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ABSTRACT

Memristors offer many potential advantages over more tra-
ditional memory-cell technologies, including the potential
for extreme densities, and fast read times. Current devices,
however, are plagued by problems of yield, and durability.
We present a limit study of an aggressive neural network
application that has a high update rate and a strict latency
requirement, analog neural branch predictor. Of course, tra-
ditional analog neural network (ANN) implementations of
branch predictors are not built with the idea that the un-
derlying bits are likely to fail due to both manufacturing and
wear-out issues. Without some careful precautions, a direct
one-to-one replacement will result in poor behavior.

We propose a hybrid system that uses SRAM front-end
cache, and a distributed-sum scheme to overcome memris-
tors’ limitations. Our design can leverage devices with even
modest durability (surviving only hours of continuous switch-
ing) to provide a system lasting 5 or more years of con-
tinuous operation. In addition, these schemes allow for a
fault-tolerant design as well. We find that, while a neural
predictor benefits from larger density, current technology
parameters do not allow high dense, energy-efficient design.
Thus, we discuss a range of plausible memristor character-
istics that would; as the technology advances; make them
practical for our application.
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1. INTRODUCTION

As concerns mount about the end of DRAM scaling, re-
searchers are beginning to examine alternative memory tech-
nologies and the new applications they enable. Resistive de-
vices, based on phase-change transitions (e.g. PCM) and
transition metal oxide (e.g. memristors), could potentially
replace typical memories like Flash, DRAM and perhaps
SRAM. While PCM is the closest to commercialization to-
day (128Mb parts that are currently in production), memris-
tors are moving forward quickly and offer a slightly different
set of tradeoffs. In fact, HP announced October last year
that memristor commercial devices that replace Flash will
be out within 18 months. In addition, a 32Gb memristor
crossbar array has been demonstrated [18].

Among the most important advantages of memristors are
CMOS-compatibility [40], analog properties [5], and small
footprint due to small lateral dimensions and possibility of
monolithical 3D stacking [17][31]. These properties enable a
wide range of potential applications ranging from memory
to computations, from digital circuits to analog circuits, and
including nonvolatile memory [13], signal processing circuits
[32] and artificial neuromorphic networks [17].

Specifically, memristors and neural applications are al-
ways thought to be a perfect match. In this paper, we
investigate this assumption given the recent milestones in
the technology with the goal of guiding future technology
advancements in order to be valuable for real applications.

We choose an analog neural branch predictor for our study.
While neural branch predictors have been extensively stud-
ied and there exist efficient implementation in terms of power
and latency [29], we choose this application to serve as a
limit study for memristor technology due to its strict la-
tency requirement and frequent updates. To our knowledge,
we are the first to address durability issues assuming SRAM
replacement.

The strong affinity between memristors and neural net-
works is generally based upon the assumption that memris-
tors would be used to create an analog network of neurons.
Unfortunately, this purely analog implementation is imprac-
tical given the serious issues that currently remain with the
technology, such as low write endurance. We find that a
hybrid digital-analog approach is needed in order to enable



cache-based write coalescing. Specifically, we choose a table-
based perceptron predictor implementation that efficiently
permits hybrid system design and exploits memristors’ ana-
log properties for prediction computations (expensive dot
product). We introduce an SRAM front-end cache to re-
duce writes to memristor storage. We also propose a dis-
tributed sum scheme to extend lifetime of our predictor and
make it fault tolerant. Our techniques are general, however,
they are specifically suitable for latency sensitive applica-
tions. While these techniques succeed to extend predictors’
lifetime to more than 5 years, they assume aggressive as-
sumptions about the technology which are not readily avail-
able in today’s technology. However, these assumptions are
nevertheless reasonable and based on the understanding of
physics behind memristors’ operation, e.g. scaling cross-
bar wire size and pitch, 3D stacking, and multi-bit storage.
Thus, we provide guidance as of how much the memristors’
technology should be advanced before it becomes practical
for our application.

