
Policy-Driven Memory Protection
for Reconfigurable Hardware

Ted Huffmire, Shreyas Prasad, Tim Sherwood, and Ryan Kastner

University of California, Santa Barbara
Santa Barbara CA 93106, USA

{huffmire,sherwood}@cs.ucsb.edu
{shreyas,kastner}@ece.ucsb.edu
http://www.cs.ucsb.edu/∼arch

Abstract. While processor based systems often enforce memory pro-
tection to prevent the unintended sharing of data between processes,
current systems built around reconfigurable hardware typically offer no
such protection. Several reconfigurable cores are often integrated onto a
single chip where they share external resources such as memory. While
this enables small form factor and low cost designs, it opens up the op-
portunity for modules to intercept or even interfere with the operation
of one another. We investigate the design and synthesis of a memory
protection mechanism capable of enforcing policies expressed as a formal
language. Our approach includes a specialized compiler that translates
a policy of legal sharing to reconfigurable logic blocks which can be di-
rectly transferred to an FPGA. The efficiency of our access language
design flow is evaluated in terms of area and cycle time across a variety
of security scenarios.

Keywords: Computer Security, Embedded Systems, Reference Moni-
tors, Separation Kernels, Security Policies, Policy Languages.

1 Introduction

Reconfigurable hardware is at the heart of many high performance embedded
systems. Satellites, set-top boxes, electrical power grids, and the Mars Rover all
rely on Field Programmable Gate Arrays (FPGAs) to perform their respective
functions. The bit-level reconfigurability of these devices can be used to imple-
ment highly optimized circuits for everything from encryption to FFT, or even
entire customized processors. Because one device is used for so many different
functions, special-purpose circuits can be developed and deployed at a fraction
of the cost associated with custom fabrication. Furthermore, if the design needs
to be updated, the logic on an FPGA board can even be changed in the field.
These advantages of reconfigurable devices have resulted in their proliferation
into critical systems, yet many of the security primitives which software designers
take for granted are simply nonexistent.

Due to Moore’s law, digital systems today have enough transistors on a sin-
gle chip to implement over 200 separate RISC processors. Increased levels of

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 461–478, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.cs.ucsb.edu/~arch

462 T. Huffmire et al.

integration are inevitable, and reconfigurable systems are no different. Current
reconfigurable systems-on-chip include diverse elements such as specialized mul-
tiplier units, integrated memory tiles, multiple fully programmable processor
cores, and a sea of reconfigurable gates capable of implementing significant ASIC
or custom data-path functionality. The complexity of these systems and the lack
of separation between different hardware modules has increased the possibil-
ity that security vulnerabilities may surface in one or more components, which
could threaten the entire device. New methods that can provide separation and
security in highly integrated reconfigurable devices are needed.

One of the most critical aspects of separation that needs to be addressed
is in the management of external resources such as off-chip DRAM. While a
processor will typically use virtual memory and TLBs to enforce some form
of memory protection, reconfigurable devices usually operate in the physical
addresses space with no operating system support. Lacking these mechanisms,
any hardware module can read or write to the memory of any other module at
any time, whether purposefully, accidentally, or maliciously. This situation calls
for a memory access policy that all modules on chip must obey. In this paper we
present a method that utilizes the reconfigurable nature of field programmable
devices to provide a mechanism to enforce such a policy.

In the context of this paper, a memory access policy is a formal descrip-
tion that establishes what accesses to memory are legal and which are not. Our
method rests on the ability to formally describe the access policy using a special-
ized language. We present a set of tools through which the policy description can
be automatically transformed and directly synthesized to a circuit. This circuit,
represented as a bit-stream, can then be loaded into a reconfigurable hardware
module and used as an execution monitor to analyze memory accesses and en-
force the policy.

The techniques presented in this paper are steps towards a cohesive method-
ology for those seeking to build reconfigurable systems with modules acting at
different security clearance levels on a single chip. In order for such a method-
ology to be adopted by the embedded design community it is critical that the
resulting hardware is both high performance and low overhead. Furthermore, it
is important that our methods are both formally grounded and yet understand-
able to those outside the security discipline. Throughout this paper we strive
to strike a balance between engineering and formal evaluation. Specifically, this
paper makes the following contributions:

– We specify a memory access policy language, based on formal regular lan-
guages, which expresses the set of legal accesses and allowed policy
transitions.

– We demonstrate how our language can express classical security scenarios,
such as compartmentalization, secure hand-offs, Chinese walls, access control
lists and an example of redaction.

– We present a policy compiler that translates an access policy described in
this language into a synthesizable hardware module.

Policy-Driven Memory Protection for Reconfigurable Hardware 463

– We evaluate the effectiveness and efficiency of this novel enforcement mecha-
nism by synthesizing several policies down to a modern FPGA and analyzing
the area and performance.

2 Reconfigurable Systems

Increasingly we are seeing reconfigurable devices emerge as the flexible and high-
performance workhorses inside a variety of high performance embedded com-
puting systems [4,6,8,15,20,29]. The power of reconfigurable systems lies in the
immense amount of flexibility that is provided. Designs can be customized down
to the level of individual bits and logic gates. They combine the post-fabrication
programmability of software running on a general purpose processor with the
spatial computational style most commonly employed in hardware designs [8].
Reconfigurable systems use programmability and regularity to create a flexible
computing fabric that can lower design costs, reduce system complexity, and
decrease time to market, while achieving 100x performance gain per unit sili-
con as compared to a similar microprocessor [5,7,33]. The growing popularity
of reconfigurable logic has forced practitioners to start to consider the security
implications, yet the resource constrained nature of embedded systems is a chal-
lenge to providing a high level of security [16]. To provide a security technique
that can be used in practice, it must be both robust and efficient.

