
Information Flow Isolation in I2C and USB

Jason Oberg
Computer Science and

Engineering, UC San Diego
jkoberg@cs.ucsd.edu

Wei Hu
∗

Automation, Northwestern
Polytechnical University,

Xi’an China
w3hu@cs.ucsd.edu

Ali Irturk
Computer Science and

Engineering, UC San Diego
airturk@cs.ucsd.edu

Mohit Tiwari
Computer Science,
UC Santa Barbara

tiwari@cs.ucsb.edu

Timothy Sherwood
Computer Science,
UC Santa Barbara

sherwood@cs.ucsb.edu

Ryan Kastner
Computer Science and

Engineering, UC San Diego
kastner@cs.ucsd.edu

ABSTRACT
Flight control, banking, medical, and other high assurance
systems have a strict requirement on correct operation. Fun-
damental to this is the enforcement of non-interference where
particular subsystems should not affect one another. In an
effort to help guarantee this policy, recent work has emerged
with tracking information flows at the hardware level. This
article uses a specific method known as gate-level informa-
tion flow tracking (GLIFT) to provide a methodology for
testing information flows in two common bus protocols, I2C
and USB. We show that the protocols do elicit unintended
information flows and provide a solution based on time di-
vision multiple access (TDMA) that provably isolates de-
vices on the bus from these flows. This paper also discusses
the overheads in area and simulation time incurred by this
TDMA based solution.

Categories and Subject Descriptors
K.6.5 [Security and Protection]

General Terms
Design, Security, Verification

Keywords
High-assurance Systems, Information Flow Tracking, Tim-
ing Channels

1. INTRODUCTION
High assurance systems such as those found in flight con-

trol and banking systems require strict guarantees on correct
operation or they face catastrophic consequences. Ensuring

∗Wei Hu is a visiting student to the Computer Science and
Engineering department at UC San Diego

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

that these systems operate as intended is an extremely dif-
ficult and costly problem. Some have estimated that such
assurance can cost $10k per line of code [1] and take up to
10 years [2].

A common property that often needs to be guaranteed in
these systems is non-interference [3], where certain parts of
the system should never interfere with other parts. For ex-
ample, the Boeing 787 aircraft has connectivity between the
user and flight control networks [4]. Ensuring that there are
no unintended information flows between the two networks
is critical for the correct operation of the aircraft. With the
further development of intricate system-on-chips interact-
ing via complex protocols, guaranteeing non-interference is
a hard problem since information can flow through difficult
to detect side channels. Recently, information flow track-
ing (IFT) has been introduced to help mitigate this issue by
monitoring how information propagates through a system.

IFT works by monitoring the propagation of data through-
out a system to see if secret information is leaking to an un-
classified subsystem or to ensure that the integrity of a crit-
ical subsystem is not violated by an untrusted one. There
are two general classes of information flows: explicit and
implicit. Explicit information flows result from two subsys-
tems directly communicating. For example, an explicit flow
would occur between a host and device on a bus that were di-
rectly exchanging data. Implicit information flows are much
more subtle and generally leak information through behav-
ior. Typical implicit information flows show up in hardware
in the form of timing, where information can be extracted
from the latency of operations. Previous work has shown
that side channel timing attacks can be used to extract se-
cret encryption keys from the latencies of caches [5] and
branch predictors [6]. Cache timing attacks can obtain the
secret key by observing the time for hit and miss penalties of
the cache. Branch predictor timing channels are exploited
in a similar manner where information is leaked through the
latency of predicted and mis-predicted branches. Another
exploit can be seen in a common bus where devices com-
municate implicitly through traffic on the bus [7]. Suppose
there are two devices on the bus which wish to communicate
implicitly. First the sender can cause excessive bus traffic
when transmitting a 1 and no traffic when sending a 0. The
receiver can probe the traffic on the bus to determine if the
sender transmitted a 0 or 1.

