate the noise unless the swing in the

supply voltage is carefully controlled. Figure 12b shows how

the accuracy of our nLSE approximation suffers due to the

noise introduced by varying 𝑉𝐷𝐷 swings.

While this shows that PSIJ can significantly reduce the

accuracy of the approximations, the low power nature of

our convolution architecture puts less stress on the PDN,

reducing potential voltage swings. If this is still insufficient to

control the PSIJ, the voltage swing can be further controlled

by adding decoupling capacitors to the PDN. RJ, on the other

hand, cannot be controlled and is a function of the magnitude

of each inverter’s delay [33]. However, since the RJ of each

inverter is independent, the more inverters in a chain, the

smaller the impact to the system. This creates a relationship

between the delay of each inverter, the unit scale, and noise.

Figures 12c and 12d shows the impact of limited PSIJ

(10mV𝑉𝐷𝐷 swing) and RJ for different unit scales with fixed

delay element magnitudes. Figure 12c uses the smallest pos-

sible delay for each inverter, minimizing RJ, while Figure

12d uses an inverter with 50× the minimal delay. Both of

these show that there is a minimum unit scaling that must be

met to ensure the max-terms can be utilized fully, otherwise

the RJ noise dominates. With appropriate unit scaling and

minimal noise there is little to no impact on the accuracy, but

this requires significantly longer inverter chains to achieve

the proper delay. However, Figure 12d shows that for a unit

362



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

Figure 11. Delay space approximation accuracy as the number of approximation terms increases. Figure (a) shows the pure

approximation accuracy, while Figure (b) shows how PSIJ impacts accuracy. Figure (c) and figure (d) show how RJ impacts

accuracy. All graphs share the same 𝑦-axis, and (c) and (d) share the same legend. The top line is the same across all graphs,

showing delay space approximation accuracy for addition, without noise.

scale of 5ns the size of the inverter chains can be cut by 50×
with minimal noise impact. Beyond 5ns the hardware ap-

proximation improves slightly, but may not justify the extra

energy required for the longer unit scaling.

Surprisingly the impact of noise, regardless of source, is

larger as more approximation terms are added. Each addi-

tional term reduces the difference between approximation

constants (𝐶𝑖 and 𝐷𝑖 in Section 2.1), which increases the

probability that the fa gate selects the wrong approximation

term due to noise. The incorrect approximation term will

then have a larger impact on the output than slight variations

along the proper max-term.

Note that the nLDE approximation is also affected by noise,

but because there is a larger difference between its approxi-

mation constants, the noise impacts the accuracy to a lesser

degree. Due to space constraints we omit the nLDE noise

trade-off graphs from this paper, but we consider this impact

on nLDE accuracy in our architectural evaluation.

5.3 Architectural Evaluation
To investigate the relationship between approximation accu-

racy and the our convolution architecture, we run a design

space exploration with our architectural simulator. For our

exploration we use the Imagenette [18] dataset, which is a

subset of the Imagenet [11] dataset, and scale each image to

150 by 150 pixels. Our architecture is then configured to run

the Sobol function from OpenCV [2] which uses two 3 × 3

filters. We sweep the number of approximation terms for

both nLSE and nLDE as well as the unit scale. The delay of

each inverter is set to 50× the minimal delay and the maxi-

mum 𝑉𝐷𝐷 swing is set to 10mV. For each configuration, the

architectural simulator determines the energy consumption.

Then it emulates all of the operations with appropriate noise

in the same order as the simulated hardware for a single

channel of the dataset. The Sobel convolution was calculated

for five different images and the RMSE for each output pixel

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60 70 80 90 100 110

(1ns, 7, 20)

(5ns, 10, 20) (10ns, 10, 20)

R
M
S
E
r
r
o
r

Energy Consumption (𝜇𝐽 )

Figure 12. The results of the architectural exploration where
the number of approximation terms are swept across 5, 7, 10,

15, 20 for both nLSE and nLDE and the unit scale is swept

across 1ns, 5ns and 10ns. Circled points are along the Pareto

optimal frontier, with the corresponding configuration (Unit

scale, nLSE terms, nLDE terms) written next to it.

was taken. The results from this architectural explorations

are shown in Figure 12.

