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ABSTRACT

High assurance systems used in avionics, medical implants,
and cryptographic devices often rely on a small trusted base
of hardware and software to manage the rest of the system.
Crafting the core of such a system in a way that achieves
flexibility, security, and performance requires a careful bal-
ancing act. Simple static primitives with hard partitions
of space and time are easier to analyze formally, but strict
approaches to the problem at the hardware level have been
extremely restrictive, failing to allow even the simplest of
dynamic behaviors to be expressed.

Our approach to this problem is to construct a minimal
but configurable architectural skeleton. This skeleton cou-
ples a critical slice of the low level hardware implementa-
tion with a microkernel in a way that allows information
flow properties of the entire construction to be statically
verified all the way down to its gate-level implementation.
This strict structure is then made usable by a runtime sys-
tem that delivers more traditional services (e.g. commu-
nication interfaces and long-living contexts) in a way that
is decoupled from the information flow properties of the
skeleton. To test the viability of this approach we design,
test, and statically verify the information-flow security of
a hardware/software system complete with support for un-
bounded operation, inter-process communication, pipelined
operation, and I/O with traditional devices. The resulting
system is provably sound even when adversaries are allowed
to execute arbitrary code on the machine, yet is flexible
enough to allow caching, pipelining, and other common case
optimizations.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General—Hard-
ware/ software interfaces; C.3 [Special Purpose And Ap-
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plication Based Systems]: [Real-time and Embedded Sys-
tems]
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1. INTRODUCTION
Systems requiring the highest levels of trust are often de-

signed and built using waterfall principles, modeled at a
high-level in a theorem proving system, coaxed through said
theorem proving system by hand, documented to an tremen-
dous degree throughout the entire process, and then evalu-
ated by a trusted third party or evaluation board [2]. It
is estimated that the entire process costs over $10,000 per
line of code [4] and takes over 10 years to complete [3]. In
the end, there is more evaluation of the development process
than the final end artifact, and formal properties are shown
to hold only for hand-written high-level models of the sys-
tem rather than for the actual implementation [15]. The
ultimate goal of our work is to create full system implemen-
tations (including both hardware and software) with security
properties that can be directly measured and verified.

In particular, we are interested in verifying information
flow security to capture security requirements such as con-
fidentiality, integrity, and even real-time guarantees. The
problem with verifying information flows through high-level
specifications (hand-written or otherwise) is that these mod-
els often ignore predictors, caches, buffers, timing variations,
and undocumented/unspecified instruction behaviors that
are not part of the ISA-level specification of the architec-
ture. These structures greatly complicate accurate informa-
tion flow evaluations because they can be used to infer the
values of secret keys [8, 19], to subvert documented protec-
tion mechanisms [28], and to covertly transmit information
between compartments [23].

Recent work has shown how information flows can be
strictly managed at the architecture level in a way that uni-
fies explicit, timing, and storage information flows [30, 31].
This allows many of the security properties of the resulting



hardware/software system to be clearly and unambiguously
analyzed. However, the current incarnations of these ap-
proaches have thus far come at the cost of drastically reduced
flexibility. For example, an Execution Lease [30] allows for
a region of execution to be tightly quarantined both in time
and space (which can then be verified with gate-level infor-
mation flow tracking), but requires that each and every lease
have a hard time bound. After the bound expires, control
is revoked from the leasee, meaning unbounded or timing
variable operations do not fit cleanly into the model.

These restrictions present numerous challenges with re-
gards to the creation of real systems. The hard nature of
an Execution Lease programming model does not naturally
support performance enhancing micro-architectural features
such as caches, pipelining, branch predictors, or TLBs be-
cause of the timing variabilities they introduce; it lacks suffi-
cient support for software behaviors that cannot be bounded
and divided into fixed regular sized chunks of work, it does
not provide any easily verifiable mechanisms by which dif-
ferent trust domains can communicate safely; and it makes
handling the inherently dynamic nature of I/O very diffi-
cult. Furthermore, information flow security is provided us-
ing additional analysis logic that adds substantial area-delay
overheads to the deployed system. In this paper, we present
our experiences building a full system that removes all of
the above restrictions yet is still verifiably information flow
secure, i.e. conforms to a specified information flow policy.