To account for these difficult to detect timing channels,
current methods are lacking in that they either perform



physical isolation or “clock fuzzing” [7, 10]. Physical iso-
lation works by physically separating trusted/untrusted or
classified/unclassified subsystems from one another. This
causes overheads in area and also makes it virtually impossi-
ble to integrate subsystems together. “Clock fuzzing”makes
attempts to avoid physical isolation by presenting untrusted
subsystems with a “fuzzed” clock that produces artificial er-
rors in timing information. This tries to reduce the ability
to gain information from timing channels but in reality only
decreases the bandwidth of the channel.

Gate Level Information Flow Tracking (GLIFT) [11] pro-
vides a solution for monitoring information flows in hard-
ware. Since GLIFT targets discrete gates, it is general enough
to be applied to any digital hardware. Furthermore it can
precisely detect all explicit information flows as well as tim-
ing channels since it monitors the change of every bit cycle-
by-cycle. As a result, it is very effective for proving informa-
tion flow policies about common bus protocols such as the
Inter-Integrated Circuit protocol (I2C) and the Universal Se-
rial Bus (USB). It is essential to have methods to understand
and prevent these information flows because systems, such
as those found in the Boeing 787, have already begun in-
terconnecting their high and low integrity subsystems. This
paper discusses how GLIFT can be used to analyze and re-
move unintended information flows in bus protocols using
I2C and USB as examples.

The major contributions of this paper are:

• Presenting a method that uses GLIFT to test for un-
intended information flows in bus protocols that fits
well with existing design flows;

• Applying this method to two common bus protocols:
I2C and USB to analyze their information flows;

• Introducing changes to the systems and discussing how
these can demonstrate strong information flow isola-
tion.

The remainder of this article is organized as follows. In
Section 2 we discuss the background in hardware informa-
tion flow tracking and GLIFT. Section 3 introduces the gen-
eral method when analyzing information flows in bus proto-
cols. Sections 4 and 5 discuss our method when applied to
I2C and USB respectively. We conclude in Section 6.

2. HARDWARE INFORMATION FLOW
TRACKING

There has been much work in the area of hardware infor-
mation flow tracking because monitoring information flows
in hardware results in minimal overheads on the overall sys-
tem performance. This section discusses some background
on hardware information flow tracking with an emphasis on
GLIFT since it is the method we used for testing information
flows in I2C and USB.

Typical hardware information flow tracking schemes tend
to target the Instruction Set Architecture (ISA) and mi-
croarchitecture. Dynamic information flow tracking (DIFT),
proposed by Suh et al. [8], tags information from untrusted
channels and tracks it throughout a processor. They tag cer-
tain inputs to the processor as “spurious” and check whether
or not this input potentially induces a control flow transfer
to malicious code. Raksha [12] is a DIFT style processor

that allows the flexibility of programmable security poli-
cies. Minos [9] uses information flow tracking to dynamically
monitor the propagation of integrity bits to ensure that po-
tentially harmful branches in execution are prevented in a
manner similar to [8].

These schemes are effective at detecting dynamic infor-
mation flows from spurious inputs to secret or protected
regions of the architecture. However, they cannot be used
to monitor information flows in general digital hardware be-
cause they target higher levels of abstraction. For this rea-
son, these methods also fail to detect hardware specific side
channels in the form of timing. GLIFT provides a solution
for tracking information flows, including those through tim-
ing channels, in general digital hardware. GLIFT works by
tracking each individual bit in a system as they propogate
through Boolean gates. Information is said to flow through
a logic gate if the inputs affect the output. This is done us-
ing an additional tag bit commonly referred to as taint and
tracking logic which specifies how taint propagates.

Taint is a tag associated with each data bit in the sys-
tem which indicates whether or not this particular data bit
should be tracked. Taint is propogated whenever a particu-
lar tainted data bit can affect the output. In other words, if
the output of a function is dependent on changes to tainted
inputs, then the output is marked as tainted.

a b

o

a b a
t
b
t

o
t

0 0 0 1 0

0 1 0 1 0

1 0 0 1 1

1 1 0 1 1

!"# !$#!%#

!"#$%"&'(#)$*'("+&,

b aba

o

tt

t

Figure 1: (a) A two-input AND gate. (b) Truth ta-
ble of two-input AND gate with taint information
(not all the combinations are shown). (c) The cor-
responding tracking logic of two-input AND gate is
abt + bat + atbt.

