
Patchable Instruction ROM Architecture

Timothy Sherwood Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114

{sherwood,calder}@cs.ucsd.edu

ABSTRACT
Increased systems level integration has meant the movement
of many traditionally off chip components onto a single chip
including a processor, instruction storage, data path, and
local memory. The design of these systems is driven by two
conflicting goals, the need for reduced area and the need for
rapid development times. The two current design options
for instruction storage, ROM and Flash, are each highly
optimized to one of these two goals but provide little com-
promise between them. ROM is used for highly area opti-
mized instruction memory, although this comes at a price of
lengthy integration time due to it’s need to be correct before
the chip is sent for fabrication. Flash is an alternative in-
struction memory that can significantly reduce the time to
market by allowing embedded software to be upgraded after
fabrication, meaning that software test and fabrication can
be overlapped. Unfortunately Flash takes over a factor of 2
times the area of the equivalent ROM based storage.
In this paper we present the Patchable Instruction ROM

as an architecture for instruction storage that can provide
the best of both worlds – reduced area and faster time to
market. With area efficiency similar to a standard ROM
and support for limited post fabrication software patching,
Patchable Instruction ROM provides a new set of design
points to consider when building embedded systems. For the
programs we examine, we show that our hardware/software
technique can achieve an area only 10% larger than ROM
with only an 11% inflation in design time over a Flash based
approach.

1. INTRODUCTION
The rapidly growing embedded electronics industry de-

mands high performance, low cost systems with increased
pressure on design time. Now more than ever there is in-
creased pressure on designers to get their systems out the
door as quickly and as efficiently as possible. Many design-
ers are turning to embedded microprocessors as a way of
meeting these increasing design time pressures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CASES’01, November 16-17, 2001, Atlanta, Georgia, = USA.
Copyright 2001 ACM 1-58113-399-5/01/0011 ...$5.00.

In order to feed these microprocessors, instructions must
be provided in a form of non-volatile memory. To save on
packaging and pincount, a trend is for this non-volatile mem-
ory to be integrated into on-chip ROM. The HP DeskJet
820C digital controller ASIC [9] is a perfect example of this
design trend. On the ASIC, the data path is implemented in
standard cell, a microprocessor is included for control, and
and ROM is included to direct the microprocessor. The area
taken up by the ROM is 14% of the total die area, almost
as much as the microprocessor, and the sizes of embedded
memory will continue to grow as embedded processors con-
tinue to become faster. If the memory on the 820C controller
were instead implemented in Flash it would have taken up
25% of the die area.
Building such a chip with ROM requires that all ROM

testing be completed before the final fabrication of the chip
is released. As each generation of embedded system devel-
ops, more and more complexity is expected to be dealt with
by the software of the system. This means that with each
successive generation of chip more software will be embed-
ded into on-chip ROMs.
Since the ROM code needs to be hardwired into the sys-

tem, the testing of the system software needs to be serialized
with fabrication of chip. This means that the final fabrica-
tion has to wait for testing of the ROM code to be complete,
and this can significantly increase the time-to-market. The
top of Figure 1 shows this graphically with the dotted line
showing the time the chip can be released. This is the total
time the code is tested in order to produce the ROM code,
plus the fabrication time that starts after testing has been
completed. Custom fabrication has a very long lead time,
on the order of 90 days [4]. This means that it would be
very beneficial to provide an overlap of the final stages of
test with the actual fabrication of the chip.
An alternative to using ROM is to use a writable non-

volatile memory. Flash is an alternative instruction mem-
ory that is more than twice the size (and cost) of mask-
programmable ROM [9]. Flash allows a full code rewrite
after the chip has been fabricated as long as the code size
does not grow larger than the Flash that has been allocated.
This allows the code testing and the chip fabrication to be
overlapped as shown in Figure 1. In this example, testing
time was chosen to be larger than fabrication time, therefore
the chip can be released after testing has completed and the
final code is written to the Flash. This is designated by the
dashed line after the testing time. This results in a faster
time-to-market, but comes at the price of increased area and
cost.

Time

ROM (1.0 x area)

Testing Time

Fabrication Time

Fabrication Time

PI-ROM (1.1-1.2 x area)

Time

Testing Time

Done

Done

Done

Fabrication Time

Testing Time

Time

Flash (2.2 x area)

Figure 1: The three options that are available to the
embedded system designer for instruction memory.
This first option is to use a ROM. ROMs have the
highest density, but require the code to be fixed be-
fore fabrication begins, and thus require that code
testing and fabrication be serialized. Flash is the
other extreme, allowing full post fabrication con-
figuration at the cost of bloated area compared to
ROM. Using a Patchable Instruction ROM can over-
lap most of the testing time with fabrication with
only a small increase in area.

We would like to design a system that has the cost advan-
tages of integrated ROM, while still maintaining the flexibil-
ity of FLASH. The approach we propose in this paper aims
to overlap the long tail of test with the actual fabrication of
the chip. We will take advantage of the fact that relatively
minor changes to the code after the initial phase of testing
are needed, and these could be captured by a small amount
of writable memory. In order to do this we need a way to
provide limited post-fabrication customization without seri-
ously impacting the cost of the chip.
To this end we present the Patchable Instruction ROM

(PI-ROM) architecture, and evaluate it for patching a fabri-
cated ROM with bug fixes and software updates. The patch
is provided in hardware by a small writable Patch Memory.
A jump table is used to direct the fetch PC from the ROM
to the Patch Memory to execute the patch code, and execu-
tion returns back to the ROM when the patch has finished
executing. This architecture allows the system designers to
aim for a more aggressive fabrication schedule knowing that
small changes to the code will still be possible after returning
from fabrication. We show how new versions of the code can
be compiled with minimal size patches and how the archi-
tecture uses these patches to provide the correct instruction
stream. We further evaluate the design tradeoffs involved,
and how one would pick a point in the design space that will
provide small chip area along with a high probability of full
update coverage.

