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RACE LOGIC: ABUSING HARDWARE
RACE CONDITIONS TO PERFORM

USEFUL COMPUTATION
.................................................................................................................................................................................................................

THIS ARTICLE PROPOSES A COMPUTING APPROACH CALLED RACE LOGIC, IN WHICH

INFORMATION IS REPRESENTED AS A TIMING DELAY AND COMPUTATIONS ARE BASED

ON THE OBSERVATION OF THE RELATIVE PROPAGATION TIMES OF SIGNALS INJECTED INTO

THE CIRCUIT. IN THIS APPROACH, MANY FUNDAMENTAL INFORMATION-PROCESSING

OPERATIONS CAN BE EXPRESSED EFFICIENTLY THROUGH THE MANIPULATION OF THE DELAY

CHAINING, WHICH RESULTS IN SUPERIOR LATENCY, THROUGHPUT, AND ENERGY

EFFICIENCY.

......As we move toward the end of
Dennard scaling, process-technology-based
power and performance enhancements are
on the decline. Although transistor budgets
are ample, architects are now faced with the
problem1 of not being able to power all these
transistors simultaneously. This so-called
dark silicon problem is pushing architecture
into a new era in which application-specific
accelerator cores are on the rise and generality
is being traded off for significant improve-
ments in performance and energy. Comput-
ing devices that we interact with daily, from
our phones to our laptops, to our datacenter
processors, now carry significant application-
targeted hardware functionality. When relax-
ing the constraints of general purposeness,
we begin to see a larger array of solutions
opening up. At one end of the spectrum,
application customization can rely solely on
traditional encoding techniques, as is the case

with existing field-programmable gate array
(FPGA) supercomputers designed to acceler-
ate problems in bioinformatics.2 Fully cus-
tomized circuits are also very common—for
example, to speed up audio and image proc-
essing.3 At the other end of the spectrum are
somewhat exotic fully customized systems
that exploit novel physics and are based on
nontraditional technologies such as the D-
Wave computer, which uses quantum
annealing phenomena to solve optimization
problems.4

We propose a novel computing approach,
called race logic, which uses a new data repre-
sentation to accelerate a broad class of opti-
mization problems, such as those solved by
dynamic programming algorithms. The core
idea of race logic is to deliberately engineer
race conditions in a circuit to perform useful
computation. Information is represented as a
timing delay, rather than being represented as
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logic levels (as in conventional logic). Com-
putations can then be based on the observa-
tion of the relative propagation times of
signals injected into a configurable circuit
(that is, the outcome of races through the
circuit).

In this approach, the set of arithmetic and
logic operations that can be most efficiently
expressed changes, leading to new tradeoffs
and architectures. Through the manipulation
of the natural delay chaining inherent to digi-
tal designs, the basic operations of MIN,
MAX, and ADD-BY-CONSTANT can be
implemented in a way that results in superior
latency, throughput, and energy efficiency for
certain classes of problems. The big questions
are then how is it that these new operations
can be implemented and composed, and,
perhaps more importantly, is it ever really
possible for these compositions to beat a
highly optimized traditional design?

With these questions in mind, we imple-
mented, with conventional CMOS technol-
ogy, a synchronous version of race logic and
compared it to a state-of-the-art systolic array
implementation. To make the evaluation of
this idea more concrete, we examined race
logic performance using the example of a
well-studied DNA global sequence alignment
task, which can be extended to similar graph
traversal problems.

Dynamic programming, graph traversal,
and sequence alignment

A common problem in bioinformatics is
to estimate the similarity between DNA or
protein sequences. Needleman and Wunsch’s
approach may be the easiest to understand5;
it involves reducing the string similarity
problem to either a shortest or longest path
problem on a directed acyclic graph (DAG).
The notion of similarity between DNA
sequences is governed by a metric known as
the edit distance, which is a measure of the
number of insertion, deletion, or substitution
operations required to convert one string to
another. Each of these edit operations is
weighted using a score matrix, such that simi-
larity is rewarded and dissimilarity is pun-
ished (for shortest-path formulation), or vice
versa (for longest-path formulation). An edit
graph is constructed (see Figure 1g) that is a

2D representation of all the possible align-
ments between the two strings using the score
matrix values (see Figure 2) as their edge
weights. Any particular alignment is simply a
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Figure 1. Sequence alignment problem. (a, d) Two possible alignments

between strings P and Q and (b, e) their corresponding alignment matrixes.

