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Abstract—On-chip memory is regarded by most secure system
designers as a safe memory space, beyond the eyes of all but
the most sophisticated attackers. Once a value is overwritten or
the power has been removed, it is assumed that the data stored
inside fully ceases to persist. However, as writes occur, the bit cells
gradually wear; if data is written in an asymmetric way (with
repeated writes of the same data), the stored information can later
be partially reconstructed solely from statistical measurements of
the cells’ startup states. We present a technique for measuring
the vulnerability of memory systems to such wear-in leakage,
modeling the process as the recovery of bits from a noisy channel.
We demonstrate our techniques on a 130nm SRAM device and
demonstrate that if no countermeasures are used, a very simple
prediction model is able to correctly reconstruct 27% of the bits
of the written secret — enough to probabilistically reconstruct
an RSA key.

I. INTRODUCTION

While “off-chip” memories are subject to bus probing [14],
subversion [23], or even physical removal from a live sys-
tem [10], on-chip memories are generally regarded as far more
difficult to attack. SRAMs do not appear to retain their data
for very long after the power has been removed, and both on-
chip probing and tampering require a level of sophistication
and dedication well beyond the ordinary. However, the one
place in the lifecycle of a bit-cell where the underlying analog
nature of the devices shines through is at power-up: if cells
are worn asymmetrically, they can leak a surprising amount
of information to an attacker.

In “normal” usage, where 1 and 0 are written with equal
probability, the wear should be distributed roughly evenly.
However, in many mobile devices, security coprocessors,
and emerging Internet of Things devices, a more restricted
set of software means that vital information (such as keys)
may always be written to the same location in the device’s
various buffers and memories. Repeatedly writing the same
data into a memory (either by design or through an attacker’s
encouragement) will produce uneven wear in the SRAM cells,
manifesting as a shift in the distribution of startup states for
each cell — i.e., the likelihood of observing a “1” vs a “0”
when the chip is powered on. Even if the attacker cannot
directly access secrets while the system is in “secure” mode,
they may boot the system in “secure” and “insecure” modes
and observe the differences between the startup probabilities

both before and after “secure” computations.
We describe a method to quantify how the observed shifts

in probability distributions can give away non-trivial amounts
of information about the values written there. Specifically, we
demonstrate how the capacity of this leakage can be modeled
as a noisy channel carrying information from the written
bits to the observed startup probabilities. The information
theoretic notion of mutual information (MI) allows us to
efficiently compute exactly how many bits can be shared at
most between arbitrary distributions – such as a random key
written to memory and the startup probabilities of the SRAM
cells where it was written. It further allows us to quantify
the actual number of bits leaked under different assumptions
about what is known a priori about the cell (e.g. is it in a
region of other bits of similar inherent bias?). To ground our
discussion in reality, we perform an analysis of experimental
data collected from the on-chip SRAM of several TI MSP430
microprocessors to determine precisely how many bits of
information are leaked on average from repeated writes. We
show an example attack which recovers 28.4% of a key written
on 3 chips with only 3.8% error.

II. ARCHITECTURAL VULNERABILITIES TO SRAM WEAR

In small embedded systems, secret keys might be kept care-
fully encrypted in storage using a root hardware key, but
once brought on chip they are written into a memory buffer
for further operations. This sort of behavior is common in
both stand-alone embedded systems and the small hardware
units charged with managing the security of larger systems-on-
chip (such as those very commonly proposed in architecture
security work); both of these types of systems operate with
limited memory space and use little or no paging.
Threat Model: An adversary must have access to the device
before and after the wear-in takes place, and must be able to
read data from the SRAM under attack in both the pre- and
post-write states. In devices that explicitly have “secure” and
“insecure” modes, the memory is characterized in insecure
mode, left to run in secure mode to induce wear, and then
characterized back in insecure mode again. Generally, the
contents of memory on startup may not be viewed as privileged
and may be shared. Though our experiments suggest all bits



