
In proceedings of the 9th International Symposium on High Performance Computer Architecture, February 2003.

Catching Accurate Profiles in Hardware

Satish Narayanasamy Timothy Sherwood Suleyman Sair
Brad Calder George Varghese

Department of Computer Science and Engineering
University of California, San Diego

{satish,sherwood,ssair,calder,varghese}@cs.ucsd.edu

Abstract

Run-time optimization is one of the most important ways
of getting performance out of modern processors. Techniques
such as prefetching, trace caching, memory disambiguation
etc., are all based upon the principle of observation followed
by adaptation, and all make use of some sort of profile infor-
mation gathered at run-time. Programs are very complex, and
the real trick in generating useful run-time profiles is sifting
through all the unimportant and infrequently occurring events
to find those that are important enough to warrant optimiza-
tion.

In this paper, we present the Multi-Hash architecture to
catch important events even in the presence of extensive noise.
Multi-hash uses a small amount of area, between 7 to 16 Kilo-
bytes, to accurately capture these important events in hard-
ware, without requiring any software support. This is achieved
using multiple hash tables for the filtering, and interval-based
profiling to help identify how important an event is in relation-
ship to all the other events. We evaluate our design for value
and edge profiling, and show that over a set of benchmarks,
we get an average error less than 1%.

1. Introduction
In traditional systems, software alone is used to gather pro-

gram behavior information, either statically through binary
instrumentation tools [18], or dynamically through just-in-
time compilation [10]. Recently an area of active research has
been the architectural support of generating profiles at run-
time [15, 8, 11, 12, 5]. These prior techniques, while very
effective at assisting software based profiling, are dependent
on the system software for management or the aggregation of
events. We present a hardware-only profiler that requires no
support or knowledge of the overlying software layers. This
will allow the profiler to be used by any internal hardware
run-time optimization such as trace caching or prefetching re-
gardless of the operating system type or version.

The goal of this paper is to design a profiling scheme that
satisfies the following properties:

• Area Efficient - The amount of profiling events ex-
amined can create capacity constraints for a pure hard-
ware profiler. A successful profiler must be able to deal
with these capacity constraints gracefully using a fixed
amount of area.

• Accurate - The number of times frequent profile events
occur needs to be accurately counted. A hardware pro-

filer must be able to sieve through all the noise and iden-
tify those events that are important enough to be used
for optimization.

• Timely - The profiler should be able to provide up-to-
date information about program behavior.

• Performance Efficiency and Software Indepen-
dent - We would like a profiler that is not dependent on
system software support to manage the profiles. Many
proposed profilers use hardware to filter the events but
then use software to accumulate and analyze them. Our
goal is to avoid this dependence, and create an efficient
technique for identifying these important events com-
pletely in hardware.

To design a pure hardware-based profiler that meets the
above goals, we propose using (1) an interval-based profiler,
and (2) a Multi-hash profiling architecture. Interval-based
profiling breaks up execution into fixed intervals, and finds the
frequently occurring events for each interval. By using a fixed
interval, our profiler knows how many times an event needs to
occur to be classified as an important event in relationship to
all the other events. The Multi-hash architecture uses multiple
hash tables to determine what events are important for a given
profile interval. This can significantly increase accuracy in
comparison to a single hash table given the same amount of
hardware. We evaluate our hardware profiling architectures
for value and edge profiling, and show that the Multi-hash
architecture is able to attain an error rate of less than 1% on
average.

The rest of this paper is organized as follows. Section 2
presents several potential uses of our profiling architecture.
Section 3 describes the representation of profiling events used
in this paper. In Section 4, prior work on profiling is discussed.
Section 5 describes a single-hash table implementation of our
profiler in more detail, simulation methodology, and how we
calculate error. We extend this design to make use of multiple
hash tables and this is presented in Section 6. Finally, we
conclude in Section 7.

2. Motivation
There are many examples of hardware optimizations that

can take advantage of information gathered at run-time. All
of these following techniques can potentially benefit from the
use of a more effective hardware profiling scheme.

Cache Replacement and Prefetching: In many cases a large
percentage of data cache misses are caused by a very small

1

number of instructions. Two past techniques which have been
shown to be effective at reducing memory latency are prefetch-
ing and speculative precomputation [4]. Making use of a run-
time profiling scheme to identify troublesome loads and ob-
jects can potentially improve the accuracy and efficiency of
these techniques.

Value based optimizations: Zhang et. al. found that in
many programs about 50% of memory accesses are dominated
by ten distinct values [22]. They use this information for stor-
ing compressed values in the data cache [21], but do not detail
how those values can be captured dynamically. A hardware
profiler could be used to capture this information.

Trace Formation: Another example of a hardware opti-
mization based on run-time hardware profiling is trace for-
mation. By dynamically extracting and ordering code that
is frequently executed, instruction fetch can be made much
more efficient [14]. In order to find the frequently executed
code and to determine the best layout, a hardware profiling
table is needed to track the run-time behavior.

Multiple Path Execution: One proposed optimization for
branches that are hard to predict is Multiple Path Execu-
tion [19, 9, 20]. Multiple path execution tries to eliminate
branch misprediction penalties by executing down multiple
paths. While this technique can eliminate branch stalls, it
comes at the price of increased execution resource demand.
Therefore, this should not be done on all branches, only those
that are known to be problematic. Finding these problematic
branches is again a task that can be performed by a hardware
profiler.

One common characteristic in all these optimizations is that
they require information about events (e.g. loads that fre-
quently miss in cache) that occur relatively frequently com-
pared to the other individual events (e.g. other loads that
rarely miss in the cache). By providing an accurate, efficient,
and a fairly general approach for finding these events, we hope
to extend or improve the applicability of the above mentioned
optimizations.

3. Creating Unique Names for Profiling Events
The profiling events we target through hardware profiling

may be a combination of several variables. This could in-
clude instruction PCs, load addresses, register values, register
names, cache misses etc. To profile a given event we need
to combine multiple variables into an identification (or name)
that uniquely represents that event.

In this paper, motivated by the work by Sastry et. al. on
Stratified Sampling [15], we concentrate on profiling events
that require a combination of only two types of information.
We define a tuple to be a pair of values. This pair of values
uniquely identifies the event that is going to be given as input
to the profiler. An example tuple used for load value profiling
could consist of a < LoadPC, value > pair. Similarly, for edge
profiling < branchPC, branchtargetPC > pair can be used.