Our method for overcoming this challenge is two-fold:
first, we create a thin skeleton of hardware, that when con-
figured and operated by a small piece of software, describes
a minimal functionality with which the information flow of
the rest of the machine can be governed. In essence, this
minimal slice of the hardware is to the entire pro-
cessor core, as a microkernel is to a full operating
system. This strict structure is then enhanced by a runtime
system that delivers more dynamic or non-information-flow-
critical services (e.g. communication interfaces and context
swapping). Because these operations are decoupled from the
information flow properties of the skeleton, they do not add
complexity to the verification of the system as a whole.

To make this idea more concrete, consider the process by
which a context is saved and restored. To be a correct con-
text switch, the registers and PC (along with other things)
need to be saved off to a region of memory, and then restored
when the process is scheduled again. However, to verify the
information flow properties of such a system, we need only
to verify that the context is saved and restored in a way that
does not leak data and violate policy.

To demonstrate these principles we have created a syn-
thesizable full-system prototype, complete with a pipelined
CPU, a micro-kernel that enables isolation and communi-
cation by explicitly controlling all micro-architectural state,
and an I/O subsystem that allows off-the-shelf I2C devices
to be connected to a single shared bus. Our system can
provide caches, pipelines, and support for the micro-kernel
in only 1/4th the area and with double the clock frequency
as more restrictive prior work. Finally, for a system of size
50K logic gates (approximately) and with only 3264b out
of 133kB state specified concretely, we can statically verify
that the entire hardware-software stack conforms to a spec-
ified information flow policy all the way down to its gate
level implementation.
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Figure 1: The proposed architectural skeleton
(shaded black in the CPU) that allows explicit soft-
ware control over the entire processor state. The
processor includes dynamic micro-architectural fea-
tures such as caches and pipelining. This hardware
skeleton is used by a separation kernel to manage ex-
ecution time, memory, and I/O devices among mul-
tiple security partitions. We also introduce trusted
adapters for secure I/O. Here, an I2C master con-
troller on the CPU manages a shared bus among
off-the-shelf I2C devices with different trust levels.
In the end, we verify that the hardware and kernel
together enforce a desired information flow policy
such as non-interference.

2. INFORMATION FLOWS AND RELATED

WORK
Systems required to provide critical services must be engi-

neered and evaluated to a very high level of assurance. For
example, bus interfaces on aircraft multiplex critical aircraft
control data with data of peripheral importance (such as
passenger internet) on the same shared physical bus, and
must guarantee that the integrity of the critical data is pre-
served under all circumstances [13]. Similarly, a program
that uses the private key of a bank should be demonstrably
confidential from other unclassified programs. While strict
adherence to information flow policies alone is not sufficient
to ensure the trustworthiness of a system, information flow
policies are certainly necessary. For example, in the case of
cryptographic operations, while there is clearly information
flowing from the key to the encrypted data, we also need
to ensure that the key is not flowing anywhere else (e.g.,
through a timing channel).

At the highest level there are two classes of approach to
this problem: best-effort and strict. We define a best-effort
approach as one that attempts to manage these information
flows by closing known existing holes, managing uncloseable
channels through statistical techniques such as clock fuzzing,
and structuring hardware and software as a whole to make
the job of the adversary as difficult as possible. While this is
more than sufficient in many scenarios, the most that a best-
effort approach can hope to achieve is a demonstration that,
subject to the threat model, no known attacks are feasible.
A strict approach, in contrast, carries a higher burden for
proof – it should be able to show that, subject to the threat



model, no attack (known or unknown) is possible. The point
of this paper is to demonstrate that, while this added burden
is still great, it need not preclude many of the performance
and productivity enhancing features we take for granted in
more dynamic systems.

Information Flow Policies: In this work we target se-
curity properties such as confidentiality and integrity (where
real-time performance guarantees are part of timing-integrity).
Both these properties can be modeled with an information
flow control lattice (L, ⊑), where L is the set of security
labels and ⊑ is the partial order indicating relative secrecy
or integrity of the labels [12]. A simple lattice to represent
integrity is Trusted < Untrusted; its dual lattice for confi-
dentiality is Unclassified < Secret. Information flow policies
are then specified as a mapping from security labels to each
input and output in the system, and our goal is to verify
whether it is possible under any scenario for this policy to
be violated (e.g., untrusted data never flows out of a trusted
output).

