

THEME ARTICLE: Top Picks

Architectural Risk

Designing a system involves taking on risk that a

design will fail to meet its performance goals. While

risk assessment and management are typically

treated as independent to questions of performance,

they are more tightly linked than one might expect. A “risk-minimizing” and

“performance-optimizing” design might not be the same, and new techniques to help

make smarter choices between the two are needed. Surprisingly, even simple

performance/risk tradeoffs are nearly impossible to reason about with intuition alone.

Computer architecture has always been governed by a combination of physical laws, human cre-
ativity, and economic realities. The decision to invest the engineering hours, the design and test
infrastructure, and the initial fabrication costs into a new design are never taken lightly. How-
ever, the lack of a clear forecast for both new technologies and new application domains means
that this investment now involves significant new risks. A shifting application landscape, the
challenges of continued transistor scaling, and the emergence of new chip technologies, new
memory technologies, and new computing devices and paradigms1-3 add up to a computing land-
scape wrought with uncertainty.

The true risks a company takes on when attempting to bring a new architecture to market are
complex and varied. Architectural risk, intuitively, is the degree to which the performance of a
design is fragile in the face of unknowns. In many industrial settings, high-level architectural de-
sign decisions are made at the level of spreadsheets and other high-level analytical models or
data points drawn from experience. Unlike in software,4 operating systems,5 and device model-
ing,6 most do not consider the uncertainty in the assumptions being made nor the fragility of the
decisions with respect to those uncertainties. Here, we concentrate on such analytical models of
architecture.

While it would be wonderful if we could gather highly detailed data about each and every uncer-
tainty, the reality is that such data is often highly sensitive and very hard to come by. We de-
scribe a technique that can be used (even assuming no a priori knowledge) in practice to
effectively estimate a host of established architecturally relevant distributions from limited data
points for the purpose of quantifying and exploring the impact of a varying amount of uncer-
tainty in the system.

More importantly, we show how even seemingly straightforward questions such as core selec-
tion can lead to some surprising new interactions when uncertainty is taken into consideration.
Being “risk-unaware” can lead you to decisions that not only have less desirable distributions
(such as with a tail of potentially really bad designs) but also can be strictly sub-optimal even
when only considering expected (average-case) performance.

Weilong Cui and Timothy
Sherwood
University of California,
Santa Barbara

116
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEMay/June 2018

 IEEE MICRO

DEFINING ARCHITECTURE RISK
When attempting to gain an understanding of risk, it is easiest to start with discrete events and
build from our intuition for finances. Imagine comparing two portfolios, P1 and P2. Under P1,
we have two possible outcomes: 75 percent of the time, we get a 3X return, while 25 percent of
the time, we get a 1X loss. The expected return (when doing the weighted average) is 2X. Com-
pare that to P2 where 50 percent of the time, we get a 2X return, and 50 percent of the time, we
get a 1.5X return. The expected value of P2 is 1.75X and clearly less than that of P1. If one just
wants to maximize expected return, P1 is the way to go. But if it is your entire life savings, of
course everyone will pick P2 because, in reality, it is a far worse outcome to lose all your money
than a simple “-1” multiplier would indicate. While we still care about expected value, it must be
balanced against risk—the sum of “badness” that comes from bad outcomes. Therefore, to quan-
tify risk, we must assign a “badness” function over the outcomes and take the “expected bad-
ness” into account. For a portfolio, we might assign one based on the client losing money (for
example, the square of the total loss). In the example above, the risk, under such a metric, would
be 0.25 for P1 and 0.0 for P2. Thus, intuitively, risk is the impact of some uncertain event
weighed by its probability of occurring.7

In the performance space, we too have a risk to manage: the risk of failing to meet our perfor-
mance objective. Just like in the financial model where it is bad for someone to lose money but
really bad to lose a lot of money, we apply a function over the extent to which performance
failed to meet the objective as our metric of risk. Here we can say that risk is the impact (such as
the negative effect of failing to hit a performance target) of some uncertainty (such as technical
unknowns relating to performance) weighted by its probability. We then need to consider this
risk in concert with expected performance. Of course, real systems have far more than two or
three possible “outcomes” and are instead governed by a distribution of possibilities, but the ap-
proaches are identical in the limit. While we have concentrated on a more informal description of
risk here, in our recent MICRO conference article, we present a more careful and complete for-
malism of architectural risk.8 Figure 1 captures this intuition graphically.