The first noteworthy result from this graph is the effect of

unit scale. Each vertical grouping represents a unique unit

scale, caused by the necessary increase in delay magnitudes,

which leads to a larger energy consumption. Also, the energy

difference between different approximation configurations

becomes more significant as the unit scale increases. This is

because the increased delay due to additional approximation

terms is multiplied by the larger unit scale, leading to more

energy consumption.

As expected, the accuracy increases noticeably when go-

ing from 1ns to 5ns unit scales. However, similar to the two

input accuracy in Figure 11, the difference between 5ns and

363



Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Convolution benchmarks and their descriptions.

The filter configuration is (filter size, stride, number of fil-

ters).

Function Description Filter Config
Sobel Edge Detection 3 × 3, 1, 2

pyrDown Blur and Downsample 5 × 5, 2, 1

GaussianBlur Blur with Gaussian filter 7 × 7, 1, 1

Table 2. Relevant statistics for different race logic convolu-
tion configurations for three different functions. The Arch

column indicates the unit scale, the number of max-terms

and the number of inhibit-terms. The pyrDown and Gaus-

sianBlur functions do not have inhibit-terms as they have

only positive filter weights. Throughput is measure in mil-

lions of frames per second (Mfps)

Function Arch.

Area

(𝑚𝑚2
)

Energy

per

Frame

(𝜇𝐽 )

Max

Through-

put

(𝑀𝑓 𝑝𝑠)

Acc.

(𝑅𝑀𝑆𝐸)

Sobel

1ns, 7, 20 .02 9.81 71 .065

5ns, 10, 20 .08 48.1 18 .029

10ns, 10, 20 .149 95.4 9 .028

pyrDown

1ns, 7 .004 7.2 55 .038

5ns, 10 .134 36.6 12 .029

10ns, 10 .236 72.7 6 .028

GaussianBlur

1ns, 7 .008 14.2 55 .037

5ns, 10 .273 73.1 12 .028

10ns, 10 .481 146 6 .027

10ns is fairly small. This demonstrates an effect where in-

creasing the unit scale improves the accuracy with diminish-

ing gains while the energy continues to increase consistently.

It is clear from the Pareto frontier that maximizing the num-

ber of inhibit terms is important for accuracy. As discussed

earlier in Section 5.2, inhibit terms are less affected by noise.

Also, adding additional inhibit terms leads to a smaller in-

crease in the energy consumption compared to adding max-

terms because there are significantly fewer nLDE operations.

Due to the larger impact of noise on the nLSE approximation,

increasing the number of max-terms beyond seven or ten

does not significantly improve the accuracy.

In Figure 12 we highlight three configurations that are

along the Pareto optimal frontier and use these configura-

tions to investigate the functions shown in Table 1 from the

openCV library [2]. Note that the pyrDown and Gaussian-

Blur functions have non-negative weight values, so the split

value representation and nLDE approximation unnecessary.

Table 2 shows the area, energy and cycle time of these func-

tions for each of the highlighted configurations. The Sobel

function is the only one with negative weights, requiring

the split value representation. However, it still consumes a

similar amount of resources to pyrDown due to the fact that

it has significantly smaller filter sizes. While pyrDown con-

sumes marginally less energy than the Sobel function, this

is largely due to the fact that its stride size is two, effectively

halving the number of necessary computations and static

hardware. GaussianBlur demonstrates that larger filter sizes

consume significantly more resources, doubling the energy

and area requirements from pyrDown while barely increas-

ing the accuracy. However, because the height of the nLSE

tree is the same for both functions, the maximum possible

throughput is the same.