from a secret cannot be determined from a single device, if the
same key is shared across multiple devices, a higher fraction
can be successfully recovered. The threat is greatest to data
that can be fully recovered from partial information, such
as RSA keys, which require only 27% of bits to be leaked
to reconstruct the entire key [12]. In Section IV, we show
the possibility for 27% recovery rates from experimentally
observed data using only three devices.
Example Vulnerability: Any system following a pattern of
allocate-use-release for resources storing sensitive information
may be vulnerable to the attack. As an example, consider the
PIC24H microprocessor. The code memory of PIC24H can
be partitioned into three segments with decreasing security
privilege levels: Boot Segment (BS), Secure Segment (SS), and
General Segment (GS). The SRAM is by default accessible by
GS. BS and SS have the ability to allocate a piece of SRAM
for exclusive access and release it to the GS afterwards during
runtime by setting the SFR (Special Function Register).

A proprietary routine in SS that always wipes its secret key
before releasing the SRAM is still vulnerable. An attacker
can characterize the SRAM, run an application that calls the
proprietary routine in SS n times, then re-characterize the
SRAM, giving the cell bias shifts of the memory where the
secret key was stored.

A. SRAM Wear Mechanisms
The two prevailing models of usage-induced wear in SRAM
cells are Hot Carrier Injection (HCI) and Negative Bias Tem-
perature Instability (NBTI) [28]. HCI occurs when electrons
become trapped in the gate oxide, permanently changing the
switching characteristics of the transistor [15]. NBTI is the
result of elevated temperature or high electric field [22]; it
results in positively-charged traps in the gate oxide, which
cause the transistor’s threshold voltage to increase. Proactive
wear-out recovery approaches have been proposed that exploit
microarchitectural redundancy to combat NBTI-induced cell
failures [22]. Both of these physical processes potentially
play a role in creating the wear effects observed in these
experiments.

In the standard SRAM cell configuration, writes set voltages
on the bit-lines to force the cell into a new state; the current
supplied via the bit-lines is larger than that supplied to the
cell to ensure success. Depending on which line has the 1,
this wears one side of the cell more than the other, producing
asymmetric wear that is observable over time. SRAM reads
may also induce moderate cell wear, but our experiments focus
on wear due to writes.

B. SRAM Cells and Startup States
A standard SRAM cell is bi-stable: it will always settle into
a state in which the cell holds either a 0 or a 1. When an
SRAM cell is powered on, it undergoes a brief period of
metastability before one of the two inverters overpowers the
other and one state wins out. The probability that a given
cell will resolve into a 1 or a 0 remains constant in most
circumstances; this probability is the result of the physical
factors of process variation and threshold voltage mismatch

Fig. 1: Distribution of startup probabilities in a sample section
of an SRAM. The black pixels always resolve to a 1, while
the white pixels always resolve to a 0. The grey pixels have a
probability between 0 and 100, with the depth of color reflecting
the probability. A pattern of alternating regions of bias were
present in all tested memories.

within the specific cell. E.g., a given cell may settle into the 1
state on 70% of startups. This 70% is intrinsic to the variations
in that particular cell, and will remain constant across many
tests — unless the internal voltage differences are altered due
to asymmetric wear, or noise characteristics change.

Previous work has proposed using power-up states as hard-
ware fingerprints and random number generators [13]. This
work also demonstrated through burn-in experiments that
Negative Bias Temperature Instability (NBTI) can shift the
startup state probabilities of an SRAM cell.

C. Observations of Cell Bias Trends
Through experimentation discussed in Section III, we found
the majority of cells are “strongly biased” and always start in
the 0 or 1 state. Approximately 13% of cells were “weakly
biased” and could resolve into either the 0 or 1 state on startup,
with some probability. The locations of these cells appear to be
perfectly spatially random within memory, randomly varying
across chips. The values of these weakly biased cells were far
more likely to measurably shift due to wear.

Interestingly, each SRAM exhibited the same pattern of
alternating stripes of strongly-0-biased and strongly-1-biased
cells (Figure 1). This same pattern has been observed pre-
viously in DRAM, where it was explained as resulting from
commonly-occurring alternating wiring patterns in the mem-
ory [10].