Tuples are a flexible device for uniquely representing profil-
ing events for many different types of optimizations like the
ones described in Section 2, and further described in [15]. The
techniques presented in this paper can be applied to non tuple
based schemes, but by using tuples, it is very straightforward
to label an event with the event identifier and the value of the
event. This strategy will work well in a dedicated profiling
environment where we can constrain the names to be those

that are stored efficiently (such as a pair of addresses). If our
profiling architecture is to be used in a generalized profiling
engine, it can easily be extended to create unique names for
events with multiple variables (more than two).

For the rest of the paper we will focus only on value profiling
as done in [15]. In the end we also discuss results for branch
edge profiling for our best profiling architecture.

4. Related Work
In this section we first give a classification of prior work on

profiling. We then describe Stratified Sampling [15], which is
the closest match to our profiler, in more detail.

4.1 Classification of Prior Profiling Techniques
The idea of run-time profiling has been around in different

forms for many years. In order to understand how our gener-
alized profiling architecture fits into the spectrum of related
work, we classify the prior art into four categories and present
examples from each classification. The traditional approach
is to gather profiles in software and use it for static optimiza-
tions. A second approach is to assist software-based profiling
with hardware counters. This idea was extended into the third
technique, table based hardware profiling, which accumulates
the events in the operating system software. The final class
of profilers makes use of a separate profiling co-processor.

4.1.1 Software Profiling
Software based profiling is usually done with the assistance

of a binary instrumentation tool such as ATOM [18]. One
example technique for software based profiling is presented
by Calder et. al. [3]. In [3], the authors instrument an exe-
cutable using ATOM to capture the most frequently occurring
values on a per-instruction basis. This information can then
be exploited to perform value specialization [13].

4.1.2 Hardware Counter Assisted Profiling
Many modern processors include hardware counters for pro-

filing. Software systems can then sample these counters to
find information such as delay in cycles or number of cache
misses. DCPI [1, 6] is an example of software system that
takes advantage of the hardware counters in the Alpha pro-
cessors via statistical sampling. The hardware counters are
used to record counts and then generate an interrupt to soft-
ware. Software is used to do random sampling and record
information for later use. The DCPI framework was used by
Burrows et. al. to perform Flexible Value Sampling [2, 6]. By
combining the sampling of DCPI with an Alpha instruction
set interpreter, they were able to profile several contiguous
instructions at each random sample.

Hardware assisted profiling through counters is limited by
a finite number of counters, and often requires time to collect
many samples in order to develop a picture of the behavior to
optimize. Hardware profiling via counters can be extended to
the idea of using a hardware table of counters to more quickly
and accurately gather a larger sample of data.

4.1.3 Hardware Table Based Profiling
Sastry et al. [15] proposed a hybrid profiling architecture

called Stratified Sampling. This approach splits the input
stream into disjoint substreams that are sampled indepen-
dently. This results in the sampler converging to the desired

2

accuracies faster than a random sampler. We discuss this ar-
chitecture in detail in Section 4.2.

Merten et al. [11, 12] developed a scheme for identifying
program hot spots by profiling branch instruction execution
frequency and history. It makes use of a hardware table to
store this information on a per-branch basis. Conte et al.
proposed a similar structure [5] for edge profiling. Their buffer
also stores information only pertaining to branch histories,
and is backed by memory. They investigate various indexing
methods to increase profile accuracy across a range of table
sizes.

Heil and Smith [8], propose the Relational Profiling Archi-
tecture which allows software to form queries regarding pro-
gram behavior. These requests may either be about events on
certain instructions or instructions that are being affected by
a certain event. A hardware query engine then processes the
queries, collects the desired information and passes it back to
the software as messages. The query engine is a co-processor
that executes the queries written in assembly language. Ser-
vice threads read the messages containing profile information
and perform optimizations using this data.

The above hardware-based table profiling techniques have
to deal with error due to hardware capacity constraints, and
incorporate custom replacement policies to try to reduce this
error. In addition, these techniques aggregate their data in
software to determine the important events, which creates
overhead. For example, Sastry et al. [15] reports that their
approach has a 5% software overhead when used for value pro-
filing. In contrast, the hardware profiler we propose in this
paper requires no software overhead to accurately capture the
important events completely in hardware.

4.1.4 Co-processor profiler
Instead of including hardware tables for profiling, another

option is to use a specialized co-processor for profiling and
hardware-based optimization. Zilles and Sohi [23] show the
use of a specialized profiling co-processor to distill informa-
tion passed from the main processor. The main processor
sets up the co-processor, which is mapped to a special ad-
dress space. The co-processor can then filter instructions by a
variety of means, and stores information into a buffer. Infor-
mation is transfered from the co-processor to the main pro-
cessor by either an explicit read from the processor, or by
a co-processor generated interrupt which in turn backs the
co-processors buffer to main memory.

As an alternative to dedicating a co-processor to hardware
profiling, we show that our techniques can achieve very ac-
curate profiling results completely in hardware using a small
amount of storage (7 to 16 Kilobytes) at the cost of some
flexibility.

4.2 Stratified Sampler
In this section, we analyze the stratified sampling technique

proposed by Sastry et al. [15] for generic hardware profil-
ing. Stratified periodic sampling divides the original input
stream into multiple substreams via hashing. The events seen
in a substream will have some correlation between them as
a result of the hashing function applied on the original input
stream. These substreams are then independently sampled us-
ing a conventional periodic or random sampler, one for every
substream. This periodic or random sampler will experience
less error rate as its input substream is biased. Consequently,

the overall error rate of the stratified sampler will be less com-
pared to having a single periodic or random sampler that takes
the original stream as its input.

Figure 1 shows the design of the stratified sampler as pro-
posed by Sastry et al. A table of counters is used to keep track
of the number of occurrences of different events. A counter
for an input event is selected by applying a hash function on
the input event. This counter is incremented whenever the
corresponding event appears in the input stream. When it
reaches a sampling threshold value, it is reset and the event
is reported to the profiling software by using an interrupt to
the operating system.

To reduce aliasing and hence to improve accuracy, the au-
thors propose adding partial tags and miss counters along with
state information to the counter table. The hit counter keeps
track of the number of occurrences of a tuple as in the sim-
ple design. The miss counter is incremented whenever a tuple
hashes into that particular entry but its tag doesn’t match
with the one stored in that entry. This miss counter is used
to guide the replacement policy. If too many misses occur to
a particular tuple then the existing tuple is either evicted or
discarded and replaced by the new one.