Protecting Memory on an FPGA. A successful run-time management sys-
tem must protect different logical modules from interfering, intercepting, or cor-
rupting any use of a shared resource. On an embedded system, the primary re-
source of concern is memory. Whether it is on-chip block RAM, off-chip DRAM,
or backing-store such as Flash, a serious issue in the design of any high perfor-
mance secure system is the allocation and reallocation of memory in a way that
is efficient, flexible, and protected. On a high performance processor, security
domains may be enforced through the use of a page table. Superpages, which
are very large memory pages, can also be used to provide memory protection,
and their large size makes it possible for the TLB to have a lower miss rate [22].
Segmented Memory [27] and Mondrian Memory Protection [35], a finer-grained
scheme, address the inefficiency of providing memory protection at the granular-
ity of a page (or a superpage) by allowing different protection domains to have
different permissions on the same memory region.

While a TLB may be used to speed up page table accesses, this requires addi-
tional associative memory (not available on FPGAs) and greatly decreases the
performance of the system in the worst case. Therefore, few embedded proces-
sors and even fewer reconfigurable devices support even this most basic method
of protection. Instead, reconfigurable architectures on the market today sup-
port a simple linear addressing scheme that exactly mirrors the physical mem-
ory. Hence, on a modern FPGA the memory is essentially flat and
unprotected.

Preventing unauthorized accesses to memory is fundamental to both effective
debugging and computer security. Even if the system is not under attack, many

464 T. Huffmire et al.

of the most insidious bugs are a result of errant memory accesses which affect
multiple sub-systems. Ensuring protection and separation of memory when mul-
tiple concurrent logic modules are active requires a new mechanism to ensure
that the security properties of the system are enforced.

To provide separation in memory between multiple different interacting mod-
ules, we adapt some of the key concepts from separation kernels. Rushby origi-
nally proposed that a separation kernel [12] [18] [24] [25] creates within a single
shared machine an environment which supports the various components of the
system, and it provides the communication channels between them in such a
way that individual components of the system cannot distinguish this shared
environment from a physically distributed one. A separation kernel divides all
resources under its control into blocks such that the actions of a subject in
one block are isolated from (viz., cannot be detected by or communicated to) a
subject in another block, unless an explicit means for that communication has
been established. For a multilevel secure system, each block typically represents
a different classification level. Unfortunately, separation kernels have high over-
head and complexity due to the need to implement software virtualization, and
the design complexity of modern out-of-order CPUs makes it difficult to imple-
ment separation kernels with a verifiable level of trust. A solution is needed
that is located somewhere along a continuum between the two extremes of
physical separation and software separation in order to have the best of both
worlds.

We propose that the reconfigurable nature of FPGAs offers a new method by
which the fine grain control of access to off-chip memory is possible. By build-
ing a specialized circuit that recognizes a language of legal accesses, and then
by realizing that circuit directly onto the reconfigurable device as a specialized
state machine, every memory access can be checked with only a small addi-
tional latency. Although incorporating the enforcement module into a separate
hardware module would lessen the impact of covert channel attacks, this would
introduce additional latency. We describe techniques we are working on to isolate
the enforcement module in Section 5.2.

3 Policy Description and Synthesis

While reconfigurable systems typically do not have traditional memory protec-
tion enforcement mechanisms, the programmable nature of the devices means
that we can build whatever mechanisms we need as long as they can be im-
plemented efficiently. In fact, we exploit the fine grain re-programmability of
FPGAs to provide word-level stateful memory protection by implementing a
compiler that can translate a memory access policy directly into a circuit. The
enforcement mechanisms generated by our compiler will help prevent a corrupted
module or processor from compromising other modules on the FPGA with which
it shares memory.

Policy-Driven Memory Protection for Reconfigurable Hardware 465

We begin with an explanation of our memory access policies, and we describe
how a policy can be expressed and then compiled down to a synthesizable mod-
ule. In this section we explain both the high level policy description and the
automated sequence of steps, or design flow, for converting a memory access
policy into a hardware enforcement module.

3.1 Memory Access Policy

Once a high level policy is developed based on the requirements of the system
and the organizational security policy [32], it must be expressed in a concrete
form to allow engineers to build enforcement mechanisms. In the context of this
paper we concentrate on policies as they relate to memory accesses. In particular,
the enforcement mechanisms we consider in this paper belong to the Execution
Monitoring (EM) class [30], which monitor the execution of a target, which in our
case is one or more modules on the FPGA. An execution monitor must be able to
monitor all memory accesses and able to halt or block the execution of the target
if it attempts to violate the security policy. Allowing a misbehaving module to
continue executing might let it use the state of the enforcement mechanism as a
covert channel. In addition, all modules must be isolated from the enforcement
mechanism so that they cannot interfere with the DFA transitions. We discuss
techniques for module isolation in Section 5.2. The enforcement mechanism is
also a Reference Validation Mechanism (RVM) [3]. Although Erlingsson et al.
have proposed the idea of merging the reference monitor in-line with the target
system [9], in a system with multiple interacting cores, this approach has the
drawback that the reference monitors are distributed, which is problematic for
stateful policies. Although there exist security policies that execution monitors
are incapable of enforcing, such as information flow policies [26], we argue that
in the future our execution monitors could be combined with static analysis
techniques to enforce a more broad range of policies if required. We therefore
begin by describing a well defined method for describing memory access policies.