D. Quantifying Cell Bias Leakage
To provide a theoretic bound on the amount of information
that can actually leak, we employ the information theoretical
concept of Mutual Information — a measure of co-dependence
of two random variables. “Information,” measured in bits, can
be thought of as a quantitative reduction in variance. Given two
random processes X and Y , the mutual information between
them gives how much one knows (in bits) about the value of
Y given the value of X , or X given the value of Y 1. The
mutual information of independent variables is 0.

The mutual information of two random, discrete variables
X and Y can be calculated as

MI(X;Y ) =
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
,

where we have summed over all possible values x ∈ X and
y ∈ Y . p(x, y) is the joint probability distribution of X and

1Statistical correlation is a related concept, but mutual information is a
more general quantity and makes no assumptions about linear or monotonic
relationships.



Fig. 2: Probability-bias change in cells. Each point represents a
single SRAM cell, with the x-value giving the bias (chance of
starting in the 1 state) before writes, and the y-value the bias
after the writes.

Y , giving the probability of variables X and Y both taking
the specific values x and y. p(x) and p(y) are the marginal
distributions of each variable.

This mathematical tool provides us with a method of
quantifying information leakage through this new channel. The
joint information of data written in SRAM and the observed
cell biases will yield an MI figure bounding the number of bits
that can be successfully reconstructed on average from the bias
measurements alone. This measurement mathematically limits
how many bits you can possibly learn of one variable given
the value of the other.

We treat the process as communication through a noisy bit-
channel that corrupts the data, with the written data acting as
input and the observed bias as channel output. The goal of the
analysis is to compute precisely how much information can be
shared between the written data and experimentally observed
values through this channel.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental data was all collected using common TI
microprocessors (130nm TI MSP430G2553) on TI MSP430
launchpad dev boards. The chip was selected for the exper-
iments because of its ease of programming and debugging,
along with the accessible on-chip SRAM. Half of the mi-
crocontroller’s SRAM (256B) was used for testing, while the
other half was occupied with the program control itself.

First, the 2048-bit memory space of each chip was char-
acterized 1000 times by reading the cell values just after
startup; next, a specific data pattern was repeatedly written
many thousands of times. After this, the memory was re-
characterized to observe changes on cell startup probability.

Measuring the decay time of this model chip’s SRAM,
almost all bits are perfectly intact within a fraction of a second
after power-off, but all had lost their value after 3 seconds. To
ensure that delay-decay remanence effects did not influence
the data, each power-on measurement was conducted at least
5 seconds after the previous power-off.

A. Wear Characterization
As mentioned earlier, it was observed that weakly-biased
cells with stronger biases (farther from 50%/50%) were less
susceptible to changes in their bias. Figure 2 plots each
weakly-biased cell according to its bias before and after the
writes took place. This figure graphically demonstrates the
statistical pattern that allows for data to be reconstructed: note
the very clear trend of writing 0’s (black dots in the figure)
correlating with cell bias increasing towards 1, and of writing
1’s (the lighter x’s) corresponding to a decreasing cell bias
towards 0. This trend among the weakly biased cells to change
bias in a predictable direction based just on the data written
is the channel through which one can reconstruct some of the
of the private data from the SRAM.
B. Physical Wear Conditions
To explore variations in response to differing physical environ-
ments, wear experiments were conducted in a dry-ice cooled
environment (-50◦C), a heated environment (75◦C), and at
high (3.8V) and low (1.75V) voltages. Compared to several
hundred thousands writes at a baseline of standard temperature
and operating voltage (25◦C, 3.55 V), voltage experiments had
no major effects on wear, while cooling provided a modest
decrease of bias shift.

It was found that writing in a heated environment accel-
erated the wear-out process, requiring fewer writes for the
statistical shifts to saturate. In as few as 1,000 writes in a
heated environment, the SRAM had already begun to show
measurable wear. The 3 chips used in the test attack underwent
∼ 100,000 repeated writes in a heated environment, providing
6144 cells used in the analysis.