In summary, this paper makes the following contributions:

1. We propose general techniques to overcome write en-
durance limits, and provide fault tolerance that are
necessary for memristors in order to be valuable for
real applications. Our techniques are specifically valu-
able for latency strict applications.

2. We propose a limit study of Memristor-Neural Ana-
log Predictor (MNAP) that exploits memristors’ high
density and ability to do analog computations. Our
predictor is highly accurate as compared to state of
the art neural predictors.

3. We provide guidelines for future technology advance-
ment to be valuable for our application.

The remainder of this paper is organized as follows. In
section 2, we provide background on memristor devices. In
section 3, we describe ANN-based branch predictors. In sec-
tion 4, we describe our techniques to mitigate memristors’
challenges. In section 5, we provide discussions on mem-
ristors’ parameters and guideline for future technology ad-
vancements. In section 6, we describe our simulation en-
vironment. In section 7, we show our accuracy results and
evaluate the effectiveness of our proposed techniques to over-
come memristors’ challenges. In section 8, we present related
work. Finally, we conclude the paper in section 9.

2. RESISTIVE MEMORY

In this section we provide brief background on memristors,
their key advantages and major challenges.

2.1 Memristors

Figure 1-a shows the simplest two-terminal memristive de-
vice structure consisting of two metal electrodes with metal
oxide memristive layer sandwiched in between [43]. The de-
vices can adopt either high or low resistance states, which
can be considered bits. A positive voltage above a specific
threshold (V > Von) will set the memristor to high resis-
tance state. A negative voltage of the same magnitude (V
< Vorr) toggles it to low-resistance state. Alternatively,
by controlling write pulse magnitude and/or duration the
memristive device can be switched continuously into inter-
mediate states. Figure 1-a shows typical I-V for bipolar type
of the devices.

In general, there are various materials which can imple-
ment such functionality [17]. On one hand, the metal-oxide
devices and the solid state electrolytes are more attractive
because of the combination of high ON/OFF ratio [43], scal-
ing prospects, fast write speed [36], high retention [33], and
compatibility with CMOS [40]. On the other hand, ones
based on phase-change transitions have intrinsically longer
“on” switching time and, larger write energy [2]. In this
study, we assume metal oxide devices.

2.2 Key Advantages
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Figure 3: Dot Product circuit

Density One of the advantages of memristive devices is
very attractive scaling prospects. The best way to sustain
the density of a single memristive device is to integrate them
into crossbar structures, based on mutually perpendicular
layers of parallel wires (Fig. 1-b). Such structures can be
used to implement passive crossbar memories, in which the
crosspoint memristors are used as memory cells, while the
semiconductor transistor subsystem performs all the periph-
eral circuitry [30].

Analog properties Dot product computation circuit,
which is a bottleneck operation for artificial neural networks
in general, is recently demonstrated with hybrid CMOS/
memristor circuits (Fig. 3) with weights of up to 7-bit pre-
cision [5]. In such circuit, analog inputs x are multiplied by
the weight value w of the corresponding memristive devices
and passed to the horizontal wire connected to the virtual
ground input of the CMOS-based operational amplifier. As
a result, the current injected through all memristive devices
on the common wire is equal to the dot product w * x and
can be sensed at the output of operational amplifier.

In general, the read time for such circuit is decreased
by lowering the ON state resistance for the memristive de-
vices. However, the smallest ON value is mainly limited by
the crossbar wire resistance. Therefore the read latency in-
creases for larger crossbar arrays. However, read delay below
1ns is feasible for relatively small (< 1000 wide) crossbar ar-
rays [30] with current sensing scheme [41] which is the case
in our predictor (for a single perceptron table).

These interesting properties make memristive devices fit
a wide range of applications [20][34]. In digital domain, ap-
plications could involve non-volatile solid-state memory, and
programmable logic. In analog domain, it could be used for
neuromorphic circuits, and analog signal processing.

