
Information Leakage in Arbiter Protocols ?

Nestan Tsiskaridze∗, Lucas Bang†, Joseph McMahan∗, Tevfik Bultan∗, and
Timothy Sherwood∗

∗University of California, Santa Barbara 93106, USA
{nestan,jmcmahan,bultan,sherwood}@cs.ucsb.edu

†Harvey Mudd College, Claremont California 91711, USA
bang@cs.hmc.edu

Abstract. Resource sharing while preserving privacy is an increasingly
important problem due to a wide-scale adoption of cloud computing.
Under multitenancy, it is common to have multiple mutually distrustful
“processes” (e.g. cores, threads, etc.) running on the same system simul-
taneously. This paper explores a new approach for automatically identi-
fying and quantifying the information leakage in protocols that arbitrate
utilization of shared resources between processes. Our approach is based
on symbolic execution of arbiter protocols to extract constraints relating
adversary observations to victim requests, then using model counting
constraint solvers to quantify the information leaked. We present enu-
merative and optimized methods of exact model counting, and apply
our methods to a set of nine different arbiter protocols, quantifying their
leakage under different scenarios and allowing for informed comparison.

Keywords: arbiter protocols, quantitative information flow, model count-
ing, symbolic execution

1 Introduction

Many of the computer systems we use today have access to secret information,
confidentiality of which should not be compromised. In program analysis, meth-
ods of secure information flow (SIF) are dedicated to tracking the propagation
of sensitive information through a program. SIF methods aim to produce a bi-
nary answer: yes, there is an information leak, or no, there is not, and have seen
success in verifying anonymity protocols [13], firewall protocols [3], and network
security protocols [7]. However, a binary answer to information leakage is not suf-
ficient in general, due to cost of establishing strict non-interference, side-channels

? This material is based on research sponsored by DARPA under the agreement
number FA8750-15-2-0087 and the National Science Foundation under Grants No.
1740352, 1730309, 1717779, 1563935. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or the U.S. Government.

II N. Tsiskaridze et al.

that may leak information through non-functional properties of a system, or due
to application semantics that require some information leakage (for example, a
password checker always leaks information by reporting if the input matched
the secret password). Hence, the general question about information flow in a
computer system is not if information leaks, but how much information leaks?
This “how much” question led to the development of Quantitative Information
Flow (QIF) techniques, which provide a foundational framework for measuring
information leakage [25].

In this paper, we present a QIF technique for assessment and comparison
of information leakage among resource sharing protocols. Various arbiter pro-
tocols have been developed for coordinating processes that share common re-
sources [11]. An arbiter takes resource requests and grants access to the resource
based on its policy. We assume that the requests made by one process should
not be revealed to another process. In an ideal situation no process should re-
veal any information to another process unless it is intentional. In reality, many
designs need to leak some degree of information to meet other design goals. We
demonstrate that using the QIF technique we present one can determine and
compare the amount of information leakage for different arbiter protocols.

Previous work on information flow properties of protocols has been limited.
The techniques we present in this paper introduce a new dimension in protocol
analysis, and provide a new way to classify protocols with respect to the amount
of information they leak. Interestingly, as our experiments demonstrate, reducing
information leakage can conflict with other desirable properties of protocols. For
example, improving resource usage or fairness in a given protocol could increase
the amount of information leaked.

Our approach is based on symbolic execution and constraint model counting
techniques and can handle ramdomized protocols. Given a protocol specification,
we extend symbolic execution to extract constraints characterizing relationships
between the secret and the adversary-observable events. With model counting
constraint solvers, we quantify the amount of information leaked, in terms of
entropy, by observable events. We present a novel, efficient and exact model
counting technique for a class of constraints extracted during QIF analysis of
arbiter protocols.

The rest of the paper is organized as follows. Section 2 discusses different
arbiter protocols to be analyzed; Section 3 explains our method of computing
leakage of the protocols. Section 4 contains our optimized method of constraint
counting, vastly improving performance of the analysis. Section 5 gives our ex-
perimental results, Section 6 discusses related work, and Section 7 concludes.

2 Arbiter Protocols

We model synchronous arbiter protocols as a multi-process, multi-round model
with n processes and k rounds. Each process i in each round j sends the arbiter
a request bit for a shared resource (Rij , where if the bit is one the process is
requesting the resource), and receives a grant bit (Gij , where if the bit is one
the request is granted) as a response from the arbiter. The basic arbiter protocol

Information Leakage in Arbiter Protocols III

PROCESS 1
R16 R15 R14 R13 R12 R11

R26R25R24R23R22R21

R36R35R34R33R32R31

PROCESS 2

PROCESS 3

ARBITER

G11 G12 G13 G14G15 G16

G21G22G23G24G25G26

G31G32 G33 G34G35G36

Fig. 1: Arbiter protocol model. Shaded box depicts a bit set to one, white – to zero.
Number of processes is 3, rounds 6.

architecture is shown in Figure 1. In the protocols we analyze only one process
can be granted access to the shared resource in each round. The basic problem
is whether an adversary process can infer the sequence of request bits of another
process from the grant bits that adversary receives, and to what extent.