Expressing information flow policies using a label lattice
has a few noteworthy characteristics. The policy of non-
interference [14] allows for information to flow up in the
security lattice, i.e. trusted data can affect untrusted out-
puts (for integrity) and unclassified information can flow to
secret outputs (for confidentiality), and thus is represented
by a totally ordered lattice. Complete isolation, on the other
hand, is represented by a lattice comprising of mutually un-
ordered labels. Further, in a real system, expressing security
as a lattice of labels requires that the kernel have the lowest
label, e.g. trusted or unclassified. Thus for integrity, the
kernel parameters such as the schedule of security partitions
or the partition boundaries themselves are trusted and can-
not be tampered by untrusted programs. For confidentiality,
kernel parameters are not secret and learning these values is
not a security violation. To ensure security, the kernel has
to ensure that secrets or untrusted values (i.e. high labels
in either lattice) do not leak to outputs (including memory
addresses) that have low labels.

Throughout this paper we use trusted and untrusted la-
bels to enforce a policy of non-interference. However, the
discussion applies to labels for secrecy and to labels in a
general lattice.

Threat Model: We treat the entire system, including
the processor hardware, micro-kernel, I/O controllers, and
all the user-level programs, as a single monolithic unit for
the purposes of verification. This unit has some known state
bits (that are initialized with code and data for the micro-
kernel and I/O master controllers), some unknown state bits
(such as unspecified software components or unknown intital
conditions), and a set of external input and output ports.
The input and output ports are assumed to have a set of
security labels, and an information flow policy is a specified
as a lattice over those labels.

The attacker is assumed to have complete control over 1)
all untrusted inputs to the device and 2) the entire set of bits
which are unknown at analysis time. With our technique,
we can statically verify that the type of data flowing to any
output port conforms to the information flow policy for the
label of that port (e.g. no untrusted information contami-
nating a trusted port, and no secret information leaking to
a non-secret port). This threat model includes timing chan-
nels, implicit flows, storage channels, and any other digital
forms of information flow, but does not include the use of
physical phenomena such as EM emission or power draw. A

system is said to be strictly enforcing a policy if it can be
shown that the policy can never be violated regardless of
the actions of the attacker subject to this model.

Formal Methods for Information Flow Security:
While information flow tracking has been proposed at many
levels of the computing hierarchy, from virtual machines [16],
high-level languages [26] and compilers [34] to binary anal-
ysis tools [5] and even hardware-assisted information flow
tracking systems [29, 11, 25], formal approaches for the same
have been confined to language-level and operating system-
level proposals. Approaches that operate at the language
level can even track implicit flows due to branches and loops
that introduce non-determinism into a program execution.
Since code that is never executed can leak information (by
the absence of its execution), some secure languages elimi-
nate non-deterministic behavior from the program code (ei-
ther entirely or based on confidential or untrusted condition-
als [26]). At the OS level, Flume [22] has even been shown
to be information flow secure through abstractions such as
processes, pipes, file systems etc, while seL4 [18] uses au-
tomated theorem proving to verify safety properties of the
kernel.

None of the above approaches account for covert flows
through architectural state hidden beneath the hardware-
software interface (i.e., the processor’s instruction-set archi-
tecture), and timing channels created through shared archi-
tectural resources like on-chip buses, caches, branch predic-
tors, and even functional units. Such covert channels have
received isolated attention, for example methods to build se-
cure caches [33] or branch predictors [6], but general design
methods and tools are lacking. The techniques we propose
are complementary to higher level approaches and would
likely work best when informed by the rich semantic infor-
mation available at the language level.