(c, f) The scores at each node for the particular alignment using the score

matrix from Figure 2b. (g) The edit graph.
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path in this graph where every edge corre-
sponds to an edit operation. If similarities
were rewarded with a lower edge score than
dissimilarities, the shortest path on the graph
would yield the best possible alignment.
Figures 1a and 1d depict two such align-
ments, whereas the numbers in each index in
Figures 1b and 1e represent the number of
symbols encountered until that index. Inter-
estingly, these numbers (also called the
alignment matrix), when considered as coor-
dinates, represent the nodes on the edit graph
that the particular alignment path takes. Fig-
ures 1c and 1f show each node’s cores for the
given alignments, using the score matrix
from Figure 2b.

Not only is the edit graph representation a
handy tool for visualizing paths and their cor-
responding alignments, it is also closely tied
to the concept of dynamic programming.6 In
particular, dynamic programming relies on
solving progressively larger subproblems,
starting with a set of small problems and
using the results of previous calculations for

each new step. Each node on the edit graph
calculates the score corresponding to the opti-
mal solution of the subproblem—that is,
either the shortest or longest path (depending
upon the score matrix)—from the root node
to itself. Adjacent nodes use these optimal sol-
utions to calculate their own score as the com-
putation wave proceeds along the diagonal.
Because the edit graph itself comprises all pos-
sible alignments represented as paths from the
root node to the end node, it guarantees
searching of the entire space for the most opti-
mal alignment between the given strings.

Although the shortest-path representation is
a good way to think about sequence alignment,
prior hardware implementations of sequence
alignment use systolic arrays or FPGAs to per-
form the dynamic programming task. The score
at any node of a graph is computed from the
MIN over the neighbor cells (topologically
north, west, and northwest). Because the score is
cumulative (and string-length dependent), any
application-specific integrated circuit (ASIC)
implementation would then need processing
elements (PEs) that can store this worst-case
cumulative score and lead to large, string-
length-dependent sizes. However, the best
approaches use clever arithmetic tricks to avoid
storing the full precision score matrix and maxi-
mally leverage already completed operations.
We compared our race logic implementation
against a highly optimized systolic array solution
by Lipton and Lopresti.7 They very cleverly
mitigated area scaling issues by using maxi-
mum-score-dependent modular arithmetic to
limit the number of bits of data that must be
stored and shared between processing elements
and exploit the antidiagonal independence of
elements in the edit graph for fine-grained paral-
lelism. Moreover, they also reduced interconnect
overhead by developing a tight encoding scheme
that interleaves the alphabet and scores.

In contrast to these related works, our
method works by representing the edit graph
as a set of logical race conditions in a circuit.
Because these race conditions are purposely
introduced, they are not nondeterministic in
the circuit sense. Instead, a pair of input
sequences to the system will generate a care-
fully crafted and controlled set of hardware
paths with well-defined timing delays. A ris-
ing signal navigates this mesh of timing
delays, and the computation performed is
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directly affected by the result of the differen-
ces in the timing of different paths. The sig-
nal propagation time affects the final result of
the function, and the effect of those timing
differences is unknown ahead of time. How-
ever, unlike almost every other case where
these two properties hold, the way those races
are resolved tells us something important
about the data applied.

Race logic
In the context of the considered opera-

tions on DAGs—that is, the edit graphs—
the score at a node is now equivalent to the
time it takes for the signal (which is typically
injected at the root node) to propagate down
the graph to that node in question. We
implement this by converting a graph’s edge
weights to the corresponding timing delays
and replacing nodes with either AND or OR
gates for MAX and MIN score functions,
respectively.

To explain how score functions (Figure
2c) are implemented with race logic, consider
the job of one node in the edit graph. It must
choose the MIN of multiple different inputs,
where each of those inputs is penalized by a
constant value. If values are represented by a
delay from a reference point t (the start of the
computation), we can add a constant c to a
value by simply delaying it by c time steps.
More concretely, a score of n is represented
by a Boolean signal 1 appearing at the output
of the node n unit delays after t. Further-
more, when a signal is encoded in time, the
MIN operation on a node in the graph
receiving multiple inputs is equivalent to
passing along the first arriving 1, which can
be implemented with a simple OR gate. Sim-
ilarly, as the AND gate passes the last arriving
1, the AND gate performs the MAX opera-
tion. We therefore solve the shortest/longest
path DAG problem by measuring the time
to propagate the signal from the root node(s)
to the output node(s) for a graph, in which
all nodes are replaced with OR/AND gates
and the edges are replaced with the corre-
sponding delays.