Example. Consider an arbiter protocol that resolves simultaneous requests
for the same resource by giving access to the process with the minimum process
ID, (e.g. the Priority procedure in Figure 2, also depicted in Figure 1). Suppose
an adversary controls Process 2 and targets a victim Process 1. If Process 2
requests access to the resource and does not get the access granted, it is so
because the Process 1 has also requested access during the same arbitration
round. On the other hand, if Process 2 is granted the access, it must be the
case that Process 1 did not request in that round. Consequently, Process 2 can
fully infer the request pattern of Process 1. Now suppose the adversary controls
Process 3, makes a request, and does not get the access granted. Then the
attacker can infer that either Process 1 or Process 2 or both have requested,
but cannot distinguish among these cases based on its own response from the
arbiter, thereby learning only partial information. In fact, the best strategy for
the adversary is to keep requesting in each round, as Process 3 in Figure 1.
One expects that resolving resource-request races randomly (e.g. the Random
procedure in Figure 2) should not allow one process to infer the request pattern
of another process from its own pattern of access grants.

For more complex protocols, it becomes difficult to manually reason about
the information flow properties. In this paper, we give automatic techniques
for quantifying the amount of information that can be gained from an arbiter
protocol by any process about any other process.

We categorize arbiter protocols based on three characteristics: (I) how the
concurrent requests are resolved; (II) whether the protocols are stateful or state-
less; and (III) whether the processes are stateful or stateless.

We say a protocol (or a process) is stateless if access grants (respectively
requests) made at each round are independent from those of the previous rounds;
and is stateful otherwise. Among the stateful process behaviors, we consider the
one in which every process holds each initiated request without interruption
across the rounds until the arbiter grants access to this process, after which the
process is unconstrained on when to initiate a new request.

We resolve concurrent request in three ways: (i) based on a predefined static
priority, (ii) based on a dynamically-defined priority, or (iii) randomly. We define
a static priority based on the process IDs—the lower a process ID, the higher its

IV N. Tsiskaridze et al.

priority. Dynamic priorities are defined in, and by, the stateful protocols where
the priority of a process at the current round depends on the requests and grants
for all processes made at the previous rounds. Concurrences are resolved ran-
domly either in a uniformly-distributed random or a weighted random manner.
Handling random components in symbolic analysis is a challenging task on its
own. We introduce our approach for extending the quantitative symbolic analysis
to support symbolic random components in the arbiter protocols in Section 3.3.

Below, we present various arbiter protocols and discuss how to quantify their
information flow properties using our automated approach. We give pseudocode
of arbiter protocols for a single round. Let P = {P1, P2, . . . , Pn} be a list of
processes communicating with an arbiter. In a single round, the arbiter receives a
list of requests from these processes R = {R1, R2, . . . , Rn} for a shared resource,
and returns a grant response to each of the processes, G = {G1, G2, . . . , Gn}. The
requests Ri and grants Gi are modeled to take Boolean values: > if the request
(respectively, grant) is instantiated (respectively, granted), and ⊥ otherwise.

Stateless arbiters. A priority-based arbiter (Priority) and a randomized ar-
biter (Random) are stateless arbiters which differ by how they resolve concur-
rent requests when multiple processes place a request within the same round.

1) The Priority arbiter resolves concurrent requests based on a predefined
static priority, always granting access to the process with the highest priority.
Without loss of generality, we assume the order P1 � P2 � · · · � Pn on the
processes and say that P1 has the highest priority and Pn the lowest.

2) The Random arbiter resolves concurrent requests randomly.
Pseudocode for a single round of these protocols is shown in Figure 2. IsRace(R)
routine returns true if and only if multiple processes request concurrently. Pick-
Rnd(R) randomly selects a process, among those racing, with equal probability.
If a single process requests, FindReq(R) returns the ID of this process, and
returns NULL when no process requests.

Procedure Priority
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: for i← 1 to n do
3: if R[i] = > then
4: G[i]← >
5: break
6: end if
7: end for
8: return G

Procedure Random
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: if IsRace(R) then
3: G[PickRnd(R)]← >
4: else
5: pid←FindReq(R)
6: if pid 6= NULL then
7: G[pid]← >
8: end if
9: end if

10: return G

Fig. 2: Priority and Random Arbiters.

Stateful arbiters. This category includes a round robin arbiter (RoundRobin),
a lottery-based arbiter (Lottery), a first-come-first-serve-based arbiter (FCFS),
and a longest-idle-based arbiter (LongestIdle) as shown in Figures 3-5. The

Information Leakage in Arbiter Protocols V

concurrences are resolved with a dynamic priority order on the processes based
on the history of the previous rounds.

3) The RoundRobin arbiter grants access to processes in a circular order
by passing around a token incremented at each round: if a process with an ID
equal to the value of the token has requested access in a given round the arbiter
grants access to this process, otherwise the arbiter does not grant access to any
process and moves to the next round with the incremented token. When the
token reaches the last process ID it resets to the first one.

4) RoundRobinSkip is a variant of the round robin protocol that never
passes a round without a grant when there is a requesting process. The routine
FindFirst(R, tkn) returns an ID of the first requesting process it finds starting
from the token and following in a circular manner by skipping over the idle
processes that made no request in a given round; if no process made a request
in the round—the routine returns NULL.

