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Abstract
Modern, high performance reconfigurable architectures

integrate on-chip, distributed block RAM modules to pro-
vide ample data storage. Synthesizing applications to these
complex systems requires an effective and efficient ap-
proach to conduct data partitioning and storage assign-
ment. In this paper, we formally describe this problem
and show how it is much different from the traditional data
partitioning problem for compilation to parallel processing
systems. We present a data and iteration space partition-
ing solution that focuses on minimizing remote memory ac-
cesses or, equivalently, maximizing the local computation.
Using the same code but different data partitionings, we
can achieve up to 50% increase in frequency, without in-
creasing the number of cycles, by simply minimizing remote
accesses. Other optimization techniques like memory port
configuration, scalar replacement, prefetching and buffer
insertion can further minimize remote accesses and lead to
46x speedup in overall runtime.

1 Introduction
Reconfigurable systems are a novel computing para-

digm, which allow different tradeoffs between flexibility
and performance [3, 10]. Typical reconfigurable computing
systems consist of arrays of reprogrammable logic blocks
and flexible interconnect. Such architectures distinguish
themselves from traditional microprocessor architectures in
that reconfigurable computing systems work in a complete
parallelized manner, and exhibit an inherent computational
density advantage over microprocessors [6].

In order to offer greater computing capabilities, high-
performance commercial reconfigurable architectures pro-
vide ample configurable logic, and have integrated a num-
ber of fixed components, including digital signal process-
ing (DSP) and microprocessor cores, custom hardware,
and on-chip distributed memory. For instance, the Xilinx
Virtex-II Pro Platform FPGA series provides 3K to 125K
logic cells, up to four PowerPC processor cores and 1,738
kilobytes of distributed, embedded block RAM.

Reconfigurable devices currently lack the tools neces-
sary to provide the application designer efficient synthesis

onto these complex architectures. In particular, there is a
pressing need for memory optimization techniques as mod-
ern reconfigurable architectures have a complex memory
hierarchy. Memory optimizations for these reconfigurable
architectures differ significantly to previous memory opti-
mizations in parallelizing compilation for multiprocessor
architectures, as there is a tight coupling with high-level
synthesis and physical synthesis results. This paper focuses
on seeking a partitioning-based solution to the storage as-
signment problem for reconfigurable architecture with dis-
tributed block RAM modules.

The central contribution of this paper is a novel ap-
proach of deriving an appropriate data partitioning, and
synthesizing the program behavior to reconfigurable archi-
tectures. Through intensive research on the interplay be-
tween the data partitions and architectural synthesis deci-
sions, such as scheduling and binding, we show that de-
signs that minimize the number of remote memory accesses
and exhibit local computation can meet the design goals,
and minimize the execution time (or maximize the system
throughput) under resource constraints. Other optimization
techniques, including flexible port configuration, scalar re-
placement, and data prefetching and buffer insertion, are
applied to reduce memory accesses and improve the over-
all performance.

This work is organized as follows. The next section
gives details on the target reconfigurable architecture and
the following section describes related work. Section 4
formally describes the data partitioning and storage as-
signment problem and provides techniques to minimize
the number of remote data memory accesses. Section 5
presents our experimental results and we conclude in Sec-
tion 6.
2 Target Reconfigurable Architecture

FPGA architectures consist of an array of lookup ta-
bles (LUTs), flip-flops, and programmable interconnect.
A fixed number of LUTs and flip-flops are grouped to
form a configurable logic block (CLB), or a logic array
block (LAB). Programmable switchboxes connect these
logic blocks to provide the required interconnect. Modern
reconfigurable architectures incorporate a number of dis-



tributed block memories. These architectures can be di-
vided into homogeneous and heterogeneous architectures
according to the capacities and distribution of the RAM
blocks.