For example, consider a simple 2-input AND gate as seen
in Figure 1 (a). For an AND gate, only particular input
changes will result in a change at the output. Specifically,
consider the case in which a = 0 and b = 1. Here changing
the value of b will cause no change at o since a = 0, meaning
that there is no information flowing from b to o. If b were to
be tainted (bt = 1) and a untainted (at = 0) in this case, o
would be untainted (ot = 0) since the tainted input does not
affect the output. A subset of all such combinations can be
seen in Figure 1 (b). Using the truth table in Figure 1 (b),
a function can be derived for all similar input combinations
into a tracking logic function as shown in Figure 1 (c). Fol-
lowing this same approach, tracking logic can be calculated
for OR and NOT gates to obtain a functionally complete
set of gates. Using this set, the tracking logic for any dig-
ital cirucit can be derived by constructively generating the
tracking logic for each gate. This results in a design that
precisely tracks all information flows.

One potential issue with GLIFT is its large hardware over-
head as discussed by [15]. However, GLIFT is commonly
used for testing during the design phase and does not need



to be deployed into the system. This paper focuses on using
GLIFT during testing to enforce non-interference in I2C and
USB. The following section will discuss the general method-
ology to analyzing information flows in bus protocols using
GLIFT.

3. GENERAL ANALYSIS METHODOLOGY
Since GLIFT logic targets gates, it is general enough to be

applied to any digital hardware. This section discusses the
test methodology when analyzing information flow proper-
ties of bus protocols using GLIFT.

As seen in Figure 2, the design typically enters as a finite
state machine (FSM) modeled in RTL. This analysis is gen-
eral enough to target any protocol which can be modeled
as a FSM. Other RTL representations can be used, but it
helps to have the design modeled as a FSM since informa-
tion flow violations tend to happen on state transitions as
we will show in Sections 4 and 5.

!"#

$%$%$

$%$%$

$%$%$

&'()*+),)+%-)(+./(

!"#$%&'#()

*+,&-&$(%&'#

-)(+./( 0.(1

&23!4%256.7

$%$%$

$%$%$

&23!4*

8-9

&23!4*

8-9

&23!4*

:;

.#-',/(%&'#

!)'0

1+2%&#3

!"#

#5<.=.7'(.5>

45#%6+2&2

78.!19)'3&$9/(::&#3

;"#9%+2%94$+#(,&'2

.#-',/(%&'#9!)'09

<')&$59*&')(%+=

;+>?+,&-59

!"#$%&'#()&%5

Figure 2: Method for testing information flow prop-
erties of bus protocols using GLIFT.

Once the design is synthesized into a gate-level netlist,
each gate is associated with tracking logic. The function
of the tracking logic depends on the function of the gate.
This process is similar to a technology mapping, where each
gate in the system is mapped to specific GLIFT logic. The
result is a gate-level design of the FSM that contains both
the original logic and tracking logic.

The resulting design equipped with tracking logic can be
tested for information flows. As with any testing problem,
it is often impractical to exhaustively test all states since
the total grows exponentially with the number of inputs.
However, GLIFT accounts for all possible combinations for
tainted data bits by definition since the value of tainted data
bit does not matter as proven by [15]. In our examples com-
mon and concrete scenarios are explicitly specified. Once
specified, this scenario can be executed on the design and in-
formation flows can be observed. If unintended information
flows occur, the designer is responsible for understanding
where these originated and making appropriate modifica-
tions to the RTL. These modifications can often be subtle,
but we have found some solutions to be very effective as we

will show in the following sections.

4. INFORMATION FLOWS IN I2C
This section discusses the aformentioned information flow

testing technique on I2C and shows how to obtain isolation.
I2C is a 2-wire serial protocol consisting of a common clock

and data line as shown in Figure 3 [13]. With that in mind,
explicit information flows are quite simply identified since
any device can openly snoop the bus even though transfer
between the master and itself is never initiated. However,
as this section will show, eliminating only explicit informa-
tion flows in I2C does not guarantee non-interference since
information can flow through more difficult to detect side
channels.

!"#$%& '(")%*+ '(")%*, '(")%*-.*.*.