The goal of our memory access policy description is to precisely describe the
set of legal memory access patterns, specifically those that can be recognized
by an execution monitor capable of tracking address ranges of arbitrary size.
Furthermore, it should be possible to describe complex behaviors such as sharing,
exclusivity, and atomicity, in an understandable fashion. An engineer can then
write a policy description in our input form (as a series of productions) and
have it transformed automatically to an extended type of regular expression. By
extending regular languages to fit our needs we can have a human-readable input
format, and we can build off of theoretical contributions which have created a
path to state machines and hardware [1].

There are three pieces of information that we will incorporate into our ex-
ecution monitor. The Accessing Modules (M) are the unique identifiers for a
specific principal on the chip, such as a specific intellectual property core or one
of the on-chip processors. Throughout this paper we simply refer to these units
of separation of the FPGA as Modules. The Access Methods (A) are typically
Read and Write, but may include special memory operators such as zeroing or

466 T. Huffmire et al.

incrementing if required. The set P is a partitioning of physical memory into
ranges. The Memory Range Specifier (R in P) describes a physical address or
set of physical addresses to which a specific permission can be assigned. Our
language describes an access policy through a sequence of productions, which
specify the relationship between principals (M : modules), access rights (A:
read, write, etc.), and objects (R: memory ranges1).

The terminals of the language are memory accesses descriptors which ascribe
a specific right to a specific module for a specific object for the duration of the
next memory access. Formally, the terminals of the productions are tuples of the
form (M, A, R), and the universe of tuples forms an alphabet Σ = M×A×R. The
memory access policy description precisely defines a formal language L ⊆ Σ∗
which is almost always infinite (unless the device only supports a fixed number
of accesses). L needs to satisfy the property that ∀xt | t ∈ Σ, xt ∈ L : x ∈ L.
This has the effect that any legal access pattern will be incrementally recognized
as legal along the way.

One thing to note is that memory accesses refer to a specific memory address,
while memory access descriptors are defined over the set of all memory ranges
R. A memory access (M, A, k), where k is a particular address, is contained in
a memory access descriptor (M ′, A′, R) iff M = M ′, A = A′, and Rlow ≤ k ≤
Rhigh. A sequence of memory accesses a = a0, a1, ..., an is said to be legal iff
∃s = s0, s1, ..., sn ∈ L s.t. ∀0≤i≤n si contains ai. In order to turn this into an
enforceable method we need two things.

1. A method by which L can be precisely defined
2. An automatically created circuit which recognizes memory access sequences

that are legal under L

We begin with a description of the first item through the use of a simple
example. Consider a very straightforward compartmentalization policy. Module1
is only allowed to access memory in the range of [0x8e7b008,0x8e7b00f], and
Module2 is only allowed to access memory in the range of [0x8e7b018,0x8e7b01b].
Figure 2 shows this memory access policy expressed as a set of productions.

Each of these productions is a re-writing rule as in a standard grammar. The
non-terminal Policy is the start symbol of the grammar and defines the overall
access policy. Note that Policy is essentially a regular expression that describes
L. Through the use of a grammar we allow the hierarchical composition of more
complex policies. In this case Access1 and Access2 are simple access descriptors,
but in general they could be more complex expressions that recognize a set of
legal memory access.

Since we eventually want to compile the access policy to hardware, we limit
our language to constructs with computational power no greater than a regu-
lar expression [19] with the added ability to detect ranges. Although a regular
language must have a type-3 grammar in the Chomsky hierarchy, it is inconve-
nient for security administrators to express policies in right-linear or left-linear
form. Since a language can be recognized by many grammars, any grammar that
1 An interval of the address space including high (Rhigh) and low (Rlow) bounds.

Policy-Driven Memory Protection for Reconfigurable Hardware 467

can be transformed into type-3 form is acceptable. This transformation can be
accomplished by extracting first terminals from non-terminals.

Note that the atomic unit of enforcement is an address range, and that the
ranges are of arbitrary size. The smallest granularity that we enforce currently
is at the word boundary, and we can support any sized range from a single word
to the entire address space. There is no reason that ranges have to be of the
same size or even close, unlike pages. We will later show how this ability can be
used to set up special control words that help in securely coordinating between
modules.

Although we are restricted to policies that are equivalent to a finite automata
with range checking, we have constructed many example policies including com-
partmentalization and Chinese wall in order to demonstrate the versatility and
efficiency of our approach. In Section 4.4 we describe a “redaction policy,” in
which modules with multiple security clearance levels are interacting within a
single embedded system. However, now that we have introduced our memory
access policy specification language, we describe how it can be transformed au-
tomatically to an efficient circuit for implementation on an FPGA.

3.2 Hardware Synthesis

We have developed a policy compiler that converts an access policy, as described
above, into a circuit that can be loaded onto an FPGA to serve as the enforce-
ment module. At a high level the technique partitions the module into two parts,
range discovery and language recognition.

3.3 Design Flow Details

Access Policy – To describe the process of transforming a policy to a circuit,
we consider a simple compartmentalization policy with two modules, which can
only access their own single range:

Access → {Module1,rw,Range1} | {Module2,rw,Range2};
Policy → (Access)*;

Building and Transforming a Parse Tree – Next, we use Lex [17] and Yacc [14]
to build a parse tree from our security policy. Internal nodes represent operators
such as concatenation, alternation, and repetition. Figure 1 shows the parse tree
for our example policy.

