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THE AUTHORS EXAMINE THE RELATIONSHIP BETWEEN SECURITY, AREA, AND EFFICIENCY

IN SEVERAL NOVEL MEMORY ARCHITECTURES AND QUANTITATIVELY EXAMINE THE

RESULTING SYSTEMS THROUGH CRYPTOGRAPHIC ANALYSIS AND MICROARCHITECTURAL

IMPACT. THEY DISCOVER AN EFFICIENT SCHEME IN WHICH, EVEN IF AN ATTACKER

CAN INSPECT A STORED BIT’S VALUE WITH A PROBABILISTIC ERROR OF ONLY 5 PERCENT,

THE SYSTEM CAN PREVENT THAT ADVERSARY FROM LEARNING ANY INFORMATION

ABOUT THE ORIGINAL UNCODED BITS WITH 99.9999999999 PERCENT PROBABILITY.

......Computer architects must bal-
ance performance with all the other design
aspects, including reliability, power consump-
tion, cost, ease of use, and, of course,
security. Just as we’ve developed architecture-
level schemes to help manage circuit-level
problems to achieve reliability (dealing
with soft-error susceptibility and early
wear-out,1-3 for example), we need new
architecture-level schemes to deal with the
circuit-level security problem of informa-
tion leakage through hardware examination.

Underlying many, if not most, modern
security schemes is the idea of a key—a
small set of bits whose secrecy ensures the
overarching policy’s effectiveness. There are
many architecture-level techniques for keep-
ing these bits secret. Processors enforce the
operating system’s memory-access policies,
information-flow-aware hardware can pre-
vent secret data from escaping at runtime,4-8

and many side channels can be mitigated
through randomization or partitioning.9-11

However, providing secrecy becomes even
more challenging when the device in ques-
tion is portable, such as a smart card or a

cellphone, or when the keys are shared across
many different devices, as in many non-
network-based attestation schemes. In these
cases, we must consider that an adversary
might be able to physically dismantle and in-
spect the system, bypassing all of our tradi-
tional security mechanisms.

If the secrets are of sufficient value, a de-
termined attacker can use many intensive
methods to learn these bits from even minute
physical differences imprinted on the chip by
that bit’s storage. With tools available for
rent at any major university or fabrication fa-
cility, a memory array can be carefully sliced
apart with a focused-ion beam and inspected
under an electron microscope. Our goal is to
architect memory structures that present the
same interface as a simple memory, yet are
hardened against these direct and destructive
physical attacks in their most general form. If
an attacker can perfectly deconstruct and
read (with no measurement error) every bit
in the system, we can do little to protect
the secret key. However, the attacker’s role
is not so easy. Often there are errors inherent
to the measurement process, and as these

[3B2-9] mmi2013030048.3d 15/5/013 17:4 Page 48

Timothy Sherwood

University of California,

Santa Barbara

Melissa Chase

Seny Kamara

Andrew Putnam

Daniel Shumow

Microsoft Research

Vinod Vaikuntanathan

University of Toronto

Jonathan Kaveh Valamehr

University of California,

Santa Barbara

..............................................................

48 Published by the IEEE Computer Society 0272-1732/13/$31.00 �c 2013 IEEE



errors are made and some fraction of the bits
are incorrectly identified, the attacker loses
information.

Our core idea is that instead of storing the
secret key in its original form on the chip, we
can encode the keys (or other secret data)
using additional bits, increasing the number
of bits that an attacker must identify to re-
cover the secret key. Ideally, this will force
the attacker to successfully identify a large
number of the encoded bits to be able to
learn even a single bit of information about
the original secret key.

Background and motivation
We begin by discussing our motivation

for investigating how to store secrets on a de-
vice where the attacker has full access. We
also provide some background on memory
remanence attacks and other physical attacks
on cryptography, as well as the scenarios in
which they are problematic in real life, and
a formalization of our threat model.

Physical inspection attacks
Storing a secret in a device when the

attacker has full physical access to that device
is extremely difficult. At a fundamental level,
attacks that attempt to infer a set of bits from
a device can be divided into two classes:
passive attacks, in which the system’s interface
is probed for either timing or electrical differ-
ences, and intrusive attacks, those that
actually breach the package’s boundary,
allowing the attacker to scan, probe, or
alter the physical hardware itself. Although
still a topic of further research, passive attacks
and their countermeasures have been dis-
cussed extensively in prior work. In this arti-
cle, which is based on our ISCA 2012
paper,12 we concern ourselves primarily
with the latter, more intrusive style of
attacks.