Figure 1 presents an example of ahomogeneousarchi-
tecture. This roughly corresponds to Xilinx Virtex II FPGA
[16]. The block RAMs are evenly distributed on the chip
and connected with CLBs using reprogrammable intercon-
nect. Every block RAM has the same capacity. Addition-
ally, there is an embedded multiplier located beside each
block RAM. A large Virtex II chip contains 168 blocks of
18 Kbits block RAM modules, providing 3,024 Kbits of
on-chip memory.
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Figure 1. FPGA with distributed Block RAMs

The heterogeneousarchitecture contains a variety of
block RAM modules with different capacities. For exam-
ple, the TriMatrix memory on an Altera Stratix II FPGA
chip [2] consists of three types of on-chip block RAM mod-
ules: M512, M4K, and M-RAM. Their capacities are 576
bits, 4 Kbits, and 512 Kbits, respectively. A given Stratix II
chip may contain a large number of M512 and M4K mod-
ules, but only a few M-RAM modules. Currently our work
only considers homogeneous architectures.

In order to efficiently support different applications,
block RAM modules could be configured as dual-port
RAM, single-port RAM, ROM, and FIFO buffers. This
feature enables a great flexibility.

Access latencies of the on-chip block RAM equals to
the propagation delay to the memory port after the positive
edge of theclock signal. This delay is usually a fixed num-
berα for a specific FPGA architecture. For example,α is
3.7 ns for Xilinx XC2V3000 FPGA. And it takes an extra
ε ns to transfer data from the memory port to the accessing
CLB.

In addition to block RAM modules, CLBs can be config-
ured as local memory, which is convenient for storing inter-
mediate results. When CLBs are configured as distributed
memory, the access latency, i.e. the logic access time, is
quite small. However, if a number of CLBs are assigned to
an array, it involves extra delay for MUX selecting the ad-

dressed element. For example, the delay for a 512 bit CLB
memory is around 3.5 ns for Xilinx XC2V3000 FPGA; the
delay for a 16 Kbit CLB memory increases to 6.2 ns.

The FPGA can be complimented by an external, global
memory for storing large amounts of data. Access latencies
to the external memory depend on the bus protocol and type
of memory. The access latencies usually are an order of
magnitude slower than those of on-chip block RAM.

In this paper, we develop a methodology for partitioning
data to distributed block RAM modules. When compared
to off-chip global memory and using CLBs as distributed
RAM, this approach is an effective and efficient solution to
most applications.

3 Related Work
Data partitioning and storage assignment problem was

well studied in the field of parallelizing compilation [1, 12,
15]. Early efforts developed effective analysis techniques
and program transformations to reduce global communi-
cations and hence improve system performance. Shih and
Sheu [14], and Ramanujam and Sadayappan [13] addressed
the methodology to achievecommunication-freeiteration
space and data partitioning problem. Pande [11] presented
ancommunication-efficientdata partitioning solution when
it is impossible to get a communication-free partitioning.

However, the following differences make it impossible
to directly migrate these approaches into a system com-
piler for reconfigurable architectures with distributed block
RAM modules.

• The target architectures are different. Multiproces-
sor systems have a fixed number of microprocessors.
Each microprocessor has its own local memory, and
is connected with a different remote memory modules
that exhibit non uniform memory access (NUMA) at-
tributes. Reconfigurable architectures execute pro-
grams using CLBs rather than microprocessors. The
number of block RAM modules are fixed. There is no
determinate CLBs associated with a particular block
RAM. Hence the boundaries between local and re-
mote memory are indistinct.
• Programs are executed sequentially or with limited in-

struction level parallelism (ILP) on each microproces-
sor, while the parallelizing compiler exploits coarse-
grained parallelism. Computing tasks runs in a fully
parallelized and concurrent manner on reconfigurable
architectures.

Our problem is distinguished from the previous studies
as follows. First of all, these differences violate a funda-
mental assumption held in the previous research. Most of
the previous efforts assumed that global communications
or latencies to remote memory are an order of magnitude
slower than access latencies to local memory. This makes
it reasonable to simplify the objective function to simply
reduce the amount of global communications.



This assumption is no longer true in the context of data
partitioning for reconfigurable architectures. As previously
described, the boundaries between local and remote mem-
ory are indistinct. Access latencies to block RAM modules
depends on the distance between the accessing CLBs and
the memory ports. There is no way to determine the exact
delay before performing placement and routing.