'/0*12(34

'56*17"$"4

Figure 3: I2C Bus configuration. I2C can support
several devices on a single global bus.

Our analysis of I2C follows the same testing flow discussed
in Section 3. We modeled I2C devices as FSMs using RTL
Verilog. It is not practical to enumerate all input combina-
tions to this system since the number of states in which each
device can be in grows exponentially. As a result, we chose
to analyze the information flows for a common scenario in
which a master writes data to a Slave 0 (as shown in Figure
3) and subsequently writes data to a Slave 1.

The design was synthesized using Synopsys Design Com-
piler and the gate-level functionality was also verified using
Modelsim SE 6.6b. Once verified, tracking logic was asso-
ciated with each gate and Slave 0 was marked as tainted
because we wished to monitor where Slave 0’s information
flowed. During the communication between the Master and
Slave 0, Slave 0 is required to send an ACK in response
to receiving data. The Master’s state depends explicitly on
whether or not it receives an ACK. Since this ACK comes
from tainted Slave 0, this ACK causes the Master’s state
machine to become tainted resulting in a taint explosion in
the Master. As mentioned, such an explicit flow is expected
since the Master and Slave 0 are directly communicating.
However, once the Master subsequently communicates with
Slave 1, this tainted information flows to Slave 1 resulting
in a less obvious implicit information flow from Slave 0 to
Slave 1. The tracking logic clearly identifies both informa-
tion flows in this scenario.

In order to enforce non-interference between devices on
the I2C bus in this scenario, all information flows between
slaves need to be eliminated. The following subsection dis-
cusses a useful technique for proving non-interference for this
particular scenario.

4.1 Enforcing Non-interference in I2C
To enforce non-interference between devices on the I2C

bus, we need to eliminate all information flows both explicit
and implicit. This section discusses a solution for guaran-
teeing non-interference between devices on the I2C bus.



As mentioned, there are obvious explicit information flows
between devices since they are all connected via common
wires. To eliminate explicit flows, we introduce an adapter

which sits between the device and the bus as shown in Fig-
ure 4. This adapter arbitrates between the devices in a time
division multiple access (TDMA) fashion such that only a
single device is attached to the bus (in addition to the mas-
ter) at any given time. In doing so, explicit information flows
are eliminated since other devices are isolated from one an-
other at all times. This does not completely eliminate all
information flows (as previously mentioned) since implicit
information flows between devices via the master.

!"#$%& '(")%*+ '(")%*, '(")%*-.*.*.

'/0*12(34

'56*17"$"4

67"8$%& .*.*.67"8$%& 67"8$%&

9:%2;$<=>

0%"#%

?><$

!"#$%"#&'(

)&*&#

Figure 4: I2C configured with an additional adapter
to enforce TDMA. This enforces non-interference
between devices under the presented test conditions.

To eliminate implicit timing information flows, we intro-
duce an untainted reset for the master such that the master
is restored to a known state prior to communication with
another device. This execution lease unit monitors when
a TDMA switch occurs and restores the master to an un-
tainted state. By requiring a strict enforcement on bus ac-
cess time and by restoring the master back to a known state,
we eliminate any potential timing channels between devices.
Since GLIFT also captures information flows elicited through
timing channels, we are able to verify that these flows are in
fact eliminated for this particular scenario.

4.2 I2C Non-interference Overheads
The design was processed using the same aformentioned

testing flow and synthesized with Synopsys Design Com-
piler. This particular scenario was tested for non-interference
using Modelsim SE 6.6b. We tested a round of communica-
tion for a single time slot and verified that the information
flows were in fact contained. Since information flows were
proven to be contained for a time slot, information flows will
be contained for this test scenario in subsequent time slots.

To obtain simulation times, we execute the complete sce-
nario mentioned and confirmed that the master returns back
to a known state without leaking any information to any de-
vices on the bus. The simulation times for this TDMA based
solution and the design with GLIFT tested are shown in Ta-
ble 1. As shown, we tested this scenario with 2, 4, and 8
slaves existing on the bus. Not suprisingly, the simulation
times for both the original TDMA based solution and the
one with GLIFT increased with the number of slaves present
on the bus. Since we are scaling the number of slaves in the
system by a factor of 2, this essentially doubles the hardware
and resulting simulation time. Furthermore, the overhead of
the GLIFT logic does have significant effect on the simula-
tion time relatively speaking. However, this overhead is not
unwieldy since the added simulation time can likely be tol-
erated for such a strong information flow guarantee.