Independent of whether active counter-
measures have been applied, we specifically
consider unpowered attacks in which attack-
ers are free to slice, cut, and examine the sil-
icon however they desire. Specifically, in the
threat model we consider, an attacker has
physical access to a dead device on which a
secret key is stored or has been stored. Rather
than select one specific memory technology
and a specific mode of attack, we abstract

this problem to one in which an adversary,
after performing an attack, correctly identi-
fies a fraction p of the bits, and learns
nothing about the remaining 1 � p fraction
of bits. This model fits several device
technologies:

� Antifuse. Antifuses are a nonvolatile
write-once memory formed by creating
an electrical connection through the ap-
plication of high current across a thin
channel. The actual connections are
electrically stable, yet they’re difficult
to examine even under a scanning
electron microscope. Researchers have
primarily analyzed their security prop-
erties within the context of field-
programmable gate array (FPGA)
reverse engineering.13,14

� Eeprom and Flash. Flash memory and
electrically erasable programmable
read-only memory (Eeprom) are similar
in structure, with both storing charges
on floating gates. When Eeprom and
Flash cells are overwritten, some residue
of the previous bits remains within the
substrate as bias, and differences in
the threshold voltage or gate voltage
can be measured to detect a cell’s
state. This effect is particularly notice-
able in infrequently programmed
cells,15 which is likely the case for
cells holding a secret key. Prior work
has shown that this bias can survive
even tens of redundant ‘‘clean-up’’
writes, making complete erasure of the
information difficult within the time
dictated by a countermeasure.16

� SRAM. Even volatile memories are sub-
ject to analysis in many cases. Static
RAM (SRAM), while storing a bit for
even as little as a half a second, can de-
velop tell-tale signs due to differences in
the electromigration at the bit-cell
level.17 Because of this, even volatile
memories that hold secret keys must
be protected.

Although physical analysis gives an
attacker incredible access to the internals of
the system, we believe these analyses cannot
be 100 percent accurate. However, as we
will show in the next section, even if these
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techniques were to be 95 percent accurate, it
is possible to create reasonable architectures
that prevent even a single bit of the key
from leaking.

Architectural goal and attack model
When facing an adversary who might

employ any number of attacks on these
memory technologies and correctly identify
any bits of a secret, we need a hardware
component that will

� act like a standard memory, allowing
random access to the stored keys with
no special restrictions;

� allow an adversary to learn some distri-
bution of bits without giving away any
information about the secret keys; and

� be efficient enough that the end system
can be included in a real design.

Our secret-store memory keeps some
number of keys, each of length k. Each key
is stored in an encoded form that takes
some larger number of bits c ; we’ll call this
the ‘‘encoded key.’’ Attackers examine the
c bits of the encoded key through whatever
methods are at their disposal, and they
make a best guess as to the state of each bit
of the encoded key. The attacker, when dis-
secting and analyzing each bit, has a proba-
bility p of learning the bit’s correct value,
and a probability 1 � p of learning nothing
about the bit. In particular, as a running
example, we will consider the cases where
p ¼ 90 percent, which, by this reasoning,
is at least as strong as saying that the adver-
sary guesses correctly with probability 95 per-
cent and incorrectly with probability
5 percent. In other words, if p ¼ 90 percent,
the adversary will learn the value of 90 per-
cent of the bits, and nothing about the
others. However, the adversary is still free
to guess, and these guesses will be correct
50 percent of the time. Thus p ¼ 90 percent
is the same as 95 percent correct guesses.

In this article, we don’t estimate a reason-
able value for p, but rather present results
and the architectural impact across the spec-
trum of possibilities. We will be conservative
and consider an attack successful if the
attacker can infer anything about the secret,
even a single bit. Although a single-bit

leakage isn’t enough to break any reasonable
cryptographic scheme (because an attacker
could have just tried both possible options
of 0 and 1), if other copies of the key are
known to exist, an attacker might combine
information from many such attacks to re-
duce the keyspace far enough that it can be
searched exhaustively.

Architectures
There are several different architectural

options here, and we begin with the simplest,
and work our way quantitatively toward the
best possible options. We examined four
design options for our architecture: secret
sharing, random-matrix encoding, a hybrid
scheme, or dynamic matrix creation.

Option 1: Apply the idea of secret sharing
The first, and easiest to understand, op-

tion for hiding a bit of information is secret
sharing. A simple and efficient secret sharing
scheme consists of XORing the secret x with
s random bits (x1, . . . , xs), and setting
the shares to be [x1, x2, . . . , xs, xsþ1 ¼ x �
(x1 � x2 � . . .� xs)]. For example, to
share a 0 bit three ways, we first take two
random bits. We then set the third bit
such that the parity of the three bits is 0.
A change (or, measurement error) in any
of the three bits will result in a change
(or, measurement error) in value stored. In
a sense, the fragility of the parity bit used
to catch errors in one scheme is used to
help hide data here.