Second, data partition and storage assignment have
more compound effects on system performance. In paral-
lelizing compilation for multiprocessor architectures, once
computations and data are partitioned, it will be relatively
easy to estimate the execution time since the clock period is
fixed, and the number of clock cycles consists of the com-
munication overheads and computation latencies for each
instruction. However, it is extremely difficult to determine
the execution time in reconfigurable systems before phys-
ical synthesis. Our results in Section 5 show that even
though number of clock cycles are almost the same, there
can be 30-50% deviations in execution time due to variation
in frequency. Therefore, the control logic and computation
times are effected, and not just the memory access delays.

Moreover, the flexibility to configure block RAM mod-
ules make this problem even more difficult. Block RAM
modules could be configured with a variety ofwidth×depth
schemes, and the memory ports support can handle differ-
ent read/write combinations.

Early efforts on utilizing multiple memory modules on
FPGA chips [7] allocated an entire array to a single mem-
ory module rather than partitioning data arrays. Further-
more, they assumed that the latencies differences had little
effect on system throughput.

In summary, reconfigurable architectures are drastically
different from traditional NUMA machines, making it dif-
ficult to estimate candidate solutions during the early stage
of synthesis. Flexibilities in configuring block RAM mod-
ules greatly enlarge the solution spaces, and hence make
the problem even more challenging.

4 Data Partitioning and Storage Assignment
This section formally describes the data partitioning and

storage assignment problem, and proposes an approach to
computing the number of memory accesses for a given par-
tition. Then, we discuss some of the techniques that we
use to reduce memory accesses and improve system perfor-
mance for FPGA-based reconfigurable architectures with
distributed block RAM modules.

4.1 Problem formulation
We focus on data-intensive applications in digital sig-

nal processing. These applications usually contain nested
loops and multiple data arrays.

In order to simplify our problem, we assume thata) the
input programs are perfectly nested loops;b) index expres-
sions of array references are affine functions of loop in-

dices;c) there is no indirect array references, or other sim-
ilar pointer operations;d) all data arrays are assigned to
block RAM modules; ande) each data element is assigned
one and only one single block RAM modules, i.e. no du-
plicate data. Furthermore, we assume that all data types
are fixed-point numbers due to the current capability of our
system compiler.

The inputs to this data partitioning and storage assign-
ment problem are as follows:

• A programd contains anl -level perfectly nested loop
L = {L1,L2, . . . ,Ln}

• The programd accesses a set ofn data arraysN =
{N1,N2, . . . ,Nn}.
• A specific target architecture, i.e. an FPGA, contains a

set ofmblock RAM modulesM = {M1,M2, . . . ,Mm}.
This FPGA also containsA CLBs.
• We set our desired frequency toF , and the maximum

execution time toL.

The problem of data partitioning and storage assign-
ment is to partitionN into a set ofp data portionsP =
{P1,P2, . . . ,Pp}, where p ≤ m, and seek an assignment
{P→M} subject to the following constraints
•
Sp

i=1Pi = N, andPi
T

Pj = /0, i.e. that all data arrays
are assigned to block RAM and each data element is
assigned to one and only one block RAM module.
• ∀(Pi ,M j) ∈ {P→M}, the memory requirement ofPi

is less than the capacity ofM j

After obtaining data partitions and storage assign-
ment, we reconstruct the input programd, and conduct
behavioral-level synthesis. After RTL and physical syn-
thesis, the synthesized design must satisfy the following
constraint.

• The slices of CLBs occupied by synthesized designd
is less thanA.

The objective is to minimize the total execution time
(or maximize the system throughput) under the resource
constraints of specific reconfigurable architectures. The
desired frequencyF and the maximum execution timeT
among inputs are used as target metrics during compilation
and synthesis.

4.2 Overview of the proposed approach
Our proposed approach is based on our current efforts

on synthesizing C programs into RTL designs. Our sys-
tem compiler takes C programs, performs necessary trans-
formations and optimizations. By specifying target archi-
tecture, and desired performance (throughput), this com-
piler performs resource allocation, scheduling, and binding
tasks, and generates Verilog RTL designs, which can then
be synthesized or simulated using commercial tools.