2. ARCHITECTURE
In order to have efficient storage of instruction memory we

need to make use of the high density provided by on-chip
ROM, without suffering increased time-to-market. Fabrica-
tion needs to overlap testing in order to meet these time
constraints, but this requires the ability to modify the code
after fabrication. Our solution trades off a small portion
of the density achieved by using standard ROMs to increase
post-fabrication flexibility by allowing patches to the code to
be added after fabrication. We now describe an architecture
and compiler approach that can be used for this purpose.

2.1 Bene£ts of Patchable Instruction ROM
The manner in which software defects are discovered and

fixed is a well studied art in production software develop-
ment and by the software engineering community. There is
diminishing returns over time as one attempts to fix more
defects in the code. The majority of the defect fixes come
fairly early in the testing phase, but there is a long drawn
out tail where extensive testing is needed to get the system
to the desired level of correctness. While this tail of testing
is necessary to keep product standards at reasonable levels,
it statistically yields very few bugs. We use this fact as the
underlying motivation for our architecture.
The Patchable Instruction ROM (PI-ROM) architecture

uses a ROM for the majority of the code storage, but still
allows post fabrication customization using a small amount
of non-volatile writable memory and lookup structures. The
PI-ROM is fabricated after an initial testing phase, where
the majority of the software defects have been fixed. While
the developers are waiting for the chip to come back from
fabrication they continue to further test and fix defects in
the embedded code. When fabrication is done, patch code is
placed into a very small non-volatile writable Patch Memory
on chip to achieve the desired code quality. At a high level
the PI-ROM architecture operates by executing code in the
original fabricated ROM and switching over to the Patch
Memory when a defective section of software is encountered.
Execution will then switch back to the ROM after executing
the patch code. Using this scheme we are able to overlap
most of the fabrication time with the tail end of code testing,
while only increasing the area by a small amount.
The bottom of Figure 1 shows how the PI-ROM archi-

tecture allows a variable amount of overlap in testing and
fabrication. Fabrication starts after a sufficient amount of
testing time has occurred to eliminate a majority of the de-
fects. The shorter the fabrication time is in relationship to
the testing time, the more time there is for testing before
fabrication needs to start, and the smaller the Patch Mem-
ory will have to be. In contrast, if the amount of time for
fabrication is close to or larger than the testing time needed,
then the tail part of the fabrication will not be overlapped
with testing.

2.2 Hardware
The PI-ROM architecture uses three distinct structures

as can be seen in figure 2. The first and largest structure
is the main Instruction ROM. The ROM stores a version
of the software code that has been well tested, but is not
quite ready for final release. When the code has reached an
acceptable level of quality (to be examined in section 3.4),
the code is sent along with the other hardware descriptions
of the chip to start fabrication, and this version of the code

Patch Memory

Patch AddrROM addr

Patch Link Table

Enable

Instruction Bus

Writable Mem
Non-Volatile

Instruction

ROM

Enable
input address

Figure 2: The Patchable Instruction ROM architec-
ture is comprised of three structures, a ROM that
stores a preliminary version of the code, a very small
Flash or other non-volatile writable memory that
stores the patches to the preliminary version, and
a Patch Link Table that provides the mapping be-
tween the two at run time.

is stored in the ROM.
While the developers are waiting for the chip to come

back from fabrication they continue to further test and fix
defects in the embedded code. During this time the de-
signers come up with a “final” version of the code. This
version will contain software defect fixes resulting in small
changes to the version of the code stored in the ROM. These
software defect fixes will be stored as small code patches in
the Patch Memory, an on-chip writable non-volatile memory
(e.g., Flash or EPROM) as shown in figure 2. After the chip
comes back from fabrication, it can be programmed with the
proper patch code to provide correct execution.
A Patch Link Table (PLT) is a small fully associative ta-

ble that stores all of the ROM program counter locations
that are followed by the start of a patch. This forms the
bridge between the code in ROM and the patch code. The
associative lookup into the PLT checks to see if the current
instruction is in the table. If it is, the PLT returns the lo-
cation of the patch in the patch code address space and this
becomes the next fetch address. The number of bits for a
single entry in the PLT scales as the sum of the log of ROM
address space and the log of the patch address space.
When the Instruction ROM is accessed, the Patch Link

Table is checked in parallel. If there is a hit found in the
PLT, then the next instruction fetch will come from the spec-
ified location in the Patch Memory. In this way, instructions
that have addresses found in the Patch Link Table act as an
implicit jump to the patch code. The last instruction of the
patch will jump back into the address space of the ROM.
This will make the next instruction fetch to be taken from
the ROM. There is no latency in transitioning from the ROM
to the Patch Memory, since a hit in the PLT will redirect
the fetch in the next cycle to the Patch Memory.
In this paper we assume an architecture without an in-

struction cache, which is representative of most of the em-
bedded microcontroller domain. Even so, the use of an in-
struction cache integrates seamlessly into our PI-ROM ar-
chitecture. Each fetch address for the I-cache lookup would
be looked up simultaneously in the I-cache and the PLT. If

a hit is found in the PLT, then the next fetch address is
changed to be the translated (patch) address from the PLT.
This is the identical behavior as described above for tran-
sitioning from the ROM to the Patch Memory. The only
reason this could change the overall behavior of the system
is if the Patch Memory mapped to an area of the cache that
was conflicting with other instructions in the surrounding
code. However, because we can control the area to which
the Patch Memory maps we can perform conflict analysis to
insure that this does not happen.