Information Flow Security at the Gate Level: While
the approaches discussed above are very valuable, discov-
ering many of the most subtle and exploitable information
channels requires that we analyze designs at the level of logic
gates, where the behavior and timing of the machine is actu-
ally well defined. Analyzing higher-level specifications can-
not provide a strong guarantee that the full system imple-
mentation adheres to desired access control and information
flow policies. For this reason, we build upon recent work on
Gate-Level Information Flow Tracking (GLIFT) [31]. Based
on the observation that all digital information flows are a
function of logical information flows through the gates and
wires in a circuit, GLIFT shows that a gate-level descrip-
tion of a processor can be automatically augmented with
shadow logic-gates that dynamically track the flow of in-
formation through the processor and can identify informa-
tion leaks through explicit, implicit, and even timing chan-
nels. Execution Leases [30] is an architecture that builds
upon GLIFT and allows programmers to construct a stack
of nested, space-time sandboxes. This stack of memory and
execution-time bounds can be shown to be information leak
free at the gate level, and having the benefit of knowing the
exact signal values at run-time, can provide functionality
such as secure pre-emption of untrusted programs based on
trusted interrupts at arbitrary times.

One downside of a dynamic approach is that shadowing
every gate in the circuit adds a considerable hardware over-
head over the base logic (up to 3X [30]). Another significant
downside is that dynamic techniques can only identify in-
formation leaks on specific executions and require the entire



system to be fully specified. High assurance systems often
require static guarantees that a hardware/software system
conforms to a specific information flow policy even when cer-
tain components are neither known a priori nor are trustwor-
thy. In contrast to dynamic tracking methods, our technique
allows properties of gate-level descriptions of systems to be
verified statically even when large parts of the system such
as user-level programs and peripheral devices are not known.
Finally, the Execution Lease CPU provides a very restrictive
programming model and implementation that does not sup-
port full systems efficiently. This paper addresses the above
shortcomings by constructing a full system comparable to
extant high assurance systems, a tool for static gate-level
information flow analysis, and using the tool to verify a spe-
cific instance of the system.

3. A SECURE ARCHITECTURAL

SKELETON
Our architectural skeleton, working in conjunction with

the micro-kernel, must deliver each of the following capabil-
ities in a way that can be verified to be side-channel free.

1. Verifiable Common Case Optimizations in the
CPU: Techniques such as caches and pipelining are
taken for granted in the non high-assurance systems
but pipeline stalls and cache evictions can easily intro-
duce side-channels. While countermeasures for these
side-channels exist, we must be able to formally prove
their absence.

2. Verifiable Context Switches, Scheduling, and
Communication in the kernel: Because timing chan-
nels are part of our threat model, the micro-kernel,
working in conjunction with the skeleton, must have a
way to bound the behavior of a software partition. Fur-
thermore, it must have a way to save and restore pro-
cess contexts without leaking information about those
contexts, to schedule these processes or partitions at
arbitrarily fine granularities, and to allow inter-partition
communication in a tightly-controlled manner.

3. Verifiable I/O: We must be able to construct a sys-
tem that is able to communicate with the outside world.
In particular we must allow software partitions mea-
sured access to I/O, and this access must be able to ex-
ploit simple off-the-shelf I/O protocols. While both au-
thentication and physical attacks are beyond the scope
of this paper, we must ensure that, if necessary, infor-
mation flow can be limited to a subset of the parties
connected on the I/O network.

4. Verification Technique: While prior approaches in-
stantiate expensive information flow tracking logic, we
aim to verify the concrete hardware implementation
and the partial software specification together to be
completely free of undesirable information flows. To
this end, we propose a static analysis technique that
represents all unknown values with the abstract value ∗
and replaces all hardware with logic capable of operat-
ing directly on ∗. This technique, ∗-logic (Star-Logic),
then computes on ∗ and security labels to effectively
verify information flows through all possible executions
arising from the unknown values.

Understanding our approach to the problem can be dif-
ficult at first because our design method and verification
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Figure 2: Implementing caches: The processor-
generated memory address is first masked off used
the memory bounds register. This creates a physi-
cal address that is within the currently active exe-
cution lease bounds. Most significant bits of this ad-
dress are then further masked off using the trusted
partition ID register to generate the address for
the cache. As a result, information flow from a
potentially untrusted memory access is limited to
the currently enabled portion of the cache. Since
trusted bits from the partition ID register control
the MUXes, information flow control can be veri-
fied precisely.

method are intimately linked. The verification method
works because our designs exhibit incredibly tight
control over the flow of information, and our design
method is useful because designs can be verified eas-
ily. Later, in Section 4, we will describe how we verified a
specific incarnation of our system, but for now we can think
at a high level about the two primary methods of managing
the information flow in our skeleton.