In addition, we are required to have additional hardware

Table 1: Time spent simulating our particular test
scenario for both the original I2C design and the one
with GLIFT.

2 Slaves 4 Slaves 8 Slaves
TDMA Gate Design 121ms 225ms 426ms
TDMA w/ GLIFT 192ms 389ms 770ms

Table 2: Area for I2C components in non-
interference compliant design. This is the final sys-
tem after testing and does not contain GLIFT logic.

Gates Flip-Flops
Master 145 26
Slave 125 24

Adapter 375 62

(adapter) to eliminate explicit information flows between de-
vices. Table 2 shows the sizes of each component in our test-
ing scenario in terms of combinational and non-combinational
area. It is important to note that our Master and Slave are
of minimal functionality since we were only concerned with
testing the previously discussed scenario. If additional com-
plexity were added to the system (i.e., a fully functional
I2C system), the Adapter’s area overhead would be much
less significant since its functionality is fixed (i.e., it only
performs arbitration). The overhead of the execution lease
unit is insignificant and not shown since it is only needed
to reset the master to a known state when its timer expires.
Furthermore, we are required to enforce a TDMA strategy
which inherently reduces the bandwidth of the communica-
tion channel since an unused time-slot is wasted. However,
this solution enforces non-interference proven by GLIFT in
this particular scenario and such overheads could likely be
tolerated for such a strong guarantee.

5. INFORMATION FLOWS IN USB
Unlike I2C, the Universal Serial Bus (USB) operates as

a star tiered topology as shown in Figure 5. Devices are
not sitting on one global bus in which explicit information
may flow between one another. The Host node broadcasts
data out to all Hubs and Devices. This downstream data
(Host to Device) is observed by all devices and upstream
data (Device to Host) is observed only by Hubs which are in
the path of the stream [14]. As a result, devices are not able
to snoop information sent from the Device to Host since in-
formation flows only through Hubs until it reaches the Host
as shown in Figure 5. Devices can only potentially intercept
information that is sent from the Host to Device since it
is broadcasted. Thus the explicit information flows are less
significant than in I2C, assuming USB Hubs are properly
routing information. However, timing channels are still very
apparent in a similar manner as I2C. This section discusses
our analysis of the USB protocol along with a solution to
enforce non-interference.

We are concerned with all information flows between de-
vices. Although explicit information flows are less significant
than in I2C, they still occur from the host broadcasting pack-
ets onto the USB. The less obvious types are the implicit
information flows caused by state-effects on the host, i.e., a
tainted device affecting the host’s state. This implicit flow
comes in the form of a timing channel because the amount



!"#$

%&""$'!()*

!() !() !()

+,-./,!()!() +,-./,+,-./,

0.,1'2

0.,1'3

0.,1'4

!() +,-./,!() +,-./,0.,1'5

Figure 5: Packets sent from the host are broadcast
onto the bus to all connected devices. The topology
is a tiered star structure.

of time in which the host communicates with a device can be
observed by another device. It is very similar to the implicit
information flow elicited by I2C as previously discussed.

In order to accurately model the USB protocol, we de-
signed a USB Host and Device in RTL Verilog HDL and
followed the testing flow as shown in Figure 2. These be-
havioral Verilog modules were functionally verified at the
RTL level using Modelsim SE 6.6b. As mentioned for I2C,
testing all possible combinations is infeasible since the num-
ber of states is exponential. Thus, we have chosen a typical
communication scenario consisting of 2 devices and a Host
controller as shown in Figure 6. We have the Host send a
packet indicating a write to Device 1 and then subsequently
sends a data packet. Device 1 completes the transaction by
responding with a handshake or acknowledgement packet.
The Host then repeats the same procedure with Device 2.

Figure 6: Host broadcasts to Device 1 and observed
by Device 2. Subsequent broadcasts cause an im-
plicit information flow between Device 1 to Device
2 through the Host.