Global: tkn

Procedure RoundRobin
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: if tkn = n+ 1 then tkn← 1
3: end if
4: if R[tkn] then
5: G[tkn]← >
6: end if
7: tkn← tkn+ 1
8: return G

Global: tkn

Procedure RoundRobinSkip
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: if tkn = n+ 1 then tkn← 1
3: end if
4: pid = FindFirst(R, tkn)
5: if pid 6= NULL then
6: G[pid]← >
7: tkn← pid+ 1
8: end if
9: return G

Fig. 3: Round Robin and Round Robin Skip Arbiters.

5) The Lottery arbiter selects a process in a weighted-random manner.
In contrast with the Random arbiter, it counts the wait-times of the pro-
cesses that have been waiting for the access to be granted and resolves con-
current requests by probabilistically prioritizing processes with longer waiting
time. W = (W1, . . . ,Wn) is a list of wait-times of each process. PickRnd(W)
selects a process among the racing ones in a weighted-random manner.

Global: W [1..n] an array of wait-times

Procedure Lottery
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: for i← 1 to n do
3: if R[i] = > then
4: W [i]←W [i] + 1
5: else
6: W [i]← 0
7: end if
8: end for

9: if IsRace(R) then
10: pid←PickRnd(W)
11: else
12: pid←FindReq(R)
13: end if
14: if pid 6= NULL then
15: G[pid]← >
16: W [pid]← 0
17: end if
18: return G

Fig. 4: Lottery Arbiter.

VI N. Tsiskaridze et al.

6) The FCFS (first-come-first-served) arbiter resolves concurrent requests by
considering wait-times of the processes W . The AllMax(W) routine returns
the IDs of the processes with the maximal wait-time. If multiple processes have
been waiting for the permission grant for the same number of rounds, PickOne()
breaks ties. We consider two approaches for PickOne(): based on the static
priority where the process with the lowest ID gets access, and uniformly random.

7) The LongestIdle arbiter does the opposite to the FCFS in the sense
that it prioritizes processes by length of idle time. I = (I1, . . . , In) is a list of
idle-times of each process. Ties are broken in the same manner as in FCFS.

Global: W [1..n] an array of wait-times

Procedure FCFS
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: for i← 1 to n do
3: if R[i] = > then
4: W [i]←W [i] + 1
5: else
6: W [i]← 0
7: end if
8: end for
9: if IsRace(R) then

10: pid←PickOne(AllMax(W))
11: else
12: pid←FindReq(R)
13: end if
14: if pid 6= NULL then
15: G[pid]← >
16: W [pid]← 0
17: end if
18: return G

Global: I[1..n] an array of idle-times

Procedure LongestIdle
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G← (⊥, . . . ,⊥)
2: for i← 1 to n do
3: if R[i] = ⊥ then
4: I[i]← I[i] + 1
5: end if
6: end for
7: if IsRace(R) then
8: pid←PickOne(AllMax(I))
9: else

10: pid←FindReq(R)
11: end if
12: if pid 6= NULL then
13: G[pid]← >
14: I[pid]← 0
15: end if
16: return G

Fig. 5: First Come First Serve and Longest Idle Priority Arbiters.

3 Information Leakage in Arbiter Protocols

We consider a system, which accepts a public input (also referred as the low
security input) L, a secret input (or the so-called private, high-security input)
H, and produces an observable output O. The model includes an adversary,
the malicious user A. The adversary invokes the system with the input L and
observes the output O. A does not have direct access to the secret H, but would
like to learn its value. Before invoking the system, A has some initial uncertainty
about the value of H, while after observing O, some amount of information is
leaked, thereby reducing A’s uncertainty about H.

In our model, we consider three types of processes (1) an adversary controlled
process, denoted by PA, (2) a process belonging to the victim, denoted by PV
(PV 6= PA), and (3) a benign process introduced as additional unpredictable

Information Leakage in Arbiter Protocols VII

behavior to the system. The adversary can observe only permission responses is-
sued by the arbiter on his/her requests, denoted by RA = {RA1, RA2, . . . , RAk},
with the aim to gain as much information as possible on the permission re-
quests of the victim’s process RV = {RV1, RV2, . . . , RVk}. We consider the se-
cret H = RV to be the list of permission requests of the victim process. The
low security input to the system L = RA is the adversary-controlled data—the
permission requests placed by the adversary process. The corresponding per-
mission grants received by the adversary on his/her own requests, denoted by
GA = {GA1, GA2, . . . , GAk}, are the data observed by the adversary O = GA
(referred as the observations).

In this work, we quantify and compare the amount of maximal expected leak-
age the adversary can obtain for arbiter protocols presented in Section 2 con-
sidering possible choices of PA and PV . This is a QIF analysis problem through
the main channel, when the adversary observes the direct output of the system
(i.e. his/her own access grant pattern). If the adversary can also observe non-
functional aspects of the system behavior (e.g. the time it takes to respond to
a request, or the power consumed) through a side channel, then one would also
take those observations into account to quantify the information leakage through
such side-channels.

3.1 Quantifying Information Leakage Using Entropy

Intuitively, the amount of information gained by the adversary is the differ-
ence between the initial uncertainty about the secret and the remaining uncer-
tainty [25]. The field of QIF formalizes this intuitive statement by casting the
problem in the language of information theory. Information theory uses the con-
cept of entropy for the purpose of measuring the amount of information that
can be transmitted over a channel, measuring information transmission in bits
of entropy. Then, information entropy is used as a measurement of uncertainty.