Since NBTI physical effects are non-permanent, daily mea-
surements were conducted on a chip to see if wear effects
quickly dissipated within days (which would limit the attack
window). In one week of daily measurements, the average
weakly-biased cell moved only 1.5%.
C. Mutual Information Analysis
Our goal is to compute how much information can flow from
written data to observed cell bias. We note three separate
measurements an attacker can make: 1) the cell bias before
writing data; 2) the cell bias after data is written; and 3) the
bias region to which the cell belongs. We use our experimental
data to bound channel capacity for four scenarios:
Scenario 1: The only information is the observation of startup
probabilities after the chips have been used.
Scenario 2: Knowledge of the bias striping is also used as 1
additional bit of information on the channel output.
Scenario 3: The attacker has access to the chips before use;
the channel output is a pair of values: the bias before the writes
took place, and the bias after.
Scenario 4: All information; i.e., the channel output is of
three values: the bias before the writes took place, the bias
after, and the one bit encoding stripe region of the cell.

The results of the mutual information analyses are summa-
rized in table I. The data shows a maximum channel capacity
of 132.4 millibits. This upper limit represents 13.24% of the



TABLE I: Results of mutual information analysis.
Scenario Information Used Shared Info.

post-write stripe pre-write (millibits)
1 X 63.5
2 X X 77.1
3 X X 129.4
4 X X X 132.4

Fig. 3: Probability-bias change in cells for a chip worn with
non-uniform data.

written data being recoverable on average, if the channel is
able to run at theoretical capacity. The Mutual Information
computation provides an upper bound on co-dependence; as
the number of measurements of the variables increases, the
bound is able to tighten on the amount of information that is
actually shared between variables.

D. Read-Only and Mixed-Write Wear

Experiments were also conducted to explore how non-uniform
writes to a single cell affected wear, as well as if reads
alone could produce noticeable wear. In both cases, biases
shifted by comparable amounts to the standard heated, write-
only wear experiments, but these shifts appear to be mostly
random. With less data in these experiments, a firm conclusion
cannot be drawn, but mutual information computations using
logarithmically-scaled bins (to more heavily weight larger bias
shifts) yield non-zero information when compared to shared
information in random keys as a baseline.

A chip worn with read-only wear (no writes after initial
write) yielded 2.9 millibits per cell more than the baseline
(1,000 random keys), corresponding to 1.4% bit leakage over
random data. A chip worn with non-uniform data (1 out of
every 5 writes inverting the data) yielded 8.9 millibits more
than the baseline, corresponding to 4.3% bit leakage over
random (figure 3 shows these bias shifts). These results suggest
that wear effects are still measurable under different system
usages, meaning that the potential for security breach extends
beyond repeatedly-written, uniform data.

IV. PROOF OF CONCEPT: 27.3% BIT-RECOVERY

Even modest channel capacities, as in Section III, can provide
serious vulnerabilities. We here outline a naive prediction
method and apply it to our experimental data of a 2048-bit
secret written in SRAM on three tested chips.

Only weakly biased cells will carry information; of the 2048
cells, 784 (38.3%) were weakly biased in at least one of the

three chips. Each cell on each chip has a measured change in
bias; for each cell, we add the three biases together. As most
cells were weakly-biased in only one of the chips, this has
little effect; for others, this creates a naive consensus model
for the three data points which more heavily weighs larger
changes in observed bias. To reduce mispredicts, we take a
threshold cutoff value: cells with combined bias change lower
than the cutoff value are considered not to be in agreement.
If the bias-change sum exceeds the threshold and is negative,
we predict a 1 was written in the cell; if above the threshold
and positive, we predict 0.

Overall, this correctly predicts 27.3% of the bits, and
mispredicts 3.78%. Though the RSA reconstruction algorithm
relies on knowing 27% of the bits with certainty [12], many
additional works have explored successful approaches to re-
constructing RSA keys when bits are known with uncertainty
[11], [18], [20].

V. RELATED WORK

Different techniques attempt to address direct attacks through
fine grain memory permissions [6], [29], capabilities [30],
or other mechanisms limiting an attacker’s ability to read
or modify program state [5]. Our work instead deals with
techniques for quantification of, and preventative measures for,
indirect attacks — attacks where the physical or logical side
effects of a system can be exploited.