As discussed before, in reconfigurable architectures, the
boundaries between local and remote accesses are indis-
tinct. In our preliminary experiments, we found that, given



the same datapath with memory accesses to block RAM
modules with different locations, the lengths of critical path
achieved after placement and routing have a 30-50% vari-
ation. And a limited number of datapaths could be placed
near the block RAM modules which they access.

Therefore, we could still assume that, once the data
space are partitioned, we could obtain a corresponding par-
titioning of the iteration space, or the computations. Each
portion of the data space could be mapped to one portion
of the iteration space. Then we divide all memory accesses
into local accesses and remote ones (or communications).
However, these local and remote memory accesses distin-
guish from those in parallel multiprocessor systems on that
the differences of access latencies are usually in the same
magnitude rather than in orders of magnitude.

Based on this further assumption, we adapt some con-
cepts and analysis techniques in tradition parallelizing
compilation. Communication-freepartitioning refers to a
situation that each partition of the iteration space only ac-
cess the associated partition of data space. If we could
not find a communication-free partitioning, we look for a
communication-efficientpartitioning to minimize the exe-
cution time.

Our proposed approach integrates traditional program
test and transformation techniques in parallelizing compila-
tion into our system compiler framework. In order to tackle
the performance estimation during data space partitioning,
we use our specific behavioral-level synthesis techniques,
such as resource allocation, scheduling and binding.

4.3 Data and iteration space partitioning

This section discusses our data and iteration space par-
titioning algorithm in detail. The algorithm is illustrated in
Algorithm 1. Before line 7, we adapt existing analysis tech-
niques in parallelizing compilation to determine a set of di-
rections to partition. In line 7 and 8, we call our behavioral-
synthesis algorithms to synthesize the innermost iteration
body. After that, we evaluate every candidate partitioning,
and return the one with the most likelihood achieving the
short execution time subject to the resource constraints.

Given al -level nested loops, the iteration space is anl -
dimensional integer space. The loop bounds of each nested
level set the bounds of the iteration space. An integer point
in this iteration space solely refers to an iteration, which
includes all statements in the innermost iteration body.

Eachm-dimension data array has a correspondingm-
dimensional integer space. And an integer point refers to a
data element with that data index.

In each iteration, data elements in the data space are ac-
cessed. Since we assume that index expressions of array
references are affine functions of loop indices, footprint of
each iteration could be calculated using such affine func-
tions, i.e. each iteration is mapped to a set of data points in
the data space by means of specified array reference.

Algorithm 1 Partitioning
Input: nested loopL , data arraysN, RAM modulesM ,
and the number of CLBsA
Output: data partitioningP, and iteration partitioningIP,
represented by the directiond and granularityg.
Ensure:

Sp
i=1Pi = N, andPi

T
Pj = /0

Ensure: |P| ≤ |M |
1: procedure PARTITIONING

2: Calculate the iteration spaceIS(L)
3: for eachNi ∈ N

calculate the data spaceDS(Ni)
4: B← Innermost iteration body
5: Calculate the reference footprints,F , for B using

reference functions
6: AnalyzeIS(L) andF , and obtain a set of partition-

ing directionD
7: a← A/|M | ⊲ # of CLBs associated to each RAM
8: Synthesis(B,1,1,a,uram,umul,ua,T, II )
9: gmin← size ofIS(L)/|M | ⊲ the finest partition

10: gmax←
size of ∑DS(Ni )

size of each block RAM ⊲ the coarsest partition
11: dcur← d0, gcur← gmin

12: Ccur← ∞
13: for eachdi ∈ D do
14: for g j ← gmin,gmax do
15: PartitionDS(N) following di andg j

16: Estimate the number of memory accesses
using reference functions
mr =← # of remote accesses
mt =← # of total accesses
τ = 2

mr
mt

⊲ the choice of 2 depends on the chip
size

17: C← τ× (max{ur ,um,ua}× II ×g j +(T))
18: if C < Ccur then
19: dcur← di , gcur← g j

20: Ccur←C
21: Outputdcur andgcur

With the iteration spaceIS(L) and the reference foot-
printsF , we can determine a set of directions to partition
the iteration spaces. For example, if we have a 2-level
nested loop, we usually do column-wise or row-wise par-
titioning, i.e. we may determine partitioning directions as
(0,1) or (1,0). Following these directions, and selecting the
proper granularity, we could obtain a good partitioning.