The first method for information flow control is to ensure
that certain critical portions of the machine and kernel are
always kept with high integrity, i.e. trusted. If we can verify
that the system will never breach this invariant, then these
critical bits can be used as the root of trust for the rest of
system.

The second method is carefully time-multiplexing the rest
of the state between multiple security levels. There are two
parts to this second method. Because these time multiplexed
bits, for example the hardware’s program counter or the
kernel’s current process ID, will change labels over time,
we must bound the effect that these bits can have on the
system. Then, after we have finished a unit of time, we must
always be certain to “clean-up” any of these bits remaining
in multiplexed parts of the system (as controlled by trusted
bits).

In short, our minimal skeleton working with the separa-
tion kernel ensures that “trusted bits stay trusted” and that
“untrusted bits always get cleaned up”. Both these methods
can then be verified to be implemented correctly through a
gate-level analysis. Cleaning up untrusted bits in a verifi-
able manner is best understood using a multiplexer (MUX):
if the select input to a MUX is trusted, and it selects a
trusted value, the result can be trusted no matter what that
actual value is, even when the other input is untrusted. A
MUX can thus be thought of as a gatekeeper for trust, and is
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Figure 3: Secure Pipelines: The state machine
shows the Program Counter update logic for a
pipelined CPU. From all untrusted states (in gray),
there is a transition to a trusted state that is trig-
gered by a trusted timer, and hence the PC is always
reset verifiably. The pipeline flush requires 4 cycles
since our prototype CPU has a 4-stage pipeline. The
dashed line from start to memory stall is to indicate
that while a memory stall is possible, kernel code
ensures that no memory access misses in the cache.

used to implement logic that resets critical system state to a
trusted value or masks out untrusted signals. Together, both
these methods allow, for example, the kernel bits that store
the partition schedule to always stay trusted and control
the MUXes to reset the program counter from an untrusted
state.

In the rest of this section we will show how the combina-
tion of bit-level isolation and trusted time-multiplexing al-
lows us to first implement a skeleton that addresses the four
requirements listed above and then formally verify that the
entire system conforms to a desired information-flow policy.

3.1 CPU: Using Caches, Pipelines, and Other
Micro-architectural Structures

Caches. Side-channels through caches have been shown
to leak information about private keys [7, 32]. These at-
tacks exploit the ability of an attacker to learn the memory
accesses of a secret process by first filling the cache, yield-
ing to the secret process, and then inspecting which of its
own memory accesses miss in the cache. The fundamental
problem is that the cache controller uses both secret and
unclassified information to decide which cache lines to evict.
Counter-measures to this attack include pinning secret lines
in the cache [32] (which was first shown to be vulnerable [20]
and then fixed [21]), and proposed secure caches may still
be vulnerable to collision-based timing-driven attacks [20].

To implement an information flow secure cache, we design
the cache controller to only use trusted values to control the
cache contents: i.e. by partitioning the cache or by clear-
ing the cache based on trusted parameters after untrusted
or secret code has finished executing. This ensures that un-
trusted information is confined to its partition, while trusted
information can flow to untrusted partitions (or unclassified
to secret).

To implement partitioned caches that are verifiably iso-
lated at the bit-level, we allow only power-of-2 aligned cache
partitions that are configured by the kernel through a par-

tition ID register (as shown in Figure 2). The partition ID
register represents currently enabled cache partition(s) and
uses two bits for each bit of the cache address. Of these two
bits, if the MSB is 1 the cache address uses the processor-
generated memory address else the LSB of the partition ID
register is used. For example, for a 4b cache address, a parti-
tion ID of 00 00 11 11 implies that the two most significant
bits of the cache address will be 00, and the two lower bits
will be used from the address generated by the processor.
The partition ID register set to all 1s will indicate that the
entire cache is available for use. The kernel sets the parti-
tion ID register before jumping to untrusted code using the
instruction set_partitionID immediate. The cache con-
troller also communicates with a memory controller in case
of a read-miss or write-evict, and squashes an outstanding
memory request when the execution time slot for some un-
trusted code ends.