2.3 Patch Compiler Support
A new form of compiler support is needed to generate the

patch code and the Patch Link Table mapping. This is to
allow the patch code to correctly interact with the original
pre-fabrication code in the ROM.
After testing has completed, the final code contains mi-

nor differences from the pre-fabrication code stored in the
ROM. The goal of the compiler is to detect these minor dif-
ferences, and to form regions of code that represent patches.
Determining differences between the two code baselines can
be done at many different levels. These range from com-
paring source code, intermediate representations, or binary
level differencing. Determining differences between two code
baselines is a well studied problem in industry, and there are
many tools that provide this ability. In section 3.4, we gath-
ered our results by generating patches from the binary level.
Once the compiler has determined the sections of code

that are different, it needs to form the patch regions. A
Patch Region is a grouping of sequential instructions that
will be executed in the Patch Memory instead of ROM. Each
patch region uses one entry in the Patch Link Table. The
Patch Link Table is architected to be small in order to op-
timize area on the chip. In this paper we assume a fixed
number of PLT entries, which are provided to the compiler
to work with.1 Since the compiler cannot generate any more
patches than PLT entries, it may need to combine several
code differences with spatial locality into one patch region.
The compiler will generate regions until all of the patches
can be stored in the PLT, and the code regions fit into the
Patch Memory.
If there is no way to fit all of the necessary code updates

into the Patch Link Table and Patch Memory, a respin of
the chip may be necessary. For a pure Flash solution, a
similar problem can occur. If the amount of Flash memory
chosen to be fabricated on the chip for instruction memory
ends up being too small to hold the final code image, a new
spin of the chip may be needed. For a pure ROM solution,
a new spin of the chip would be required if a severe defect
is found in the code after fabrication.
After the patch regions are formed, they are compiled to

interact appropriately with the ROM code. This consists
of (1) maintaining the correct register mapping, (2) main-
taining the correct data addresses, (3) identifying the ad-
dresses where the ROM jumps to Patch Memory, which will
be stored in the Patch Link Table, and (4) identifying what
address each patch will jump back to in the ROM when it
is finished executing the patch.

1The Patch Link Table could potentially be made to be
dynamically loaded depending upon the region of ROM code
being executed in order to provide more entries, and this is
left for future work.

0x184

Original Code

 0xP28 bne t3, 0xP38

Recompiled with update Patch Region

Patch Link Table

 0xP58 jump 0x1bc

0xP00

 0x1bc bis zero, zero, zero
 0x1c0 bis t3, t3, a2
 0x1c4 subq t5, a2, t0
 0x1c8 bis zero, zero, t3
 0x1cc cpys $f31,$f31,$f31
 0x1d0 subq t4, t0, a0
 0x1d4 br zero, 0xc8
 0x1d8 bis zero, zero, zero
 0x1dc ldq_u zero, 0(sp)

 0x198 bis t3, t3, a2
 0x194 addq t7, 0x1, a0
 0x190 beq t3, 0x1b4
 0x18c bis zero, zero, zero
 0x188 br zero, 0x1a0

 0x1c0 ret zero, (ra), 1

 0x180 addq a2, 0x1, a2
 0x184 addq a0, 0x1, a0
 0x188 addl t4, 0x1, t4
 0x18c br zero, 0x1b4
 0x190 bne t7, 0x1a0
 0x194 bis zero, zero, v0
 0x198 br zero, 0x1c0

 0x1bc lda v0, 1(zero)

 0x19c bis zero, zero, zero 0x19c bis a0, a0, t7
 0x1a0 subl t9, t4, t0
 0x1a4 bis t7, t7, a2
 0x1a8 zapnot t0, 0xf, t0
 0x1ac bis zero, zero, t4
 0x1b0 addq a0, t0, a0
 0x1b4 cmpult a2, t5, t0
 0x1b8 bne t0, 0xe0

 0x180 addq a2, 0x1, a2
 0x184 addq a0, 0x1, a0

 0x1e0 lda v0, 1(zero)
 0x1e4 ret zero, (ra), 1

 0x1a0 cmpult a2, t5, t0
 0x1a4 bne t0, 0xe0
 0x1a8 cmpult a0, t4, t0
 0x1ac beq t0, 0x1e0

 0xP04 bis zero, zero, zero

 0xP0c addq t7, 0x1, a0
 0xP10 bis t3, t3, a2
 0xP14 bis a0, a0, t7
 0xP18 cmpult a2, t5, t0
 0xP1c bne t0, 0xe0
 0xP20 cmpult a0, t4, t0

 0xP2c bis zero, zero, v0

 0xP34 bis zero, zero, zero
 0xP38 bis t3, t3, a2
 0xP3c subq t5, a2, t0
 0xP40 bis zero, zero, t3
 0xP44 cpys $f31,$f31,$f31
 0xP48 subq t4, t0, a0
 0xP4c br zero, 0xc8
 0xP50 bis zero, zero, zero
 0xP54 ldq_u zero, 0(sp)

 0x1b0 bne t3, 0x1c0
 0x1b4 bis zero, zero, v0

 0xP00 br zero, 0xP18

 0xP08 beq t3, 0xP2c

 0xP24 beq t0, 0x1bc

 0xP30 br zero, 0x1c0

 0x1b8 br zero, 0x1e4

Figure 3: The function string match from gs, shown with fault, in a corrected version, and the patch that would
be generated from the correction. The instructions highlighted required modification to fix the defective
software. The addresses for the patch region are shown in the form 0xPnn to show that they are distinct from
the addresses contained within the ROM. Note how the branch targets must change in the patched version,
and how the jump in inserted at the end to link back to the original code.

2.4 A Patch Code Example from Ghostscript
In this section we will examine one of the code patches

for the GNU program ghostscript. We will take a baseline
distribution of the program, and examine generating patch
code by applying a distributed patch to the original pro-
gram. We used version 2.6.1-0 as the baseline version of the
distribution, and version 2.6.1-1 as a patch release that fixes
5 defects present in the original version. We examine the
correction of a defect in the function string match, which
is used to match strings including wild cards. In the original
version, the function did not perform correctly on strings of
different length. The fix affected 7 different lines of code.
The tail end of the function required changes in both the

control flow and the data flow of the function. The original
assembly code for the latter part of the function is shown in
Figure 3 in the table labeled Original code. The instruc-
tions highlighted required modification to fix this defect.
The code labeled Recompiled with update represents the
same part of the function recompiled into a binary with the
patch fix applied. The highlighted area shows the changed
area of the code, between the two binaries.
The right part of Figure 3 shows the binary for the patch

code to be stored in the Patch Memory to fix this problem.
The patch addresses in the figure are shown of the form
0xPnn to show that they are distinct from the addresses
contained within the ROM. The first thing to notice is that
the Patch Link Table must be instructed to jump to the
patch region following the fetch of instruction at address
0x184. If there are any other changes of control flow that
target the region of original code containing the defect these
too must included into a patch region and patched.