We briefly define relevant information entropy measures here. Given a ran-
dom variable X with a finite domain X , and a variable Z that indexes the
probabilities of X to take values x ∈ X , denoted as P (X = x | Z = z), the
information entropy of X, denoted as H(X | Z = z), is given by

H(X | Z = z) =
∑
x∈X

P (X = x | Z = z) log2

1

P (X = x | Z = z)
(1)

Let Z be the domain of Z. Given another random variable Y , over the domain
Y, and a conditional probabilities P (X = x | Y = y, Z = z), also indexed by Z,
the conditional Shannon entropy of X given knowledge of Y indexed by Z is

H(X | Y,Z = z) =
∑
y∈Y

P (Y = y|Z = z)H(X | Y = y, Z = z), where (2)

H(X | Y = y, Z = z) =
∑
x∈X

P (X = x | Y = y, Z = z) log2

1

P (X = x | Y = y, Z = z)
(3)

We are interested in the maximal amount of information about X that could
be learned given the knowledge of Y , as this describes the worst case leakage

VIII N. Tsiskaridze et al.

scenario. For this, we use conditional Shannon entropy and compute the max-
imal amount of the expected information gain as the difference of the initial
uncertainty about X and the uncertainty after acquiring the knowledge of Y

I(X,Y, Z) = max
z∈Z

(H(X | Z = z)−H(X | Y,Z = z)) (4)

In the context of QIF, we consider the public input L to be the index variable
indexing probability distributions of the secret inputH and the outputO, withH
and O being random variables. Thus, the above notations correspond to Z = L,
X = H and Y = O. A value of the input L along with the corresponding
observation of the output O defines an event in the analysis.

To compute the expected maximal amount of information leaked, we need:

(i) Initial uncertainty the adversary has about the secret, Hinit(H | L = l),
for each of his/her inputs before making observations. This is computed
following the Formula (1) using the initial probability distribution of the
secret P (H = h | L = l) conditioned by the adversary’s inputs;

(ii) Expected remaining uncertainty about the secret, Hfin(H | O,L = l),
over all observations the adversary can make after he/she provides an input

l, computed as in (2):
∑
ω∈Ω

P (O = ω | L = l)H(H | O = ω,L = l), where Ω

is the domain of O, P (O = ω | L = l) is the probability of the adversary
observing ω given the input l, and H(H | O = ω,L = l) is the uncertainty
about the secret given the event (ω, l), the latter computed using (3) and the
probabilities of the secret conditioned by this event P (H = h | O = ω,L = l);

(iii) Then I(H,O,L) = max(Hinit(H | L = l) − Hfin(H | O,L = l)) is the
expected maximal amount of information leaked, as defined in (4).

These definitions formalize our intuition that the information leaked is the
maximal difference between the uncertainty about the secret before and after
making an observation. The value of the adversary’s input L for which the max-
imal leakage is obtained defines the best strategy for the adversary to follow in
order to obtain the maximal information leakage on H.

3.2 Extracting Observation Constraints with Symbolic Execution

Symbolic execution is a technique that extracts path constraints from a system
by executing it on symbolic inputs, as opposed to concrete input values. It can
be used to extract a set of path constraints characterizing all possible execution
paths of the system (typically up to an execution depth bound).

We adopt and extend symbolic execution techniques to automatically ex-
tract constraints that relate secret values with observations that an adversary
can make. Traditional symbolic execution does not focus on extracting con-
straints on observations that can be made by an adversary, such as timing or
power measurements, or constraints on resources that can be shared with ad-
versarial processes. To formalize this concept, we introduce event constraints of
the protocol as defined below.

Information Leakage in Arbiter Protocols IX

Let φ(H,L) be a path constraint returned by a traditional symbolic execu-
tion tool. Consider the set of observations Ω for the observable O. In practice
multiple execution paths may map to the same observation. We assume, how-
ever, that each execution path maps to a single observation. To express this,
we define a function O, where O(φ(H,L)) is the observation that the execution
path constraint φ(H,L) maps to. Then, we extend each path constraint φ(H,L)
into an event constraint Cφ(H,O,L) to pair it with the observation it yields to:

Cφ(H,O,L) : (O = ω) ∧ φ(H,L), where O(φ(H,L)) = ω (5)

The disjunction of all event constraints with the the same observation ω,
characterizes ω by a constraint Cω(H,O,L) that holds if and only if the obser-
vation ω occurs, and can be written in the form:

Cω(H,O,L) =
∨

O(φ(H,L))=ω

∧(O = ω)φ(H,L) (6)

We define a characteristic constraint C(H,O,L) for the protocol as the con-
straint that describes all possible events:

C(H,O,L) :
∨
ω∈Ω

Cω(H,O,L). (7)

Example. Let us use the Priority arbiter as a running example. For a
single round Ω = {>,⊥}. We give the characteristic constraint for a single
round of a three-process Priority arbiter where PA = P2 below:

C = C> ∨ C⊥ :

((O = >) ∧ (R1 = ⊥ ∧ R2 = >)) ∨

∨ ((O = ⊥) ∧ (R1 = > ∨ (R1 = ⊥ ∧ R2 = ⊥ ∧ R3 = >) ∨ (R1 = ⊥ ∧ R2 = ⊥ ∧ R3 = ⊥))

3.3 Extension for the Symbolic Analysis of Random Components

Handling random components in symbolic analysis is a challenging task on its
own. The first work on supporting random instances in symbolic execution has
been introduced recently [18]. We propose a technique simulating randomness
of symbolic variables that is well-fitted for quantitative analysis and is simpler.
Since our approach is based on computing probabilities of protocol behaviors
(i.e. the probabilities of the protocol following corresponding execution paths),
we should take into account the distribution of random variables occurring in
this protocol, and thus, in the path constraints. If a path constraint contains
a random variable R, the probability of triggering that path depends on the
probability of R taking specific values defined by the path.