2.3 Challenges

Write Endurance values reported in the literature have
been low [17], however it seems that their limits is still
far from being reached and depends on choosing the right
switching materials [42]. In fact, in 2011, [16] demonstrated
TaOz-based asymmetric passive switching device that re-
sults in cycling endurance of > 10'2. ITRS [2] projected a
write cycle endurance of 10 by 2024.
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Figure 1: Crossbar memory: (a) I-V curve of a single
memristor (schematically), (b) crossbar array structure

Defect Rates need to be improved before devices could
be used in a commercial product. In 2007, [6] showed that
about 50% of the bits are defective. In 2009, [14] demon-
strated that 8% of the bits are defective (i.e. yield of 92%).

Other limitations for memristors include write latency,
and sneak current. Sneak current could be avoided by ei-
ther integrating diodes with memristors [38], or by special
techniques that takes advantages of the non linearity of the
devices [42].

3. NEURAL BRANCH PREDICTOR

Most neural branch predictors are derived from the per-
ceptron branch predictor [10][12]. In that model, the per-
ceptron is a vector of h (history length of the predictor)
weights. A perceptron table of N entries is stored in fast
memory. Each perceptron entry represents the correlation
among past branches and all the branches that are mapped
to that entry. The magnitude of each weight specifies the
strength of the correlation with the h most recent branches.
There is also a bias weight table which captures the tendency
of the branch towards being taken or not taken independent
of branch history. A global history table with the h most
recent branch outcomes is also kept. Figure 2 shows typical
operations of a neural predictor. While latency and power
have been a problem for neural predictors implementations,
recent research provides efficient implementation overcom-
ing these problems without sacrificing accuracy [29].

Density Advantages Figure 4 demonstrates density ad-
vantages on predictor accuracy; MPKI (misprediction per
kilo instructions); over two of most accurate up to date table
based (L-TAGE) [26], and neural based predictor (SNAP)
[29] for SPEC traces. While increasing table size leads to
significant improvement in prediction accuracy, there exist
a sweet spot (20x) where further increase in density has neg-
ligible effect on accuracy. The reason of improved accuracy
is reducing the aliasing effect where different branches de-
structively share the same hardware resources. In this work,
we choose 20x as our exploration point.

4. MITIGATING CHALLENGES

In this section, we propose architecture solutions that ad-
dress memristors’ challenges while taking advantage of their
high density and ability to do analog computations.

4.1 Write Endurance

While wear-leveling has been studied for resistive memo-
ries, specifically PCM [22][7], it was in the context of hybrid
main memory. However, our application is different in terms
of latency requirements (replacement of SRAM), frequency
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of reads (prediction almost every cycle and thus making
any remapping technique that requires a couple of cycles
unsuitable), and frequency of updates (< microsec). This
makes straight forward application of previously proposed
techniques unsuitable. Next, we will discuss our proposed
techniques.

4.1.1 Hybrid Perceptron Table

An SRAM cache is used to keep the most recently updated
table entries. Since the perceptron table is subdivided into
several predictor tables that are indexed differently [25], a
separate 4-way set associative cache is used for each predic-
tor table.

This affects both reads and writes to the memristor per-
ceptron table. On a read, the SRAM cache and memristors
are read in parallel. In case of a cache hit, cache value is
used o.w. memristor value is used. On writes, if the en-
try is in the cache, it is written there. If not, the entry is
first moved to the cache, and then written. This may evict
a cache line, necessitating a write to the memristors. This
scheme reduces traffic to memristor storage by 75% for our
application.

4.1.2 Distributed Sum

Many instances of memristor are used to store a single
weight value. When an update occurs for this value, only
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Figure 6: Number of weights evicted from SRAM to mem-
ristors. On average only 8 weights need to be updated

one instance is updated, increasing the lifetime of the value.
These instances are organized such that the final weight
value is the sum of values across all instances. Thus, assum-
ing N writes to a weight, R instances and writes are evenly
distributed among all instances, N/R writes is performed to
each instance of the weight.

On memristor read, the instances values are added before
they are used. In order to store a value, first an instance
to modify is chosen. The old value is read; which is the
sum of all instance values masking the entry of the instance
to be modified. The delta of the old and the new value
is calculated, and then written to the candidate instance
which is chosen using global round- robin scheme (GRR).
GRR uses only one counter for the entire table. Figure 5
shows how this algorithm is applied to our neural predictor
assuming three instances.