The maximum possible throughput for all of these ar-

chitectures is incredibly high, with the fastest filter able to

process 71 million frames-per-second (FPS), although it is

unlikely that a camera would able to match this throughput.

So in a slower camera the delay space architecture will be

able process the convolutions without slowing down the

throughput of the system. The only requirement is that the

row readout cycle time be evenly spaced and short enough

for recursion be energy efficient. If this means the readout is

faster than the rest of the camera operations then the time

between finishing an image and starting to read the next can

be lengthened to match the rest of the system’s FPS.

This shows how delay space convolutions can be used for

a variety of workloads with low energy and no impact to the

processing speed. To see how this impact compares to a state

of the art approach we consider a processing-in-pixel (PIP)

architecture [23] as shown in Table 3. For our comparison

we evaluate the benchmark used in the PIP paper, a 1.5 bit

edge detection convolution where the weights can be zero, 1

or -1. We evaluated our design against three different filter

sizes with two different strides. For the calculation of our

energy we include both the VTC [13] and TDC [14] cost,

and use a 1ns unit scale, 10 max-terms and 20 inhibit-terms

delay space configuration. We report the energy per pixel per

frame as the same figure of merit presented by the PIP work.

We also ran the same convolution benchmark as the PIP

in our simulator, and normalized our RMSE to the range of

output values to create a percent error for direct comparison.

The delay space approach consumes less energy than PIP

for every convolution structure when the results are left in

the temporal domain. As the convolution gets larger and

the stride stays small, the energy improvements of the delay

space architecture becomes more significant, achieving over

2.5× energy savings for a four by four filter with a stride

of two. The delay space architecture also outperforms PIP

when the stride size is small, but PIP improves its energy

consumption more with an increasing stride size than delay

space. This makes delay space a better fit for most openCV

filtering applications, where the stride size normally always

small. However, when the results must be converted into

digital the delay space architecture begins to consume more

energy for the ultra-low energy design points. This motivates

additional computation in the temporal domain, such asmore

convolutional layers or min/max selections.

364



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

Table 3. Comparison between the delay space convolutions and a state of the art, processing in pixel convolution engine. We

show the energy of the operation, the delay of each operation, the accuracy and the energy delay product. The delay space

convolution analysis includes the energy cost of the VTC, and separate columns are given for a system that includes the TDC

cost. The minimum energy delay product for each configuration is shown in bold.

Benchmark PIP Delay Space

Shape Stride

Energy

per pixel

per frame

(𝑝𝐽 )

Frame

Delay

(𝑚𝑆)

E×D
Product

(𝑝𝐽 ×𝑚𝑆)

Error

(%𝑅𝑀𝑆𝐸)

Energy

per pixel

per frame

(𝑝 𝐽 )

Energy

w/TDC

(𝑝 𝐽 )

Min

Frame

Delay

(𝑚𝑆)

E×D
Product

(𝑝 𝐽 ×𝑚𝑆)

E×D
Product

w/TDC

(𝑝𝐽 ×𝑚𝑆)

Error

(%𝑅𝑀𝑆𝐸)

2x2 2 16.9 12.8 2.18e2 7.18 16.4 21.9 7.35e-4 1.21e-2 1.61e-2 3.69

2x2 4 4.6 5.2 2.39e1 7.12 4.2 9.8 7.35e-4 3.13e-3 7.2e-3 3.51

2x4 2 32.9 21.9 7.21e2 7.8 21.3 26.8 7.35e-4 1.57e-2 1.97e-2 3.02

2x4 4 7.0 7.7 5.42e1 6.77 5.46 11.0 7.35e-4 4.01e-3 8.09e-3 3.6

4x4 2 104 41.3 4.29e3 4.56 41.0 46.6 1.47e-3 6.04e-2 6.86e-2 2.8

4x4 4 11.6 1.3 1.52e2 5.27 10.3 15.9 1.47e-3 1.52e-2 2.34e-2 3.2

0 0.1 0.2 0.3 0.4
Post-VTC noise (nS)

5

10

15

20

25

30

Pr
e-

VT
C 

no
ise

 (%
)

0.04

0.06

0.08

0.10

0.12

0.14

Figure 13. Impact of sensor and VTC noise on the accuracy

of the pyrDown convolution. The axes show the standard

deviation of the introduced error while the color indicates

the output RMSE. The 𝑦-axis is given as a percentage of the

max possible range of input values while the 𝑥-axis is given

in nanoseconds.