To incorporate the probability distribution of R into the computation of
the probabilities of the execution paths, we introduce a fresh symbolic integer
variable sym R and implement the PickRand() procedure in a way that it
simulates the desired random generator behavior and extends path constraints
to reflect the relation between sym R and R as follows: each value r of R leads
to multiple values of sym R representing the weight of r in the probability
distribution of R. Let R take values in (R1, . . . , Rn) with probability weights

X N. Tsiskaridze et al.

W = (W1, . . . ,Wn), each Wi ∈ Z+. PickRnd() takes W for input and returns
a value of R selected in a weighted-random manner in accord with W . For each
Wi, we define a domain interval D(Wi) of the length Wi as

D(Wi) =

[1,Wi], i = 1(i−1∑

j=1

Wj ,

i∑
j=1

Wj

]
, 1 < i ≤ n (8)

We restrict sym R to take values in non-empty domain intervals by instru-
menting the code with the implementation of PickRnd() as given in Figure 6.
If all domain intervals are empty, we set sym R = NULL.

Global: sym R a symbolic integer variable

Procedure PickRnd
Input: W [1..n] an array of weights
Output: id an ID of a randomly selected value Rid
1: for id← 1 to id ≤ n do
2: if W [id] > 0 and sym R ∈ D(W [id]) then
3: return id
4: end if
5: end for
6: return NULL

Fig. 6: Selecting a value from a domain with a weighted-random distribution.

3.4 Computing Event Probabilities with Model Counting

In order to compute information leakage, we need to compute the probabilities
given in (2) and (3). We compute the probability of an event by counting the
number of values that satisfy the observation constraint (i.e., the number of solu-
tions to the observation constraint) that corresponds to that event. To formalize
this, we will use the following notations. Given an ordered set of variables V and
an ordered subset V ′ ⊆ V ,we define a partial assignment on V ′ as a mapping
V ′ 7→ v, where v is an assignment on all variables in V ′. Given a constraint
Ψ(V), we denote by Ψ(V) |V ′ 7→v the result of assigning and propagating the
values v to the variables V ′ in Ψ . We denote by #Ψ(V) |V ′ 7→v the number of
solutions to Ψ(V) |V ′ 7→v over the free variables.

Then the probabilities in (2) and (3) are computed using model counting on
observation constraints as follows:

P (O = ω|L = l) =
#C(H,O,L) |(O,L)7→(ω,l)

#C(H,O,L) |(L)7→(l)
(9)

P (H = h | O = ω,L = l) =
#C(H,O,L) |(H,O,L)7→(h,ω,l)

#C(H,O,L) |(O,L)7→(ω,l)

(10)

Example. In Table 1, we give the probability and entropy computations
for the Priority arbiter when PA = P2 and PV = P1. We follow the compu-
tation steps described in Section 3.1 using (1)-(4) for the entropy calculations
and (9), (10) for the probabilities.

Information Leakage in Arbiter Protocols XI

r2 0 1
g2 0 1 0 1
r1 0 1 0 1 0 1 0 1

#C |(R1,G2,R2) 7→(r1,g2,r2) 2 2 0 0 0 2 2 0
#C |(G2,R2) 7→(g2,r2) 4 0 2 2
#C |(R2) 7→(r2) 4 4

P (R1 = r1 | R2 = r2)
P (0 | 0) = 1/2 P (0 | 1) = 1/2
P (1 | 0) = 1/2 P (1 | 1) = 1/2

Hinit(R1 | R2 = r2) 1 1

P (R1 = r1 | G2 = g2, R2 = r2) 1/2 1/2 0 0 0 1 1 0
H(R1 | G2 = g2, R2 = r2) 1 0 0 0
P (G2 = g2 | R2 = r2) 1 0 1/2 1/2
Hfin(R1 | G2, R2 = r2) 1 0

∆H 0 1
max(∆H) 1

Table 1: Probability and entropy computations for the Priority arbiter. Adversary
controls P2. Victim’s process is P1. C is the characteristic constraint for Priority.

4 Model Counter for Arbiter Protocol Constraints

We observed that constraints extracted with the symbolic execution of the ar-
biter protocols were, on one hand, large—especially for those with random com-
ponents as the randomization increases the variety of behaviours of the protocols,
with over five million distinguished protocol behaviours for 6 rounds.

On the other hand, we observed that the constraints extracted from arbiter
protocols can be characterized by a common structure. We define a grammar
representing this structure, as described in Figure 7, and refer to its language as
a range constraint language, denoted by LRC . In the context of the constraints
extracted with the extended symbolic execution: B stands for the Boolean vari-
ables representing each process’s requests in each round and corresponding ar-
biter responses, and I for the integer variables, one per round, responsible for
random components of the protocols. For deterministic protocols the domain of
I is empty. An atomic constraint C in this grammar represents a single event
constraint Cφ(H,O,L) (defined in (5)) extracted with the extended symbolic ex-
ecution. Variables representing arbiter responses are always present in an atomic
constraint. Consequently, the atomic constraints have disjoint sets of solutions.