Figure 3a shows an example of a particular
DAG, with two input nodes and one output
node converted to AND-type (Figure 3b)
and OR-type (Figure 3c) race logic circuits.

For synchronous race logic, the unit delay is
assumed to be equal to one clock cycle so
that D flip-flop (DFF) gates implement delay
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Figure 3. Various race logic implementations. (a) A DAG with weighted

edges, and its corresponding synchronous race logic implementation using

(b) AND and (c) OR types for longest and shortest path computation,

respectively. (d) Example of asynchronous race logic implemented with

resistive switching devices.
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elements. In particular, DFFs can be shift-
chained when the edge weight is small, or,
alternatively, an encoded configuration can
be used to implement larger weights. The
edit graph can now be thought of as a very
deep pipeline with competing paths to the

final node from the root node, with all the
flip-flops initialized to 0.

To initiate a race computation, both for
the OR and AND types of race logic, the
input nodes are given a steady value of 1.
With every new clock cycle, the 1 signal
propagates down the edges of the graph until
it reaches another node, where it gets delayed
until the other inputs of the node are also 1
in the case of AND-type race logic, or until it
just propagates through to the next edge in
the case of OR-type race logic. For the spe-
cific DAG shown in Figure 3a, it takes two
cycles for the 1 signal to propagate to the out-
put node, and we can easily verify that this
corresponds to the shortest path. Note that
the shortest/longest path value can be con-
verted back to the common representation
with a simple counter.

For example, Figure 4 shows an OR-type
synchronous race logic implementation of
the Needleman-Wunsch algorithm for DNA
global sequence alignment with the score
matrix from Figure 2b. Here, the signal

Mi;j ¼
1;Qi ¼ Pj

0;Qi 6¼ Pj

�

is a matching condition between the corre-
sponding pair of letters of two DNA strings
that are being compared, and it is assumed to
be implemented with an XNOR gate. As Fig-
ure 4 shows, the structure is very uniform
and is obtained via the replication of unit cells
hosting OR, DFF, and AND gates. In order
to simplify the circuitry, we slightly modify
the scoring matrix by replacing weights for
mismatches from 2 to infinity. It is straight-
forward to check that the original and modi-
fied scoring matrixes are equivalent and thus
result in the same score values for the nodes
of the edit graph. Figure 4c demonstrates
how the signal injected at the input node
propagates through the edit graph for partic-
ular strings of DNA, which are similar to the
previously considered example (Figure 1). It
is easy to check that propagation delay corre-
sponds to the best alignment score between
these two strings.

Case study
To ensure that the comparison was fair,

we implemented the Lipton and Lopresti
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architecture using a recent standard cell
technology and included all of the area opti-
mizations, score matrices, and encoding
schemes that were implemented in the origi-
nal architecture. We used a half-micron
process with multiple standard cell sets—in
particular, those from AMI Semiconductor
(AMIS) and Oklahoma State University
(OSU)—and area numbers were reported
from a synthesized Verilog implementation
of both architectures. We obtained power
and timing information using the Synopsys
Primetime tool using a representative set of
input vectors. Functional switching activity
of each net is generated from these input
vectors and is used as toggle information
with 100 percent coverage (confidence met-
ric) to estimate power values. Figure 5 shows
how the latency, area, energy per computa-
tion, and throughput scales with different
string length N, using the score matrix
shown in Figure 2b.

Results and analytical estimates
Among the simulated performance met-

rics, area and latency scaling with string
length are the easiest to understand. The area
of the race logic scales quadratically with N,
whereas the systolic array scales linearly. The
crossover points in Figures 5a and 5d are due
to the simplicity of the race logic unit cell ver-
sus that of the complex PE of the systolic
array. The latency of both the systolic array
and the race logic scales linearly with N, as
shown in Figures 5b and 5e. Although the
systolic array has a constant latency of 2N – 1
cycles, the latency of the race logic depends
on the degree of alignment, with N – 1 and
2N – 1 cycle latency for perfectly aligned and
completely misaligned cases, respectively.