Also, the delay space architecture approach can be com-

pletely separated from the pixel array, unlike PIP. PIP re-

quires circuitry to be added to the pixel array, significantly

reducing the possible pixel density and the speed of image

processing. This causes the energy delay product of the PIP

architecture to be several orders of magnitude higher than

the delay space architecture, which operates fast enough

that it has minimal impact on the image throughput.

5.4 VTC noise impact
We’ve shown that our proposed delay space arithmetic is

able to process convolutions with incredibly low energy

while still maintaining good accuracy, but this evaluation

assumes a perfect sensor and VTC. In reality, these systems

are noisy, which can contribute to error in the final result

of the delay space convolutions. This noise falls into two

general categories, noise that occurs before the VTC and

noise at the VTC output. Noise that occurs before the VTC

are associated with the CMOS sensor, such as fixed pattern

noise [15] and dark shot noise [12], and affects the voltage

used to program the starved inverter. The resulting value

will then undergo a negative log transformation with the

conversion to delay space. Noise that occurs after the VTC

is caused by nonidealities in the VTC, and results in a linear

change in the delay space value.

To evaluate the impact of these two types of noise we

use the pyrDown application from OpenCV [2]. We use the

same testing framework and dataset as before, but instead we

add a random Gaussian distribution to each image centered

around zero at two different points, before the negative log

conversion to delay space, and after. For both types of noise

we gradually increase the standard deviation of the distri-

bution. The noise is applied in simulation, and represents

an abstract noise model to show how robust the system is

to noise. For the delay space arithmetic we use a 1ns unit

scale, a 10 max-term system with a maximum 𝑉𝐷𝐷 swing

of 10mV and the same noise model as before. The results of

this experiment are shown in Figure 13. The 𝑦-axis indicates

noise on the original, importance space image, where the

values are the standard deviation of the noise, shown as a

percentage of the maximum input range. The 𝑥-axis shows

the noise applied after the conversion to delay space, where

each value is the standard deviation of the noise in nanosec-

onds. The color or each ”pixel” corresponds to the output

RMSE from an ideal convolution with no error and noise.

As expected, the RMSE increases with the noise being

added to the system. However, the error of the delay space

computation grows slower than the amount of noise. With a

noise distribution that has a standard deviation of 10% of the

input range and no post-VTC noise, the RMSE is .046, less

than .01 greater than the baseline which assumes a perfect

input. Also, the post-VTC noise has a small impact until it

365



Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

reaches a standard deviation of .3 ns. This is because the

post-VTC noise is added in the log domain, which means it

has an exponential impact on the importance space input.

So small errors have very little impact, but as the post-VTC

noise increases the error increases exponentially.

This exponential growth is most apparent in the case when

there is no pre-VTC noise. The RMSE grows faster along

this row than any others, and has almost as much error as

the maximum noise data point. This is because both noise

sources are added independently, so the two sources of noise

can partially counteract each other. However, in a real sys-

tem there will always be some noise both before and after

the VTC. Overall this chart shows that the delay space archi-

tecture is fairly robust to noisy inputs and can tolerate some

non-idealities caused by the VTC.

6 Related Work
Historically, work reducing the overheads of bit-parallel

computation has centered around bit-serial computation.

Recently this has been used to create energy efficient MACs

[8], solving partial differential equations [35], and neural

networks [21]. Memory cells have even been adapted to

perform bit-serial computation near data [21, 37]. However,

bit-serial computation replaces the bit-parallel computation

with many cycles and high activity factors. It also requires

registers and memory to keep track of data across cycles,

increasing the area and energy consumption.