Branch targets must be linked to the correct locations
in either the patch memory or back to the ROM. If the
branch was to an address within the patch region, then it
must now target the patch memory. This can be seen in the
instructions at addresses 0xP00, 0xP08, and 0xP28 of the
patch memory. In addition, addresses that link back to the
code in ROM need to be remapped. The bne at 0xP24 is a
prefect example of this, its resulting target is 0x1bc back to
the original code in the ROM.

3. EVALUATION
In this section we evaluate the time benefits of PI-ROM

compared to a traditional ROM based approach, and the
area benefits of the PI-ROM over using Flash memory to
store all of the code.
We evaluate the effectiveness of the PI-ROM architec-

ture by examining three real programs ghostscript, sleepy
cat, and zlib, each with at least two versions of the code
provided by their respective authors, an initial release and
one with bug fixes. The program ghostscript is a postscript
interpreter, sleepy is a database built for use in embedded
systems, and zlib is a compression library. From the initial
version and updates we gathered the size of the production
release, the number of the necessary patch regions, and the
average size of the patch regions. Update releases that in-
cluded extra features or included patches to port the system
were avoided if possible.

3.1 PI-ROM and Flash Area Tradeoffs
We first provide area model results used to evaluate the

tradeoffs between ROM, PI-ROM and Flash. To estimate

512 1024 2048 4096 8192 16384
Patch Memory (Instructions)

1.0

1.2

1.4

1.6

1.8

2.0
A

re
a

(N
o

rm
al

iz
ed

 t
o

 R
O

M
)

16 16
16

16

16

1

64
64

64

64

64

256
256

256

256

2561024

1024

1024

Figure 4: Area of the instruction storage architec-
ture with a ROM size that can hold 64K instruc-
tions versus the amount of patch code that can be
supported. Each line represents a different number
of patches that are supported. For example, a PI-
ROM that can store 4096 instructions of patch code
in 64 distinct patches will take up approximately
20% more area than a 64K ROM.

the area of the three different structures, we first estimate
the number of bits necessary for the structure and then mul-
tiply that by the per bit density of that memory structure.
All three memory types are common VLSI structures with
a high degree of regularity. We calculate area from recently
publish work [13, 14, 11].
The PI-ROM architecture makes use of both ROM and

Flash technology. In this architecture, ROM is used for
the majority of the code, while the Flash can be used for
the Patch Memory. In addition, we use a fully-associative
lookup structure for the Patch Link Table. We assume that
the lookup table is built from a volatile memory technology,
similar to a cache. For this reason an additional small Flash
is used to store the contents of the Patch Link Table for when
the system is powered down. At power up time the Patch
Link Table is initialized with the contents of the appropriate
section of Flash.
In examining recent circuit implementation papers, we see

that each ROM bit has an area of approximately 4f2 [13]
where f is the minimum feature size. Flash densities are
between 8f2 and 10f2 [14]. This is a large enough difference
that simply building the entire memory out of Flash may not
be cost effective. In contrast, adding a small amount of extra
area for the Patch Memory and the PLT store will not have
too much effect on costs. Fully associative table densities on
the other hand, lag far behind the other two because of the
logic required to do the comparison, and tend to be around
200f2. It is because of this density difference between the
associative lookup table and Flash, that it is usually more
area efficient to combine two or more patch regions into
a single patch region, as described in section 2.3, even if
it involves including instructions that do not need to be
patched.

1 2 4 8 16 32 64
Minimum Cluster Distance (instructions)

100

101

102

103

104

105

106

A
re

a
(p

er
ce

n
t)

gs
zlib
sleepy

Figure 5: Total Area versus Patch Cluster Width.
As we merge clusters of different instructions to-
gether into patch regions from different distances
we can see the effect it has on the area. If we do no
clustering the area of the Patch Link Table increases
the total area. If instead we are too aggressive in
clustering for patches we include too many redun-
dant instructions and the size of the Patch Memory
grows too large. The optimum cluster distance for
the three programs we examined is between an 8
and 16 instructions.

Using these densities we calculate how many bits are in
each structure to compare their total areas. The ROM and
Patch Memory are memory banks, and the number of bits
needed is given as the number of instructions contained in
the memory multiplied by the width of the instruction used.
For the rest of the paper we assume an instruction width
of 16 bits. The Patch Link Table, as was mentioned in
section 2.2, needs to store two numbers, the ROM address to
trigger the jump to Patch Memory, and the target address
in the patch memory address space. The total number of
bits for the patch link table is given as:

PLTbits = (log2(SizeROM) + log2(SizeFLASH))Npatches

Figure 4 shows the area of the PI-ROM instruction storage
architecture as you vary the number of PLT entries available
for patch regions. The areas shown are relative to a single
program ROM of 64K. Note that for this configuration if
we are willing to grow the instruction storage by 20% over
a ROM we can support 4 Kbytes worth of patch memory
with up to 64 distinct patches. If the number of instructions
per patch is typically lower than this, we can increase the
number of patches and decrease the total patch code size
or the opposite. When the PI-ROM architecture reaches
200%, its area is at the same level as an architecture using
only Flash for its instruction memory.