We must then transform the parse tree into a large single production with
no non-terminals on the right hand side, from which we can generate a regular
expression. This process of macro expansion requires an iterative replacement of
all the non-terminals in the policy. We apply the productions to the parse tree
by substituting the left hand side of each production with its right hand side.
Figure 1 shows the transformed parse tree for our policy.

Building the Regular Expression – Next, we find the subtree corresponding to
Policy and traverse this subtree to obtain the regular expression. By this stage

468 T. Huffmire et al.

Access

->

OR

{M1,rw,R1} {M2,rw,R2}

AND

->

Policy

OR

{M1,rw,R1} {M2,rw,R2}

*

Access

->

OR

{M1,rw,R1} {M2,rw,R2}

AND

->

Policy

Access *

8

7

5

1 3

2 4

6

ε

ε

ε

ε

ε

ε

ε

ε

init

0
{M1,rw,R1},

{M2,rw,R2}

{M1,rw,R1} {M2,rw,R2}

Fig. 1. Our policy compiler translates the policy to a regular expression by building,
transforming, and traversing a parse tree. From the regular expression, an NFA is
constructed, which is then converted into a minimized DFA.

we have completely eliminated all of the non-terminals, and we are left with a
single regular expression which can then be converted to an NFA. The regular
expression for our access policy is: (({Module1, rw, Range1}) | ({Module2, rw,
Range2}))*.

Constructing the NFA – Once the regular expression has been formed, an NFA
can be constructed from this regular expression using Thompson’s Algorithm
[1]. Figure 1 shows the NFA for our policy.

Converting the NFA to a DFA – From this NFA we can construct a DFA through
subset construction [1]. Following the creation of the DFA, we apply Hopcroft’s
Partitioning Algorithm [1] as implemented by Grail [23] to minimize the DFA.
Figure 1 shows the minimized DFA for our policy on the right.

Processing the Ranges – Before we can convert the DFA into Verilog, we must
perform some processing on the ranges so that the circuit can efficiently deter-
mine which range contains a given address. Our system converts the ranges to
an internal format using don’t care bits. For example, 10XX can be 1000, 1001,
1010, or 1011, which is the range [8,11]. Hardware can be easily synthesized to
check if an address is within a particular range by performing a bit-wise XOR on
just the significant bits.2 Using this optimization, any aligned power of two range
can be efficiently described, and any non-power of two range can be converted
into a covering set of O(log2 |range|) power of two ranges. For example the range
[7,12] (0111, 1000, 1001, 1010, 1011, 1100) is not an aligned power of two range
but can be converted to a set of aligned power of two ranges: {[7,7],[8,11],[12,12]}
(or equivalently {0111|10XX|1100}).

Converting the DFA to Verilog – Because state machines are a very common
hardware primitive, there are well-established methods of translating a descrip-
2 This is equivalent to performing a bit-wise XOR, masking the lower bits, and testing

for non-zero except that in hardware the masking is unnecessary.

Policy-Driven Memory Protection for Reconfigurable Hardware 469

tion of state transitions into a hardware description language such as Verilog.
Figure 3 shows the hardware module we wish to build. There are three inputs:
the module ID, the op {read, write, etc.}, and the address. The output is a single
bit: 1 for grant and 0 for deny. The DFA transitions are the concatenation of
the module ID, op, and a range ID bit vector. The range ID bit vector contains
one bit for each range ID in the policy. The hardware will check all the
ranges in parallel and set to 1 the bit corresponding to the range ID
that contains the input address. If there is no transition for an input char-
acter, the machine always transitions to the rejecting state, which is a “dummy”
sink state. This is important for security because an attacker might try to insert
illegal characters into the input.

State Machine Synthesis. The final step in the design flow is the actual conver-
sion of Verilog code to a bit-stream that can be loaded onto an FPGA. Using
the Quartus tools from Altera, which does synthesis, optimization, and place-
and-route, we turn each machine into an actual implementation. After testing
the circuit to verify that it accepts a sample of valid accesses and rejects invalid
accesses, we are ready to measure the area and cycle time of our design.

4 Example Applications

To further demonstrate the usefulness of our language, we use it to express sev-
eral different policies. We have already demonstrated how to compartmentalize
access to different modules, and it is trivial to extend the above policy to in-
clude overlapping ranges, shared regions, and most any static policy. The true

Class1 Module1 | Module2;

Class2 Module3 | Module4;

List1 Class1 | Class2;

List2 Class2;

Access1 {List1, r w, Range1} ;

Access2 {List2, r w, Range2} ;

Pol i cy (Access1 | Access2) *;

Access Control:

Module1|2 Module1 | Module2;

Access1 { Module1, r w, Range1} | {Module1|2, r w, Range2} ;

Access2 { Module2, r w, (Range1|Range2)} ;

Tr igger { Module1, r w, Range2} ;

Pol i cy (Access1*) (| Tr igger (Access2)*);

Secure Hand-Off:

rw r | w;

Range1 [0x8e7b008,0x8e7b00f];

Range2 [0x8e7b018,0x8e7b01b];

Access1 { Module1, r w, Range1} ;

Access2 { Module2, r w, Range2} ;

Pol i cy (Access1 | Access2)* ;

Access1 { Module1, r w, (Range1 | Range3)}* ;

Access2 { Module1, r w, (Range1 | Range4)}* ;

Access3 { Module1, r w, (Range2 | Range3)}* ;

Access4 { Module1, r w, (Range2 | Range4)}* ;

Pol i cy Access1 | Access2 | Access3 | Access4;

rw r | w;