The main advantage of our scheme is that it exploits
memristors’ unique analog properties that make predictions
within a 1ns feasible. Assuming values of a weight that be-
longs to different instances are physically stored in the same
memristor array, our scheme reads each memory array in
parallel (using scheme described in section 2.2), the final
current is steered to a positive or negative line based on the
XOR of the sign bit for that weight and the appropriate his-
tory bit [29]. Finally, the current is sensed at the output of
operational amplifier.

However, our scheme uses large storage overhead (requires
replication of the whole perceptron table) to avoid remap-
ping (requires couple of cycles). Assuming a near term 100x
more dense memristors’ storage is achievable; memristors
provide more density than required for performance. Thus,
sacrificing storage for prediction latency is important. In
this paper we do not address the circuit design in detail;
however, we discuss some of circuit issues in section 4.4.

4.2 Write Latency

Memristor write times reported in the literature vary sig-
nificantly from hundreds of pico-seconds [36] to tens of nano-
seconds [41]. Since high write latency would affect read
throughput, we use a write buffer where data evicted from
SRAM cache are kept. In case buffer is full, data will be
dropped. In addition, data from the write buffer will only

be written to memristor- perceptron table when processor
stalls. Figure 6 shows the number of weights that needs to
be written to the memristor- perceptron table for hmmer
trace. On average only 8 weights (size of a predictor table
entry; where perceptron table is divided into 16 predictor ta-
bles with 8 weights each [29]) needs to be written suggesting
that a write buffer of 8 entries per table is enough.

4.3 High Defect Rates

In order to tolerate memristors’ high defect rates, we pro-
pose slight changes to our distributed sum scheme. We
model defect rates as in [6].

We assume that initially we have a defective weight map
that stores a single bit per weight. This bit is set to 1 if the
weight has at least one defective bit. This extra bit is stored
with every weight in memristor storage. Then we slightly
modify the round robin scheme used to choose the instance
that needs to be modified as follows. For each weight, we
start with the instance chosen by the GRR. If it is defective,
we use the next one that is not defective. If all are defective,
then we use the one indicated by the GRR. Because this
is only on the critical paths of writes, not reads, we are
not concerned with the slight additional delay. While this
maintains accuracy, it does put pressure on write endurance,
since the writes from a defective instance are all placed on
the next non-defective instance.

4.4 Circuit Discussion

Since both SRAM and memristors stores data in differ-
ent forms, additional circuitries are required to move data
between them. In order to move data from memristors to
SRAM, analog to digital converters (ADCs) are required
which represent an important tradeoff in terms of power,
accuracy and latency. The power consumed by ADC de-
pends on their resolution and sampling rate. For ADC to
be implemented on chip, it has to operate in GSample/sec
which consumes in the order of tens of milliwatts. [37] shows
that 6bit 2.2 GS/sec ADC consumes 2.6mW. By scaling that
to 7 bits ADC, we could conservatively multiply the power
by two for every extra bit [19]. Fortunately, for our traces,
only 5% of the time data from one predictor table needs to
be written to SRAM-cache. This suggests that only a max-
imum of eight (size of an entry in predictor table) ADCs is
required.

Both writing to SRAM, and prediction computation (as-
suming data in SRAM) require converting data in the cache
into analog form. As in [29], current steering DACs are cho-
sen because of their high speed and simplicity. The power
overhead of such circuit is 7.4 mW and was shown to have
negligible effect on the predictor accuracy.