3.2 Examining Patch Characteristics
For the results gathered in this paper, we form the regions

by performing binary matching between the production re-
lease and the patch release of each application. Section 2.3

described the steps a compiler would take to form the re-
gions. In this section, we describe the steps we take to create
a reasonable estimate for the code changes and where they
are, without implementing a full compiler solution.
To determine the number of changed lines of code from

a release to a patch, we start by taking each program and
compiling it to an Alpha binary. We then apply a set of
patches provided by the application writers, and recompile
the application to a patch binary. We then compare these
two binaries to find the sections of code that have changed.
To compare the two binaries, we ignore register names, data
addresses, and branch addresses, since these may have ar-
bitrarily changed during the two compilations. Examining
the version with everything else left provides a very good
estimate as to the exact number of lines of code that have
changed, and where those changes are. 2 In addition, if there
are conditional branches in the original code that jump into
a region of code that is patched, these branches must also
be patched in order to jump to the newly generated patch
code.
The next step in generating the patch memory binary is

to find patch regions that provide a good tradeoff between
patch size and the number of regions. If we allow no redun-
dant instructions in the ROM and Patch Memory, then each
contiguous set of different instructions is a separate patch.
This provides the smallest ROM but requires a very large
Patch Link Table to capture all of these individual small
patches. If instead the compiler chooses to merge patch re-
gions together, even though the changes are not contiguous,
we reduce the area of the Patch Link Table at the cost of a
larger Patch Memory.
To examine these changes we begin with a longest com-

mon subsequence analysis of the two different executables
and find changes between the two. This provides us with
a set of patches that are provably as small as possible. We
then begin merging patches together. We merge two patches
together into a single patch region if their distance (number
of instructions between the end of the first patch and the
start of the second patch) is less than a threshold. Figure 5
shows the effect of varying the value of the threshold from
1 to 64 instructions. The minimum point on the graph is
at a cluster distance between 8 and 16 instructions. This
is to be expected, since each entry in the Patch Link Table
we examined is about the same size as about 14 instruc-
tions stored in Patch Memory. At the minimum point in the
graph we have a balance between increasing Patch Memory
redundancy and reduced Patch Link Table entries.
Table 1 contains a listing of the various statistics that we

gathered for the three programs examined. The number of
corrected software faults, shown in the first row, is the num-
ber of software defects that were corrected between the two
versions of the software we examined. The next two rows
show the total number of instructions in the release, and the
total number of instructions involved in the software update.
The area optimal number of patches is the number of patch
regions that were created after spatially local patches were
merged together. This number is greater than the number
of bug fixes because often a single fix affects multiple regions
of code. The next and final line in the table shows the aver-

2The estimate we use for our results is conservative because
the compiler tends to reschedule the code if anything has
changed, and this rescheduling will be picked up as a change
in the code by our patch generation software.

statistic gs zlib sleepy

Software Faults Removed 26 3 9
Total Size of Release (in instrs) 103K 3.9K 18.2K
Total Size of Fixes (in instrs) 592 29 371
Total Size of Fixes (% of release) 0.57% 0.07% 2%
Area Optimal Number of Patches 33 6 16
Area Optimal Size per Patch (instr) 40.0 19.8 33.8

Table 1: Characterization of the bug fixes for the
three different programs examined. Number of bug
fixes is the number of software defects that were
corrected between the two versions examined. Re-
lease size and fix size show the total number of in-
structions in the program and the total number of
instructions involved in the software update. The
area optimal number of patches is the number of
patch regions that were created by the compiler af-
ter the patch merging step. This number is greater
than the number of bug fixes because often a sin-
gle fix affects multiple regions of code. After patch
merging, the size per patch shows the average size
of an individual patch region.

age size, in number of instructions, of the optimally merged
patch regions.

3.3 Software Engineering Models
We use the Non-Homogeneous Poisson Process (NHPP)

Model of Goel and Okumoto [2] to model the rate at which
defects in the software will be fixed. This is used to model
the number of software faults left in a ROM when fabrica-
tion starts, which determines overall area and time saving of
the PI-ROM in the next section. We use this model because
of it’s simplicity and applicability to a wide range of testing
environments as noted by Misra [10] who used it to cor-
rectly predict the number of defects left in the space shuttle
software subsystem.
Using this model, and some parameters that are defined

from the engineering practices of the design team that would
be using our system, we can estimate the number of de-
fects left in the system versus time given the number of
defects discovered so far and the timing between the dis-
covery of those defects. We can also estimate the converse,
the amount of time left until the system has only a certain
number of defects left in it.
The Goel-Okumoto model is centered on two parameters,

the total estimated number of defects in the system, b, and
the parameter that reflects how quickly software faults can
be found and fixed, denoted a. The fit for a can be found
by examining several past chip designs and fitting the curve
for varying values of b using least squares fit. b can be found
for the current system by debugging for a given amount of
time, and using the value previously calculated for a.
The function for the amount of defects left in the system

after a time of test t is found as

m(t) = be−at

The model works by fitting the data to an inverse expo-
nential curve of the form presented in the equation above.
This curve reflects the fact that a great deal of bugs can be
found relatively quickly, but finding all of the bugs necessary
to make the software suitably stable takes a great deal of

Description of Constant Constant Value

Size of Code ROM 64K instructions
Bits per Instruction 16 bits
Initial Bugs per Line 20/1,000
Post-Test Bugs per Line 1/4,000
Instructions per Line 12
Patches perBug 2
Fabrication Time 60 days
Average Patch Size 45 instructions
a 0.05
ROM Density 1.0 by definition
FLASH Density 2.0 relative to ROM
Associative Density 52.0 relative to ROM

Table 2: The set of default constants used by our
analytical model.

time. The intuition behind this is that more and more code
must be examined to remove one more bug. The PI-ROM
architecture takes advantage of this by having the majority
of defects fixed during the early stages of test before fabri-
cation begins. The remaining defects will take significantly
longer to find and fix, and this will occur in parallel with
the fabrication of the chip.
Using the Goel-Okumoto model of software reliability and

the area model we can now make some calculations for var-
ious parameters effecting the model.