Note that in the above designs, every time a tuple reaches
the threshold value, it is a candidate to be sent to the oper-
ating system. In order to reduce interrupt overheads, these
messages are buffered and the OS is interrupted whenever the
buffer fills up (100 entries in their study). In order to reduce
the number of outgoing messages (and hence reduce over-
heads further), the authors examined placing a small fully-
associative counter table next to the stratified sampler (and
before the buffer) to aggregate information before sending it
to software. Instead of immediately reporting a tuple that
crosses the threshold value, they place it in this small asso-
ciative table. If a counter in the associative table reaches a
particular value or if an entry has to be replaced due to ca-
pacity issues then the event is passed on to software (via the
intermediate buffer).

The proposed purpose of the Stratified Sampler is to collect
behavior by accumulating it in the profiling software/operating
system. Their results showed a 5% interrupt overhead for
value profiling. In contrast, the goal of our architecture is to
accumulate accurate profiles completely in hardware catching
the frequently occurring events.

5. Interval-based Profiling for a Single Hash
Profiler

In this section we describe the profiling architecture that en-
ables us to accurately capture the frequently occurring events
in hardware. Our single hash-table architecture is depicted in
Figure 2. We start by modifying the stratified sampling archi-
tecture of Sastry et al. [15] shown in Figure 1. The first step
is to remove the software feedback and to replace this with an
accumulator table to completely capture the important profil-
ing events in hardware. To be able to find temporal profiling
information and to deal with the capacity issues caused by a
finite amount of table space, we use interval-based profiling for
our architecture. This allows us to identify when an event has
occurred enough, within a given interval, to be classified as
an important event. Using intervals requires the single hash-
table architecture to reset all of the hash-table counters after
every interval. The final modification to improve the accuracy

3

Function

+1

Report to
Software

Hash

Threshold?

CounterCounterH
Tuple

Hash Table

 0

Sampled

Sampling

Figure 1: Stratified Sampling Architecture. The hash
function computes a signature for each event. The
signature is used as an index to select a counter in
the counter table. The selected counter is then incre-
mented. If the counter reaches its maximum thresh-
old value, the counter is reset to zero, and the event
is reported to the profiling software.

of our architecture is by using a technique we call shielding,
which is described later. These three differences can be seen
when comparing Figure 2 to Figure 1.

5.1 Interval Based Hardware Profiler
To meet the goals set forth, we make two important de-

sign decisions. The first decision is to divide the execution
time into intervals. The interval length is a fixed number of
profiling events (i.e. input tuples). The second decision is
to capture only those tuples that occur for more than a pre-
determined percentage of interval length, which we call the
candidate threshold. Tuples that occur for more than the can-
didate threshold during a given interval are called candidate
tuples.

5.2 Single Hash Architecture
The accumulator table in Figure 2 is fully associative and

has tags. An input tuple is first checked if it is in the accu-
mulator table. If so, then we only increment the counter in
the accumulator table, and do not update the hash-table. If
the event is not in the accumulator table, then it is hashed
into the hash-table and the corresponding counter is incre-
mented. The hash-table contains a set of counters that keep
track of the number of times an event occurs. This hash-table
doesn’t contain any tags and hence experiences problems due
to aliasing.

Once the corresponding counter of a tuple reaches the candi-
date threshold value, an entry is allocated in the accumulator
table. If there are no more free entries in the accumulator
table for that profiling interval, then the event is not put into
the accumulator table. When a tuple is inserted into the ac-
cumulator table it is marked as non-replaceable for the rest of
the interval. In addition, that particular tuple will never be
given as input to the hash-table for the rest of the interval to
reduce the pressure on the hash table. We call this technique
shielding. This is important to help reduce error rates, since
it reduces the pressure on hash tables. At the end of an inter-
val, the hash table is flushed. The accumulator table is not
flushed, and instead all entries are marked as replaceable.

Profiling based on intervals and concentrating on captur-
ing only the top occurring events allows us to have a very
high probability that the accumulator table will not overflow

Table
Accumulator

is miss?

CounterH
Update

Function

Profiling Counter = Interval length?
Reset

Hash Table

Tuple

Shielding

Hash
Function Threshold

Reached?

Figure 2: Single Hash Architecture. An input tuple is
first checked in the accumulator table. If it is found,
we only increment the counter in the accumulator ta-
ble, and do not update the hash-table. If the event is
not in the accumulator table, the hash function com-
putes a signature for each event. The signature is
used as an index to select a counter in the hash table.
The update function is then applied to the selected
counter. If the counter reaches its maximum thresh-
old value, the event is moved into the accumulator
table.

during any given profile interval and thereby avoid capacity
and aliasing issues. This allows us to calculate the worst case
number of entries that might fill the table. Without this prop-
erty, the accumulator table would have capacity problems and
counters for a custom replacement policy would be needed (as
proposed for many hardware structures to deal with capacity
issues). For our interval-based architecture, there are two pa-
rameters (profile interval length and candidate threshold) used
to figure out how large the accumulator table needs to be to
make this guarantee.

The profile interval length is the number of profiling events
that determine the duration of a profiling interval. At the end
of the profile interval, the accumulator table contains the top
candidate events, and this information can be used to optimize
the behavior of the program during the next profile interval.

The candidate threshold is the percentage of occurrences
that a particular event needs to occur, with respect to the
profile interval length, in order for the event to make its way
into the accumulator table. For example, one may specify
that a particular branch is treated as a candidate only if it
is responsible for 0.1% of all branch mispredictions. In this
case the candidate threshold is 0.1%, and a branch is only
moved into the accumulator table if its frequency for that
profile interval is greater than or equal to 0.1% of the profile
interval length.

Assuming a 10,000 interval length and making the archi-
tecture tailored towards only capturing the top 1% of most
frequently occurring events, we only need an accumulator ta-
ble of 100 entries to capture those events in the worst case.
Similarly, if we are interested in the top 0.1% of events, we
only use an accumulator table size of 1,000. This is key to
providing a bound on the accumulator table size and to guar-
antee a low error rate. For this paper, we discuss results for
short intervals of length 10,000 events and also for long inter-
vals of length one million events. We concentrate on providing
results for 10,000 events with 1% threshold, and also for con-
figurations with 1 million events with 0.1% threshold. These
two configurations allow us to examine the responsiveness and

4

the ability to quickly train our hardware profiler with a profile
cycle of 10,000 events, and to examine severe pressure on our
hash table, which has 2K entries, examining a profile cycle of
1 million events with a candidate threshold of 0.1%.

5.3 Hash Functions
For the hash table index, we use the same hash function

as the one used for Stratified Sampler [15]. For a given tuple
< pc, value > the hash index is computed as follows. npc
= flip(randomize(pc)); nv = randomize(value); index = xor-
fold(npc xor nv, index-size). The function randomize looks
up for each byte of the input value a random number from
a 256-entry random number table. It then composes these
bytes together to create nv and the first part of the function
for npc. The randomize function can be hardwired into the
hash-table lookup. The function flip(v) reverses the bytes of
v. xor-fold(v,n) splits v into chunks of n-bits and xors those
chunks to get the final value.

