Tracking Information Flow at the Gate-Level for Secure Architectures

Mohit Tiwari Xun Li

Hassan M G Wassel

Bita Mazloom Shashidhar Mysore

Frederic T Chong Timothy Sherwood
Department of Computer Science, University of California, Santa Barbara
{tiwari,xun,hwassel,betamaz,shashime,chong,sherwood } @cs.ucsb.edu

Abstract

Many critical systems require tight guarantees on the
flow of information, for example when handling secret
cryptographic keys or critical avionics data. Unfortu-
nately, even understanding the true flow of information
through a traditional processor is difficult because exe-
cuting an instruction affects so much internal state: the
program counter, the memory system, forwarding and
pipeline logic, and countless other bits throughout the
machine. We propose a mew method for constructing
and analyzing architectures capable of tracking all infor-
mation flow within the machine, including all explicit
data transfers and all implicit flows (those subtly devious
flows caused by not performing conditional operations).
The key to such an approach is our novel gate-level in-
formation flow tracking method which provides a way to
compose complex logical structures with well defined in-
formation flow properties. Starting from a simple NAND
gate, we describe how to to create more complex struc-
tures including muzes, control, registers, and finally a
small microprocessor, all then tmplemented and tested
on an FPGA. The resulting system, while less efficient
than a traditional processor, is the first proof of con-
cept demonstrating strong information-containment all
the way down to the gate-level implementation.

1 High Assurance Systems

Systems responsible for controlling aircraft, protecting
the master secret keys for a bank, or regulating access to
extremely sensitive commercial or military information,
all demand a level of assurance far beyond the norm.
Creating these systems today is an incredibly expensive
operation both in terms of time and money; and even
assessing the assurance of the resulting system can cost
upwards of $10,000 per line of code [2].

The enforcement of information flow policies is one of
the most important aspects of such high assurance sys-
tems, yet is also one of the hardest to get correct in im-
plementation. The recent explosion of work on dynamic
dataflow tracking architectures has led to many clever

new ways of detecting everything from general code in-
jection attacks to cross-site scripting attacks. The basic
scheme keeps track of a binary property, trusted or un-
trusted, for every piece of data. Data from “untrusted”
sources (e.g. from the network) are marked as untrusted,
and the output of an instruction is marked as untrusted
if any of its inputs are untrusted. While these systems
will likely prove themselves useful in a variety of real-life
security scenarios, precisely capturing the flow of infor-
mation in a traditional microprocessor quickly leads to
an explosion of untrusted state because information is
leaked practically everywhere and by everything. If you
are executing an exceedingly critical piece of software,
for example, using your private key to sign an impor-
tant message, information about that key is leaked in
some form or another by almost everything that you do
with it. The time it takes to perform the authentica-
tion, the elements in the cache you displace due to your
operations, the paths through the code the encryption
software takes, even the paths through your code that
are never taken can leak information about the key.

This paper summarizes an earlier paper [7] that pre-
sented, for the first time, a processor architecture and
implementation that can track all information-flows. On
such a microprocessor it is impossible for an adversary to
hide the flow of information through the design, whether
that flow was intended by both parties (e.g. through a
covert channel) or not (e.g. through a timing-channel).
One of the key insights in this paper is that all infor-
mation flows, whether implicit, covert, or explicit, look
surprisingly similar at the gate level where weakly de-
fined ISA descriptions give way to precise logical func-
tions. While past approaches have assumed that any use
of untrusted data should lead to an untrusted output,
we observe that at the gate level this is overly conserva-
tive. If one input to an AND gate is 0, the other input
can never affect the result and thus should have no bear-
ing on the trust of the output. Based upon this obser-
vation, we introduce a novel logic discipline, Gate-Level
Information-Flow Tracking (GLIFT) logic, which is built
around a precise method for augmenting arbitrary logic
blocks with tracking logic and a further method for mak-
ing compositions of those blocks. Using this discipline we
demonstrate how to create an architecture that, while