How do we store a k-bit key using this
method? The simple option is for each indi-
vidual bit of the key to be shared across s þ 1
stored bits, increasing the total number of
bits to be stored per key to c ¼ (s þ 1)k.
To be successful, an attacker must compro-
mise all of the bits of at least one (s þ 1)-
bit share block. The probability of
compromising a share block is now psþ1,
and our attacker has k independent trials
to succeed, yielding a total probability of
success Psucc ¼ 1 � (1 � psþ1)k. Interest-
ingly, there is a steep drop in the probability
of a successful attack as we grow from 40 to
80 shares per bit. Clearly, replicating every
bit in the key by a factor of 80 is a steep
overhead to endure, but as we increase s,
we can drive Psucc arbitrarily close to zero.
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Option 2: Encode with a random matrix
Intuitively, a simple secret-sharing-based

scheme has a large overhead in storage be-
cause we encode each bit separately. This
raises the possibility of encoding all the bits
together using a matrix T and achieving
much better parameters. A coding-based
scheme is a natural extension of the secret
sharing scheme, yet it shares many of its
theoretical properties. At a high level, the
coding-based scheme works as follows. We
will encode the key as s random bits plus k
data bits. To do this, we fix random subsets
T1, T2, . . ., Tk � {1, 2, . . ., s} in advance.
The choice of these subsets doesn’t depend
on the data to be encoded; in fact, in the im-
plementation, they will be chosen at random
once and for all, and stored on chip. To en-
code a sequence of k bits x1, . . ., xk, we
choose s random bits r1, . . ., rs (as before)
and compute the k data bits rsþj for j ¼
1, . . . , k as rsþj ¼ xj � (�i2Tjri). In other
words, we compute the XOR of a subset of
the s random bits and XOR the result to
the bit that we wish to encode. Thus, encod-
ing a string of k bits consists of choosing s
random bits, computing a matrix vector
product of these s bits (written out as a vec-
tor) with a fixed s-by-k matrix, and XORing
the result with the k-bit key to be protected.
A downside of this scheme is that the matrix
T must be chosen at random and must be
stored on chip. However, the storage
required for the matrix can be amortized if
we store a large number of keys, because
we can reuse the same matrix for all the
keys, and T can be completely public!

Option 3: A novel combination
Both the options presented so far—the

secret-sharing-based solution and the coding-
based solution—have pros and cons. Al-
though researchers have proposed both
those schemes for other applications, we
are the first to quantify their actual imple-
mentation overhead and the first to apply
them to the specific problem of inspection
resistance in memory. However, we go be-
yond these basic applications to design a hy-
brid scheme that achieves the best of both
worlds. The idea is to use a code-based secret
sharing scheme with a small matrix, and then
secret share those pre-encoded bits.

To do this, we first encode the key’s indi-
vidual bits using a code-based secret sharing
scheme with a smaller matrix T. Roughly
speaking, the intent is to reduce the attack’s
severity from a per-bit leakage probability
of p to a smaller number p0. We then further
encode the resulting string using the secret-
sharing-based scheme. The upshot is that
the matrix needed for the coding-based
scheme is smaller because it only needs to
be strong enough to reduce the attack’s sever-
ity from p to p0. As Figure 1 shows, the
combined scheme outperforms both the
coding-based and the secret-sharing-based
schemes when the matrix T is stored on
chip. Figure 2 shows how the storage over-
head varies as a function of the key’s length.
Although the increase in storage overhead
with the key length is disturbing, it is pre-
dominantly due to the need to store the
large matrix T, and will be removed by our
improved solution.

Figure 3 shows that the overhead caused
by storing the matrix can be amortized by
the number of keys we store in the system.
This is simply because we can use the
same matrix T to encode many different
keys. Figure 4 shows a plot of the area
required to store the encoded key (together
with the auxiliary information such as the ma-
trix T ) as a function of the adversary’s success
probability. Obviously, if we let the adversary
succeed with probability 1, very little storage
is required. The storage jumps to a certain
number as soon as we demand the adversary’s
success probability to be less than, say, 0.1,
and stays more or less constant from then
on. This phenomenon can be explained by
the (roughly) logarithmic dependency of the
storage on the success probability. In other
words, reading Figure 4 from right to left
roughly gives a logarithmic curve.