Access2 { Module1, r w, Range1} | {Module1, r, Range3} | { Module2, r w, Range2} | {Module2, w, Range4} | { Module3, r w, Range3} ;

Access1 { Module2, r, Range3} | Access2;

Tr igger { Module1, w, Range4} ;

Clear { Module3, z, Range3} ;

SteadyState (Access2 | Clear Access1* Tr igger)* ;

Pol i cy | Access1 | Access1* Tr igger SteadyState | Access1 * Tr igger SteadyState Clear Access1* ;

Redaction:

Compartmentalization:

Chinese Wall:

 *

Fig. 2. Several example policies expressed in our language

470 T. Huffmire et al.

power of our system comes from the description of stateful policies that involve
revocation or conditional access. In particular we demonstrate how data may be
securely handed off between modules, and we also show the Chinese wall policy.
Before we do that let us first discuss another more traditional example: access
control lists.

4.1 Access Control List

A secure system that employs access control lists will associate every object in the
system with a list of principals along with the rights of each principal to access the
object. For example, suppose our system has two objects, Range1 and Range2.
Class1 is a class of principals (Module1 and Module2), and Class2 is another
class of principals (Module3 and Module4). Either Class1 or Class2 may access
Range1, but only Class2 may access Range2. Figure 2 shows this policy.

In general, since access control list policies are stateless, the resulting DFA
will have one state, and the number of transitions will be the sum of the number
of principals that may access each object. In this example, Module1, Module2,
Module3, and Module4 may access Range1, and Module3 and Module4 may
access Range2. The total number of transitions in this example is 4+2=6.

4.2 Secure Hand-Off

Many protocols require the ability to securely hand-off information from one
party to another. Embedded systems often implement these protocols, and our
language makes these transfers possible. Rather than requiring large communi-
cation buffers or multiple copies of the data, we can simply transfer the control
of a specified range of data from one module to the next. For example, suppose
Module1 wants to securely hand-off some data to Module2. Module1 writes some
data to memory, to which it must have exclusive access, and then Module2 reads
the data from memory. Rather than communicating the data, an access policy
can be compiled that will allow the critical transition of permissions in synchro-
nization with the hand-off. Using formal languages to express security policies
makes such a temporal hand-off possible.

After a certain trigger event occurs, it is possible to revoke the permissions
of a module so that it may no longer access one or more ranges. Consider the
example policy in Figure 2. At first, Module1 can access Range1 or Range2, and
Module2 can access Range2. However, the first time Module1 accesses Range2
(indicating that Module1 is ready to hand off), Access1 is deactivated by this
trigger event, revoking the permissions for Module1 from both Ranges. As a
result of the trigger, Module2 has exclusive access to Range1 and Range2.

4.3 Chinese Wall

Another security scenario that can be efficiently expressed using a policy lan-
guage is the Chinese wall. Consider an example of this scenario, in which a lawyer
who looks at the set of documents of Company1 should not view the set of files

Policy-Driven Memory Protection for Reconfigurable Hardware 471

of Company2 if Company1 and Company2 are in the same conflict-of-interest
class. This lawyer may also view the files of Company3 provided that Company3
belongs to a different conflict-of-interest class than Company1 and Company2.
Figure 2 shows a Chinese wall security policy expressed in our language. There
are two conflict-of-interest classes. One contains Range1 and Range2, and the
other contains Range3 and Range4. For simplicity, we have restricted this policy
to one module.

In general, for Chinese wall security policies, the number of states scales ex-
ponentially in the number of conflict-of-interest classes. This occurs because the
number of possible legal accesses is the product of the number of sets in each
conflict-of-interest class. The number of transitions also scales exponentially in
the number of classes for the same reason. Fortunately, the number of states
scales linearly in both the number of sets and the number of modules. Even bet-
ter, the number of states is not affected by the number of ranges. The number
of transitions scales linearly in the number of sets, ranges, and modules.

4.4 Redaction

Our security language can also be used to enforce instances of redaction [28], even
at very high throughputs (such as for video). Military hardware such as avionics
[34] may contain components with different clearance levels, and a component
with a top secret clearance must not leak sensitive information to a component
with a lower clearance [31]. Figure 5 shows the architecture of a redaction sce-
nario that is based on separation. A multilevel database contains both Top Secret
and Unclassified data. Module1 has a top secret (TS) clearance, but Module2
has an unclassified (U) clearance. Module1 and Module2 are initially compart-
mentalized, since they have different clearance levels. Therefore, Range1 belongs
to Module1, and Range2 belongs to Module2. Module3 acts as a trusted server
of information contained in the database, and this server must have a security
label range from U to TS. Range3 is temporary storage used for holding infor-
mation that has just been retrieved from the database by the trusted server.
Range4 (the control word) is used for performing database queries: a module
writes to Range4 to request that Module3 retrieve some information from the
database and then write the query result to temporary storage. Any database
query performed by Module2 must have all TS data redacted by the trusted
server. If a request is made by Module1 for top secret information, it is neces-
sary to revoke Module2’s read access to the temporary storage, and this access
must not be reinstated until the trusted server zeroes out the sensitive informa-
tion contained in temporary storage. Figure 2 shows our redaction policy, and
Figure 4 shows the DFA that recognizes this policy. State 1 corresponds to a less
restrictive mode (Access1), and State 0 corresponds to a more restrictive mode
(Access2). The Trigger event causes the state machine to transition from State
1 to State 0, and the Clear event causes the machine to transition from State 0
to State 1. In general, the DFA for a redaction policy will have one state for each
access mode. For example, if we have three different modules that each have a
different clearance level, there will be three access modes and three states.