3.4 Area Versus Time Results
Given a set of parameters for the code size, engineering

process, and desired reliability we can estimate how large of
a patch system we will need and how long we will need to test
in order to meet these constraints. We show the interaction
by plotting the percent area increase over a simple ROM
approach, versus the amount of time spent in testing and
fabrication. The more time spent testing the less area that
will need to be devoted to patching flaws in the system.
There are two cases to consider. In the first case, the time

for fabrication is longer than the time required for testing,
as may be the case for very small systems. In these systems
the fabrication time is the bottleneck and the testing may be
fully overlapped with fabrication time. In this case a good
solution may be to simply use Flash to store all of the code
because during the fabrication time we can complete all of
the necessary testing. However, a better design point may
still be to do some preliminary testing and build a PI-ROM,
depending on the relative importance of cost and time-to-
market.
The other case, which is more common, is where the test-

ing time is longer than the fabrication time. Depending on
the standing of the client, the technology used, and the de-
mand for fabrication time, fabrication times can be between
50 and 100 days. Testing times depend on the software engi-
neering practices of the programmers, the complexity of the
tasks being performed in software, the number and training
of the testing staff, and the size of the code.
As was discussed in section 3.3 we need to provide two

inputs to our software engineering model, the parameter b,
which is the number of bugs initially in the systems, and the
parameter a, which captures the software engineering prac-
tices and the man power that is exerted on testing. There
is also one more parameter needed to make the model com-
plete, which is c – the amount of bugs that are remaining

0 50 100
Debug and Fabrication Time (days)

1.0

1.5

2.0

A
re

a
(r

el
at

iv
e

to
 R

O
M

)

0 50 100
Debug and Fabrication Time (days)

1.0

1.5

2.0

A
re

a
(r

el
at

iv
e

to
 R

O
M

)

Ttest Tfab

FLASH

ROM

Patch

Figure 6: Area versus time for the three differ-
ent memory architectures. The x-axis is the total
amount of time for combined debug and fabrication
measured in days, while the y-axis is the area of the
system relative to the ROM. The time to market for
the Flash is limited by the test time, which means
that if we were to use a patch based architecture
it is definitely beneficial to do some testing before
we start fabrication. If we just use 25 days of test
time before fabrication we can build a patch based
architecture that is just 14.2% larger than ROM.

in the system when it is ready for release. Most embedded
systems are never completely bug free, especially in the con-
sumer market, and at some point the very small probability
of the error occurring does not justify the ever increasing
resources that must be applied to find it. We assume that
if the code has less than c bugs in it, it is ready for release.
We start with how we get estimations of b and c. Software

engineers have very effective rules of thumb for estimating
how many bugs are in the system per line of code. Average
code has 20 bugs for every 1,000 lines of code. Good code
has 2 bugs for every 1,000 lines of code. We assume that at
the start of debug we have “Average” code, and because of
the embedded nature of our release we want the code qual-
ity to be “Excellent” with only 1 bug every 4,000 lines of
code. There are other ways to measure the complexity of an
application for the purposes of testing [3, 8] which involve
measuring the number of operands and operators or control
flow graphs of a program, but for the purpose of our evalua-
tion the simple bugs per line model will suffice. From these
estimates, and our knowledge of how many instructions cor-
respond to a line of code and how big the final code is, we
can estimate b and c. We then estimate a using reported
testing times for various software code for embedded sys-
tems. We can now estimate area and total fabrication time
using these parameters along with our area model.
The actual values of the constants that we used as our

defaults are shown in Table 2. Figure 6 shows how area and
total test and fabrication time interact for the three types of
systems evaluated. The X-axis in figure 6 is the total amount
of time for combined debug and fabrication measured in

60 80 100 120 140 160 180 200
Time (days)

1.0

1.1

1.2

1.3

1.4

1.5

1.6
A

re
a

(r
el

at
iv

e
to

 R
O

M
)

X

A

B

C

D

E

F

X Base
A Patch Size x2
B More Initial Faults
C Relaxed Quality
D Slower Debuging
E Faster Debuging
F Longer Fabrication

Figure 7: Area versus amount of debug time for a variety of different parameter sets. Base is the base
configuration shown in Figure 6. Patch Size x2 illustrates the area increase due to having patches of twice
the normal size. More Initial Faults models the effect of having more bugs in the code to begin with. Relaxed

Quality is what happens if the quality standards for the final product are lessened. Faster Debugging and
Slower Debugging examine the effect of varying the parameter a from the Goel-Okumoto model and has the
biggest effect on the performance of the system as a whole. The final curve, Longer Fabrication, shows what
happens as we increase the time needed for fabrication relative to the total testing time needed.

days, while the Y-axis is the area of the instruction storage
on the chip, as normalized to only using a ROM.
We first note the x-marks for ROM and Flash. The ROM

is marked at an area of 1.0 with a total time of Ttest + Tfab.
Flash on the other hand takes up twice the area of the ROM
but with the ability to get chips out limited only by the
maximum of Ttest and Tfab, which in this case is Ttest.
The new option available is the PI-ROM, and it is shown

on the graph with the solid dark line marked ”Patch”. All
of the points on the curve are valid design options, and they
show the tradeoff between time-to-market and area needed
for software patching. As we wait longer and longer before
beginning the fabrication of the chip, there will be less faults
left in the software, and hence the area needed for any re-
maining patches will be less. This behavior can clearly be
seen in figure 6 with the line for the PI-ROM starting out as
high as 14% more area than a ROM, and converging to 0%
as we reach Ttest + Tfab where we meet the design point
for ROM.
Note that even if we take the same amount of time-to-

market as a Flash based approach, the PI-ROM will only
use 57% of the area that is used by Flash. This is because
the minimum time is limited in this example by the testing
time. Therefore, a given amount of testing can be done
before we begin the fabrication of the chip, in effect giving
us some testing time for free.
We now examine the tradeoffs from varying a variety of

parameters in Figure 7. The line marked X is the same line
as is presented in Figure 6, but the axis has been changed to
show more detail. Just as in Figure 6 the first point on the
curve is the first valid design point, at the minimum of Ttest