The intuition behind designing the above hash function is
as follows. It can be the case that the pc addresses used
near each other during execution only vary slightly, especially
temporally close tuples examined during profiling. The same
applies to the values seen during execution. Therefore, the
randomize function is used to magnify this small amount of
variation. In addition, the pc and value may not vary signif-
icantly in their higher order bits. Hence, through flip oper-
ation, we move the variation in one member of the tuple, pc,
to the higher order bytes. When this is xor-ed with value we
are able to obtain a greater degree in variation. In examining
histogram of the number of static tuples that hashed to each
table entry, we found a very even distribution using the above
hash function.

Multi-hash architecture to be discussed later in Section 6,
requires many independent hash functions. We obtained such
independent hash functions by just choosing different random
number tables used by the function randomize.

5.4 Single Hash Table Optimizations
We now describe two optimizations to achieve lower error

rates for a single hash table architecture.

5.4.1 Retaining
Retaining is used to keep the top candidates from the prior

interval in the accumulator table at the start of the next in-
terval. At the end of an interval, we flush all entries in the ac-
cumulator table that were not above the candidate threshold.
We then mark all entries that had a value above the threshold
as replaceable and set their counter values to 0. Therefore, in
the next interval if these same set of tuples emerge as candi-
dates, retaining will help reduce contention for the hash tables
because of the use of our shielding optimization. When the
value in the accumulator for an entry marked as replaceable
(due to retaining) goes above the candidate threshold, then it
is unmarked as replaceable for the rest of that interval. For al-
locating accumulator entries, empty entries are allocated first
followed by replaceable entries.

5.4.2 Resetting
The goal of this optimization is to reduce the number of

false positives. The counter in the hash-table is reset after
a profiling event reaches the candidate threshold, and is pro-
moted to the accumulator table. In doing this, we make sure

that other events that alias to that entry will not migrate to
the accumulator table. This can have the negative effect of
increasing the error rate if we reset the hash table entry being
shared by another event. This other event may then end up
not making its way into the accumulator table when it should
have.

5.5 Methodology
To perform our study, we collected information for three

SPEC95 programs (go, li and m88ksim) and two SPEC 2000
programs (gcc, and vortex) for their reference input sets.
Each program was compiled on a DEC Alpha AXP-21164
processor using the DEC C, C++, and FORTRAN compil-
ers. The programs were built under OSF/1 V4.0 operating
system using full compiler optimization (-O4 -ifo). In addi-
tion, we collected results for three C++ programs deltablue,
sis and burg. deltablue is a constraint solution system, sis
is a synthesis of synchronous and asynchronous circuits, and
burg generates a fast tree parser using BURS technology.

We chose these programs for their large number of static in-
structions executed and their ability to exhibit capacity prob-
lems on profiling hardware structures. We performed all of our
profiling analysis using ATOM [18]. For all of the results, the
programs were fast forwarded using the fast forward numbers
from SimPoint [16, 17], and then ran for 500 million instruc-
tions.

5.5.1 Error Calculation
To calculate the error of the profiling architectures, we focus

on how well during a given interval the profiler can capture
the candidate tuples. For each interval, we compare the can-
didates captured by our profiler to the candidates seen by a
perfect profiler. Comparing the hardware profile to a perfect
profile leads to four categories of errors as shown in Figure 3.
They are:

• False Positive - Events that are identified as candidates
by the hardware profiler but not by the perfect profiler.
When a profile has too many false positives then it may
trigger over aggressive optimizations. This may lead to
severe degradation in performance especially if the mis-
classification is high.

• False Negative - Events that are not captured by the
hardware profiler but are actually identified as candi-
dates by the perfect profiler. Error due to false nega-
tives will result in missing out potential opportunities
for optimization.

• Neutral Positive - Profiling events that are identified as
candidates by the hardware profiler as well as by the
perfect profiler. Error occurs when the number of oc-
currences of a candidate in the hardware profiler is more
than the number of occurrences in the perfect profiler.

• Neutral Negative - Same as Neutral Positive except that
the frequency of a candidate reported by the hardware
profiler is less than what is seen in the perfect profiler.

5.5.2 Calculating Error Rate
For a given profiler we calculate the error rate in the fol-

lowing way. Let n be the total number of candidates seen in

5

Out

Neutral Neg
fp > fh > T

Neutral Pos

fh > fp > T

False Pos
fp < T, fh > T

H
ar

d
w

ar
e

P
ro

fi
le

r

False Neg
fp > T, fh < T

In Out

In

Perfect Profiler

Don't Care
fp < T, fh < T

Figure 3: Metrics defined. For a tuple, In means it is
identified as a candidate by the profiler. Out means it
was found to be below the candidate threshold by the
profiler. fp, fh are frequencies as seen in the perfect
and hardware profile respectively. T is the candidate
threshold frequency.

an interval in either the perfect or hardware profiler. Let fpi

and fhi be the frequencies as seen by the perfect profiler and
the hardware profiler respectively. If a candidate is a false
negative, then its tuple will not be found in the accumulator
table of the hardware profiler, and its fhi will be 0. The error

rate Ei for a candidate i is calculated as
|fpi−fhi|

fpi
. The total

error rate E for an interval is then calculated as the weighted
average over error rates of all candidate tuples seen either in
perfect or hardware profiler as shown in formula 1.

E =

�n
i=1

|fpi
−fhi|

fpi
∗ fpi

�n
i=1 fpi

(1)

The final net error rate is calculated as a simple average
over the error rates seen by all intervals. In Figure 3, we
show the relationships of fp, fh, and the candidate threshold
that are satisfied when classifying a tuple into one of the four
categories. In the results we will show error rates split into
Neutral Positive, Neutral Negative, False Positive, and False
Negative.

5.6 Single Hash Table Results
We now present results using the single hash table for value

profiling examining the number of candidate tuples found and
the error rates.

5.6.1 Analysis of Candidate Tuples
It should be noted here that the accuracy of hardware pro-

filing will depend primarily on (1) the number of unique tuples
seen in an interval, which we call distinct tuples, and (2) the
number of unique candidate tuples that crossed the threshold
for a given interval. This section quantifies these aspects.