Logic Truth Table Trusted A and Untrusted B

ab a b out a b a by out
00 0 0 0 0 1
01 0 2 0101 0
1.0 0 100 1 1
o 11 1 X 110 1 1

Figure 1: Tracking Information Flow through a 2-input AND
Gate. Figure shows truth table for the AND Gate (left) and
a part of its shadow truth table (right). The shadow truth
table shows the interesting case when only one of the inputs
a and b is trusted (i.e. az = 0 and by = 1). FEach row of the
shadow table calculates the trust value of the output (out:) by
checking whether the untrusted input b can affect the output
out. This requires checking out for both values of b in the
table on the left. The gray arrows indicate the rows that have
to be checked for each row on the right. For example, when
a =1, b affects out (row 3 and 4 on the left). Hence row 3
and 4 on the right have out; as untrusted.

unconventional in ways required by the very nature of
being free from the problems of implicit-flow, is both
programmable and capable of performing useful com-
putation. We present a synthesizable processor imple-
mentation with a restricted ISA, predicated execution,
bounded loops, and an iteration-coupled load/store ar-
chitecture. Combined with GLIFT logic, these restric-
tions provide tractable and provably-sound information-
flow tracking, yet allow tasks such as public-key cryp-
tography and message authentication to be performed.

2 Gate Level Information Flow
Tracking

Tracking all information flows through a full micropro-
cessor is a daunting task, but one that we can tackle by
breaking it down into small pieces. We begin with the
smallest atomic units of logic: gates.

Consider an AND gate (shown in left side of Figure 1)
with two binary inputs, a and b, and an output o. Let’s
assume for right now that this is our entire system, and
that the inputs to this AND gate can come from either
trusted or untrusted sources, and that those inputs are
marked with a bit (a; and b; respectively) such that a 1
indicates that the data is untrusted (or “tainted”). The
basic problem of gate-level information flow tracking is
to determine, given some input for a and b and their
corresponding trust bits a; and by, whether or not the
output o is trusted (which is then added as an extra
output of the function o).

The assumption that most prior work makes is that
when you compute a function, any function, of two in-
puts, then the output should be tagged as tainted if
either of the inputs are tainted. This assumption is cer-

tainly sound (it should never lead to a case, wherein out-
put which should not be trusted is marked as trusted)
but it is over conservative in many important cases, in
particular if something is known about the actual inputs
to the function at runtime. To see why, let us just con-
sider the AND gate, and all of the possible input cases.
If both of the inputs are trusted, then the output should
clearly be trusted. If both the inputs are untrusted, the
output is again clearly untrusted. The interesting cases
are when you have a mix of trusted and untrusted data.
If input a is trusted and set to 1, and input b is untrusted,
the output of the AND gate is always equal to the input
b, which, being untrusted, means that the output should
also be untrusted. However, if input a is trusted and set
to 0, and input b is untrusted, the result will always be
0 regardless of the untrusted value. The untrusted value
has absolutely no effect on the output and hence the out-
put can inherit the trust of a. By including the actual
values of the inputs into the determination of whether
the output is trusted or not trusted, we can more pre-
cisely determine whether the output of a logic function
is trusted or not.

So, how do we formalize this notion of untrusted inputs
“affecting” outputs? As Figure 1 shows, essentially we
are going to create a new truth table, which will shadow
the original logic, but instead of computing the output
(0), it will compute the trust of the output (o) as a func-
tion of the logical inputs (a and b), the trust of those
inputs (a¢ and b;), and the truth table of the original
function. While this seems like an awful lot of trou-
ble to track the information flow through an AND gate,
without this precision, there would be no way to restore
a register to a trusted state once it has been marked
untrusted. Its impact in terms of the ability to build a
machine that effectively manages the flow of information
is immense.