Similar to bit-serial computing, stochastic computing en-

codes information into a probabilistic bit-stream. Now com-

putation can be done using just and and or gates [1]. Because

random number generators are expensive researchers have

investigated methods to reduce the dependence on indepen-

dent streams [47]. This work has then shown how it can be

applied in low power, near-sensor domains such as the brain

[46]. However, this still requires a large number of cycles

and expensive averaging circuitry.

Race logic has been proposed previously as a low power

alternative to bit-serial and stochastic computing, and has

shown to be very effective for dynamic programming [28]

and decision trees [43]. However, our work is the first to

propose an arithmetic framework for race logic, to the best

of our knowledge. There exists another form of time-domain

computation that uses pulse width to encode information

[32]. General addition has been shown to be possible with

time registers [7, 40], and multiplication has been shown by

scaling this technique [39]. However, these operations work

through iterative shifting and adding, requiring each input

to fully complete before the next can begin. Also, these time

registers have temporal limits and overflow issues.

Along with these strategies many analog hardware ap-

proaches have been coupled with image sensors. Convolu-

tion circuits have been placed alongside the photo diode for

processing-in-pixel [22]. However, this approach has less

accuracy than traditional approaches and causes the pixel

size to increase significantly, reducing the resolution of cam-

eras using this technique. Mixed near-sensor and in-sensor

architectures have been proposed [25], but the near-sensor

computation is based on conventional binary computation.

Race logic has been applied to 3D photon cameras [19]

to reduce off-sensor bandwidth and computation. However,

this is done using race logic to cleverly find the median

without doing any actual arithmetic. Similarly, a time domain

approach has been used in a retinal prosthesis [9] to perform

energy efficient edge detection. They compare pulse widths

with neighboring pixels and use mixed signal approaches to

create a threshold for the differences. While this is similar to

edge detection convolution (the Sobel operation), it cannot

be generalized to other filters. We expect the new arithmetic

capabilities of this energy efficient approach might open the

door to even more applications in the future.

7 Conclusion
There is no question that convolution operations will con-

tinue to play an important role in sensor information pro-

cessing, with applications from image processing to object

detection and neural networks. The power consumption of

multiply-accumulate (MAC) operations is a key factor in con-

volutions integrated with sensor operation. Departing from

the norm of performing full analog-to-digital conversions

for each pixel, we showed how to perform arithmetic on tem-

porally encoded signals with remarkable energy efficiency.

At the heart of our approach is a negative log transforma-

tion, converting the traditional numeric space into a ‘delay

space’. This mechanism enables multiplicative scaling by

adding delays. We demonstrate the direct execution of neg-

ative log-space addition and subtraction in this new delay

space, ensuring that normal associative and communicative

properties of addition still apply in the transformed oper-

ations. Moreover, we show how strong approximations of

these operations can be efficiently constructed from delay

elements and existing CMOS logic elements.

Many computations execute iteratively, and to apply tem-

poral techniques we need new techniques for chaining and

recurrently operating these designs, multiplexing in both

time and space. We show how time-division multiplexing

aligns naturally with the staged ADC readout common to

most modern sensor arrays. To establish the practicality of

this approach, we present an automated transformation that

carries traditional convolutions through to their delay space

equivalents. This translation balances error introduced by a

new temporal equivalent of quantization and delay element

noise. We use this approach to show how our approach can

consume eight times less energy than another state-of-the-

art convolution approach while achieving similar accuracy.

We believe that this approach presents a powerful new set

of design primitives with applications beyond convolution.

366



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Rhys Gretsch, Peiyang Song, Advait Madhavan, Jeremy Lau, and Timothy Sherwood

Acknowledgments
The authorswould like to thankMichael Beyeler, Sara Achour,

and all of the anonymous referees for their valuable com-

ments and helpful suggestions. This work is supported by

the National Science Foundation under Grant No. 1763699,

1730309, and 1717779.