472 T. Huffmire et al.

0000 1000 1110 0111 1011 0000 0001 10XX

0000 1000 1110 0111 1011 0000 0000 1XXX

AddressModuleID Op

,Illegal}

1

Parallel Search

2...

Range IDRange

N

...

0001 0101 1111 0000 0001 1010 1111 XXXX

Module ID Op Range ID Bit Vector

 Access Descriptor

DFA
Logic

Match?

0

1

0

(0x8E7B018)(rw)(2)

{0,1,0,...,0}

Enforcement Module

{Legal

init 1

0

{M1,w,R4}

{M3,z,R3}

{M1,rw,R1},
{M1,r,R3},
{M2,rw,R2},
{M3,rw,R3}

{M1,rw,R1},
{M1,r,R3},
{M2,rw,R2},
{M2,r,R3},
{M3,rw,R3}

Fig. 3. A hardware reference monitor

init

1

0

{M1,w,R4}

{M3,z,R3}

{M1,rw,R1},
{M1,r,R3},
{M2,rw,R2},

{M3,rw,R3}

{M1,rw,R1},
{M1,r,R3},
{M2,rw,R2},
{M2,r,R3},

{M3,rw,R3}

{M2,w,R4}

{M2,w,R4}

Fig. 4. DFA recognizing legal behavior
for a redaction policy

Fig. 5. A redaction architecture. IP stands for Intellectual Property.

5 Integration and Evaluation

Now that we have described several different memory access policies that could
be enforced using a stateful monitor, we need to demonstrate that such systems
could be efficiently realized on reconfigurable hardware.

5.1 Enforcement Architecture

The placement of the enforcement mechanism can have a significant impact on
the performance of the memory system. Figure 6 shows two architectures for
the enforcement mechanism which assumes that modules on the FPGA can only
access shared memory via the bus. In the figure on the left, the enforcement
mechanism (E) sits between the memory and the bus, which means that every
access must pass through the enforcement mechanism before going to memory. In
the case of a read, the request cannot proceed to memory until the enforcement
mechanism approves the access. This results in a large delay which is the sum of
the time to determine the legality of the access and the memory latency. We can
mitigate this problem by having the enforcement mechanism snoop on the bus or
through the use of various caching mechanisms for keeping track of accesses that

Policy-Driven Memory Protection for Reconfigurable Hardware 473

have already been approved. This scenario is shown in the figure on the right. In
the case of a read, the request is sent to memory, and the memory access occurs
in parallel with the task of determining the legality of the read. A buffer (B)
holds the data until the enforcement mechanism grants approval, at which time
the data is sent across the bus. In the case of a write, the data to be written is
stored in the buffer until the enforcement mechanism grants approval, at which
time the write request is sent to memory. Thus, both architectures provide to the
enforcement mechanism the isolation and omnipotence required of a reference
or execution monitor.

Since a module may be sending sensitive data over the bus, it is necessary to
prevent other modules from accessing the bus at the same time. We address this
problem by placing an arbiter between each module and the bus. In a system
with two modules, the arbiters will allow one module to access the bus on even
clock cycles and the other module to access the bus on odd clock cycles.

BusBus

MM M

E B

11 M
22

E

MEMMEM

Arbiter Arbiter Arbiter Arbiter

Fig. 6. Two alternative architectures for
the enforcement mechanism

0

20

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

Number of Intervals

N
u

m
b

e
r

o
f

T
ra

n
s

it
io

n
s

Fig. 7. DFA Transitions versus number of
ranges for compartmentalization

5.2 Isolation of the Reference Monitor

It is critical that the reference module be isolated from other modules on the
FPGA. Ensuring the physical separation of the modules entails distributing the
computation spatially. We are working on methods to ensure that modules are
placed in separate spatial areas and that there are no extraneous connections
between the modules. Although we are working on addressing this problem by
developing techniques that work at the gate level, this work is beyond the scope
of this paper. In our attack model, there may be malicious modules or remote
attacks that originate from the network, but we assume that the attacker does
not have physical access to the device.

5.3 Evaluation

Of the different policies we discussed in Section 4, we focus primarily on char-
acterizing compartmentalization as this isolates the effect of range detection on
system efficiency. Rather than tying our results to the particular reconfigurable
system prototype we are developing, we quantify the results of our design flow on

474 T. Huffmire et al.

a randomly generated set of ranges over which we enforce compartmentalization.
The range matching constitutes the majority of the hardware complexity (as-
suming there are a large number of ranges), and there has already been a great
deal of work in the CAD community on efficient state machine synthesis [21].

To obtain data detailing the timing and resource usage of our range match-
ing state machines, we ran the memory access policy description through our
front-end and synthesized3 the results with Quartus II 4.2 [2]. Compilations are
optimized for the target FPGA device (Altera Stratix EPS1S10F484C5), which
has 10,570 available logic cells, and Quartus will utilize as many of these cells
as possible.

5.4 Synthesis Results

In general, a DFA for a compartmentalization policy always has exactly one state,
and there is one transition for each {ModuleID,op,RangeID} tuple. Figure 7
shows that there is a linear relationship between the number of transitions and
the number of ranges.

Figure 8 shows that the area of the resulting circuit scales linearly with the
number of ranges for the compartmentalization policy. The slope is approxi-
mately four logic cells for every range. Figure 9 shows the cycle time (Tclock) for
machines of various sizes, and Figure 10 shows the setup time (Tsu), which is
primarily the time to determine the range to which the input address belongs.
Tclock is primarily the time for one DFA transition, and it is very close to the
maximum frequency of this particular Altera Stratix device. Although Tclock is
relatively stable, Tsu increases linearly with the number of ranges. Fortunately,
Tsu can be reduced by pipelining the circuitry that determines what range con-
tains the input address.