2.1 Composing Larger Functions

While the truth table method that we describe above is
the most precise way of analyzing logic functions, our
end goal is to create an entire processor using this tech-
nology. Our resulting machine is essentially going to be
a large logic function which transforms a state (including
the internal state of the processor, such as the program
counter, and all architecturally visible state, such as the
register file), to a new state based on inputs. Clearly,
enumerating this entire truth table (which would have
approximately 275 rows, where 769 is the number of
state bits in our processor prototype) is not feasible,
therefore we need a way of composing functions from
smaller functions in a way that preserves the soundness
of information flow tracking. Again, taking a smaller ex-
ample to demonstrate the larger principle, let’s consider
a multiplexer.

A multiplexer is small enough that we could enumerate

Logical Function of MUX (f;)

a b

Figure 2: Composing information flow tracking logic for larger functions using b
MUX composed of AND gates (1 and 2) and an OR gate (3). A shadow MUX is co

: shows a 2-input
1, shadow AND-2

and a shadow OR cells wired together the same way as the original AND1,2 and (

the entire function, but another way to create one is
from logical gates such as AND and OR. Figure 2 shows
both the logical implementation and the shadow logic.
To create this shadow logic we need access to all the
inputs of the MUX, and all the connections between the
gates from which it is constructed. Each one of the gates
from which the MUX is constructed (two AND and one
OR) has a corresponding shadow logic instantiated. For
example the shadow logic for ANDs (1) and (2) in the
figure is simply the logic derived above. The shadow
logic for OR (3), created in the same way as the AND
gate, is then instantiated, and is fed the inputs from the
outputs of the AND gates and the outputs of the AND
shadow logic.

The shadow MUX created compositionally is, in fact,
slightly more conservative than the shadow logic derived
directly from the truth table. This is because the com-
positional approach cannot take advantage of the fact
that, due to the particulars of this logic, it’s impossible
for the outputs of AND-1 and AND-2 to both be set
to 1 at the same time, yet our OR-gate shadow logic is
assuming this is possible. In this way, a compositional
approach may not be exactly precise, but will always be
sound and is precise enough to allow us to build useful
architectures. Both capture the notion that if the select
line is trusted, and the input it is selecting is trusted,
the resulting output should be trusted regardless of the
trustworthiness of the other input (which makes intuitive
sense from an architectural perspective). The MUX, by
being able to select between trusted and untrusted in-
puts in a way that does not propagate excessively con-
servatively, is the foundation of our entire architecture.
For example, in Section 3.1, we will discuss how we use
predication to avoid the standard implicit flow problems
encountered with branches, and architecturally, predica-
tion is really a programmer-visible MUX.

C iti Branch Predicates-Only Architecture

jump target

is jump?

old value

Instr Mem

Instr Mem

through

decode decode

Figure 3: Implementation of a conditional branch instruc-
tion in a traditional architecture compared to ours. The high-
lighted wires on the left figure shows the path from an un-
trusted conditional to the PC. In contrast, we eliminate the
path in our architecture so that the PC never gets untrusted.

3 Secure Architecture

After discussing the GLIFT logic method, the next ques-
tion then becomes how that method can be applied to a
programmable device to create an air-tight information
flow tracking microprocessor. The goal of our architec-
ture design is to create a full implementation that, while
not terribly efficient or small, is programmable enough
and precise enough in its handling of untrusted data that
it is able to handle several security related tasks, while
simultaneously tracking any and all information flows
emanating from untrusted inputs.

Figure 3 shows a simple example of a branch instruc-
tion implemented in hardware and the problem with tra-
ditional architecture. Once a comparison occurs on un-
trusted data, the result is used to control the select line
to the Program Counter, which means the PC can no
longer be trusted. Once the PC is untrusted, there is no
going back because each PC is dependent on the result of
the last. In the architecture described above, all instruc-
tions after a branch on trusted data will be marked as

Pred

V(R1) V(R2)

: @

SET

_\‘
Q

RO

Register File:

R1 R2 R3

Figure 4: Implementation of our predicated architecture.