In order to evaluate our candidate solutions, we need
to determine their performance on reconfigurable architec-
tures. Since most design problems in behavior synthesis
areNP-complete, and time-consuming. It is extremely in-
efficient to perform synthesis on each candidate solutions.

In our approach, we first synthesize the innermost iter-
ation body with proper resource constraint, obtain perfor-
mance results for the single iteration, and then use them to



Algorithm 2 Synthesis
1: procedure SYNTHESIS(B, b, m, a, ur , um, ua, T, II )
2: Generate DFGg from B
3: Schedule and pipelineg to minimize the initial in-

terval, subject to allocated resources, including
r block RAM, m multipliers, anda CLBs.

4: Output resource utilizationur , um, andua.
5: Output execution timeT, and the initial intervalII

evaluate our cost function in line 17.
The innermost iteration body is scheduled and pipelined

using allocated resources, including 1 block RAM mod-
ules, 1 embedded multipliers, and a portion of CLBs,
which, by our assumption, are associated with a specific
block RAM module. The reason why we pipeline our de-
sign is, for a large iteration spaceIS(L), the pipelined iter-
ation body gives the shortest execution time, and the best
resource utilization. After synthesis, we return resource
utilization for the block RAM, multiplier, and the CLBs,
respectively. We also output the number of total clock cy-
cles, and the initial interval (II ), which describes how great
the system throughput could be.

For each partitioning direction, we evaluate every possi-
ble partition granularity. Given a specific nested loop and
data arrays, and a specific architecture, we can determine
the finest and coarsest grain for a homogeneous partition-
ing. As shown in line 9, the finest grained partition depends
on at least how many iterations should be put in one block
RAM modules. On the other side, the coarsest grained par-
tition depends on how large the capacity of a block RAM
module is.

With determined partitioning direction and partition
granularity, we could use reference functions to estimate
the total number of memory accesses, and among them,
how many are remote memory accesses. As shown in line
16, τ works as a special factor, ranges from 1 to 2, which
includes effects of remote memory accesses. When there
is no remote memory access,τ = 1, we could achieve a
communication-free partitioning; otherwise, we want to
minimize it, and then reduce the effects on execution time.

Our cost function, as shown in line 17, give us a good
idea how long the execution time will be. Since the iter-
ation body is pipelined, the most utilized components de-
termines the performance (or throughput) of the whole sys-
tem. For example, after pipelining,II = 1, T = 10,um = 1.
If there are five iterations in one partition, then the execu-
tion time will be 1× II × 5+(T − II ) = 19 clock cycles,
without considering effects of remote memory accesses.

4.4 Performance Estimation and Optimizations

In order to evaluate our data partitioning and storage as-
signment solutions, we apply architectural-level synthesis
techniques to each portion of the partitioned design using

sophisticated scheduling and binding algorithms. In ad-
dition to the traditional architectural-level synthesis tech-
niques, we apply other optimization techniques, in partic-
ular those that take advantage of FPGA-based reconfig-
urable architectures, such as port vectorization, scalar re-
placement, and input prefetching. These optimization tech-
niques could be utilized to increase memory bandwidth, re-
duce memory accesses, and improve overall performance.