References
[1] Armin Alaghi and John P Hayes. Survey of stochastic computing.

ACM Transactions on Embedded computing systems (TECS), 12(2s):1–19,
2013.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

[3] John S. Bridle. Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern recognition.

In Neurocomputing, pages 227–236, Berlin, Heidelberg, 1990. Springer
Berlin Heidelberg.

[4] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D.

Laird, Bethany L. Nicholson, John D. Siirola, Jean-Paul Watson, and

David L. Woodruff. Pyomo–Optimization modeling in Python, vol-
ume 67. Springer Science & Business Media, third edition, 2021.

[5] R. H. Byrd, J. Nocedal, and R.A. Waltz. KNITRO: An integrated pack-
age for nonlinear optimization. Large-Scale Nonlinear Optimization.

Springer, 2006.

[6] Weidong Cao, Xin He, Ayan Chakrabarti, and Xuan Zhang. NeuADC:

Neural network-inspired RRAM-based synthesizable analog-to-digital

conversion with reconfigurable quantization support. In Design, Au-
tomation and Test in Europe Conference (DATE), pages 1477–1482, 2019.

[7] Zhengyu Chen and Jie Gu. High-throughput dynamic time warping

accelerator for time-series classification with pipelined mixed-signal

time-domain computing. IEEE Journal of Solid-State Circuits, 56(2):624–
635, 2021.

[8] Harsh Chhajed, Gopal Raut, Narendra Dhakad, Sudheer Vishwakarma,

and Santosh Kumar Vishvakarma. Bitmac: Bit-serial computation-

based efficient multiply-accumulate unit for DNN accelerator. Circuits,
Systems, and Signal Processing, pages 1–16, 2022.

[9] Dong-Hwi Choi and Dong-Woo Jee. A 1984-pixels, 1.26 nW/pixel

retinal prosthesis chip with time-domain in-pixel image processing

and bipolar stimulating electrode sharing. IEEE Journal of Solid-State
Circuits, pages 1–10, 2023.

[10] Daniel G. Costa. Visual sensors hardware platforms: A review. IEEE
Sensors Journal, 20(8):4025–4033, 2020.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-

ageNet: A large-scale hierarchical image database. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[12] Oliver E Dial. Ccd performance model. In Surveillance Technologies,
volume 1479, pages 2–11. SPIE, 1991.

[13] Ahmed Elgreatly, Ahmed Dessouki, Hassan Mostafa, Rania Abdalla,

and El-sayed El-Rabaie. A novel highly linear voltage-to-time con-

verter (VTC) circuit for time-based analog-to-digital converters (ADC)

using body biasing. Electronics, 9(12):2033, 2020.
[14] Ryuichi Enomoto, Tetsuya Iizuka, Takehisa Koga, Toru Nakura, and

Kunihiro Asada. A 16-bit 2.0-ps resolution two-step TDC in 0.18-𝜇 m

CMOS utilizing pulse-shrinking fine stage with built-in coarse gain

calibration. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(1):11–19, 2018.

[15] Peter W Fry, Peter JW Noble, and Robert J Rycroft. Fixed-pattern noise

in photomatrices. IEEE Journal of Solid-State Circuits, 5(5):250–254,
1970.

[16] Ali H Hassan, Hassan Mostafa, Tawfik Ismail, and SRI Gabran. An

ultra-low power voltage-to-time converter (VTC) circuit for low power

and low speed applications. In 29th IEEE international system-on-chip

conference (SOCC), pages 178–182. IEEE, 2016.
[17] Gerald C. Holst and Terrence S. Lomheim. CMOS/CCD sensors and

camera systems. SPIE Press Monograph, 2007.