Figure 4 shows the number of distinct tuples seen on av-
erage in an interval for value profiling. The tuple for value
profiling is represented as < pc, value >. Results are shown
for ten thousand, one hundred thousand and one million inter-
val lengths on a logarithmic scale. Figure 5 shows the number
of unique candidate tuples that cross the threshold of 1% and
0.1%. These results are gathered using a perfect interval based
profiler in order to show the actual number of distinct tuples

1000

10000

100000

1000000

burg deltablue gcc go li m88ksim sis vortex

10K

100K

1M

of

 d
is

tin
ct

 tu
pl

es
 p

er
 in

te
rv

al

Figure 4: Number of distinct tuples seen in an interval
on average. Results for different interval lengths are
shown.

 1%

0

5

10

15

20

25

30

burg deltablue gcc go li m88 sis vortex

C

ro
ss

in
g

 T
h

re
sh

o
ld

10K

100K

1M

 0.1%

0

50

100

150

200

burg deletablue gcc go li m88 sis vortex

C

ro
ss

ed
 T

h
re

sh
o

ld

10K

100K

1M

Figure 5: Number of unique candidate tuples in an
interval on average. Results for different interval
lengths are shown. The figure on the top is for a
threshold of 1% while the figure on the bottom is for
a threshold of 0.1%

and candidate tuples our profiler is going to encounter.
Figure 5 shows that the number of unique candidate tuples

that cross the threshold is very small compared to the total
number of distinct tuples shown in Figure 4. These static
candidate tuples, though small in number, account for a large
percentage of the total number of dynamic tuples seen during
an interval of execution.

Another interesting result is that the total number of dis-
tinct tuples in an interval increases proportionally to interval
length. Whereas, the number of unique candidate tuples that
cross the threshold roughly remain the same irrespective of
interval length. This implies that we have a tougher job in
filtering out the candidate tuples as we increase the interval
length because ratio of signal (those tuples we want to target)
to noise (rarely repeating tuples) decreases.

One proposal for using a hardware profiler is to use the
accumulator table information gathered during one profile in-
terval to optimize behavior in the next profile interval. For
this to be meaningful, candidate tuples for the current inter-
val should also be candidates in the next profiling interval.
Results presented in Figure 6 shows the change in candidate
tuples found in the accumulator table between two consecu-
tive profile intervals. Each point (x, y) in the graph shows
that x% of intervals experience less than y% change in can-
didate tuples. For example, for one million interval length,

6

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

% program execution

%
 v

ar
ia

ti
o

n
burg

deltablue

gcc

go

li

m88ksim

sis

vortex

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

% program execution

%
 v

ar
ia

ti
o

n

burg

deltablue

gcc

go

li

m88ksim

sis

vortex

Figure 6: Percentage of variation of candidates from
one interval to the next. The figure on the top is for
an interval length of 10,000 events and the one on the
bottom is for 1 million.

gcc experiences less than 35% variation for 50% of execution.
The graph on the top is for an interval length of 10,000 with
1% threshold, while the one on the bottom is for 1 million
interval length with 0.1% threshold.

The results show that for a profile interval of 1 million,
m88ksim and vortex have very little variation, whereas they
have a larger degree of variation for a profile interval of 10,000.
For these programs, an interval of 10,000 events is too small to
see all of the important tuples that occur temporally across
the intervals of execution, whereas they are accurately cap-
tured with an interval of 1 million. In contrast, programs like
deltablue have a higher variation for a 1 million interval, in-
dicating that deltablue has large scale differing behavior as
it executes through its different phases of execution. In com-
parison, for a 10,000 length interval, deltablue has very little
variation of candidate tuples between intervals for most of its
execution.

These results show that different interval lengths suit dif-
ferent programs, and it is important to pick the appropriate
interval length to better capture a program’s behavior. To ad-
dress this, one can potentially adaptively pick the appropriate
interval length for a given program.

5.6.2 Error Rates
Figure 7 shows the value profiling error rates for our single

hash table architecture for four configurations. These are for

the four different combinations of using or not using resetting
(R) and retaining (P) optimizations. R0 means that no reset
optimization was used, while R1 means reset was used. Sim-
ilarly, P0 means retaining was not used, whereas P1 means
retaining was used.

The results show that both resetting and retaining, decrease
the total amount of error, and applying both optimizations
performs the best overall. Resetting reduces the number of
false positives and the total error significantly for the reasons
discussed above, but it comes at the cost of an increase in
false negatives when profiling some programs such as vortex.
Across intervals, the retaining optimization reveals its’ useful-
ness by significantly lowering the total number of false posi-
tives for most of the programs. This is even more drastic in
the graph showing the results for an interval of one million
and threshold of 0.1% (shown on the right), especially when
the scale of the y-axis is considered.

6. Multi-hash Profiler
In this section we present and analyze a new hardware pro-

filing architecture which we term the multi-hash design. This
design is based on the architecture proposed by Estan and
Varghese [7] for measuring traffic in network processors. In a
network, one would like to account for the amount of band-
width consumed by those users that are taking the most.
In [7], the problem is to find a tight lower bound on the
amount of resources consumed by those users taking up a
certain amount of bandwidth or more.

6.1 Architecture Design
Our multi-hash architecture is built upon the simple interval

based single hash hardware profiler described in the previous
section. The multi-hash architecture uses multiple hash ta-
bles to reduce the number of false positives. Two tuples that
aliased to the same entry in a single hash architecture, will
probabilistically map to different entries for one or more of
the multiple hash tables. This is the key feature behind the
multi-hash architectures ability to greatly reduce the number
of false positives, which we explain in more detail below.

Figure 8 shows the architecture of the muti-hash profiler.
It consists of multiple hash-tables of counters and an equal
number of independent hash functions (i.e. one for each hash-
table). An input tuple is first indexed into the accumulator
table. If it doesn’t have an entry in it, then it hashes into all
the hash-tables using the hash function for each hash-table,
and all the corresponding counters are incremented. An entry
in the accumulator table is added for a tuple only when all
of its’ corresponding counters across the different hash-tables
cross the threshold candidate value. As in the single hash
approach, we have two options when the counters in all the
hash-tables reach the threshold value. We can either reset all
those counters immediately, or we can reset the counters at
the end of an interval. We examine these tradeoffs below.