and Tfab. For each of the curves on the graph, the start
of the line, where the letter is located, is the first point at
which any design could be ready, and where a Flash based
approach could be used at that time with an area of 2.0.
The point where the curve reaches 1.0 for the Y-axis is the

time where the purely ROM solution would occur for the
given set of parameters. Each of the different curves on the
graph is an examination of valid design points with a single
parameter changed from the values used for X and shown in
Table 2. Each curve starts at the min of Ttest and Tfab for
it’s set of parameters and continues until it reaches a point
equivalent to a ROM at Ttest + Tfab.
The first curve, labeled A, shows the effect of having

patches that are on average double the size of what was
assumed in Table 2. Note that for the base case the size of
the Patch Link Table and Patch Memory are quite close, so
doubling the size of one structure does not add that much to
the area overall. The results for B show what happens if we
have a higher initial fault density (40 bugs per 1,000 lines of
code). In this case, the area of the first valid design point
does not increase over that of the base case, but instead we
need to wait longer until we reach acceptable code quality
before starting fabrication. As we increase the defect den-
sity, we increase the test time, but the amount of software
defects discovered during the time for fabrication remains
constant because the rate at which bugs are fixed does not
change. For the curve marked C, the quality of the final
product has been relaxed to (1 bug per 2,000 lines of code).
In this case we can release sooner, so we get less time for
testing before fabrication can start.
The curve D shows what happens if we change the value of

a (to 0.03) in the Goel-Okumoto model to reflect a software
testing methodology that takes more time to find and fix
each bug. In this case Ttest becomes much larger than Tfab

and because of this there is a long time to do testing before
it is desirable to start the fabrication. The tail of the model
is exaggerated with slower debugging and the results show
that we can achieve a very area efficient PI-ROM with the
same time-to-market as a Flash based approach. The curve
labeled E is perhaps the least intuitive of the results and
is exactly the opposite of the effect shown for curve D. For

E, we assume that we debug the software at a very fast
rate with a equal to 0.07. This results in the tail of testing
being reduced significantly, and secondly the process has
now become limited by Tfab. The final curve, F changes the
time needed for fabrication to be almost equal to Ttest.

4. RELATED WORK
In this section we discuss three areas of related research.

4.1 Patchable Control Store
The only prior work similar to ours that we are aware of

is the Patchable Control Store used to fix code in ROM
at boot time in the VAX-11/750. The VAX-11/750 has
a purely ROM based control store of 6k x 80 bit words.
Because there could sometimes be errors in the microcode
stored in the ROM, the DEC engineers added a board which
contained 1k x 80 bits of SRAM, PROMs to store the mi-
crocode updates, and 8k x 1bit of “flag” memory. At boot
time the machine would copy the contents of the PROM
into the SRAM, and initialize the flag memory. On every
instruction access the flag bit is checked for that address.
If the bit is high, then the instruction is retrieved from the
ROM, otherwise it is retrieved from the SRAM that was
initialized with the PROMs.
The implementation and design of the patchable control

store differs from our work in the following respects. First,
it requires the addition of area proportional to the size of the
total instruction ROM, not proportional to the size of the
patch area. For our approach, if there has been any amount
of initial testing, the amount of patch code relative to the
total code will be very small (as shown in Table 1). Adding
area proportional to the total control store will significantly
increase the cost of the chip. Secondly, the speed of the
instruction lookup will be negatively impacted because the
flag lookup is serialized with the instruction lookup for the
VAX-11/750. The design we present has no additional la-
tency when switching from fetching instructions in the ROM
to the Patch Memory.

4.2 Incremental Compilation and Pro£ling
In recent years there have been several efforts to create

compilers that can compile, profile, and optimize all incre-
mentally. The target use of such technology is large software
systems that take a very long time to both compile and pro-
file. In these systems it is not efficient to have to recompile,
relink, reprofile, and reoptimize the executable every time
the code changes even slightly. Instead the idea is to be able
to only update the sections of the code or profile that have
actually changed in a significant way. These systems show
that it is practical and feasible to update an optimized bi-
nary and detailed profiles after code changes due to defect
fixes.
Even though these systems are not to be implemented in

a non-updatable format such as a ROM, the problem is very
similar – a significant amount of effort has been put into the
original binary, and we now must change it while still using
as much of the original effort as we possibly can.
Typically when a program is optimized for a system, it

is first compiled into a state that is not fully optimized so
that proper profiling can be done. This allows the profiled
information to be tracked back to the source code that is
responsible, unfortunately this also means that two differ-
ent compilations must be done, one at a minimum level of

optimization and one at a full level. In [1], Albert shows a
way of mapping profile data from an optimized binary back
to the source code. This sort of technique would be helpful
for developing patch aware code generation.
The Binary Matching Tool (BMAT) system [12], takes a

different approach to reducing development time. Instead
of simply eliminating the extra compilation step, they pro-
pose to take older versions of the source code that have been
compiled and profiled, and match them to the new version
of the code. They do this using BMAT, which takes two
versions of a binary and matches them together. This work
is very similar to ours in that they are creating a map be-
tween two different versions of the same program, but differs
in an important way. They are seeking probabilisticly good
matches for the purpose of matching profile data, while we
are interested in only exact matches for correctness.

4.3 Code Compression
A different approach to reducing code size in embedded

systems is code compression, where the instructions are stored
in a compressed form in memory and are decoded before
their use.
LeFurgy et.al. [5] present an architecture for compressing

code using dictionary-based compression. Their architecture
makes use of a ROM that stores the compression instruction
memory. The ROM can contain either an uncompressed
representation of the memory or a codeword that is then
converted to a dictionary address and length pointing to
where the real instructions are stored. They show that by
using this technique instruction ROMs may be compressed
by 34% on average for the ARM instruction set.
LeFurgy and Mudge [6] show that these results are not

limited to just general purpose embedded processors, but
that the results also apply to other architectures such as
DSPs. Lefurgy et. al [7] further show how these techniques
may be implemented with more hardware efficiency using
a software-based approach. There are many other com-
pression techniques for embedded instruction memory, all of
which can provide some reduction in the area of the ROM
or RAM being used. All of these techniques are complimen-
tary to our PI-ROM, and can be applied to our approach
to provided additional savings in area. Code compression
schemes, because it does not change the actual instructions,
can be treated as a black box to our PI-ROM architecture
in section 2.4.