S. MEMRISTOR PARAMETER DISCUSSION

In this paper we have suggested a hybrid approach, based
on CMOS and memristor circuits, for branch prediction.
Our circuits take advantage of the density of the memristor
devices in spite of their intrinsic issues such as endurance
and yield. Since memristor technology is still largely im-
mature, it would be beneficial to explore branch predictor
performance across wide range of plausible memristor char-
acteristics as opposed to assuming specific parameters for
memristor devices and circuits. In this way our study is
more general and while it is less detailed it could answer
on the question: how much memristor technology should be
advanced before it becomes practical for this application?
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As of today, memristor device properties are not good
enough for the considered application. For example, accord-
ing to the recent study by Xu et al. [41] performed for Femos
= Fhano = 32 nm (where Fepos and Frano, are CMOS and
crossbar half pitch, correspondingly), the read latency opti-
mized 8 MB memristor crossbar memories would have 1.7ns
read latency but only 15% percent area efficiency provid-
ing density advantage of ~ 6x over SRAM memory, which
falls several magnitude short of the number required to start
getting performance benefits. On the other hand, for the
area optimized crossbar circuits the area efficiency is close
to 40% but at the price of increasing latency by almost 60x
and read energy by 10x. Thus, having high dense, energy ef-
ficient memristors is not readily achievable. However, these
results are directly related to both the devices’ assumptions
as well as the peripheral logic. Thus, assuming more ag-
gressive assumptions, which are nevertheless reasonable and
based on the understanding of the physics behind memristor
operation, could significantly improve memory performance.

For example, the area efficiency will be improved for larger
crossbar arrays where the peripheral overhead (scales as
N x logN where N is the crossbar size) gets smaller com-
pared to the useful memory area. However, this comes at
the price of increasing the crossbar (RC) latency and read
power. To this end, the latency can be made significantly
smaller by having more aggressive type of the electrochemi-
cal memristors with lower dielectric constant, such as those
based on SiO2 with eps = 3.9 [15].

Alternatively, to minimize peripheral overhead and dy-
namic power consumption for the multilayer crossbar mem-
ory, one can assume CMOL architecture which uses the
double decoding scheme which allows creating large address
space without adding new circuitry only at the price of in-
creasing wire length [31]. In CMOL, the length of the cross-

bar segments is fixed and does not scale with the size of the
CMOL array thus dynamic power consumption is not traded
off for area efficiency and could be negligible for considered
parameters [30].

Further improving the density could be achieved through
the following. First, the crossbar wire size and pitch can be
scaled very aggressively down to 5 nm e.g. using nanoim-
print technology [39]. Second, multiple layers can be stacked
monolithically - effectively reducing even further the foot-
print of the devices. Finally, storing multiple bits per mem-
ristor cell [5]. Thus, assuming smaller crossbar pitch, a
near term 100x density advantage of the crossbar memris-
tor memory can be achieved with either Frano ~ 13nm
(still assuming Femos = 32nm, 60%, 40% area efficiency
for SRAM and memristor crossbar, respectively). Or alter-
natively, with Flano = 30nm and 5 monolithically stacked
crossbar layers. Over the long term, a 1000x density could
be obtained with Flqno = 13nm and 10 crossbar layers [31].

The most important component, static leakage power, is
mostly determined by the I-V nonlinearity (selectivity) in
memristive devices. Engineering devices with better selec-
tivity and recent progress in integration of diode layers [23]
in the device stack are promising solutions to keep leakage
power consumption within practical limits.

Finally, we provide a guideline for memristors’ parameters
that makes the technology valuable for our application.

1. 400x density improvement over SRAM; with reason-
able latency; is required to maximize performance ben-
efits(6%), overcome endurance limit, and make predic-
tor fault tolerant.

2. In order to be competitive for analog computations,
i.e. those done by SNAP [29], the overhead of memris-
tor peripheral circuitry and, most importantly, that of



additional circuitry to implement conversion between
digital and analog signals should be minimized. Simi-
lar to SNAP, we expect this overhead to be small espe-
cially assuming that hybrid CMOS/memristor circuits
would be a natural candidate to implement digital-
to-analog (DAC) and analog-to-digital (ADC) conver-
sions. For example, resistor-ladder style DAC [5] and
Hopfield network ADCs [35] could be implemented effi-
ciently with hybrid CMOS/memristor circuits and are
expected to have much smaller latency, area, and en-
ergy as compared to traditional approaches.