Figure 1. High-level overview of the relationship between uncertainty and risk.

A Taxonomy of Uncertainty Sources
Computer architectures are exposed to at least three major sources of uncertainties throughout
the system stacks: projection uncertainty, process uncertainty, and design uncertainty. Note that
we do not consider model inaccuracy as uncertainty in this work (see the “Uncertainty versus
Inaccuracy” sidebar).

Projection uncertainty
Projection uncertainty comes from assumptions about the future. At the application level, a sys-
tem design might target a specific set of applications, which might change based on our under-
standing of the problem or new optimization techniques. We often implicitly estimate future
workload behavior with measurements of existing workloads. At the device level, systems might
target underlying technologies still working their way out of the research labs. The performance
of these future technologies is uncertain by nature.

117May/June 2018 www.computer.org/micro

 TOP PICKS

Process uncertainty
Process uncertainty comes from the manufacturing process itself. While semiconductor manufac-
turing is an incredibly precise process, when the probability of any fault is integrated over bil-
lions of transistors, we are left with a distribution of devices. Some will work exceedingly well,
others will underperform, while still others will fail to work at all.

Design uncertainty
Design uncertainty comes from the hardware design process itself. Components (such as cores
and accelerators) with unresolved critical errors or that introduce significant security vulnerabili-
ties might be prevented from being accessible in an initial rollout of a product. This class of un-
certainty is a growing concern in the more heterogeneous and accelerator-dominated
architectural design regime we are now faced with, and mechanisms for “partitioning out” fea-
tures is an increasingly common practice.

QUANTIFYING ARCHITECTURAL RISK
The interactions of different uncertainties, as we show later, quickly become impossible to intuit
or estimate using “back-of-the-envelope” calculation. We combine bootstrapping methods, sym-
bolic algebraic manipulation, and Monte Carlo simulations to automate the quantification. At a
high level, if the architecture model can be described as a set of mutually dependent closed-form
relations and the uncertainty as a large set of samples or sampling functions, our framework can
then construct uncertainty models, propagate such uncertainties through the system model, and
calculate architectural risk automatically.

Uncertainty Modeling
Given a few data points (drawn from the hidden ground truth distribution governing the uncer-
tainty), we first test whether the dataset can be transformed to normality through the Box-Cox
test (Step 1 in Figure 2). If it cannot pass the test (a rare case in practice), we apply kernel den-
sity estimation (KDE) methods directly to the dataset. These methods find a best-fit non-para-
metric distribution (Step 2) and use its sampling function to facilitate uncertainty propagation.
Otherwise, we can transform the dataset to normality using Box-Cox transformation (Step 3), fit
a Gaussian distribution in the transformed domain (Step 4), re-sample/bootstrap (Step 5), and
back-transform the samples to the original domain and reconstruct the distribution (Step 6) to
approximate the hidden ground truth. Although not as accurate as the best-fit non-parametric
KDE, such a method enables us to hand-tune the desired uncertainty level from each source and
hence be able to explore the trend as input uncertainties scale. Figure 2 highlights this process
with a simple running example of samples from a lognormal distribution.

Uncertainty Propagation
In Figure 3, we present an overview with a simple example of how the front-end modeling and
symbolic execution works. System modeling builds a set of mutually dependent equations de-
scribing the high-level performance relations of the system (Step 1), which are then passed to a
symbolic execution engine like SymPy. The result is a set of symbolic solutions for each (Step
2), which are then converted into lambda functions (Step 3). At the end of this process, we have
a set of callable functions that are then provided to the back-end for numerical computation.

Figure 4 shows the back-end uncertainty injection and propagation process. Given the set of
functions and uncertainty models, each uncertain variable gets evaluated first if there are no un-
certain variables on the right side of their solutions (Step 1). The values of certain inputs (usually
architecture parameters), c and x in this case, should be provided by the system designer. The
framework then generates distributions for all the uncertain variables (Step 2) and inserts them
into the corresponding lambda (Step 3). Each function is then evaluated using Monte Carlo sim-
ulation (Step 4). The result of the Monte Carlo simulation is a set of samples for each responsive

118May/June 2018 www.computer.org/micro

 IEEE MICRO

variable in the system. We then re-construct a distribution from the propagated samples (Step 5).
Finally, we calculate risk based on the distribution of the responsive variable and the risk func-
tion provided (Step 6).

