
Developer Paradigms and User Interac-
tion in Sketch-Based Systems

Shane Zamora
University of California, Santa Barbara
char42@cs.ucsb.edu

Jeff Browne
University of California, Santa Barbara
jbrowne@cs.ucsb.edu

André Sayre
University of California, Santa Barbara
asayre@cs.ucsb.edu

Tim Sherwood
University of California, Santa Barbara
sherwood@cs.ucsb.edu

Copyright is held by the author/owner(s).
CHI 2010, April 10–15, 2010. Atlanta, Georgia, USA
ACM 978-1-60558-930-5/10/04.

Abstract
Sketch-based systems must overcome some serious obsta-
cles if they are ever going to see widespread adoption. In this
paper we discuss several of the most important obstacles our
group encountered in trying to develop new applications in
this space, including the ability to incrementally and modu-
larly develop rich applications, the graceful handling of errors,
and the challenges that exist with the current generation of
available hardware and system support. In particular we de-
scribe some of the ergonomic issues tablets currently face,
the troubles we had in managing the many different types of
errors possible in sketch-based systems, and the engineer-
ing issues that motivated us to explore alternative software
architectures to more readily encourage code reuse and col-
laborative development.

Keywords
Sketch recognition, user interfaces

ACM Classification Keywords
D.2.2 Design Tools and Techniques, H.5.2 User Interfaces



Introduction
In recent years many research projects have been developed
in the field of sketch recognition interface design. However,
because of the work involved with their initial development,
the effort required to prepare a recognition interface for pub-
lic release, and a lack of precedent on what is expected
from commercial sketch-based applications, many of these
projects have remained research prototypes. In order for the
number of quality sketch applications to expand, there must
be a sizeable development community driving innovation. A
key factor in such a community’s growth is the capability of
building on top of previous work, one that is missing from
current generation sketch applications.
Additionally, a strong user-base is essential to motivating
more and better applications. Unfortunately, current users
are reluctant to adopt sketch-based applications due to their
unfamiliarity with the pen as a primary input device. The
problem is exacerbated due to the fact that current desktop
environments are poorly suited for pen interaction. As long
as pen-based interfaces are viewed as a secondary mode of
interaction with a computer, the user base for sketch appli-
cations will remain relatively small.
We argue in this paper that a ”killer app” for sketch recog-
nition must deliver a lower barrier of entry for both users
and developers. First, we propose a standard development
framework to encourage programmers to build on each oth-
ers’ work in a logical manner. Next, we discuss the failings of
tablet hardware from a user perspective, and finally propose
a specially tailored desktop environment for sketch-based in-
teraction.

Current Developer Support
Currently, developing sketch applications involves reimple-
menting large amounts of code for each project. Because
so many applications are constrained to a very specific do-

main (e.g. math equation, or physics diagram recognition),
these functions are often tailored uniquely to their domain.
Even if a function is conceptually shared between two appli-
cations, the code that is ”reused” must be largely rewritten.
On top of this, programmers must also define their own error
semantics, such that exceptions can be handled cleanly and
consistently.
We argue that, in order to spur developers to write ”killer
apps,” there must be a development framework to solidify er-
ror semantics and facilitate code reuse. Quality applications
will implement these end goals anyway, but an application
agnostic framework would encourage less technical develop-
ers to implement their ideas.

Code Reuse
A glaring weakness in current sketch applications is their ten-
dency to be ”one-off” programs, finely tuned to support only
a very constrained application domain. Thus, even if a sep-
arate application requires much of the same functionality as
another, code cannot generally be shared unmodified (if at
all). This inelegant code copying is rife with opportunities for
introducing bugs, but moreover, novice developers will give
up on working with sketch instead of investing the time to
understand all low-level details of sketch recognition.
Instead of tailoring each standalone program to a single ap-
plication, we propose that developers will be greatly served
by a framework that separates recognition tasks into interact-
ing ”apps,” which could be composed to provide more com-
plex recognition, while the framework would provide the most
common app functionality, such as raw stroke input. De-
velopers could build apps without any knowledge of their
lower-level implementation details and could instead focus
on their higher-level strengths. A community of clever pro-
grammers could build on each others’ work for common tasks,
and like domain-specific code libraries, sketch apps could be



optimized behind the scenes by their maintainers. For ex-
ample, one group could maintain high quality circle and line
apps, which another group composes into a generic graph
recognizer. The graph recognizer could then be extended by
a new directed-graph recognizer, which a Markov model or
a finite state machine app could further build upon for their
recognition tasks.
Modularization along these lines greatly reduces the learn-
ing curve for producing sketch recognition applications. For
example, if there already exists effective graph topology rec-
ognizers and character recognizers, it is a simple matter of
composing these two apps into a finite state machine rec-
ognizer and simulator. With a lower barrier to entry, clever
ideas for killer apps can originate in developers unfamiliar
with advanced solutions to the difficulties in low-level recog-
nition.