6. SIMULATION ENVIRONMENT

We use two simulation environments for our work: trace-
driven and cycle-accurate simulations. The trace-driven sim-
ulation is used to explore the design space for our predictor,
determine the optimal table sizes, cache sizes, and number
of instances. Using these parameters, cycle-accurate simu-
lation is used to provide an overall performance evaluation.

For trace-driven simulation, we used the infrastructure
provided by the second (CBP-2) [3], and third branch pre-
dictor contest (CBP-3) [1]. We evaluated our predictor us-
ing SPEC2000 [3], SPEC2006[29], and CBP-3 traces [1]. The
SPEC trace set includes 21 traces from both SPEC CPU2000
[3], and SPEC CPU2006 [29]. Each trace has 100 million
branch instructions. The CBP-3 trace set includes 40 traces
classified into 5 different categories; Client, Integer, Multi-
media, Server and Workstation. Traces are approximately
50 million micro-ops long. For cycle accurate simulation,
we used PolyScalar, a significantly modified version of Sim-
pleScalar [4]. We used 8-wide processor with 12 cycles mis-
prediction penalty. We run 7 SPEC CPU 2000 benchmarks
using simpoints [28].

We compare our predictor to the winner of each contest, as
well as the neural predictor we are augmenting. For SPEC
CPU traces, we compare MNAP to two other predictors:
L-TAGE [26](winner of CBP-2), and SNAP [29] (predic-
tor we are augmenting). We restrict our hardware to the
32KB hardware budget as the predictors we are comparing
to. Similarly, for the CBP-3 traces, we compare our pre-
dictor to both ISL-TAGE [27] (winner), and OH-SNAP [9]
(predictor we are augmenting). We restrict our hardware to
the 64KB hardware budget as the predictors we are com-
paring to. Due to lack of space, we only provide detailed
results for SPEC traces. However, since CBP-3 traces have
much higher variance, leading to many more updates per in-
struction to the predictor, we will discuss their results when
necessary.

7. EXPERIMENTAL RESULTS

Using memristors to implement branch predictors is a
study of trade-offs. We begin by exploring the main ad-
vantage of memristors; density and its potential benefit to
prediction accuracy. We then evaluate solutions to handle
the two main challenges of using memristors: the write en-
durance and the high defect rate. Our evaluation is area
normalized, and not power normalized. At present, mem-
ristor interface circuitry would pose a problem for power
normalized implementations. Ongoing work in 3D integra-
tion [30], however, promises to overcome this challenge and
we leave this issue for future work. In addition, we assume
a cell lifetime of 102 [16].

7.1 Prediction Accuracy

Figures 7 shows MPKI results for SPEC traces at the
sweet spot - 20x density improvement (as shown in section
3). A larger table improved the average MPKI by 9% over
SNAP, and 3% over L-TAGE [26]. On the other hand, For
CBP-3 traces, a larger table results in 3% improvement in
average MPKI over OH-SNAP[9]. It also provides compa-
rable accuracy (within 1%) to ISL-TAGE [27].

7.2 Write Endurance

Using memristors as full SRAM replacement in a branch
predictor would shorten the lifetime of the chip to approx-
imately 4 months or 12 hours for SPEC and CBP-3 traces,
respectively. In this section we study the effect of our pro-
posed write reduction techniques: caching of the most re-
cently updated perceptron entries and spreading the writes
among multiple instances.

7.2.1 Trading off cache space for redundancy

Assuming a fixed hardware budget of 32KB, and mem-
ristors 10000x more dense, we show the trade-off between
cache size, and number of possible instances. Increasing
the SRAM area increases our cache space, allowing us to
hold more entries and thus potentially avoiding more up-
dates. Increasing memristors area, however, allows us to
have more instances and thus being able to absorb more
writes (evictions from the SRAM) by spreading them over
multiple instances.

Figure 8 illustrates that trade-off. The x-axis represents
the amount of increase in number of logical rows in a single
perceptron table. If the cache size is held constant and the
number of logical rows is increased, then the number of in-
stances is reduced. Within a fixed number of logical rows,
as SRAM space is increased, the number of instances is also
reduced. The maximum number of writes is the number of
updates to a single row in the memristors, divided by the
number of instances of that row.