Figure 2. Uncertainty modeling. Depending on the result of the Box-Cox test, we can either fit a
non-parametric distribution using KDE or fit a parametric model through Box-Cox transformation.
Both forms can facilitate uncertainty propagation by the back-end.

Figure 3: Front-end workflow for automatic risk quantification.

119May/June 2018 www.computer.org/micro

 TOP PICKS

Figure 4: Back-end workflow for automatic risk quantification.

DESIGN SPACE EXPLORATION OF CHIP
MULTIPROCESSOR (CMP) CORE SELECTION
Using an extension of the classic Hill and Marty model,9 we demonstrate how performance and
risk interrelate and can even be co-managed. The design question is, essentially: What cores and
how many of them should we put on a CMP in the face of uncertainties? We bound the design
space to populate by constraining the total chip size (or resources) to 256 units and consider the
full spectrum of designs (rather than just one big core coupled with many tiny cores). To high-
light the insights from this study, we use an application with relatively low parallelism and high
communication overhead, which we refer to as LPHC.

Closed-Form System Model
The full closed-form system model uses the following equations:

1. 1

seq par

Speedup
T T

=
+

2. 1 core
seq

seq

f c N
T

P
− + ×=

3. par
par

f
T

P
=

4. { }max 0
i iseq core coreP P N= >

5.
_ i ipar core corei core types

P N P
∈

= ×

120May/June 2018 www.computer.org/micro

 IEEE MICRO

6.
_ icore corei core types

N N
∈

=

7.
i icore coreP A=

8.
_ i itotal core corei core types

A N A
∈

= ×

The design problem of core selection translates into deciding values for
icoreP and

icoreN under

constraints. In this model, one chooses the best-performing core design to execute the serial code
(Equation 4) and uses the aggregated performance of all cores to execute the parallel code (Equa-
tion 5). Pollack's rule is used to model core performance as a function of resources consumed
(Equation 7). Designs are bounded by the total area/resource available on chip (Equation 8). In
addition to these classic assumptions, we also take communication overhead among different
cores into account, denoted as c in Equation 2, which is some fraction of the sequential work-
load. The amount of communication overhead is proportional to the total number of cores on
chip (Equation 6) to capture the overhead introduced along with parallelization.

Hidden Ground Truth Uncertainty Models
There are five types of uncertainties that might be considered in the above system. Uncertainties
in target application behavior impact f and c. Uncertainties in process/manufacturing can affect
both

icoreP (different core instances might end up with varying performance properties due to in-
tra-die variation) and

icoreN (due to fabrication defects impacting yield). Uncertainties in design
might also have an effect on

icoreP in that, upon a design bug or failure, cores of that design

might not work at all.

By pulling from literature10-12 and by their physical definitions (we simplify design uncertainty
to a 0/1 case, or a Bernoulli distribution), we are able to construct the hidden ground truth distri-
butions that govern these uncertainties:

•
. . (,),

i i d Binomial M p
f c

M

• (,)
i icore i coreN Binomial N yield

• () (,)
icoreP Bernoulli p LogNormal μ σ×

• (1)i

i

core
core

d A
yield α

α
−×

= +

Note that M is set to meet the level of uncertainty we desire in simulation, while Ni is the de-
signed number of corei. Input uncertainty (standard deviation of the governing distributions) is
set to x , where is the certain value (if you are risk-unware), and we hand-tune the uncer-
tainty level by varying . In our evaluation, we put ourselves in the designers’ shoes by using
only a handful of samples from such distributions but no knowledge of the equations themselves.

Results and Discussion

Uncertainty propagation
Figure 5 presents the propagated uncertainty and its impact on expected performance. We can
tell that the propagated uncertainty is not additive, nor is its impact on the expected system per-
formance. In fact, the expected performance is not even monotonic, in this case. This is mainly
because, unlike risk (which we discuss later), uncertainty has a two-sided impact on perfor-
mance: The system might underperform in some cases but can outperform in others. The im-
portant message is that uncertainties propagate through the model with non-intuitive interaction,
and the resulting performance distribution is usually beyond what a simple “back-of-the-enve-
lope” estimation can reveal.