[18] Jeremy Howard. Imagenette. https://github.com/fastai/imagenette/.
[19] Atul Ingle and David Maier. Count-free single-photon 3d imaging

with race logic. arXiv preprint arXiv:2307.04924, 2023.
[20] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar

Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj

Jammalamadaka, Jianyu Huang, Hector Yuen, et al. A study of

BFLOAT16 for deep learning training. arXiv preprint arXiv:1905.12322,
2019.

[21] Hyunjoon Kim, Taegeun Yoo, Tony Tae-Hyoung Kim, and Bongjin Kim.

Colonnade: A reconfigurable SRAM-based digital bit-serial compute-

in-memory macro for processing neural networks. IEEE Journal of
Solid-State Circuits, 56(7):2221–2233, 2021.

[22] Martin Lefebvre, Ludovic Moreau, Rémi Dekimpe, and David Bol. 7.7

a 0.2-to-3.6 TOPS/W programmable convolutional imager SoC with in-

sensor current-domain ternary-weighted MAC operations for feature

extraction and region-of-interest detection. In IEEE International Solid-
State Circuits Conference (ISSCC), volume 64, pages 118–120. IEEE,

2021.

[23] Martin Lefebvre, Ludovic Moreau, Rémi Dekimpe, and David Bol. 7.7

a 0.2-to-3.6TOPS/W programmable convolutional imager SoC with in-

sensor current-domain ternary-weighted MAC operations for feature

extraction and region-of-interest detection. In IEEE International Solid-
State Circuits Conference (ISSCC), volume 64, pages 118–120, 2021.

[24] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A

survey of convolutional neural networks: analysis, applications, and

prospects. IEEE transactions on neural networks and learning systems,
2021.

[25] Tianrui Ma, Yu Feng, Xuan Zhang, and Yuhao Zhu. CAMJ: Enabling

system-level energy modeling and architectural exploration for in-

sensor visual computing. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (ISCA), ISCA ’23, New York, NY,

USA, 2023. Association for Computing Machinery.

[26] Advait Madhavan, Matthew W. Daniels, and Mark D. Stiles. Temporal

state machines: Using temporal memory to stitch time-based graph

computations. J. Emerg. Technol. Comput. Syst., 17(3), may 2021.

[27] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. Race logic:

A hardware acceleration for dynamic programming algorithms. In

Proceeding of the 41st Annual International Symposium on Computer
Architecuture (ISCA), ISCA ’14, page 517–528. IEEE Press, 2014.

[28] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. A 4-mm2

180-nm-CMOS 15-giga-cell-updates-per-second DNA sequence align-

ment engine based on asynchronous race conditions. In IEEE Custom
Integrated Circuits Conference (CICC), pages 1–4, 2017.

[29] Advait Madhavan and Mark D. Stiles. Storing and retrieving wave-

fronts with resistive temporal memory. In 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 2020.

[30] N.R. Mahapatra, A. Tareen, and S.V. Garimella. Comparison and analy-

sis of delay elements. In The 2002 45th Midwest Symposium on Circuits
and Systems, 2002. MWSCAS-2002., volume 2, pages II–II, 2002.

[31] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.

Stacked convolutional auto-encoders for hierarchical feature extrac-

tion. In 21st International Conference on Artificial Neural Networks
(ICANN), pages 52–59. Springer, 2011.

[32] Daisuke Miyashita, Shouhei Kousai, Tomoya Suzuki, and Jun Deguchi.

Time-domain neural network: A 48.5 TSOp/s/W neuromorphic chip

optimized for deep learning and CMOS technology. In IEEE Asian
Solid-State Circuits Conference (A-SSCC), pages 25–28. IEEE, 2016.

[33] Xunjun Mo, Jiaqi Wu, NijwmWary, and Tony Chan Carusone. Design

methodologies for low-jitter CMOS clock distribution. IEEE Open
Journal of the Solid-State Circuits Society, 1:94–103, 2021.