Along these lines is the “cold boot” attacks [10] on DRAM:
by lowering the temperature of the chips, Halderman et al
were able to prevent DRAM cell decay for several hours,
giving time to fully read and reconstruct a system image and
crack several commercial file encrypting utilities. However,
freezing and removing a portion of memory is not an option
for on-chip SRAM. In addition to cold-boot vulnerabilities,
Kim et. al. show that DRAM are susceptible to bit-flips in a
way that bypasses traditional protection mechanisms through
the repeated access of rows [16].

There are many other less direct ways, which take advantage
of observations of the dynamics of the system as they operate
on secret data. Variations in timing [1], [3], [24], [27] and
power utilization [17] or RF emanation [7] can be used to
reconstruct keys when many samples are taken.

The indirect attacks closest to this work are memory
remanence attacks, such as the cold-boot attack. Memory
remanence is the general phenomenon of data lingering in
a volatile memory system past a break in power supply. The
notion of examining physical wear-in of chips to reconstruct
data has existed for decades, with documented methods of
attack ranging from IDDQ testing to physically dismantling
and probing a chip [9]. As most of these methods rely on
physically examining or probing chips to measure wear and
reconstruct data, they require specialized equipment and a deep
knowledge of the specific device’s underlying physics.

The manifestation of SRAM wear in observable changes in
cell startup state was first observed by Gutmann [8], where it
was observed that storing the same data in SRAM over long
periods has the effect of altering the state of the SRAM when



it powers up. In one extreme case involving SRAM wear, it
was found that key values of a bank security module were
intact in SRAM on power-up [2]. Anderson and Kuhn posited
that the data had been “burned in” to the SRAM, though
this example was called one of “the most extreme cases” [9].
We demonstrate here that a moderate level of “burn-in” is
completely observable for a non-negligible fraction of tested
SRAM cells, using only software measurement; though not at
the level of an entire key leaking, even a small number of bits
leaked per chip can lead to fully reconstructed secrets.

The effects of asymmetric memory wear in memory have
been observed previously; one novel steganographic technique
documents hiding information in flash memory [26]. It relies
on the uneven wear induced by writing a 1 vs a 0 in flash cells
to alter the time to program each cell. Using this, a secret
message can be encoded in the cells’ programming times,
readable by measuring the average duration of writes for each
cell on the device. To prevent these sorts of attacks, methods
have been proposed to prevent uneven wear in memories.
Chow et al [4] have proposed a system of zero-ing out
data after use, and suggest the notion of data life cycles to
periodically deallocate longer-lived data. One technique of
encoding secrets has demonstrated that an adversary with
bit-reading capabilities of 95% fidelity will be unable to
recover even a single bit of the original secret [25]. Similar
schemes of encoding secrets even in SRAM may counter
attacks that attempt to statistically reconstruct SRAM contents
from startup states, but this challenges the standard treatment
of SRAM as safe memory.

Some works have even proposed using memory remanence
effects to improve security protocols. One paper exploits
characteristics of memory decay phenomena to construct a
“physical clock” for the implementation of clockless security
protocols in embedded systems [19], [21].

No previous work has performed an analysis of the amount
of information that can be reconstructed through statistical
measurements of SRAM startup states.

VI. CONCLUSION

This work cuts at the assumption made by myriad architecture
papers dealing with security: that on-chip SRAM should be
strictly regarded as beyond the reach of attackers due to the
physical hurdles involved. By modeling the process as the
recovery of bits from a noisy channel, we show how we can
use Mutual Information as a general method for quantifying
the capacity for SRAM startup states to leak information. Our
computed information channel capacity indicates that with a
small number of chips, one can feasibly reconstruct enough
data to crack an RSA key. Our demonstrated reconstruction,
using a simplistic method of guessing bits, correctly recovers
27% of the key’s bits — potentially enough to recover an
entire RSA key — using data drawn from only 3 chips.
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