The predicate bits are used to control MUXs that decide whether a

register is updated with a new value or gets its old value written back into it. If the predicate bit is untrusted, the shadow MUXs
ensure that all registers that could have had an untrusted value get marked as untrusted, thus turning implicit information

leaks into explicitly tracked trust values.

untrusted, but is information really flowing in that way?
In fact, at the gate level, it is. There is a timing depen-
dence between the value of the branch predicate and the
time at which the following instructions are executed. In
a traditional microprocessor, there are a host of similar
observable processor events whose timing is affected by
some hardware logic that operates on mixed-trust data
(for e.g. a bus controller) and as a result creates hid-
den timing channels. Such timing observations, while
seemingly harmless in our example, do represent real in-
formation flow and have been used to transmit secret
data [3] and reverse engineer secret keys [4].

3.1 Step 1: Handling Conditionals

As is apparent from our previous example, traditional
conditional jumps are problematic, both because they
lead to variations in timing and because information is
flowing through the PC (which has many unintended
consequences). Predication, by transforming if-then—
else blocks into explicit data dependencies (through
predicate registers), provides one answer. The effect of
an instruction is guarded by a specified predicate regis-
ter, and if our gate-level information flow method works
correctly, the trust-bit of the destination register should
be updated regardless of the value of the predicate. Since
operations for both cases (predicate true/false) get exe-
cuted, the augmented processor should track the infor-
mation flow through every instruction that a program
could possibly execute, even though only the instructions
whose predicates evaluate to true actually write their
value back to a register. As shown in Figure 3, this en-
sures the PC is only ever incremented, and no possible
flow from untrusted input to the PC is possible.

Figure 4 shows the actual logical implementation of
predication in our processor. As in a normal predicated
architecture, the instruction word specifies the source
registers (e.g. R1 and R2) for the instruction, destination

register (e.g R2), and a predicate register or constant (e.g
PO or P1). If the predicate register stores a 0, then the in-
struction doesn’t write back and instead the old value is
written back, but if the predicate is 1 then the new value
is written. The shaded lines in the figure illustrate this
point more fully. In addition to implementing predica-
tion, this example demonstrates a crucial role the MUX
plays in our architecture by managing to switch between
trusted and untrusted values.

3.2 Step 2: Handling Loops

Handling loops requires a different approach. Loops are
surprisingly difficult to constrain as there are so many
different ways for information to leak out in non-obvious
ways. Consider a simple while-loop on an untrusted con-
dition. Every instruction in that loop may execute an ar-
bitrary number of times, so everything those instructions
touch is untrusted. In fact, everything that could have
been modified, even if it wasn’t, needs to be marked as
untrusted (due to implicit flows). To limit the effect that
loops have on the untrusted state of the system, it needs
to be clear, both to the programmer and at the logical
implementation, exactly what state has the possibility of
being affected by the loop. For this, we use a special
countjump instruction that specifies statically the num-
ber of iterations that should be executed, along with the
jump target for the iterations. The processor implemen-
tation then maintains a unique iteration counter for the
loop instruction and ensures that the counter cannot be
modified explicitly by the program. Further, count jump
instructions have to be unpredicated, else a count jump
would be exactly equivalent to a conditional jump and
would carry all of the same problems discussed in the
section above.

3.3 Step 3:
Stores

Constraining Loads and

Indirect loads and stores are another architectural fea-
ture that is problematic for information flow tracking.
If a register’s contents are untrusted, then using it as
an address for a store instruction would implicitly mark
the entire address space as untrusted (as any of those ad-
dresses could have been affected by that untrusted data).
At the logical level, this shows up as the untrusted data
address makes its way to the address decoder, and all of
the lines of that decoder become untrusted.