4.4.1 Flexible port configuration

Different memory bandwidths are available using the
flexible port configurations. As described in Section 2,
block RAM modules could be configured as dual-port
RAM, single-port RAM, and FIFO buffers to support dif-
ferent applications. For example, the 18 Kbit block RAM
dual-port memory on Virtex II FPGA [16] consists of an 18
Kbit storage area and twocompletely independentaccess
ports. Data can be written to the first, second or both ports
and can be read from either or both of the ports. Each port
can be configured in a variety of aspect ratios, e.g. 2K×8
and 512×36.
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Figure 2. Different port configurations support different
memory bandwidths

Figure 2 shows an unsigned char arrayIN[8][256] as-
signed to an 18 Kbit block RAM. Figure 2(a) illustrates
that this block RAM is configured as a 2K×8 single-port
RAM. Each memory access could fetch or write 8 bits
data. While Figure 2(b) presents a 512×32 dual-port RAM.
Each memory access could fetch or write 32 bits data
through one memory port. For example, ifAddr A= j1 and
Addr B= j2, one clock cycle later,Data A= {IN[0][ j1−
256],IN[1][ j1−256],IN[2][ j1−256],IN[3][ j1−256]}, and
Data B= {IN[4][ j2],IN[5][ j2],IN[6][ j2],IN[7][ j2]}. There-
fore, the memory bandwidth in configuration (b) is 8 times
greater than that of configuration (a).

4.4.2 Scalar replacement of array elements

Scalar replacement, or register pipelining, is an effective
method to reduce the number of memory accesses. This
method takes advantage of sequential multiple accesses to
array elements by making them available in registers [4].
When executing a program, especially those with nested
loops, one array element may be accessed in different iter-
ations. In order to reduce the amount of memory access, the



array element can be stored in registers after the first mem-
ory access, and the following references are replaced by
scalar temporaries. This is especially beneficial for recon-
figurable systems as registers are much cheaper in FPGAs
compared with ASIC designs.

(a)

for (i=1; i<N-1; i++)
for (j=1; j<M-1; j++){
...
i00=in[i-1][j-1]; i01=in[i-1][j]; i02=in[i-1][j+1];
i10=in[i ][j-1]; ; i12=in[i ][j+1];
i20=in[i+1][j-1]; i21=in[i+1][j]; i22=in[i+1][j+1];
...

}

=⇒

(b)

... // initial two iterations
for (i=3; i<N-1; i++)

for (j=1; j<M-1; j++){
...
i00=i10; i01=i11; i02=i12; // scalar replacement
i10=i20; i11=i21; i12=i22; // scalar replacement
i20=in[i+1][j-1]; i21=in[i+1][j]; i22=in[i+1][j+1];
...

}

Figure 3. Scalar replacement of array elements

Consider the SOBEL edge detection code given in Fig-
ure 3. Part of the references to arrayin[] could be replaced
by scalar temporaries obtained in the previous iterations.
This reduces the number of memory accesses by approxi-
mately 62%. If the implementation is pipelined, the design
will have better throughput using the same memory ports
configuration.

4.4.3 Data prefetching and buffer insertion

Data prefetching was originally introduced to reduce
cache miss latencies [5]. The microprocessor issues a
prefetching instruction to load a data block that will be ac-
cessed in the near future. Prefetching avoids stalling by
having the data readily accessible when it is needed. While
it is loading data the main memory, the microprocessor ex-
ecutes other computations that are independent of the data
being fetched. Prefetching is most useful in programs that
access large array sequentially. There are no caches in
FPGA-based reconfigurable architectures with block RAM
modules. However, we can apply similar prefetching tech-
niques to reduce the delay of critical path, and improve sys-
tem performance.

Before placement and routing, it is difficult to accu-
rately estimate clock frequency, and to determine how
many clock cycles it will take to access a particular block
RAM module. An access to block RAM module far away
from the CLB may reduce the system maximal frequency
due to the interconnect delay, especially in high-speed de-
signs. For example, in Figure 4(a), it is faster for CLB (c)
to access block RAM (a) than to access block RAM (b).

In order to reduce the memory access time, we sched-
ule the memory access one clock cycle earlier, and insert
a register on the data path. Hence the critical path will
be reduced and the data will available on time. Figure
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Figure 4. Data prefetching and buffer insertion

4(b) shows a design in which the data in block RAM (b)
is fetched one clock cycle earlier. This is similar to soft-
ware prefetching. However, our goal is to reduce the criti-
cal path, or maximize the clock frequency.

5 Experimental Results
This section presents our experimental setup and results.

The target architecture is Xilinx Virtex II FPGA series,
which contains evenly distributed block RAM modules.