Figure 11 shows the area of the circuits resulting from the example policies
presented in this paper. These circuits are much smaller in area than the series of
compartmentalization circuits above because the example policies have very few
ranges. The complexity of the circuit is a combination of the number of ranges
and the number of DFA states and transitions. Since the circuit for the Chinese
wall policy has the most states, transitions, and ranges, it has the greatest area,
followed by redaction, secure hand-off, access control list, and compartmental-
ization. Figure 12 shows that the cycle time is greatest for redaction, followed
by compartmentalization, Chinese wall, secure hand-off, and access control list.
Figure 13 shows that the setup time is greatest for redaction, followed by Chinese
wall, compartmentalization, access control list, and secure hand-off.

5.5 Impact of the Reference Monitor on System Performance

FPGAs do not operate at high frequency. Since they operate at a lower fre-
quency, they achieve their performance from spatial parallelism. FPGA appli-
cations such as DSPs, signal processing, and intrusion detection systems are
3 The back-end handles netlist creation, placement, routing, and optimization for both

timing and area.

Policy-Driven Memory Protection for Reconfigurable Hardware 475

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

Number of Ranges

N
u

m
b

e
r

o
f

L
o

g
ic

 C
e

ll
s

Fig. 8. Circuit area versus
number of ranges. There is
a nearly linear relationship
between the circuit area
and the number of ranges.

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700

Number of Ranges

C
y

c
le

 T
im

e
 (

n
s

)

Fig. 9. Cycle time versus
number of ranges. There is
a nearly constant relation-
ship between the cycle time
and the number of ranges.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700

Number of Ranges

S
e

tu
p

 T
im

e
 (

C
y

c
le

s
)

Fig. 10. Setup time versus
number of ranges. There is
a nearly linear relationship
between the setup time and
the number of ranges.

0

5

10

15

20

25

30

35

40

45

Chinese Redaction Hand-off ACL Compartment

Policy

N
u

m
b

e
r

o
f

L
o

g
ic

 C
e

ll
s

Fig. 11. Circuit area ver-
sus access policy. The area
is related to the number
of states, transitions, and
ranges. The circuit area is
greatest for the Chinese
wall policy.

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0

7.1

Chinese Redaction Hand-off ACL Compartment

Policy

C
y
c
le

 T
im

e
 (

n
s
)

Fig. 12. Cycle time for
each access policy. Cy-
cle time is greatest for
redaction, followed by com-
partmentalization, Chinese
wall, secure hand-off, and
access control list.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Chinese Redaction Hand-off ACL Compartment

Policy
S

e
tu

p
 T

im
e

 (
C

y
c

le
s

)

Fig. 13. Setup time for
each access policy. Setup
time is greatest for redac-
tion, followed by Chinese
wall, compartmentaliza-
tion, access control list,
and secure hand-off.

throughput-driven and therefore are latency-insensitive. These applications are
designed using careful scheduling and pipelining techniques. For these reasons,
we argue that our technique does not impact the performance significantly. For
example, since an FPGA operating at 200MHz will have a cycle time of 5ns, our
reference monitor only adds at most a two cycle delay in this case.

6 Conclusions

Reconfigurable systems are blurring the line between hardware and software,
and they represent a large and growing market. Due to the increased use of
reconfigurable logic in mission-critical applications, a new set of synthesizable
security techniques is needed to prevent improper memory sharing and to con-
tain memory bugs in these physically addressed embedded systems. We have
demonstrated a method and language for specifying access policies that can be
used as both a description of legal access patterns and as an input specification
for direct synthesis to a reconfigurable logic module. Our architecture ensures

476 T. Huffmire et al.

that the policy module is invoked for every memory access, and we are cur-
rently developing gate-level techniques to ensure the physical isolation of the
policy module.

The formal access policy language provides a convenient and precise way to
describe the fine-grained memory separation of modules on an FPGA. The flex-
ibility of our language allows modules to communicate with each other securely
by precisely transferring the privilege to access a buffer from one module to
another. We have used our policy compiler to translate a variety of security
policies to hardware enforcement modules, and we have analyzed the area and
performance of these circuits. Our synthesis data show that the enforcement
module is both efficient and scalable in the number of ranges that must be rec-
ognized. In addition to the reconfigurable domain, our methods can be applied
to systems-on-a-chip as part of a more general scheme.

Since usability is fundamental to system security [13] [11], we plan to pro-
vide an incremental method of constructing mathematically precise policies by
building on the policy engineering work of Fong et al. [10]. In a correctly formed
policy, there should be no intersection between legal and illegal behavior. Our
tools will allow a policy engineer to check whether there is any conflict between
a policy under construction that specifies legal behavior and a specific instance
of behavior that is known to be illegal. If a conflict exists, the tool will inform
the policy engineer of the exact problem that needs to be fixed.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading, MA, 1988.

2. Altera Inc. Quartus II Manual, 2004.
3. J.P. Anderson. Computer security technology planning study. Technical Report

ESD-TR-73-51, ESD/AFSC, Hanscorn AFB, Bedford, MA, 1972.
4. K. Bondalapati and V.K. Prasanna. Reconfigurable computing systems. In Pro-

ceedings of the IEEE, volume 90(7), pages 1201–17, 2002.
5. D.A. Buell and K.L. Pocek. Custom computing machines: an introduction. In

Journal of Supercomputing, volume 9(3), pages 219–29, 1995.
6. K. Compton and S. Hauck. Reconfigurable computing: a survey of systems and

software. In ACM Computing Surveys, volume 34(2), pages 171–210, USA, 2002.
ACM.