Derivation of energy and power requires
more in-depth analysis. Let’s assume that Cclk

corresponds to the capacitances of DFFs that
are clocked every cycle, and thus have an
activity factor of 1, whereas the Cnon-clk
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corresponds to all other capacitances that
have data-dependent activity factors. For
both the best-case and worst-case alignment
scenarios, all the nonclocked capacitances in
the entire architecture are charged once per
comparison. You can clearly see this in Figure
6 by following the wavefront. Because the
power dissipated is mostly dynamic, it can be
written as

P ¼ CclkV 2
DDN 2f

þ Cnon�clkV 2
DDN 2af ð1Þ

where a is the data-dependent activity factor,
VDD is the voltage supply, and f is the fre-
quency of operation. For the systolic array,
the power consumption per PE is larger
because of increased complexity. However,
owing to the linear number of PEs, it scales
linearly with array size.

We can calculate the energy consumed per
comparison by multiplying power by the
time taken per operation. Therefore, energy
dissipated per comparison for the best-case
and worst-cases alignments are

Ebest ¼ CclkV 2
DDN 3

þ ðCnon�clk � CclkÞV 2
DDN 2 ð2aÞ

and

Eworst ¼ 2CclkV 2
DDN 3

þ ðCnon�clk � 2CclkÞV 2
DDN 2:ð2bÞ

The systolic array implementation with
both linear power and latency scaling results
in a square-law energy scaling, but with sub-
stantially larger constants. Figures 5e and 5f
show the crossover points for which the
quadratic energy scaling of the systolic array
outperforms the cubic scaling of synchronous
race logic.

Equations 1, 2a, and 2b define the scaling
law of energy and power with respect to N.
Because Cclk and Cnon-clk cannot be readily
estimated, we extract these parameters from
fitting experimental data. The resulting equa-
tions from fitting for both the AMIS and
OSU standard cell libraries are

EAMIS;best ¼ 2:65N 3 þ 6:41N 2;

EAMIS;worst ¼ 5:30N 3 þ 3:76N 2;

EOSU;best ¼ 1:05N 3 þ 5:91N 2; and

EOSU;worst ¼ 2:10N 3 þ 4:86N 2;

where the units of energy are in picojoules.

Energy-optimized architecture
One of the drawbacks of the considered

synchronous race logic implementation is its
third-order energy scaling with string length
N. Equations 2a and 2b reveal that the
clocked capacitance is responsible for this
cubic behavior because this capacitance,
which scales quadratically with string length,
is also clocked every cycle. Clock-gating strat-
egies can help alleviate this issue.

The key insight that enables clock gating
is that, in race logic, a computation wave
flows though the architecture, beginning at
the input node and finally arriving at the out-
put. Regions of the fabric that are far from
this wavefront are not participating in com-
putation and hence do not need to be
clocked. By employing a data-dependent
clock-gating strategy, we can turn off unused
regions of the chip to save power. Owing to
the regular structure of the race logic fabric,
we can design the clock network as an H-tree
with its granularity as a key parameter.

Consider a 4 � 4 group of cells (multicell
region) as shown enclosed in light gray in Fig-
ure 7a. We can think of this multicell region
as the smallest group of cells that can be gated
at once. At a certain time step in the circuit
operation, if the gray cells have the Boolean
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value 1, then the wavefront has crossed this
multicell region, and their values are not
going to change in this operation. Also, if the
cells that are in black have the Boolean value
0, it means that the wavefront has not yet
approached this multicell region. For both
cases, the multicell region shown in Figure 7a
doesn’t need to be clocked. Deactivating the
multicell regions when they are not required
helps to significantly reduce energy consump-
tion. Naturally, very fine granularity of a mul-
ticell region might not be an optimal choice,
because many multicell regions would require
clocking every cycle. Alternatively, very coarse
granularity could also result in limited energy
savings, because one multicell region would
end up being clocked for a long time.