367

https://github.com/fastai/imagenette/


Energy Efficient Convolutions with Temporal Arithmetic ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[34] Hassan Mostafa and Yehea I Ismail. Highly-linear voltage-to-time

converter (VTC) circuit for time-based analog-to-digital converters

(T-ADCs). In IEEE 20th international conference on electronics, circuits,
and systems (ICECS), pages 149–152. IEEE, 2013.

[35] Junjie Mu and Bongjin Kim. 29.2 a 21× 21 dynamic-precision bit-serial

computing graph accelerator for solving partial differential equations

using finite difference method. In IEEE International Solid-State Circuits
Conference (ISSCC), volume 64, pages 406–408. IEEE, 2021.

[36] Holly Pekau, Abdel Yousif, and James W Haslett. A cmos integrated

linear voltage-to-pulse-delay-time converter for time based analog-to-

digital converters. In IEEE International Symposium on Circuits and
Systems, pages 4–pp. IEEE, 2006.

[37] Xiangjun Peng, Yaohua Wang, and Ming-Chang Yang. Chopper: A

compiler infrastructure for programmable bit-serial SIMD processing

using memory in DRAM. In IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 1275–1288. IEEE,
2023.

[38] Stephen J Sangwine and Todd A Ell. Colour image filters based on

hypercomplex convolution. IEE Proceedings-Vision, Image and Signal
Processing, 147(2):89–93, 2000.

[39] Aseem Sayal, Shirin Fathima, SS Teja Nibhanupudi, and Jaydeep P.

Kulkarni. COMPAC: Compressed time-domain, pooling-aware convo-

lution CNN engine with reduced data movement for energy-efficient

AI computing. IEEE Journal of Solid-State Circuits, 56(7):2205–2220,
2021.

[40] Aseem Sayal, S. S. Teja Nibhanupudi, Shirin Fathima, and Jaydeep P.

Kulkarni. A 12.08-TOPS/W all-digital time-domain CNN engine using

bi-directional memory delay lines for energy efficient edge computing.

IEEE Journal of Solid-State Circuits, 55(1):60–75, 2020.
[41] James Smith. Space-time algebra: A model for neocortical computa-

tion. In ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 289–300. IEEE, 2018.

[42] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient

processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE, 105(12):2295–2329, 2017.

[43] Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri

Strukov, and Timothy Sherwood. Boosted race trees for low energy

classification. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 215–228, 2019.

[44] Georgios Tzimpragos, Jennifer Volk, Alex Wynn, James E Smith, and

Timothy Sherwood. Superconducting computing with alternating

logic elements. In International Symposium on Computer Architecture
(ISCA), pages 651–664. IEEE, 2021.

[45] Hamed Vakili, Mohammad Nazmus Sakib, Samiran Ganguly, Mircea

Stan, Matthew W. Daniels, Advait Madhavan, Mark D. Stiles, and

Avik W. Ghosh. Temporal memory with magnetic racetracks. IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits,
6(2):107–115, 2020.

[46] DiWu, Jingjie Li, Zhewen Pan, YounghyunKim, and Joshua SanMiguel.

uBrain: A unary brain computer interface. In Proceedings of the 49th An-
nual International Symposium on Computer Architecture (ISCA), pages
468–481, 2022.

[47] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and

Joshua SanMiguel. UGEMM: Unary computing architecture for GEMM

applications. In ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 377–390. IEEE, 2020.

[48] Di Wu and Joshua San Miguel. uSystolic: Byte-crawling unary systolic

array. In IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 12–24. IEEE, 2022.

[49] Wei Zhao and Yu Cao. New generation of predictive technology model

for sub-45 nm early design exploration. IEEE Transactions on electron
Devices, 53(11):2816–2823, 2006.

[50] Djemel Ziou, Salvatore Tabbone, et al. Edge detection techniques-an

overview. Pattern Recognition and Image Analysis C/C of Raspozna-
vaniye Obrazov I Analiz Izobrazhenii, 8:537–559, 1998.

368