Option 4: Dynamic matrix creation
In the last section, we showed a way to

ameliorate the effect of storing the huge ma-
trix T in the coding-based scheme. We now
show a way to eliminate this overhead almost
entirely, using a cryptographic hash function
(such as SHA-2) that’s specifically designed
to produce output that looks random in a
strong sense but which can be generated
deterministically from a very small input.
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In particular, we note that modern crypto-
graphic hash functions are designed to be-
have like truly random functions (in which
each output is chosen independently and
uniformly at random) as much as possible.
In fact, evidence of any nontrivial application
in which a hash function behaved signifi-
cantly differently from a random function

would be considered a major weakness, and
finding such a weakness would be a major
result.

Our approach is to use the SHA-2 family
of hash functions, which consists mainly of
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two functions, SHA-256 and SHA-512
(where the numbers indicate the hash func-
tion’s output length), to dynamically generate
the matrix T. Specifically, we’ll choose a short
random string seed, and compute the ith
column as: SHA2(seed � i � 1) � SHA2
(seed � i � 2) � . . . � SHA2(seed �
i � l ), where l ¼ s/256, seed is a 256-bit
string, seed � i � j is encoded as a 448-bit
string to be input to the SHA-256 hash func-
tion, and � denotes concatenation of strings.

To ground the microarchitectural impact
of this fourth option, consider a key length
k¼ 1,024, and the probability of successfully
attacking a single stored bit p ¼ 90 percent.
This fourth option, outlined in Figure 5,
requires 35 bits of additional storage per
bit of the key. At the 65-nm process node,
the cost of securing a single key using this
method is 0.589 mm2. Storing additional
keys helps amortize the cost of the secure
hash algorithm (SHA) generator and the
computation logic. Storing the 128 keys
requires 6.18 mm2, still well within the
area bounds for embedded and consumer de-
vices. An additional advantage to this
approach is that SHA-2 is widely used, and
optimized hardware implementations are al-
ready available. In particular, most of the
next-generation SHA implementations re-
quire on the order of 20,000 gates to imple-
ment, which is quickly amortized over the
entirety of the key storage architecture.

T o help ground this work in a real-
world context, consider the problem

of networkless attestation for console gam-
ing systems. To help prevent cheating as
well as unauthorized and malicious knock-
offs, a console system might wish to ensure
that it talks only with certified devices.
Well-known cryptographic methods, such
as public key authentication, allow this
process to occur without requiring the
transmission of any secrets. However, each
system must, in some form or another,
physically possess and use that secret. The
problem is that the cost of leaking that key
is now much larger. Once the secret is leaked,
any number of new systems can be created
containing that same key and the scheme is
completely broken. Such ‘‘break-once run-
anywhere’’ attacks provide attractive and

potentially lucrative targets for attackers.
Attackers are thus often willing to bring
highly specialized equipment and training to
bear. Although our approach’s applicability
isn’t limited to such extremely high value
data, it is certainly one motivating instance.

The minute physical differences in the
memory circuitry (caused by wear or by im-
proper or insufficient clearing) and the min-
ute variations used to the store the bits
themselves are a complex new form of infor-
mation leakage, which no previous work has
addressed. Computer architecture has a long
history of being at the forefront of technol-
ogy, helping to bridge the hardware/software
divide. Consider that prior architecture con-
tributions have explored the ability of designs
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to cope with hardware failures, memory hier-
archy errors, and even early wear-out. We
continue this tradition by evaluating a
novel set of hardware methods capable of
abstracting away a new class of problems:
physical memory inspection. Of course, this
isn’t the only way in which the bits might
leak; they might be exposed through timing,
power, software exploits, or electromagnetic
radiation variations in addition to these

more intrusive attacks. Our methods should
be used as part of a comprehensive strategy
to manage these different channels, and al-
though this article concentrates specifically
on special inspection-resistant memories, we
see both our analysis methods and the mem-
ory block as being an important step toward
more general-purpose inspection-resistant
architectures.

Ultimately, we argue that resistance to
physical attacks is a fundamentally new de-
sign constraint for computer architects, and
examining the tradeoffs in this space requires
a truly interdisciplinary approach. There’s no
question that this article relies on crypto-
graphic techniques that are outside the back-
ground of many computer architects, and
one might be tempted to ask if this article’s
contributions are really ‘‘computer architec-
ture.’’ However, although the tools are
new, the goal is old—to create a new hard-
ware abstraction, encapsulate complexity,
and provide a building block for new soft-
ware and systems to grow around. M I CR O
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