Defining Error Semantics
In order to standardize application development in the sketch
recognition domain, it is necessary to classify different types
of errors in order to predictably correct them. In this section,
we define several classes of errors that are meaningfully dis-
tinct: system errors, recognition errors, and errors according
to application semantics.
We define system errors to be those that arise from imple-
mentation problems that leave the sketch system in an in-
consistent state where strokes and their interpretation may
differ depending on the observer. For example, with multi-
ple simultaneous apps running, one of them may remove a
stroke from the board, and without some facility for notifying
other apps, the system will become inconsistent.
System errors can be difficult to address, since the underlying
debugging system is just another observer. However, since
these errors are generally detrimental to the entire system,
they should be diagnosed and fixed as soon as they are in-
troduced. Also, because they are infrequent, debugging via

examining the entire system state may be a reasonable ap-
proach.
Recognition errors occur within a consistent sketch applica-
tion, but involve misclassifying the user’s intended stroke.
For example, a system may recognize a stroke intended to be
the letter ”q” as the letter ”g”, but this would not be a system
error as the stroke is seen as a ”g” from every perspective.
Debugging recognition errors during app development can be
verbose, but if a user is interacting with the system, too much
information can be just as detrimental as too little.
Correcting recognition errors could be done automatically,
but this requires some notion of the application’s domain in
order to accurately guess the user’s intent. A good devel-
opment framework should provide facilities to correct users’
strokes to their best fit, but in a general use sketch system
where many apps interact with equal authority, a recognition
error to one app may be acceptable to another app. For ex-
ample, a dashed-line recognizer may see a bit of Morse code
as messy, and cleaning up the strokes would be incorrect. In
such a system with an unbounded number of domains, the
best we can do is to carefully filter notifying the user about
recognition errors.
Given that a system is consistent, and strokes are all rec-
ognized as intended, there still exists the possibility that an
application may disallow some nonsensical inputs. For exam-
ple, a circuit diagram app needs to degrade gracefully when a
user draws more than one input to a NOT gate. How this hap-
pens depends entirely on the application’s semantics, so the
ultimate corrective action should be entirely up to the app
developer. The development framework would provide this
by allowing the app to remove the stroke from the board,
correct the stroke, or display some information to the user
(e.g. highlighting, textual output). However, this must be
done through an interface provided by the framework, so that
other apps can maintain a consistent view of the board.



The issues with error semantics raised in this section may not
capture all errors that arise with every sketch application, but
regardless of the specific errors, it is important that the de-
veloper has a standard way to handle exceptions. Standard-
ization is key to an understandable system, since the error
handling mechanism provided by the framework must work
well across distinct apps that are simultaneously interacting
with the user.

User Adoption
User studies in multimodal interfaces consistently show users
as reluctant to adopt unfamiliar modalities, preferring famil-
iar input methods whenever available, such as the mouse and
keyboard. While the stylus is not considered as a primary
input method it enjoys a unique position in the market of al-
ternative input devices where tablet PCs are an established
category of laptop computers. Once the “killer application”
for sketch-based systems is found, there is a realistic poten-
tial for an explosion in market penetration for devices with
integrated tablets.
However, any strong building must be built on a solid founda-
tion. The ultimate objective of any such killer application will
be to motivate users to adopt the pen as a primary input de-
vice. In order to accomplish this goal, critical usability issues
of tablet-based computing need to be addressed regarding
the hardware itself and its primary software package: the
operating system.

Figure 1: Ergonomic issues involved with pen-based inter-
action with a tablet PC. When sketching in the laptop con-
figuration (a) the angle and distance to the screen, as well
as trying to avoid hitting keys on the keyboard, can cause
strain. In the easel configuration (b) the pressure of the pen
can wobble the screen and interrupt interaction. In the slate
configuration (c) poor viewing angles can require the user to
hover over the screen. Additionally, the thickness of tablet
impedes the user from resting their forearm on the desk.



Hardware Usability
The most suitable form factor for our killer application is
the “convertible” style tablet PC (henceforth referred to as
a tablet PC). These tablets act as standard laptop comput-
ers with a tablet integrated into a reversible display that can
collapse and “convert” the computer into a slate form factor.
By offering a superset of hardware functionality to a standard
laptop (leveraging an established form factor as to not alien-
ate users), and providing direct pen input by integrating the
tablet into the LCD screen, the tablet PC is an ideal platform
for sketch-based applications.
Other form factors of tablets are not as suitable for our killer
application. Large desktop tablet displays are used by pro-
fessionals who rely heavily on pen-based interfaces and do
not need to be motivated to adopt them. With the excep-
tion of researchers looking for hardware to test their sketch
recognition systems, standalone tablets such as the Wacom
Bamboo are purchased almost exclusively by art enthusiasts
for use in programs such as Photoshop and are not ideal for
pen-based interaction due to their indirect nature. Users are
likely to be unwilling to purchase such a tablet to adopt any
killer application for a desktop or laptop without integrated
tablet hardware.
However, tablet PCs do have significant ergonomic nuances
to their operation, illustrated in figure 1. When a laptop is
used at a comfortable distance for typing with the screen at
an upright angle, reaching forward to sketch for any period
of time can be fatiguing (1a). With the screen reversed and
accessed as an easel, this fatigue is reduced at the cost of ac-
cess to the keyboard. However, pen strokes push against the
screen and can cause wobble when the pressure overcomes
the resistance of the screen’s hinge (1b). Using the tablet as
a slate overcomes the wobble but introduces other issues –
the thickness of the tablet PC can be an issue on desks built
at heights for writing on paper, the angle of the screen can
exacerbate glare from overhead lighting, and poor viewing

angles reduce visual fidelity unless the user hovers directly
over the screen (1c). Finally, the hand and lower arm of the
user can obstruct the screen during sketching and impact us-
ability.