We focus on two applications. The first benchmark is
a bank of correlators, which is a commonly occurring op-
eration in DSP applications, e.g. Kalman filters, matching
pursuit (MP), recursive least squares (RLS), and minimum
mean-square error estimation (MMSE) [9]. The bank of
correlators multiplies each sample of a received vectorr
with the corresponding sample in the correlation matrixS.
A communication free partitioning exists for this applica-
tion. The second benchmark is Sobel edge detection, which
applies horizontal and vertical detection masks to an in-
put image. A number of image application have the same
control structure and memory access patterns, such as tex-
ture smoothing, and convolution [8]. A communication-
free partition does not exist in this application.

We obtain a data partitioning following our proposed ap-
proach, and applied other optimization to further improve
system performance. The target frequency was set to 200
MHz for the bank of correlators and 150 MHz for Sobel
edge detection. We partitioned the arrays using the ap-
proach proposed in Section 4.2, and performed program
transformations, and then used commercial tools to obtain
area and timing results. Experiments results are collected
after RTL synthesis and placement and routing.

5.1 Communication-free: Correlation
The bank of correlators multiplies each sample of the re-

ceived vectorr with the corresponding sample of a column
in anSmatrix, i.e.Ci = ∑l

j=1 r j×Sj ,i, wherer is a vector of
l complex numbers, andS is am× l real numbers.l andm
will vary based on the application. For instance, if we wish
to perform radiolocation in the ISM band (802.11x) using



the matching pursuit algorithm, bothl andm are equal to
88.

If the Smatrix is kept packed, the most advanced com-
mercial high-level synthesis tool either generates a design
with an extremely slow execution time of about 77,440 ns,
or fails to synthesize this design due to the hugeSmatrix.

The data space can be partitioned by column or by row.
Our proposed approach showed us that column-wise par-
tition achieves a communication-free partitioning. Figure
5 suggests several candidates column-wise partitionings.
Figure 5(a), (b), and (c) assign one block RAM to one col-
umn, four columns, and eight columns, respectively.
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Figure 5. Candidate communication-free data partitioning

Figure 6(1) presents the control and computations of
the column-wise data partitioning. Computations of each
correlator are conducted using embedded multipliers be-
side the block RAM in a multiplication and accumulation
(MAC) manner. For each correlator, the control logic and
computational resources are local to the block RAM mod-
ule.

Figure 6(2) presented area and timing trends of different
granularity for the column-wise scheme. As shown in Fig-
ure 6(2), when assigning one block RAM to one column,
the design takes the shortest execution time, but requires
the greatest hardware resources. When more columns are
packed into one block RAM, the requirements on hardware
decreased. However, the execution time increases linearly
to the number of columns in one block RAM.
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Figure 6. Implementations and area/timing trade-offs

To evaluate different partitioning schemes, we also ob-
tained performance results for row-wise partitions.

Figure 7(1) illustrates the parallel computation scheme,
or theby-rowscheme, where one block RAM was assigned
to one or multiple rows. Data at the same column are
read and multiplied using the local fixed multiplier, and a

r

S

(1) Row-wise

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0  1  2  3  4  5  6  7  8  9

 10000

 8000

 6000

 4000

 2000

 0

R
es

ou
rc

e 
ut

ili
za

tio
n 

(%
)

E
xe

cu
tio

n 
tim

e 
(n

s)

Number of rows per BRAM

pre-layout timing
post-layout timing

LUTs
Slice Registers

BRAM and Multipliers

(4) Results

Figure 7. Row-wise partitioning

pipelined adder-tree is used for the summation of the prod-
ucts. The adder tree requires remote accesses to each of
the block RAMs, hence this is not a communication-free
partitioning. This scheme parallelizes each correlator, and
hence requires a global control on the multipliers and the
pipelined adder-tree. Figure 7(2) presented area and tim-
ing trends of different granularity for both schemes, respec-
tively.