Intuitively, the problem is that accessing one untrusted
address causes every other address to become implicitly
untrusted by virtue of them not being accessed or mod-
ified. To limit this implicit untrusted state explosion, in
our prototype design we have limited our ISA to only
support direct and loop-relative loads and stores. Direct
loads use an address encoded in the immediate field, and
are used to access fixed memory addresses. To allow ac-
cess to arrays without resorting to general purpose in-
direct loads and stores, we have a loop-relative address-
ing mode, where loads access a variable which is at a
fixed constant offset from a loop index (the loop counter
used in the countjump instruction). This reduces con-
venience of programming in our ISA substantially but
it allows us to precisely track any memory references.
We support these by incorporating two new instructions:
load-looprel and store-looprel. These are used to
load and store values from a fixed base address (specified
as an immediate field) and an offset stored as set of coun-
ters (CO0...C7 in our prototype) that can be explicitly ini-
tialized and incremented by a fixed value using two new
instructions: init-counter and increment-counter.
For example, load-looprel RO, 0x100, CO loads the
value of M[0x100 + CO] into RO. The number of times
these instructions execute depends upon the number of
iterations of the loop, which is fixed, and (as we did for
the countjump instruction), the local counter initializa-
tion and increment instructions commit unconditionally
so the set of all addresses that can possibly be accessed
in the loop can be determined at run-time.

4 Evaluation

4.1 Implementation and Automatic

Shadow Logic Generation

Our prototype processor is written in structural verilog
as a composition of gates and module instantiations,
along with registers and RAMs to store processor state.
To augment this processor with GLIFT logic, every reg-
ister gets a shadow register, every memory has a shadow
RAM, and for each basic processor component like AND
and OR gates, MUX-es, decoders, ALU etc, we instan-
tiate a corresponding shadow component and wire them

up using inputs to the component and their correspond-
ing shadow inputs.

Our processor is a 32-bit machine with 64KB each of
Instruction and Data Memory, and we use Altera’s Quar-
tusll software to synthesize it onto a Stratix II FPGA.
It has a program counter, 8 general purpose registers,
2 predicate registers, 8 registers to store loop counters
(that count down the number of iterations) and 8 other
registers to store explicit array indices (used as offsets for
load-looprel and store-looprel instructions). To make the
semantics of a state machine precise, all logic is triggered
on the positive clock edge, and each cycle simply trans-
forms the set of machine state into a new state through
simple combinational logic. We use Altera’s Nios pro-
cessor as a point of comparison as it has a RISC instruc-
tion set, and, as a commercial product, is reasonably
well optimized. Our base processor is almost equal in
area to Nios-standard, and about double the size of Nios-
economy. Adding the information flow tracking logic to
the base processor increases its area by 70%, to about
1700 ALUTs.

4.2 Programming in the resulting ISA

To test the programmability of our design, we have hand
coded a set of applications kernels onto our ISA. Our
kernels are drawn from the potential program security
uses of a strong information flow tracking system includ-
ing a public key encryption algorithm (RSA), a block
cipher (AES), a cryptographic hash (md5), along with
a small finite state machine (CSMA-CD), and a sorting
algorithm (bubble-sort).

Mapping applications onto our ISA requires convert-
ing conditional if-else constructs into predicated blocks,
turning variable sized loops into fixed size ones (by
bounding them), and turning indirect loads/stores into
direct memory accesses or loop-relative ones using the
loop counters. In general, any application that has
predominantly regular behavior should execute without
much additional overhead (e.g. RSA, md5, bubble sort),
while dynamic behavior such as irregular array accesses
in AES and CSMA-CD will incur much greater ineffi-
ciency. In terms of static code size, our new ISA is very
close to the Nios-RISC ISA (compiled with -O2).