121May/June 2018 www.computer.org/micro

 TOP PICKS

Figure 5. Expected performance and propagated uncertainties at different input uncertainty level
for LPHC application. Three topologies, denoted as (core_number x core_size), are shown here.

Tradeoff space and impact on design
Figure 6 shows the performance-risk space for all configurations. Each configuration is merely a
point in this new space, and the conventional performance-only optimal design is often not even
on the Pareto curve. Another important message is that there is this new tradeoff space between
expected performance and architectural risk and that even when the architectural decisions being
evaluated are as simple as “what is the distribution of core sizes that should be used,” a signifi-
cant amount of risk can be mitigated with very modest moves away from the design that is abso-
lutely optimal for nominal performance.

Fundamental trends in core configurations
In terms of what core configurations are favored, as shown in Figure 7, if we consider applica-
tion uncertainty alone, when it gets larger, more asymmetric configurations are generally fa-
vored. This trend results from the asymmetric impact uncertainty has on performance (it can
either lead to worse performance or, sometimes, better). A large core is needed to compensate
the performance loss due to a lower f or higher c, while the herd of small cores are better-per-
forming than a distribution of heterogeneous cores for parallel execution. However, when archi-
tecture uncertainty gets larger, we can see that more symmetric configurations are preferred.
Mid-sized cores are chosen because the performances of cores have variations and a mid-sized
core can step in during serial execution to compensate the performance loss due to a lower-per-
forming large core. Another reason is that multiple cores of each type are chosen to fight the in-
tra-die process variation, leading to fewer core types on chip because of total area/resource
constraint. These two counter-directional trends are the main reasons why the design space is
very irregular and complicated.

Architectural risk to financial risk
Using the publicly available Intel 2017 CPU price list as the risk function (architectural risk, in
this case, measures the dollar value lost because of underperformance), we show in Figure 8 that

122May/June 2018 www.computer.org/micro

 IEEE MICRO

being risk-aware and choosing a different design than the conventional performance-only opti-
mal option recovers more than $40 per chip even with a relatively small amount of input uncer-
tainties.

Figure 6. Example tradeoff space between performance-optimal and risk-optimal design. Each
point in the space is a performance distribution of a certain design (core-selection) at some input
uncertainty level (denoted as a tuple of (_app, _arch)) with the LPHC application. Performance is
normalized to that of the conventional case (risk-oblivious, performance-optimal design). Risk is
calculated using a simple quadratic cost function (to penalize the far-left tail) and is normalized to
that of the performance-optimal design at each input uncertainty level.

Figure 7. Core configurations of performance-optimal designs for LPHC. As application uncertainty
grows, more asymmetric configurations are preferred, while as architecture uncertainty grows,
more symmetric configurations are generally more favored.

Figure 8. Binning of design results under uncertainties. A price binning is laid on top of the
performance distribution derived from each design with LPHC application at an input uncertainty
level of _app = _arch = 0.2.

123May/June 2018 www.computer.org/micro

 TOP PICKS

CONCLUSION
Dealing quantitatively with uncertainty at early design cycles and the risk it creates requires new
concepts and tools. The goal of this new line of work is to promote a new first-order design con-
cern (architectural risk) and to provide a systematic framework to quantify such risks, with the
aim of helping find designs that are more robust to the impacts of uncertainty than performance-
only optimal designs while still maintaining very strong performance in the common case. We
already consider risk in practice today, as it has become a more and more common practice to
“fuse out” features of the chip in case the new components impact performance negatively. As
we integrate more and more heterogeneous systems, the options available to us grow.

As this growth happens, both in scale and complexity, we will be forced away from highly de-
tailed cycle-accurate simulations to higher-level models to cover a large design space and ex-
plore the fundamental tradeoffs. The most well-studied heterogeneous core selection problem of
Hill and Marty serves as an example of this and shows how considering architectural risk and
quantifying its interaction with performance can lead to new insights about how to design a chip
in the face of uncertainties. Such a simple high-level model is significantly confounded by the
introduction of uncertainty, let alone a much more complicated real processor.

This type of analysis essentially opens the door to a new architecture research space centered
around three basic questions:

1. How can architectural choices strike an effective balance between performance, re-
source utilization (energy or area), and risk?

2. How can one introduce new microarchitectural support, new computer organizations,
and hardware design tools to change the risk-performance tradeoff space in fundamen-
tally new ways?