Desktop Usability
Most tablet PCs run Microsoft Windows, an operating system
heavily optimized for interaction with a mouse and keyboard.
When a consumer is deciding between a tablet PC and reg-
ular laptop, the question is ultimately “Do I want to add a
stylus to Windows?” and whether a pen can enrich the user’s
interaction experience.
Unfortunately, even simple tasks such as double clicking and
hierarchical menu navigation can quickly become awkward
with a pen in WIMP-based GUIs. The primary tasks expected
of a modern PC are web browsing, media playback, text edit-
ing, and file manipulation – all of which are not significantly
aided (or are even hindered) with a pen. Web browsing
involves typing URLs, scrolling through content, and click-
ing small targets to link to other pages. Text editing in-
volves typing content and selecting precise locations in a doc-
ument. Media playback can involve browsing large stores
of digital content and metadata, and file manipulation in-
volves extensive browsing and double-clicking. Each of these
tasks is awkward with a pen in different ways. Finally, Win-
dows moves significant amounts of functionality into right-
click menus, which can be difficult to invoke even with the
barrel button located on the stylus.
Sketch-based applications running on Windows cannot break
free of their habitat. Windows favors mouse and keyboard
interaction, and the pen is foreign. The omnipresence of the
taskbar and it’s inaccessibly small widgets is a constant re-
minder of this. So long as the user needs to rely on the mouse
and keyboard for the majority of their interaction, users will



only perform (and consider) sketch in small, constrained en-
vironments.

Our Solution
We propose that a desktop environment optimized for tablet
PCs in the easel or slate configuration built around the sty-
lus as it’s primary input device is the killer application for
sketch-based systems. In order not to alienate consumers
unwilling to purchase a computer with an unfamiliar primary
interface, such an environment could establish itself as a full
screen application bundled with tablet PCs and later function
as a core OS desktop environment once established by users.
This desktop environment should focus on providing a solid
pen-based interface for web-browsing, media playback, text
editing, and file manipulation. Advances in hardware should
be introduced in order to alleviate usability issues that would
hinder the reception and realization of such a desktop envi-
ronment - a less reflective screen with better viewing angles,
a thinner form factor, and a sturdier hinge to reduce wob-
ble from interaction in the easel configuration. With users
comfortable with the stylus as a primary input device, this
environment could serve as a platform for further research
and adoption of sketch-based systems.

Conclusion
Numerous factors raise the bar of entry and obstruct the
adoption of sketch-based systems. In this paper we pro-
posed that in order to be considered the ”killer app”, a sys-
tem will need to address these factors and lower this bar for
both users and developers alike. We offer that a standardized
development framework would aid programmers in complet-

ing more polished applications, and a desktop environment
geared towards the stylus as a primary input device will de-
liver users for these applications. Such a platform could spark
the further adoption of sketch recognition interfaces and mo-
tivate the creation of sketch’s ”killer app”.

Authors’ Background
Jeff Browne and André Sayre currently work with Dr. Tim
Sherwood at UC Santa Barbara on a general purpose frame-
work for developing sketch applications in Python, furthering
the research of Dr. Ryan Dixon [1]. Shane Zamora devel-
oped CircuitBoard [2], a sketch-based application for digital
logic circuit design and analysis, and is currently working with
Dr. Sherwood on a general purpose skeletal figure recogni-
tion system. Dr. Sherwood has led courses and seminars on
the subject of sketch-based systems at UC Santa Barbara,
and presented a paper with Dr. Dixon on “Whiteboards that
Compute” at IISWC 2008, an overview of the HCI challenges
involved with pen-based interfaces and a look at the current
state of research projects that have approached these prob-
lems.

References
[1] R. Dixon and T. Sherwood. Whiteboards that compute: A

workload analysis. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages
69–78, Sept. 2008.

[2] S. W. Zamora and E. A. Eyjólfsdóttir. Circuitboard:
Sketch-based circuit design and analysis. In IUI Work-
shop on Sketch Recognition, 2009, Feb. 2009.


	Abstract
	Keywords
	ACM Classification Keywords
	Introduction
	Current Developer Support
	Code Reuse
	Defining Error Semantics

	User Adoption
	Hardware Usability
	Desktop Usability
	Our Solution
	Conclusion
	Authors' Background