Another optimization we examine for the multi-hash archi-
tecture is the use of Conservative Update from [7]. This tech-
nique does not always increment the corresponding counters
in all the hash-tables. Instead, only the counter that has the
smallest value among all other corresponding counters for the
tuple is incremented. If there is a tie between counters with
the smallest value, then each one of them is incremented. The
intuition behind this optimization is that there should only be

7

0

5

10

15

20

25

30

35

40

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

burg deltablue gcc go li m88ksim sis vortex

%
 E

rr
o

r
Neutral
Negative
Neutral Positive

False Negative

False Positive

0

20

40

60

80

100

120

140

160

180

200

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

P
0,

 R
0

P
0,

 R
1

P
1,

 R
0

P
1,

 R
1

burg deltablue gcc go li m88ksim sis vortex

%
 E

rr
o

r

Neutral Negative

Neutral Positive

False Negative

False Positive

Figure 7: Single Hash table with retaining/resetting results across a set of benchmarks. R0 means that there
is no reset optimization used for the accumulator table, while an R1 means that reset is enabled. A P1 means
that retaining (or passing) is turned on, while a P0 means that there is no retention. Results are shown for
intervals of 10K with a threshold of 1% on the left and an interval of 1 million with a threshold of 0.1% on
the right.

a difference between the values in the presence of aliasing. In
other words, when there is no aliasing, the counters in each
hash-table should be identical. This optimization works by
not incrementing counters that experience aliasing, which in
turn can significantly reduce the amount of error.

6.2 Theoretical analysis
In this section we provide an approximate theoretical anal-

ysis for the multi-hash profiler to provide insight into why it
works. We focus on finding the probability p for an input
tuple being classified as a false positive. We do this analy-
sis for configurations with different hash-table sizes and with
different number of hash-tables.

We first describe the analysis for a single hash table. Let
Z be the size of a hash-table and assume we want to capture
the distinct tuples that occur for more than t% of interval
length. Then there can be at most 100/t distinct tuples that
occur for more than t% of any value. Note that the interval
length has no impact on this bound. For an input tuple to
be registered as a false positive, it needs to hash into a hash-
table entry (counter) whose value is greater than or equal to
the threshold value. The total number of such counters (above
the threshold) is equal to 100/t. There are Z distinct counters
(where Z is the hash-table size). Therefore, the probability p
for a tuple to turn into false positive is 100/(tZ).

Now, for a multi-hash configuration assume the total num-
ber of counters in a hash-table is actually Z/n where n is the
number of hash-tables in multi-hash profiler. For a particular
hash-table, the probability for a tuple to hit a counter and
increment it to a value greater than threshold is 100/(tZ/n)
which is 100∗n/tZ. This has to happen for all hash-tables for
a tuple to turn into a false positive. Since the hash-tables are
independent of each other, the final probability for an input
tuple to turn into false positive is (100∗n/tZ)n . Figure 9 plots
this function. Each curve represents a multi-hash configura-
tion keeping the number of hash entries fixed, while varying
the number of hash tables on the x-axis. For example, the
500 entry curve shows results for one 500 entry hash table,
two 250 entry hash tables, and three 166 entry hash tables.

Accumulator
Table

Update
Function

Update
Function

Function
1st Hash

nth Hash Table

CounterCounter

Threshold
Reached?

CounterCounter

Threshold
Reached?

Tuple

Hn

1H

Function
nth Hash

Shielding

is miss?

Reset

1st Hash Table

Figure 8: A multi-hash architecture. An input tuple
is first checked in the accumulator table. If it is found,
we only increment the counter in the accumulator ta-
ble, and do not update the hash-table. If the event
is not in the accumulator table, each hash function
computes a signature for the event. These signatures
are used as an index to select a counter in the counter
tables. The update function is then applied to each
selected counter. Only after every respective counter
reaches its maximum threshold value in every hash-
table, the event is moved in to the accumulator table.

8

0
5

10
15
20
25
30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of hash tables

%
 P

ro
b

ab
ili

ty
 o

f
Fa

ls
e

P
o

si
ti

ve
500 entries

1000 entries

2000 entries

4000 entries

8000 entries

Figure 9: Theoretical analysis for a profiler with mul-
tiple hash-tables for 1% candidate threshold. This
graph gives a theoretical upper bound on the proba-
bility for an input tuple to turn into a false positive.
The X-axis shows the number of hash-tables. Each
line represents a multi-hash configuration where the
number of hash entries specified are split evenly be-
tween that number of hash-tables.

The results show that given a fixed amount of entries, in-
creasing the number of hash-tables reduces the number of false
positives up to a point, where performance starts to degrade
due to aliasing problems. This can be seen for 1,000 entries,
where performance degrades beyond 4 hash tables. Note that
these probabilities provide a loose upper bound on the false
positive error rates. The analysis does not take into account
the number of unique tuples in an interval, the distribution
of candidate tuples and non-candidate tuples over an interval,
nor optimizations like retaining, shielding and conservative
update. These would need to be taken into consideration to
provide a tighter bound.

6.3 Design space analysis
In this section we analyze the different configurations that

are possible for a multi-hash profiler and show results for a
combined hash-table size of 2K entries. We performed error
rate analysis for other hash-table sizes and found that a hash-
table of size 2K performs almost as well as larger hash-tables,
while still outperforming hash-tables of size 1K or smaller. We
don’t report the error rates for hash-table sizes other than 2K
due to lack of space. It should be noted that all comparisons
between multi-hash architectures with different numbers of
tables have the same number of total hash-table entries (2K
entries). These entries are evenly divided among the hash-
tables. So a multi-hash profiler with n hash-tables will have
2K/n entries in each hash-table. We found that our approach
of retaining tuples for the next immediate interval turned out
to be useful for all configurations, and therefore we use this
technique for all the results reported in this section.

We now examine the following options for a multi-hash pro-
filer. We first vary the number of hash-tables, and examine
the tradeoffs between using reset and conservative update

for the multi-hash architecture. We denote R1 as a config-
uration with immediate reset, and R0 as without immediate
reset. We denote C1 as a configuration using conservative up-
date, and C0 as without. Figure 10 shows the results for an
interval of length 10,000 with 1% candidate threshold, while
Figure 11 shows results for an interval of length 1 million with
0.1% candidate threshold. In all configurations, the values in
the hash tables are set to zero at the end of a profile interval.
We focus on the results for gcc and go, since they have the
largest number of unique tuples.

Note that the use of immediate resetting increases the over-

all error rate due to the high number of false negatives. This
problem is emphasized as the number of hash-tables increases.
For example, an 8 hash-table multi-hash profiler examining
the program go in Figure 10 has an additional error rate of
about 4% due to false negatives alone over configurations that
don’t use immediate reset. This is because when a counter is
reset, a tuple does not occur enough times afterwards to war-
rant promotion to the accumulator table.

Another observation is the effectiveness of the conservative
update approach. For example, in Figure 11, the error rate
on the program go is brought down to under 1% using the
multi-hash architecture. It should be noted that even with
immediate resetting the error rate without conservative up-
date still remains around 100% or higher for go when using
an interval of 1 million with 0.1% candidate threshold.