3. How can we work together as a community to properly leverage the best thinking on
each of these individual risk factors to create a cohesive understanding?

While Questions 1 and 2 are already a close parallel to other computer architecture works, Ques-
tion 3 will require both new methods and coordination. In our current approach, we carry out the
analysis with a combination of symbolic execution, statistical methods, and Monte Carlo simula-
tion. The general framework of identifying, modeling, and propagating uncertainty to architec-
tural risk can be extended to different techniques for other flavors of system analysis. For
example, when applied to complex circuit-level design, an analytical generalized polynomial
chaos (gPC) method can be used to perform the propagation instead of Monte Carlo simulation,
which will allow it to scale to hundreds or even thousands of input variables. These methods pre-
sent a new opportunity. If widely used, they might form a foundation that enables a new collec-
tive effort by the academic community to collect, share, and interactively refine models that can
guide real-life system designs.

SIDEBAR: UNCERTAINTY VERSUS INACCURACY
There is a philosophical distinction between the uncertainties we consider (leading to architec-
tural risk) and the inaccuracy of an analytic model or simulator of a real system. It is possible to
reduce the measurement inaccuracy with better modelling, more comprehensive workloads, in-
creasingly detailed simulation, and so on—but in the end, measurement inaccuracy could be
eliminated given enough resources. However, even if one had infinite resources, the uncertainties
we proposed would still exist. It is much harder (or even impossible) to remove such uncertain-
ties without a fundamentally new understanding of the future. (This is the difference between
“aleatoric” and “epistemic” uncertainty.)

ACKNOWLEDGMENTS
This material is based on work supported by the NSF under grants 1740352, 1730309,
1717779, 1563935, 1444481, and 1341058, as well as a gift from Cisco Systems.

124May/June 2018 www.computer.org/micro

 IEEE MICRO

REFERENCES
1. D. Strukov et al., “The missing memristor found,” Nature, 2008.
2. G. Loh, Y. Xie, and B. Black, “Processor Design in 3D Die-Stacking Technologies,”

IEEE Micro, 2007.
3. H. Wassel et al., “Opportunities and Challenges of using Plasmonic Components in

Nanophotonic Architectures,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2012.

4. J. Bornholt, T. Mytkowicz, and K. McKinley, “Uncertain<t>: Abstractions for
uncertain hardware and software,” IEEE Micro, 2015.

5. A. Alameldeen and D. Wood, “Variability in architectural simulations of multi-
threaded workloads,” The Ninth International Symposium on High-Performance
Computer Architecture (HPCA), 2003.

6. S. Mittal, “A Survey of Architectural Techniques for Managing Process Variation,”
ACM Computing Surveys (CSUR), 2016.

7. S. Kaplan and B. Garrick, “On the Quantitative Definition of Risk,” Risk Analysis,
1981.

8. W. Cui and T. Sherwood, “Estimating and understanding architectural risk,”
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017.

9. M. Hill and T. Sherwood, “Amdahl's Law in the Multicore Era,” Computer, 2008.
10. A. Rahimi, L. Benini, and R. Gupta, “Variability Mitigation in Nanometer CMOS

Integrated Systems: A Survey of Techniques from Circuits to Software,” Proceedings
of the IEEE, 2016.

11. J. Cunningham, “The use and evaluation of yield models in integrated circuit
manufacturing,” IEEE Transactions on Semiconductor Manufacturing, 1990.

12. H. Foster, “Trends in functional verification: A 2014 industry study,” 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2015.

ABOUT THE AUTHORS
Weilong Cui is a PhD candidate in the Department of Computer Science at the University
of California, Santa Barbara. His research interests include statistical/economic-inspired
methods and programming language for architecture performance modeling, as well as
novel micro-/system-architecture and its interaction with software. Cui has a master’s de-
gree in computer science from Peking University, China. Contact him
at cuiwl@cs.ucsb.edu.

Timothy Sherwood is a professor in the Department of Computer Science at the University
of California, Santa Barbara. His research focuses on the development of processors ex-
ploiting novel technologies, designed for provable properties, and/or implementing hard-
ware-aware algorithms. Sherwood has a PhD in computer science from the University of
California, San Diego. He is a senior member of the IEEE and an ACM Distinguished Sci-
entist. Contact him at sherwood@cs.ucsb.edu.

125May/June 2018 www.computer.org/micro