Data # of Pre-layout Timing Post-layout Timing
per BRAM cycles F(MHz) L(ns) F(MHz) L(ns)
1 column 178 214.7 829 171.6 1037

1 row 184 140.5 1309 133.5 1378
4 columns 706 205.0 3436 178.2 3961

4 rows 710 157.0 4520 129.4 5486
8 columns 1410 198.6 7099 161 8752

8 rows 1413 147.1 9602 138.7 10183

Table 1. Comparison between the same granularity

When comparing the two schemes using the same gran-
ularity (i.e. same number of rows/columns), as shown in
Table 1, we found interesting results. In the term of num-
bers of clock cycles, the differences are very small. How-
ever, if we check the maximal achievable frequencies, or
the latencies for the whole bank of correlators, designs
of the column-wise partitioning scheme are 30-50% faster
than those of the row-wise partitioning scheme. Deeper
analysis showed that the performance gaps are mainly due
to the increased amount of global communications needed
for the control logic and remote block RAM accesses.

In summary, different partitions of the arraySdeliver a
wide variety of candidate solutions. Synthesized designs
showed that data partitioning and storage assignment not
only affect the number of clock cycles, but also affect the
achieved clock frequencies. Generally speaking, the design
with fewer remote accesses, or equivalently, reduced global
communications achieves better performance.

5.2 Efficient Communication: Edge Detection

Sobel edge detection applies horizontal and vertical de-
tection masks to an input image. This application is a
2-level nested loop as shown in Figure 3. Based on re-
sults from code analysis stage, we could not obtain a
communication-free partition. Now the task is to find a
communication efficient partitioning that meets the design



goals.
Tables 2 and 3 show timing results for Sobel edge de-

tection with two different input image sizes. If we only
partition the data arrays, the number of clock cycles are re-
duced. However, the maximal frequencies after placement
and routing are slower than our desired frequencies. In or-
der to reduce memory accesses, optimization techniques
such as scalar replacement for array elements and buffer
insertion for data prefetching are utilized. In the smaller
design, we finally achieve the 150 MHz design goal, and
with a 46x speedup compared to the original design.

256× 8 # of Pre-layout Timing Post-layout Timing
Sobel cycles F(MHz) L(ns) F(MHz) L(ns)

original 12,196 159.5 76,481 152.2 80,444
partitioned 2,032 150.4 13,514 140.7 14,445

+scalar replacement 771 166.1 4,642 145.7 5,291
+prefetching 263 185.0 1,421 150.8 1,744

Table 2. Comparing optimization techniques (1)

256× 16 # of Pre-layout Timing Post-layout Timing
Sobel cycles F(MHz) L(ns) F(MHz) L(ns)

partitioned 2,032 145.9 13,925 105.6 19,155
+scalar replacement 7,71 153.4 5,026 118.2 6,522

+prefetching 263 185.0 1,421 125.9 2,088

Table 3. Comparing optimization techniques (2)

However, we could not achieve the design goal in the
larger design. It is interesting to note that after apply-
ing prefetching, both design achieved 185.0 MHz maximal
frequency after RTL synthesis. However, after placement
and routing the frequency was drastically reduced to 125.9
MHz. This points to the fact that it extremely important to
consider physical attributes of the problem at higher levels
of the design.

In summary, different optimization techniques could be
utilized to increase memory bandwidth, reduce memory ac-
cess, and improve the overall performance. When the sizes
of designs increase, it becomes more difficult to achieve
design goals since it lacks the support from down-stream
tools, especially physical design tools.

6 Conclusion
Modern reconfigurable computing systems offer enor-

mous computing capacities, and continue to integrate on-
chip computation and storage components. Advanced syn-
thesis tools are required to map large applications to these
increasingly complicated chips. More importantly, these
tools must be smart and powerful enough to conduct mem-
ory optimizations and effectively utilize on-chip distributed
block RAM modules.

This work showed that a data and iteration space par-
titioning approach integrated with existing architectural-
level synthesis techniques could parallelize input designs,
and dramatically improve system performance. Experi-
mental results indicated that partitioned designs achieve
much better performance.

In future work, we plan to investigate analysis and trans-
formation techniques to deal with heterogeneous architec-
tures and generate heterogeneous partitions. It will also be
interesting to handle irregular iteration space and control
constructs in iteration bodies.
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