Once the design was verified at the RTL level, we syn-
thesized the designs to a gate-level netlist using Synopsys
Design Compiler. We simulated the gate level design under
the identical test conditions as those at the RTL level and
verify that the circuit has functionally equivalent operations.
Once verified, the gate level designs were post processed such
that the tracking logic for each gate is generated. Once com-
pleted, the entire circuit has its original functionality with
the addition of precise tracking logic.

The resulting gate level design with GLIFT logic was then
simulated again using the same test scenario except one of
the devices was labeled as tainted (i.e., tainted 1). In doing
so, we were able to confirm that two devices, which are not
physically connected, influence each other through implicit
channels as shown in Figure 6. Once the host controller fin-
ishes sending packets, its state is explicitly dependent on the

handshake packet received from Device 1 in a similar manner
as I2C. This information flow is captured by GLIFT and the
resulting host state machine becomes tainted. Subsequently,
when the Host broadcasts data, this taint is propagated to
Device 2 resulting in an implicit flow between the two de-
vices on the bus even though they are not physically on the
same wire. This flow is again the result of a timing channel.

To solve this problem, we need to devise a way to reset the
master back to a known state and isolate specific paths from
downstream transmission. The next subsection discusses a
unique TDMA solution to preventing these unintended in-
formation flows and providing isolation.

5.1 Enforcing Non-interference in USB
The TDMA solution works by modifying the Host such

that it arbitrates between tainted and untainted states us-
ing a TDMA unit. In other words, the Host operates using
a particular state in a fixed time slot. Once this time slot
expires, the Host will switch out its state with another one
(i.e., swaps out tainted for untainted). If the former was a
tainted state, the switch will cause all the hardware in the
Host to return to untainted. The timer allows each state
machine to operate in a mutually exclusive manner. The
fixed TDMA time slots prevent any timing information from
flowing between the state machines since the state machines
themselves have no influence on the arbitration. Conceptu-
ally, the TDMA unit in the Host acts as supervisor to the
two state machines and has complete control of when tainted
or untainted states can run. To account for explicit flows,
the devices are tri-stated from the host when their time slot
is not active to guarantee that they are not snooping on the
bus.

With these additions, we synthesized the design and tested
this scenario using the testing flow shown in Figure 2. We
simulated our scenario for a complete time slot and veri-
fied that the information flows were contained. Again, this
proves that unintended information flows are eliminated for
subsequent time slots for this particular scenario. This in-
cludes information that flows through timing channels. As
in I2C, this solution results in some hardware and perfor-
mance overheads and the next subsection will discuss these
in more detail.

5.2 USB Non-interference Overheads
The new TDMA based solution to USB does have some

minor penalties in simulation time. Yet, it results in minimal
hardware overhead because the majority of the hardware
does not need to be reproduced. Specifically, we are only
required to have additonal logic to arbitrate between states.
Once the timer expires, a new state is loaded into the Host
and the old state is overwritten in a similar manner as a
context switch. All internal buffers, counters, etc. remain
the same.

The simulation times for the original USB design and the
one equipped with GLIFT can be seen in Table 3. As in I2C,
the aformentioned test scenario was executed with 2, 4, and
8 devices on the bus. This means that we were required to
replicate 2, 4, and 8 state machines respectively in the Host.
This is done because a state machine is needed for each
outgoing port of the Host if non-interference is to be enforced
between all devices. Unlike I2C, the simulation time does
not necessarily double as devices are introduced. We suspect
this is due to the fact that the majority of the hardware



Table 3: Time spent simulating the mentioned test
scenario on USB with and without GLIFT.

2 Devs 4 Devs 8 Devs
TDMA Gate Design 110ms 171ms 281ms
TDMA w/ GLIFT 187ms 297ms 531ms

Table 4: Area Overhead for Replicating State Ma-
chines

Number of FSMs Area Overhead
2 12.6%
4 33.4%
8 77.4%
16 157.5%
32 322.9%

in the host remains the same. Thus introducing devices
to the system increases the simulation time by an amount
proportional to the size of the device plus a small overhead
in the Host due to additional arbitration logic. Also, the
simulation times for the design with GLIFT scale roughly
by the same factor as the design without GLIFT. Again,
we expect that the difference in time between the system
with and without GLIFT to be more significant as more
test scenarios are performed.