To calculate the optimal granularity, we
introduce m, which is the side length of one
multicell region as shown in Figure 7a.
Now, the worst-case energy dissipation for
the clocked part of the architecture is as
follows:

Ew ¼ CclkV 2
DDN 2 2m� 2ð Þ

þ CgateV
2

DD

N 2

m2
2N � 2ð Þ;

where Cgate is the actual capacitance, (N/m)2 is
the number of multicell regions, and 2N – 2
is the total number of cycles. In particular, in
Equation 3, the first term represents the entire
clocked capacitance being activated only for
2m – 2 cycles (that is, the worst-case number
of clock cycles for which one multicell region
remains active), and the second term repre-
sents the gating capacitance that the clock dis-
tribution network still has to clock. Solving

for minimum energy, the optimum granular-
ity is

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cgate N � 1ð Þ

Cclk

3

s
: ð3Þ

By using a novel information representa-
tion, computation is simplified and spread
out in area, which enables gating strategies to
pull energy overheads even lower. Despite
this area tradeoff, the throughput per area of
the best-case scenario of race logic is consid-
erably better than that of the systolic array for
N< 70, as Figure 8a shows.

To be clear, we do not believe race logic is
any sort of replacement for traditional

design practices in general-purpose logic.
Rather, it is a new type of data encoding and
representation with the opportunity to help
improve energy efficiency or speedup for spe-
cific information-processing algorithms. Just
as multiplication and division operations,
which traditionally require complex hard-
ware for binary-encoding schemes, can be
simplified to addition and subtraction with
logarithmic number systems, a delay encod-
ing transforms other problems, such as MIN-
MAX, into a far easier compute-space. Of
course, in both examples there will be many
other relationships that are then harder to
calculate.

At this point, we have proof that some
useful computations can be done in this new
space, but many open questions remain.
What other sorts of computations can be effi-
ciently solved with races? What are the limits
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to race logic’s expressiveness? Are other tim-
ing-based encoding schemes possible? What
are the best ways to efficiently implement the
expressive and programmable delay ele-
ments? Although these questions and many
others remain, we at least know now that
compositions of the min, max, and add-by-

constant primitives provided by this work are
sufficient (with the proper routing of values)
to solve an important class of bioinformatics
similarity problems.

With the field of personalized medicine set-
ting the goal of complete genome sequencing
for $1,000, there has been renewed research
interest in, and start-up activity around, this
aggressive goal. The ideal machine will need to
be fast, small, and affordable—goals that are as
much limited by computation as by bioengin-
eering. Any DNA assembly task, whether it is
reference-assisted whole genome sequencing
or de-novo sequencing, requires the ability to
(at very high throughputs) compare strings to
one another. Race logic seems to be especially
suited for the DNA sequence alignment prob-
lem as a similarity threshold is defined, below
which strings are assumed to be similar by
chance and not due to genuine alignment.8

This means that in our OR-type race logic
implementation, a smaller score can be attrib-
uted to a higher level of similarity, and a
threshold score can be decided beyond which
the architecture will not look for similarity but
will move on to the next pattern (a fact that
we did not exploit in our results). This means
that with an increasing dynamic range, the
best-case (rather than worst-case) paths
become more representative of a typical situa-
tion. Furthermore, the DNA string compari-
son can be extended to its more complex
cousin, protein analysis, which comes with a
more complex score matrix. Moreover, even
outside the biological realm, a host of applica-
tions use dynamic-programming-like solu-
tions, such as dynamic time warping, which is
used in speech, and connected digit recogni-
tion systems, which could serve as direct appli-
cations of this work.

Finally, the most optimal implementation
of race logic might be asynchronous and in
the analog domain. Most important, the
asynchronous race logic does not have a clock
network, which is the reason for third-order
energy scaling with N. This is highlighted by
clockless estimates in Figures 5c, 5f, 8b, and
8c. In fact, we can observe that optimized
gated design is a step in that direction. More-
over, resistive switching devices can be used
to implement configurable edge weights (see
Figure 3d),9 which would provide increased
advantages in area and energy.
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Figure 8. Simulation results. (a) Throughput

per unit area and (b) power density as a

function of string length N. (c) Energy-delay

scatter plot for N¼ 30 for race logic and the

Lipton and Lopresti systolic array, for the

AMIS standard cell library. Black lines on

panel c represent constant energy-delay

curves.
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As our field searches for ways to continue
to turn transistors into value without having
to toggle those transistors and have them
consume power, race logic points in an inter-
esting and little-explored new direction with
the potential to significantly outperform tra-
ditional designs.
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