C → C ∧ C | R
R → B = > | B = ⊥ | I ∈ [a, b]

Fig. 7: Range Constraint Grammar. B ranges over Boolean, I over integer variables.

We need to compute #C(H,O,L) |(H,O,L)7→(h,ω,l) for each tuple (h, ω, l).
Based on the above observation on event constraints in LRC , we built an efficient
exact model counter which is linear in time in the size of the input constraint.
The model counting is performed during parsing of the constraint and uses only
as much space as required to store the final counts. We give a pseudocode for
our model counter in Figure 8, where Tuples(Cφ, PA, PV) returns a set of all
tuples (h,ω, l) of the partial assignments (RV ,GA,RA) 7→ (h,ω, l) of Cφ.

Given PV and PA, each Cφ determines values (h,ω, l) for (H,O,L), thus
contributes to model counting for the tuple (h,ω, l). We define a free variable
in an atomic constraint Cφ to be a Boolean variable from the domain of B as
a variable (i) distinguished from RV and RA; and (ii) not appearing in Cφ. An

XII N. Tsiskaridze et al.

Global: S a data structure for storing model counts

Procedure LRC ModelCounter
Input: C a characteristic constraint, PV victim’s process, PA adversary’s process
Output: Model counts stored in S
1: for each Cφ in C do . Also, by construction Cφ ∈ LRC
2: m← #FreeVars(Cφ, PV , PA)
3: s← 2m

4: for each (r ∈ [a, b]) in I do
5: s← (b− a+ 1)× s
6: end for
7: for each tuple (h,ω, l) in Tuples(Cφ, PV , PA) do
8: S[(h,ω, l)]← S[(h,ω, l)] + s
9: end for

10: end for

Fig. 8: Model counter for range constraints.

event constraint Cφ in C contributes towards the model-counting of multiple
tuples (equally, with the same number of models s) when any of the variables
RV and RA is absent in Cφ. The number of models, s, depends only on the
number of free variables and the ranges on the integer variables in Cφ.

5 Experiments

To test our framework, we conduct quantification experiments on nine different
arbiter protocols discussed in Section 2, considering both stateless and stateful
processes. Each experiment involves a single arbiter protocol, three processes,
and rounds from one to six. We compute the maximum expected information
leakage the adversary can learn about the victim process, and determine the
position of the victim-adversary processes for which the arbiter leaks the most.

Our current implementation requires specification of each arbiter protocol in
Java. We use SPF (Symbolic Java Pathfinder) [23], a well-established symbolic
execution tool to analyze Java bytecode, to extract characteristic constraints
for the arbiter protocols, as discussed in Section 3.2. Then, we perform model
counting as explained in Sections 3.4 and 4. Based on the distribution of these
counts, we calculate the information leakage according to Section 3.1.

We perform model counting with two methods: an enumerative counting
method EC (Section 3.4), and our faster range-constraint counting method RC
(Section 4). The former provides us a slow method serving as a ground truth, the
latter an optimized method for higher numbers of rounds when the exponential
blowup makes enumerative counting infeasible. Table 2 shows the execution time,
in seconds, for EC vs RC methods. RC ranges from 1.4x faster to 2, 647x faster,
with an average speedup of 250x (excluding time outs for EC).

Figure 9 shows the results of our experiments, executed on a 128 GB RAM
machine. The protocols are given in two groups: one with stateless processes, one
of stateful processes. The leakage for each protocol is shown for each arrangement
of (victim, adversary) process IDs and six rounds of data; six horizontal lines
in each bar delineate the information learned up through that round. The full
bar is the information learned in six rounds; the lowest line is the information

Information Leakage in Arbiter Protocols XIII

Protocol
1 Round 2 Rounds 3 Rounds 4 Rounds 5 Rounds 6 Rounds

max RC EC max RC EC max RC EC max RC EC max RC EC max RC EC
bit sec sec bit sec sec bit sec sec bit sec sec bit sec sec bit sec sec