5 Conclusions

Our prototype microprocessor is in fact bigger, slower,
harder to program, and computationally less powerful
than a traditional microcontroller architecture. But
what this architecture does for the first time is provide
the ability to account for all information flows through
the chip. It is impossible for an adversary, through clever
programming, carefully crafted input, or even the use of
covert or timing channels, to ever cause a resulting data

| Kernel | Description |

CSMA-CD state machine with with 6 states

L and 4 inputs. Many table lookups
Perform bubble sort on a fixed size
Sort . .
list of integers
RSA Montgomery multiplication and exponentiation
from RSA public key cryptography
Block Cipher, involves extensive table lookups
AES
and complex control structures
Md5 Core of the cryptographic hash function,

involves mostly ALU and logical operations

Static Instruction
Count (NIOS)

Static Instruction
Count (this work)

Dynamic Instr.
Count (this work)

Dynamic Instr.
Count (NIOS)
Percentage of Instr.
w/ true predicates

=y
N
w
=
©
o

441

)
@
N
N
o
5]
ES

N
o
N
=

20621 30358 66%

256 143 44880 39297 84%

781 1100 12807 1082207 79%

769 1386 1226 1431 100%

Figure 5: A comparison of the static and dynamic instruction counts for several application kernels on our proposed ISA and
an equivalent traditional RISC style architecture (the Nios). While the static instruction counts are comparable, applications
that require many irregular accesses to arrays (such as indirect table look-ups) require many more instructions to select out

those values.

element to be marked as “trusted” when in fact it was de-
rived in any way from untrusted data. While covert and
timing channels have been notoriously difficult to analyze
in systems to date [5, 6], we capture all flows by tracking
the flow of information at the level of gates, where tim-
ing signals, predicates, the bits of an address, even the
internal results of logical operations all look like signals
on a wire, and all of them are tracked by augmenting
those structures using our GLIFT logic transformations.

We show that gate level information flow tracking,
when directly applied to a traditional microprocessor,
quickly points out many subtle information flows that
might be hidden by the ISA abstraction, and at the very
worst, lead to a quick explosion of untrusted state. We
then describe an architecture that removes these prob-
lems but is still sufficiently programmable to handle a
variety of small but critical tasks. Finally, through a
prototype and its automatically generated information
flow tracking logic, we quantify the extra area/delay
cost of such flow tracking over a general-purpose micro-
controller.

Over the long term we believe these techniques will
find application in those critical systems like aircraft
where lives are on the line. In fact, to date, no oper-
ating system has ever been rated EAL7, i.e. formally
designed, tested, and verified to be provably sound from
the ground up. The Integrity RTOS [1] is one of the
closest at EAL6+, and even getting through the eval-
uation to EAL6+ required over $10K per line of code,
totaling millions of dollars over 10 years. One of the
primary difficulties in getting software verified at these
levels is that modern machines are simply not built with
the idea of information containment in mind. This pa-
per is hopefully a step towards reconsidering the needs
of the hardware/software interface in the context of this

economically and safety critical domain.

References

(1]
(2]

The integrity real-time operating
http://www.ghs.com/products/rtos/integrity.html.

What does cc eal6+ mean? http://www.ok-
labs.com/blog/entry /what-does-cc-eal6-mean/.

system.

O. Aciiggmez. Yet another microarchitectural attack: Exploit-
ing i-cache. In Proceedings of the 2007 ACM Workshop on
Computer Security Architecture(CSAW), 2007.

O. Aciigmez, J. pierre Seifert, and C. K. Koc. Predicting secret
keys via branch prediction. In The Cryptographers’ Track at
the RSA Conference(CT-RSA), 2007.

P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and
C. E. Kahn. ”a retrospective on the vax vmm security kernel”.
IEEE Trans. Softw. Eng., 17(11):1147-1165, 1991.

J. K. Millen. 20 years of covert channel modeling and analysis.
In IEEE Symposium on Security and Privacy, 1999.

M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and
T. Sherwood. Complete information flow tracking from the
gates up. In Proceedings of the 14th International Conference

on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2009.