What we expect, then, is that as the number of logical
rows grows, the maximum number of writes will increase,
since there are fewer instances at the same cache size. In
addition, within a certain number of rows, there is some
sweet, spot, which is the “right” amount of cache in trading
off between instances and cache space. Surprisingly, within
a trace, the optimal cache size is the same, regardless of how
many instances are left in the memristors. The amount of
cache space we found to be optimal is 12K of a 32K budget
(CBP-2[3]) or 17K of a 64K budget (CBP-3[1]).

7.2.2  Cache Effect on Write Endurance

In order to isolate the contribution of the cache, we counted
the number of writes that would have occurred without us-
ing instances as shown in figure 9. We chose cache sizes of
12K, which were identified in previous section as the best
configurations for SPEC traces when using both caches and
instances. Using a cache to store the most recently updated
perceptron entries reduces the number of writes by 96% on
average for both trace families. Despite the significant re-
duction in number of writes, and with the assumption of
1GHz processor and 102 write cycles, the predictor would
only last for 24 months for SPEC CPU and 4 months for
CBP-3 traces, respectively. Caches, alone, are not enough
to make memristors feasible for our application.
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size (10k rows) over SNAP

7.2.3  Multiple Instances of Perceptron table

Figure 9 shows the further reduction in writes when using
the distributed sum scheme. With 5 instances per value and
a realistic GRR (Global round robin) scheme, the maximum
number of writes is further reduced by 80%, on average. As-
suming a 1GHz processor and 10'? write endurance, SPEC
CPU and CBP-3 traces require 5 and 40 instances to last
6 years, respectively. For the CBP-3 trace, many more in-
stances are required because of a substantially higher update
rate.

7.3 Defective Devices Model

Figure 10 shows the effect of the percentage of defective
devices on the accuracy of prediction without assuming any
of our techniques. The prediction accuracy is highly sensi-
tive to a high percentage of defective devices. For a 10%
defect rate, the prediction accuracy is reduced by 14% and
4% for SPEC and CBP-3 workloads, respectively. Note that
a 10% defect rate at the bit level leads to up to a 70% de-
fect rate at the weight level since each weight is made up
of 7 bits. However, with our proposed schemes, we found
that using 10 instances per weight makes our predictor fault
tolerant (< 0.2% increase in MPKI) for both traces.

In conclusion, assuming SPEC CPU traces and a hard-
ware budget of 32KB (used in CBP-2[3]), memristors that
are 400x denser than SRAM are enough. On the other
hand, assuming CBP-3 traces and a hardware budget of
64KB (used in CBP-3[1]) requires much denser memristors
(1000x). As discussed in section 5, these densities could be
achieved, on long term, assuming more aggressive assump-
tions about the technology, which are nevertheless reason-
able and based on the understanding of the physics behind
memristor operation.

7.4 Results from Microarchitectural Simula-
tion
In this section, we provide overall performance evaluation
of our predictor as compared to SNAP (the predictor we
are augmenting). In addition, we show the effect of write
latency on overall performance.
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7.4.1 Performance Evaluation

Figure 11 shows the misprediction rate for SPEC bench-
marks. On average, our predictor provides 7.9% improve-
ment over SNAP. Figure 12 shows the improvement in IPC
over SNAP. On average, our predictor results in performance
improvement of 2.17%. For twolf, the improvement in TPC
is particularly good, 6% due to 28% improvement in mis-
prediction rate. The results in this section assume that the
write latency for memristors is 1 cycle. In the next section,
we will study the effect of write latency on the performance
of MNAP predictor.

7.4.2  Write Latency

Figure 13 provides a sensitivity analysis of overall IPC
improvement over SNAP as write latency increases. Here
we assume a fixed size buffer of 1 cache entry per predictor
table, i.e. a buffer size of 8 weights per table (as suggested
by figure 6) and that data is written to memristor percep-
tron table when the processor stalls. For write latencies
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< 12ns, the loss in performance as compared to the ideal
case (MNAP with 1 cycle write latency shown in figure 12)
is negligible. On the other hand, for write latencies > 12 ns
some of the benchmarks still performs well, e.g. gcc. How-
ever, other benchmarks like twolf show large performance
degradation.