6.4 Results for best multi-hash configuration
In the previous section we concluded that a multi-hash pro-

filer without immediate reset and with conservative update
approach performs the best of all configurations. In this sec-
tion, we present the results by varying number of hash-tables
for this best configuration. Here again we use a multi-hash
architecture with a total of 2K hash table counters with an
accumulator table with retaining. Along with the multi-hash
profiler results, we also include results for the best single hash
(BSH) approach from Section 5 for comparison.

6.4.1 Value Profiler
Figure 12 shows the results for the best multi-hash config-

uration for an interval of length 10,000 with 1% candidate
threshold and also for interval of length 1 million with 0.1%
candidate threshold. It can be observed that the multi-hash
profiler with 4 hash-tables consistently outperforms all other
configurations including best single hash approach. For exam-
ple, in the right graph of Figure 12, for go, the muti-hash with
4 hash-tables shows an improvement in error rate of about
10% (absolute) over best single hash approach. But when we
increase the number of hash-tables beyond 4, the error rate
starts increasing due to false positives. This is similar to the
1K entry theoretical results seen in Figure 9.

To summarize the results, the lowest error rates in Fig-
ure 12 for gcc (5%) and for go (1.5%) are achieved using the
multi-hash architecture. This is even when we use an inter-
val of length 1 million with 0.1% candidate threshold, where
severe capacity pressure is placed on our multi-hash archi-
tecture from all of the distinct tuples. This is a significant
improvement when compared to the lowest error rates of 10%
and 20% for gcc and go using the single hash table approach.
More importantly, the average error we see for the multi-hash
architecture is under 1%.

Figure 13 shows the error rate for each interval across the
execution of the benchmarks examined. It shows results for
the error rate observed in each individual interval of execution
using an interval length of 1 million with a 0.1% candidate
threshold. In Figure 13, the graph on the left shows results
for the best single hash profiler with resetting, and the graph
on the right shows results for the multi-hash profiler with
conservative update and no resetting with the entries evenly
split over 4 hash-tables. It can be seen that for the best single
hash profiler, error rates for gcc remain high in the first 60
intervals and remains very low towards the end. Our best
multi-hash profiler brings down the magnitude as well as the

9

0
1
2
3
4
5
6
7
8
9

10

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

1 2 4 8

gcc

%
 E

rr
o

r
Neutral Negative

Neutral Positive

False Negative

False Positive

0
1
2
3
4
5
6
7
8
9

10

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

1 2 4 8

go

%
 E

rr
o

r

Neutral Negative

Neutral Positive

False Negative

False Positive

Figure 10: Muti-hash profiler for an interval of 10,000, 1% candidate threshold, and a total number of 2K
hash-table entries. Each graph shows results for multi-hash profiler with 1,2,4 and 8 hash-tables. For each
hash-table, it shows results for 4 different configurations: C0-R0, C1-R0, C0-R1, and C1-R1. C1 and C0
are with and without conservative update technique respectively, while R1 and R0 are with and without the
resetting technique. The C1-R0 configuration performs the best.

0
10
20
30
40
50
60
70
80
90

100

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

1 2 4 8

gcc

%
 E

rr
o

r

False Positive False Negative Neutral Positive Neutral Negative

0
10
20
30
40
50
60
70
80
90

100

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

C0,
R0

C1,
R0

C0,
R1

C1,
R1

1 2 4 8

go

%
 E

rr
o

r

False Positive False Negative Neutral Positive Neutral Negative

Figure 11: Muti-hash profiler for an interval of 1 million, 0.1% candidate threshold, and a total number of
hash-table entries of 2K. Each graph shows results for multi-hash profiler with 1,2,4 and 8 hash-tables. For
each hash-table, it shows results for 4 different configurations: C0-R0, C1-R0, C0-R1, and C1-R1. C1 and
C0 are with and without conservative update technique respectively, while R1 and R0 are with and without
the resetting technique. The C1-R0 configuration performs the best.

0

1

2

3

4

5

6

7

8

9

10

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

burg deltablue gcc go li m88ksim sis vortex

%
 E

rr
o

r

Neutral Negative

Neutral Positive

False Negative

False Positive

0

10

20

30

40

50

60

70

80

90

100

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

B
S

H 1 2 4 8 16

burg deltablue gcc go li m88ksim sis vortex

%
 E

rr
o

r

Neutral Negative

Neutral Positive

False Negative

False Positive

Figure 12: Best Muti-hash profiler for Value Profiling - C1, R0 (with conservative update and without
resetting). For each program 1,2,4,8 and 16 hash-tables are analyzed using a total of 2K hash-table entries.
The figure on the left shows results for interval 10,000 with 1% candidate threshold. The figure on the right
shows results for interval 1 million with 0.1% candidate threshold. The results show that using 4 hash-tables
consistently outperforms others.

10

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

Profile Cycle

%
 E

rr
o

r
burg

deltablue

gcc

go

li

m88ksim

sis

vortex

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

Profile Cycle

%
 E

rr
o

r

burg

deltablue

gcc

go

li

m99ksim

sis

vortex

Figure 13: To explore the amount of variation in the error across various intervals we break down the error
by the interval that it was gathered. This figure shows the results of that break down for an interval length
of 1 million instructions with a candidate threshold of 0.1%, 2K hash table entries, and with retaining. The
best single-hash architecture with resetting is shown on the left and best multi-hash configuration with 4
hash-tables, conservative update, and no resetting is shown on the right.

19.410.3

0

1

2

3

4

5

6

7

8

9

10

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

burg deltablue gcc go li m88ksim sis vortex

%
 E

rr
o

r

Neutral Negative

Neutral Positive

False Negative

False Positive

0

10

20

30

40

50

60

70

80

90

100

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

B
S

H 1 2 4 8

burg deltablue gcc go li m88ksim sis vortex

%
 E

rr
o

r

Neutral Negative

Neutral Positive

False Negative

False Positive

Figure 14: The best multi-hash profiler for Edge profiling. C1 R0 is used with conservative update and without
resetting. For each program 1,2,4, and 8 hash-tables are analyzed using a total of 2K hash entries/counters.
The left figure shows results for an interval of length 10,000 with 1% candidate threshold. The right figure
shows results for an interval of length 1 million with 0.1% candidate threshold.

number of such spikes in error rates especially for gcc and go.
The one interval for burg that spikes with a large error rate

comes from not using resetting for the multi-hash architec-
ture. Conservative update is used instead of resetting, as de-
scribed above. For this one interval, there are a large number
of candidate tuples and they allow the piggy-backing of false
positives into the accumulator table when using conservative
update. In comparison, this spike is not seen for the single
hash approach in Figure 13, because resetting prevents this
effect. Even so, the average results in Figures 11 show that
conservative update performs much better on average without
resetting.