Priority 1.00 0.1 0.3 2.00 0.2 0.7 3.00 0.2 10.2 4.00 0.3 346.4 5.00 0.5 - 6.00 1.5 -
RoundRobin 0.00 0.2 0.4 0.00 0.1 0.3 0.00 0.2 1.2 0.00 0.3 10.3 0.00 0.3 225.0 0.00 0.8 -
RoundRobinSkip 1.00 0.2 0.3 1.16 0.2 0.6 1.57 0.1 10.3 1.97 0.3 337.9 2.32 0.5 - 2.71 1.5 -
FCFS 1.00 0.2 0.3 1.27 0.2 1.2 1.86 0.4 53.2 2.16 0.7 - 2.71 4.8 - 3.02 44.1 -
LongestIdle 1.00 0.1 0.3 1.55 0.2 1.0 2.10 0.3 53.7 2.66 0.8 - 3.22 5.1 - 3.78 45.7 -
FCFS R 0.13 0.1 3.2 0.27 0.3 11.5 0.45 0.5 439.1 0.64 4.9 - 0.83 74.3 - 1.02 1121.1 -
LongestIdle R 0.05 0.1 2.7 0.21 0.1 10.0 0.40 0.4 241.8 0.58 1.9 - 0.76 19.5 - 0.92 200.3 -
Lottery 0.05 0.2 2.7 0.09 0.2 13.2 0.13 0.5 399.7 0.17 4.2 - 0.21 65.2 - 0.25 981.2 -
Random 0.05 0.1 4.8 0.10 0.2 10.6 0.15 0.5 372.2 0.20 4.2 - 0.24 66.2 - 0.29 983.1 -
Priority S 1.00 0.1 0.3 2.00 0.2 0.9 3.00 0.3 18.9 4.00 0.4 - 5.00 0.8 - 6.00 4.4 -
RoundRobin S 0.00 0.1 0.3 0.00 0.2 0.5 0.00 0.3 5.2 0.00 0.3 260.8 0.00 0.4 - 0.00 1.2 -
RoundRobinSkip S 1.00 0.2 0.4 1.07 0.1 1.1 1.33 0.2 17.6 1.53 0.4 979.5 1.64 0.8 - 1.81 3.2 -
FCFS S 1.00 0.1 0.4 1.16 0.1 1.0 1.41 0.3 32.4 1.67 0.4 - 1.83 1.2 - 2.06 6.4 -
LongestIdle S 1.00 0.2 0.4 1.55 0.2 1.2 2.14 0.3 36.7 2.78 0.4 - 3.47 1.3 - 4.20 6.6 -
FCFS RS 0.13 0.2 4.3 0.25 0.1 17.3 0.41 0.4 283.2 0.55 1.3 - 0.70 9.5 - 0.84 79.2 -
LongestIdle RS 0.05 0.2 4.1 0.14 0.2 15.7 0.31 0.3 184.0 0.35 0.6 - 0.43 3.1 - 0.48 20.5 -
Lottery S 0.05 0.2 4.6 0.06 0.3 22.1 0.06 0.4 312.6 0.07 1.2 - 0.08 10.2 - 0.09 88.2 -
Random S 0.05 0.1 2.9 0.06 0.2 18.8 0.08 0.3 290.8 0.09 1.3 - 0.10 10.2 - 0.11 88.9 -

Table 2: Max leakage (in bits) and execution time (in seconds) for leakage computation
with the Range-constraint Counting (RC) vs Enumerative Counting (EC) methods. A
timeout of 20 minutes (1200 s) was used. ‘-’ indicates a timeout; (S) – stateful processes;
(R) – resolving wait-time and idle-time concurrences randomly.

learned in the first round. The worst-case leakage of each protocol across all
process pairs, for each round, is shown in Figure 10, which illustrates interesting
trends and groupings among the protocols.

The variety of interesting subtleties in the results are more than we can dis-
cuss here, but we note a few points. The arrangement (1, 2) is the best scenario
for the attacker, as he/she directly follows the victim and no other processes
cause noise. The Priority arbiter leaks the most for this arrangement, but
leaks less for (2, 3) and (1, 3), and does not leak for other arrangements. The
RoundRobin protocol leaks no information in any arrangement, but it is inef-
ficient with respect to resource usage since it wastes cycles where the resource

Fig. 9: Computed leakage for each protocol for 1-6 rounds, given for each
(victim, adversary) process pair. Cumulative leakage is shown for 6 rounds.

XIV N. Tsiskaridze et al.

Fig. 10: Worst-case leakage of each protocol as a function of the round number.

is not utilized. Introducing a simple optimization in the RoundRobinSkip pro-
tocol improves resource usage, but introduces leakage. The random protocols
(Lottery and Random) have low leakage, but they are non-deterministic pro-
tocols in how they award resources which can lead to unfair resource allocation.
Introducing randomness to other algorithms, like FCFS and LongestIdle im-
prove their leakage characteristics (again, at the expense of non-determinism).
Typically, the stateful process version of each protocol leaks slightly less than
the stateless version, as processes have less freedom in choosing their requests
which means that there is less amount of information (entropy) to leak.

6 Related Work

Arbiter protocols have been studied intensively for effectiveness and fairness
([11] gives a brief survey). Various arbitration techniques have been proposed and
compared in providing fairness and efficiency for shared-resource access manage-
ment. More recent work has been focusing on privacy aspects of the arbitration,
covert channel and timing side channel information leakage, including quanti-
tative leakage analysis and channel capacity evaluations [4, 14, 24, 9]. However,
these approaches are either manual, or consider a fixed number of processes and
rounds, or focus on deterministic arbiters.

We make use of concepts from foundational and theoretical works in quan-
titative information flow [25] and combine them with symbolic execution and
model counting techniques to automatically quantify security vulnerabilities in

Information Leakage in Arbiter Protocols XV

protocols. There are other model counting techniques that handle constraints
with different levels of expressiveness [1, 17], and they can be integrated with
the quantitative information flow analysis we present in this paper. Quantita-
tive measurement of information leakage in programs has been an active area
of research [6, 2, 26, 15]. Most previous works quantify the leakage in a single
run of the program given a concrete value of low input. There have been recent
works for performing automatic QIF for programs using symbolic execution [21,
20], bounded model checking [12], and graph theoretic methods [19], or random
sampling [5], as well as in detecting and quantifying information flow and timing
side channels at the hardware design and specification level [10, 8]. Multi-run
analyses based on input enumeration [16] and symbolic approaches [22] have
also been proposed for side-channel attack synthesis.