5. SUMMARY
There are two commonly used approaches to storing in-

structions on a chip, either use a ROM or a Flash. ROM is
highly optimized for density which minimizes the area per
instruction, but because it can only be written at fabrica-
tion, it needs to be correct before the chip is taped out. This
serializes the test of the embedded software with the actual
fabrication of the chip. Another approach is to use a non-
volatile writable memory technology such as Flash. Because
Flash can be written after the chip has been fabricated, the
code testing and chip fabrication can be overlapped, thus re-
ducing the total time to market. Unfortunately this comes
at the price of increased area and hence cost. Instead, we
present Patchable Instruction ROM (PI-ROM) as a tech-
nique to get density near that of a ROM with the limited
post-fabrication writability to help decrease time to market.
PI-ROM works by allowing the system designer to fab-

ricate a ROM even if it is not up to the required level of
quality. The PI-ROM includes a hardware mechanism that
works in concert with the compiler to patch the ROM on the
fly in hardware. When the program’s execution is about to
enter a region of faulty code, the PI-ROM architecture in-
tercepts the address and redirects the execution to a section
of fixed code stored in the Patch Memory.
To examine the usefulness of the PI-ROM architecture, we

first quantify how software patches effect the embedded pro-
grams at the architectural level. After examining the patch
regions generated, we have found that there is a great deal of
locality in how code is updated. We exploit this locality by
merging minimum sized software updates into larger patch
regions which can be implemented more efficiently. Merging
non-contiguous patch regions that are within 16 instructions
from one another is shown to be best.
Once we developed an understanding of the instruction

level effects of code updates, we combined this information
with an area model based on the bit densities of the three
types of memory structures involved and models from soft-
ware engineering. We have found that for reasonable val-
ues of fabrication time, software engineering methodologies,
and chip sizes, using a PI-ROM can keep the design time
afforded by using Flash, but use only 14% more area than
a ROM. We further showed how these results were effected
by changes in fabrication time, code quality, desired relia-
bility, and average patch size. Even with changing these by
a factor of two, we still are always left with excellent design
points for using a PI-ROM that provide a good trade off
between area and time to market.
The analysis we have done is pessimistic, and it is likely

that real implemented systems will benefit even more from
the use of Patchable Instruction ROM. The ROM we have
used in all of these comparisons is based on a Masked-ROM
where all the ROM values are programmed by the metal
layers. If instead we were to use Diffused-ROM we would be
able to even further reduce our area relative to Flash. In ad-
dition, we assumed a very aggressive debug rate. It is more
likely that the debug rate will be closer to that presented
for curve D in Figure 7. Taking all of this into considera-
tion, Patchable Instruction ROM is a very attractive design
option for instruction memory storage in embedded systems.

Acknowledgments
We would like to thank the anonymous reviewers for provid-
ing useful comments on this paper. This work was funded
in part by DARPA/ITO under contract number DABT63-
98-C-0045, by NSF CAREER grant No. CCR-9733278, and
a grant from Compaq Computer Corporation.

6. REFERENCES
[1] G. Albert. A transparent method for correlating

profiles with source programs. In Second ACM
Workshop on Feedback-Directed and Dynamic
Optimization, December 1999.

[2] A. L. Goel. Software reliability models: Assumptions,
limitations, and applicability. Transactions on
Software Engineering, 12(11):1411–1423, 1985.

[3] M. H. Halstead. Elements of Software Science.
Elsevier North-Holland, New York, 1977.

[4] H. Koike, F. Matsuoka, S. Hohkibara, E. Fukuda,
K. Tomioka, H. Miyajima, K. Muraoka, N. Hayasaka,
and M. Kimura. Quick-turnaround-time improvement
for product development and transfer to mass
production. IEEE Transactions on Semiconductor
Manufacturing, 1(1), 1998.

[5] C. Lefurgy, P. Bird, I-C. Chen, and T. Mudge.
Improving code density using compression techniques.
In 30th International Symposium on
Microarchitecture, December 1997.

[6] C. Lefurgy and T. Mudge. Code compression for dsp.
In Workshop on Compiler and Architecture Support
for Embedded Systems, December 1998.

[7] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing
code size with run-time decompression. In Proceedings
of the Sixth International Symposium on
High-Performance Computer Architecture, January
1998.

[8] T.J. McCabe and C.W. Butler. Design complexity
measurement and testing. Communications of the
ACM, 32(12):1415–1425, December 1989.

[9] J. L. McWilliams, L. M. MacMillan, B. Pathak, and
H. A. Talley. Ppa printer controller asic development.
Hewlett-Packard Journal, 73(4):1–12, 1997.

[10] P. N. Misra. Software reliability analysis. IBM
Systems Journal, 22(3):262–270, 1983.

[11] J. M. Mulder, N. T. Quach, and M. J. Flynn. An area
model for on-chip memories and its application. IEEE
Journal of Solid-State Curcuits, 26(2):98–106, 1991.

[12] K. Pierce and S. McFarling. Bmat – a binary matching
tool. In Second ACM Workshop on Feedback-Directed
and Dynamic Optimization, December 1999.

[13] T. Sunaga. A 30-ns cycle time 4-mb mask rom. IEEE
Journal of Solid-State Curcuits, 29(11):1353–1358,
1994.

[14] J. Tsouhlarakis, G. Vanhorebeek, G. Verhoeven, J.D.
Blauwe, S. Kim, D. Wellenkens, P. Hendrickx,
L. Haspeslagh, J.V. Houdt, and H. Maes. A flash
memory technology with quasi-virtual ground array
for low-cost embedded applications. IEEE Journal of
Solid-State Curcuits, 36(6):969–978, 2001.