6.4.2 Edge Profiling
We also examined edge profiling to show that our profiler

works with the same efficiency across different applications.
The edge profiler will see fewer distinct tuples than value pro-
filing. Figure 14 shows results for the best multi-hash profiler
for edge profiling using 2K hash entries. It can be seen that

the conclusions we made based on value profiling also hold
for edge profiling. The results show that using a 4 hash-table
multi-hash configuration significantly outperforms other con-
figurations including the best single hash approach.

7. Summary
The idea of tracking program behavior in hardware tables

has become one of computer architecture’s most used and
most effective tools for increasing performance. From branch
prediction to prefetching to memory disambiguation, almost
all hardware optimizations make use of some type of profiling
tables or counters. In this paper, we have presented a gen-
eralized profiling architecture that has applications to both
existing hardware profiling schemes and generalized profiling
schemes.

By clever use of hash-tables and an accumulator table work-
ing in unison, we show how to effectively filter all of the impor-
tant data from the surrounding noise, to enable the capture of
the most frequently occurring events. The hash-table is used

11

to identify events that may account for a large percentage of
the tuples profiled, and acts as an informant to the accumu-
lator table, which accumulates accurate counts for candidate
tuples. The accumulator table uses the information from the
hash-table to further investigate the behavior of these poten-
tially common events.

As was mentioned earlier in the paper there are several con-
straints that need to be met in order to allow a hardware
profiling scheme to be useful. First and foremost, the act of
profiling must be efficient, both in terms of hardware cost and
performance overhead. We presented an architecture that re-
quires only a small amount of area. The overall effect is that
very large amounts of information can be processed while us-
ing an area proportional to the number of unique tuples that
are to be examined in an interval. For the results examined in
this paper, the size of the hash table was 6 Kilobytes (2K en-
tries of 3 byte counters), and the size of the accumulator table
was 1 KB for the 1% candidate threshold and 10 KB for the
0.1% candidate threshold. The performance overhead for the
presented scheme is non-existent because statistics gathering
is decoupled from the main execution of the program and no
software or operating system interaction is needed to accumu-
late the data during the steady state operation of profiling.

The profile statistics gathered must be representative, ac-
curate, and timely so that the optimizations may be applied
correctly. We showed that for two potential profiling uses,
value and edge profiling, these properties were met. The basic
profiling architecture, when combined with the optimizations
of reset, conservative update, retaining, and multi-hashing,
achieved an error less than 1% on average.

Acknowledgments
We would like to thank the anonymous reviewers for providing
useful comments on this paper. This work was funded in
part by NSF CAREER grant No. CCR-9733278, NSF grant
No. CCR-0105743, NSF grant No. ANI 0074004, a grant from
NIST on the Sensilla Project, a Jacobs School of Engineering
fellowship, a grant from Compaq Computer Corporation, and
an equipment grant from Intel.

8. REFERENCES
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,

S. Leung, R. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cycles
gone. ACM Transactions on Computer Systems,
15(4):357–390, November 1997.

[2] M. Burrows, U. Erlingson, S. Leung, M. Vandevoorde,
C. Waldspurger, K. Walker, and W. Weihl. Efficient and
flexible value sampling. In In Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-IX), pages 160–167, November 2000.

[3] B. Calder, P. Feller, and A. Eustace. Value profiling. In
Proceedings of the 30th Annual Symposium on
Microarchitecure, December 1997.

[4] J. Collins, S. Sair, B. Calder, and D. Tullsen. Pointer-cache
assisted prefetching. In 35th International Symposium on
Microarchitecture, November 2002.

[5] T. Conte, K. Menezes, and M. Hirsch. Accurate and practical
profile-driven compilation using the profile buffer. In In
Proceedings of the 29th Annual International Symposium on
Microarchitecture, pages 36–45, December 1996.

[6] J. D., J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z.
Chrysos. Profileme : Hardware support for instruction-level

profiling on out-of-order processors. In International
Symposium on Microarchitecture, pages 292–302, 1997.

[7] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In ACM SIGCOMM, August
2002.

[8] T. Heil and J. Smith. Relational profiling: Enabling thread
level parallelism in virtual machines. In In Proc. 33rd
International Symposium on Microarchitecture, December
2000.

[9] T.H. Heil and J.E. Smith. Selective dual path execution.
Technical report, University of Wisconsin-Madison, 1996.

[10] Andreas Krall. Efficient JavaVM just-in-time compilation. In
International Conference on Parallel Architectures and
Compilation Techniques, pages 205–212, September 1998.

[11] M. Merten, A. Trick, E. Nystrom, R. Barnes, and W. Hwu. A
hardware mechanism for dynamic extraction and relayout of
program hot spots. In in Proceedings of the 27th
International Symposium on Computer Architecture, June
2000.

[12] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal,
and W. W. Hwu. A hardware-driven profiling scheme for
identifying program hot spots to support runtime
optimization. In ISCA, pages 136–147, 1999.

[13] R. Muth, S. A. Watterson, and S. K. Debray. Code
specialization based on value profiles. In Static Analysis
Symposium, pages 340–359, 2000.

[14] E. Rotenberg, S. Bennett, and J. Smith. Trace cache: a low
latency approach to high bandwidth instruction fetching. In
29th Annual International Symposium on Microarchitecture,
December 1996.

[15] S. Sastry, R. Bodik, and J.E. Smith. Rapid profiling via
stratified sampling. In 28th Annual International Symposium
on Computer Architecture, June 2001.

[16] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In International Conference on
Parallel Architectures and Compilation Techniques,
September 2001.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, October
2002. http://www.cs.ucsd.edu/users/calder/simpoint/.

[18] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 196–205. ACM, 1994.

[19] G. Tyson, K. Lick, and M. Farrens. Limited dual path
execution. CSE-TR 346-97, University of Michigan, 1997.

[20] S. Wallace, B. Calder, and D. Tullsen. Threaded multiple
path execution. In 25th International Symposium on
Computer Architecture, June 1998.

[21] J. Yang, Y. Zhang, and R. Gupta. Frequent value
compression in data caches. Technical Report, Univ. of
Arizona, Dept. of CS, Tucson, AZ, June 2000.

[22] Y. Zhang, J. Yang, and R. Gupta. Frequent value locality
and value-centric data cache design. In The Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 150–159, November 2000.

[23] C. Zilles and G. Sohi. A programmable co-processor for
profiling. In In Proceedings of the 7th International
Symposium on High Performance Computer Architecture
(HPCA-7), January 2001.

12