7 Conclusion

Contention for shared resources will only grow with time as we become increas-
ingly reliant on multi-tenant, cloud systems. Isolation and privacy preservation
are of the utmost importance in these systems, but virtual machines and OS
guards cannot always prevent information from crossing from one domain to
another. Adversaries can use information leakages to extrapolate privileged in-
formation that needs to remain secure. The novel QIF analysis technique in this
paper combines and extends symbolic execution and model counting techniques
providing protocol designers and users a new dimension in assessment and com-
parison of protocols in terms of the amount of information leaked over time.

References

1. Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-based model count-
ing for string constraints. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015.

2. Michael Backes, Boris Kopf, and Andrey Rybalchenko. Automatic Discovery and
Quantification of Information Leaks. In Proceedings of the 30th IEEE Symposium
on Security and Privacy, SP ’09, Washington, DC, USA, 2009.

3. Michael Backes and Birgit Pfitzmann. Computational probabilistic noninterfer-
ence. Int. J. Inf. Sec., 3(1):42–60, 2004.

4. Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP covert channel detection.
ACM Trans. Inf. Syst. Secur., 12(4):22:1–22:29, 2009.

5. Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. Leakwatch: Estimating
information leakage from java programs. In Computer Security - ESORICS’14 -
19th European Symposium on Research in Computer Security. Proceedings, 2014.

6. David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis for quan-
tifying information flow in a simple imperative language. J. Comput. Secur.,
15(3):321–371, August 2007.

7. Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. Idle port
scanning and non-interference analysis of network protocol stacks using model
checking. In 19th USENIX Security Symposium, Washington, DC, USA, 2010.

8. Andrew Ferraiuolo, Weizhe Hua, Andrew C. Myers, and G. Edward Suh. Secure
information flow verification with mutable dependent types. In Proceedings of the
54th Annual Design Automation Conference 2017, DAC 2017.

XVI N. Tsiskaridze et al.

9. Xun Gong and Negar Kiyavash. Quantifying the information leakage in timing side
channels in deterministic work-conserving schedulers. IEEE/ACM Trans. Netw.,
24(3):1841–1852, 2016.

10. Shengjian Guo, Meng Wu, and Chao Wang. Symbolic execution of programmable
logic controller code. In ESEC/SIGSOFT FSE, 2017.

11. J. Gupta and N. Goel. Efficient bus arbitration protocol for soc design. In 2015
International Conference on Smart Technologies and Management for Computing,
Communication, Controls, Energy and Materials (ICSTM), 2015.

12. Jonathan Heusser and Pasquale Malacaria. Quantifying information leaks in soft-
ware. In Twenty-Sixth Annual Computer Security Applications Conference, AC-
SAC 2010, Austin, Texas, USA, 6-10 December 2010, pages 261–269, 2010.

13. Dominic J. D. Hughes and Vitaly Shmatikov. Information hiding, anonymity and
privacy: a modular approach. Journal of Computer Security, 12(1):3–36, 2004.

14. Sachin Kadloor and Negar Kiyavash. Delay optimal policies offer very little privacy.
In Proceedings of the IEEE INFOCOM 2013, Turin, Italy, 2013.

15. Vladimir Klebanov, Norbert Manthey, and Christian Muise. SAT-Based Analysis
and Quantification of Information Flow in Programs. In Quantitative Evaluation of
Systems, volume 8054 of LNCS, pages 177–192. Springer Berlin Heidelberg, 2013.

16. Boris Köpf and David A. Basin. An information-theoretic model for adaptive
side-channel attacks. In Proceedings of the ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, 2007.

17. Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida.
Effective lattice point counting in rational convex polytopes. J. Symb. Comput.,
38(4):1273–1302, 2004.

18. Pasquale Malacaria, M. H. R. Khouzani, Corina S. Pasareanu, Quoc-Sang Phan,
and Kasper Søe Luckow. Symbolic side-channel analysis for probabilistic programs.
IACR Cryptology ePrint Archive, 2018:329, 2018.

19. Stephen McCamant and Michael D. Ernst. Quantitative information flow as net-
work flow capacity. In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA, 2008.

20. Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tev-
fik Bultan. Synthesis of adaptive side-channel attacks. In 30th IEEE Computer
Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, 2017.

21. Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Pasareanu.
Symbolic quantitative information flow. ACM SIGSOFT Software Engineering
Notes, 37(6):1–5, 2012.

22. Corina S. Păsăreanu, Quoc-Sang Phan, and Pasquale Malacaria. Multi-run side-
channel analysis using Symbolic Execution and Max-SMT. In 29th IEEE Computer
Security Foundations Symposium, CSF 2016, Washington, DC, USA, 2016.

23. Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. Symbolic PathFinder: integrating symbolic execution
with model checking for Java bytecode analysis. ASE, 2013.

24. S. H. Sellke, Chih-Chun Wang, N. E. Shroff, and Sonchita Bagchi. Capacity bounds
on timing channels with bounded service times. 2007 IEEE International Sympo-
sium on Information Theory, pages 981–985, 2007.

25. Geoffrey Smith. On the foundations of quantitative information flow. In Proceed-
ings of the 12th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS), pages 288–302, 2009.

26. Chao Wang and Patrick Schaumont. Security by compilation: An automated ap-
proach to comprehensive side-channel resistance. ACM SIGLOG News, 4(2):76–89,
May 2017.