7. A. DeHon. Comparing computing machines. In SPIE-Int. Soc. Opt. Eng. Pro-
ceedings of SPIE - the International Society for Optical Engineering, volume 3526,
pages 124–33, 1998.

8. A. DeHon and J. Wawrzynek. Reconfigurable computing: what, why, and implica-
tions for design automation. In Proceedings of the Design Automation Conference,
pages 610–15, West Point, NY, 1999.

9. Ulfar Erlingsson and Fred B. Schneider. Sasi enforcement of security policies: A
retrospective. In Proceedings of the 1999 Workshop on New Security Paradigms,
1999.

10. Philip W. L. Fong. Access control by tracking shallow execution history. In Pro-
ceedings of the 2004 IEEE Symposium on Security and Privacy, 2004.

Policy-Driven Memory Protection for Reconfigurable Hardware 477

11. Peter Gutmann and Ian Grigg. Security usability. IEEE Security and Privacy
Magazine, July/August 2005.

12. C. Irvine, T. Levin, T. Nguyen, and G. Dinolt. The trusted computing exemplar
project. In Proceedings of the 5th IEEE Systems, Man and Cybernetics Information
Assurance Workshop, pages 109–115, West Point, NY, June 2004.

13. Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, David Shifflett, Jean Khos-
alim, Paul C. Clark, Albert Wong, Francis Afinidad, David Bibighaus, and Joseph
Sears. Overview of a high assurance architecture for distributed multilevel secu-
rity. In Proceedings of the 2002 IEEE Workshop on Information Assurance and
Security, West Point, NY, June 2002.

14. S. Johnson. Yacc: Yet another compiler-compiler. Technical Report CSTR-32, Bell
Laboratories, Murray Hill, NJ, 1975.

15. Ryan Kastner, Adam Kaplan, and Majid Sarrafzadeh. Synthesis Techniques and
Optimizations for Reconfigurable Systems. Kluwer Academic, Boston, MA, 2004.

16. P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi. Security as a
new dimension in embedded system design. In Proceedings of the 41st Design
Automation Conference (DAC ’04), San Diego, CA, June 2004.

17. M. Lesk and E. Schmidt. Lex: A lexical analyzer generator. Technical Report 39,
Bell Laboratories, Murray Hill, NJ, October 1975.

18. Timothy E. Levin, Cynthia E Irvine, and Thuy D. Nguyen. A least privilege model
for static separation kernels. Technical Report NPS-CS-05-003, Naval Postgraduate
School, 2004.

19. Peter Linz. An Introduction to Formal Languages and Automata. Jones and
Bartlett, Sudbury, MA, 2001.

20. W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling,
R. Hartenstein, O. Mencer, J. Morris, K. Palem, V.K. Prasanna, and H.A.E. Spaa-
nenburg. Seeking solutions in configurable computing. In Computer, volume 30(12),
pages 38–43, 1997.

21. Giovanii De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
New York, 1994.

22. J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, transparent operating
system support for superpages. In Fifth Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, MA, December 2002.

23. D. Raymond and D. Wood. Grail: A C++ library for automata and expressions.
Journal of Symbolic Computation, 11:341–350, 1995.

24. John Rushby. Design and verification of secure systems. ACM Operating Systems
Review, 15(5):12–21, December 1981.

25. John Rushby. A trusted computing base for embedded systems. In Proceedings 7th
DoD/NBS Computer Security Conference, pages 294–311, September 1984.

26. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1), January 2003.

27. J. Saltzer. Protection and the control of information sharing in multics. Commu-
nications of the ACM, 17(7):388–402, July 1974.

28. O. Sami Saydjari. Multilevel security: Reprise. IEEE Security and Privacy Maga-
zine, September/October 2004.

29. P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh. A quick safari
through the reconfiguration jungle. In Proceedings of the Design Automation Con-
ference, pages 172–7, 2001.

30. Fred B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security, 3(1), February 2000.

478 T. Huffmire et al.

31. Richard E. Smith. Cost profile of a highly assured, secure operating system. In
ACM Transactions on Information and System Security, 2001.

32. D.F. Stern. On the buzzword ”security policy”. In Proceedings of the 1991 IEEE
Symposium on Security and Privacy, pages 219–230, Oakland, CA, 1991.

33. J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati, and P. Boucard.
Programmable active memories: Reconfigurable systems come of age. In IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, volume 4(1), pages
56–69, 1996.

34. Clark Weissman. MLS-PCA: A high assurance security architecture for future
avionics. In Proceedings of the Annual Computer Security Applications Conference,
pages 2–12, Los Alamitos, CA, December 2003. IEEE Computer Society.

35. E. Witchel, J. Cates, and K. Asanovic. Mondrian memory protection. In Tenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), San Jose, CA, October 2002.

	Introduction
	Reconfigurable Systems
	Policy Description and Synthesis
	Memory Access Policy
	Hardware Synthesis
	Design Flow Details

	Example Applications
	Access Control List
	Secure Hand-Off
	Chinese Wall
	Redaction

	Integration and Evaluation
	Enforcement Architecture
	Isolation of the Reference Monitor
	Evaluation
	Synthesis Results
	Impact of the Reference Monitor on System Performance

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