This implementation incurs a 12.6% increase in area over
the original host controller for replicating a single FSM. This
overhead includes the timer and logic to select between state
machines. Additional FSMs are needed for each port on the
Host, assuming that non-interference is to be enforced be-
tween all devices. With that in mind, the area overhead
increases linearly with the increase in FSMs as shown by
Table 4. These results show that much of the hardware
can be re-used since the amount of overhead increases by
a constant factor associated with the TDMA and extra ar-
bitration logic. With many state machines, this overhead
becomes quite large because the extra arbitration logic be-
gins to dominate the base functional logic. The significant
drawback with this design is performance. With any TDMA
based scheme, performance is potentially reduced because if
a device does not use its time slot when it is active, the time
slot is wasted. However, such a reduction in performance
can likely be tolerated at the benefit of strong information
flow policies.

6. CONCLUSION
This paper presented a method for proving information

flow policies in bus protocols by tracking all information
flows including those through hardware timing channels. We
introduced a general technique that can be used to test for
information flows in bus protocols. We applied this method
on two common bus protocols, I2C and USB, and exposed
unintended information flows between devices on the re-
spective buses. We presented modifications to the systems
such that they enforced non-interference between devices
and proved this non-interference policy for specific test cases
using GLIFT. For the modifications, we discussed what po-
tential implications the changes have on the system in terms
of simulation time and hardware overhead.

7. ACKNOWLEDGEMENTS
The authors would like to thank the reviewers for their

valuable feedback which improved the final version of this
paper. This work was supported by the NSF under Grant
CNS-0910581.

8. REFERENCES
[1] What does cc eal6+ mean?, http://www.ok-

labs.com/blog/entry/what-does-cc-eal6-mean/,
November 20, 2008.

[2] The integrity real-time operating system,
http://www.ghs.com/products/rtos/integrity.html,
June 29, 2007

[3] J. A. Goguen, J. Meseguer, Security Policies and

Security Models. pp.11, IEEE Symposium on Security
and Privacy, 1982

[4] Federal Aviation Administration (FAA). Boeing model

787-8 airplane; Systems and Data Networks

Security-isolation or Protection from Unauthorized

Passenger Domain Systems Access.
http://cryptome.info/faa010208.htm.

[5] D. J. Bernstein. Cache-timing attacks on AES.
Technical Report, 2005.

[6] O. Accigmez, J. pierre Seifert, and C. K. Koc.
Predicting Secret Keys via Branch Prediction. In
Cryptology, The Cryptographers Track at RSA, pages
225-242. Springer-Verlag, 2007.

[7] W. M. Hu. Reducing Timing Channels by Fuzzy Time.
In Proceedings of the Symposium on Research in
Security and Privacy, Oakland, May 1991.

[8] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure Program Execution via Dynamic Information

Flow Tracking. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating systems (ASPLOS), New
York, 2004.

[9] J. R. Crandall and F. T. Chong. Minos: Control Data

Attack Prevention Orthogonal to Memory Model. In
Proceedings of the International Symposium on
Microarchitecture (MICRO), 2004

[10] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H.
Mason, and C. E. Kahn. A Retrospective on the VAX

VMM Security Kernel. IEEE Transactions on Software
Engineering, 17(11):1147-1165, 1991.

[11] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F.
Chong, and T. Sherwood, Complete information flow

tracking from the gates up. In Proceedings of the 14th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 2009.

[12] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A

Flexible Information Flow Architecture for Software

Security. In 34th Intl. Symposium on Computer
Architecture (ISCA), June 2007.

[13] I
2
C Manual, http://www.nxp.com/documents/

application note/AN10216.pdf, March 2003.
[14] USB 2.0 Specification, http://www.usb.org/

developers/docs, April 27, 2000.
[15] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood

and R. Kastner, Theoretical Analysis of Gate Level

Information Flow Tracking, In proceedings of the 47th
Design Automation Conference(DAC’10), June 2010.