The reason is that though the percentage of times data
needs to be written to memristors is < 2%, the average
size of data dropped due the write buffer being full is only
8 weights (i.e. single cache entry) for small latencies (<
12ns). However, the average data dropped increases to be
48 weights (i.e. 6 cache entries) as latency increases. Specif-
ically for twolf, it drops 64 weights on average. We further
explore the potential of adding more write buffer space; how-
ever, this does not lead to significant improvement over the
base case (SNAP) and will come with the cost of additional
power and area.

Figure 14 shows detailed performance results assuming
write latency of 12ns, and write Buffer of size one entry (8
weights) per table. The loss in performance compared to
the ideal case (fig. 12) is negligible. We also evaluate the
scheme where fetch stalls when data from memristors needs
to be written. This approach still provides performance im-
provement over SNAP for some of the benchmarks mainly
because the cache absorbs most of the updates and thus
leading to memristors being written infrequently. For other
benchmarks like bzip2, performance degrades significantly
as data needs to be written to memristors 2% of the time.
Figure 15 shows the misprediction rate assuming 12ns la-
tency and a buffer size of 1 cache entry per predictor table.
The increase in MPKI compared to ideal case (MNAP with
1 cycle write latency) is negligible.

8. RELATED WORK

Wear Leveling: Wear Leveling has been studied exten-
sively for Flash, and resistive memories like PCM. [22] pro-

poses a hybrid main memory system consisting of a PCM
device and a tightly coupled DRAM buffer that reduces page
faults by 5x. [21] proposes start-gap wear-leveling, a low-
overhead hardware wear-leveling technique that boosts the
lifetime of PCM-based system to 97% of the an ideal wear-
leveling scheme. Unlike our work, these techniques target
main memory and thus are not latency constrained. Dy-
namically replicating memory [7] uses hardware and operat-
ing systems’ support to provide continued operation through
graceful degradation. They replicate a physical page that
contains hard fault into two faulty, complementary pages,
and future reads access both pages to retrieve the correct
data. This work is orthogonal to previously proposed wear-
leveling techniques.

Neural Branch Predictors: Many enhancements were
proposed to improve the accuracy of neural predictors. [25]
proposes to partition the weight table into separate tables,
each indexed differently, to decrease the aliasing between
branches. [24] proposes using a redundant representation
of the branch history to improve the prediction accuracy.
While these designs lead to an accurate prediction, latency
and power consumption for the branch output computation
have prevented these neural predictors from being competi-
tive. [8] [11] propose to reduce the latency of neural predic-
tors but sacrifice accuracy. They use ahead pipelining that
gradually computes a prediction by adding weights ahead of
time so that only the bias weight must be added to the total
for a prediction to be made.

SNAP [29] proposes a low power neural predictor by using
analog circuitry to do prediction (avoiding the expensive dot
product operation). In our work, we propose an alternative
method for doing computations by using the analog prop-
erties of memristive devices to do prediction. In addition,
we exploit the memristive devices high density to provide a
highly-accurate predictor.
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9. CONCLUSIONS

This paper proposes general techniques for wear-leveling
and fault tolerance that are specifically good for delay sen-
sitive applications. We propose hybrid SRAM-memristor
storage to overcome the write endurance limit of memris-
tors. In addition, we use a distributed sum scheme that
both increases memristor durability, and makes our design
fault tolerant to a high percentage of defective devices.

We present a limit study of an analog neural branch pre-
dictor. We chose this application due to its challenging re-
quirements in terms of latency and frequency of updates.
Our techniques were able to extend the lifetime of the pre-
dictor for more than 5 years and is fault tolerant as well.
While current technology parameters does not allow high
dense power efficient memristors’ implementation, we dis-
cussed a range of plausible characteristics that as the tech-
nology advances would make it suitable for our application.
In future, we want to explore various neural network applica-
tions (e.g. face recognition) and study the role of memristors
for such applications.
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