This cache controller logic can be verified to be secure at
the bit level because the MUXes that select the final cache
address are controlled by the trusted partition ID register
(Figure 2). While prior work has proposed that unclassified
code pre-load AES tables into locked cache lines or clear
the entire cache after secret execution [21], we are able to
implement the mechanism and verify it at the gate-level.

Pipelining. Pipelines are challenging to implement in an
information flow secure manner since they introduce unpre-
dictable dynamic behavior through memory stalls, branch
prediction, register forwarding etc. Our key insight is that
such dynamic behavior can be allowed as long as untrusted
programs’ effects do not spill over into trusted space and
time slots.

Figure 3 shows the state machine that controls the pro-
gram counter (PC) in our CPU. The state machine begins in
a start state where no PC lease is currently on and trusted
kernel code is expected to execute. It can set a timer and
transition to the lease_on state. This state is typically
used to run untrusted or secret programs, but the transi-
tion to this state is based on a trusted jump instruction.
On a cache miss, the state machine can transition to mem-
ory_stall state. From an untrusted instruction, this tran-
sition will be untrusted and the memory stall state will be
untrusted too. When the PC timer expires, however, both
lease_on and memory_stall states transition to a sequence
of 4 states, one for each stage of the pipeline, where the PC is
first restored to a trusted value (and then incremented each
cycle). The logic to implement this sequence is hardwired
instead of using the jump instruction because general pur-
pose registers may themselves be untrusted at the end of a
lease to untrusted code. Since the restore PC is stored in the
trusted lease unit, computing the next PC from this main-
tains the PC as trusted. Further, since the lease timer has
expired, no instructions are committed during this sequence
of states.

Other micro-architectural features can also be employed
safely through a combination of trusted partitioning and
time-multiplexing. While we do not implement a branch
predictor or prefetcher, implementing these would require
their state to be either partitioned using trusted parameters
or flushed at the end of every security context by the kernel.

3.2 Micro-Kernel: Context Switches, Schedul-
ing and Communication

A kernel partition encapsulates all computational resources
required by a security level, comprising of time, memory, and



optionally I/O interfaces. A portion of instruction and data
memory are reserved for each security level, and when a par-
tition is actually scheduled to run, it gains control over part
of the machine such as execution units and register files for a
trusted amount of time. To prevent information leaks to un-
trusted programs, kernel parameters such as time and mem-
ory slots allocated to each partition and the overall number
of partitions depend only on trusted constants assigned at
boot time. As a result, the kernel scheduler implements a
statically determined schedule which can act as a coarse-
grain first level scheduler, while each partition implements a
second-level scheduler to optimize performance within their
own time bounds (as proposed before for real-time [24] and
highly secure [18] systems).

Precise Context Switches: The kernel ensures con-
tinuous unbounded operation by saving and restoring user
programs’ state on every context-switch. To support precise
control over timing in the presence of caches and pipelines,
we introduce two unique features in our micro-kernel. The
kernel explicitly manages all micro-architectural state in the
processor, e.g. through the partition ID register to enforce
cache partitions, and has perfectly imperturbable execution
time for each kernel function, e.g. by never having a memory
access miss in the cache.

To demonstrate these ideas, we step through the con-
text switch routine that is triggered each time a set timer
expires. After a pipeline-length delay to flush the entire
pipeline state, the first kernel instruction to commit is a
set_partitionID immediate. This activates the kernel par-
tition which stores complete context information for all par-
titions. The kernel then stores general purpose registers
in trusted addresses specifically earmarked for the parti-
tion’s context. This is possible since the number of par-
titions is a trusted kernel parameter. The kernel also
stores the last PC that entered the commit stage when the
timer expired, accessing it through the (last_PC Mem[reg])
instruction. Once the current context is saved, the ker-
nel loads the general purpose registers for the new par-
tition. It then sets the cache partition available for the
next partition (using set_partition), sets memory bounds
(set_membounds global/local and finally sets a time limit
for the new partition to execute (set_timer). The mode
argument to set_timer indicates whether the new context
will execute in kernel or user mode (since the partitionID
register can only be set in kernel mode). Finally, once the
new partition’s context is loaded and the bounds are set, the
kernel loads the user-space PC and jumps to it.

Since the kernel has its own reserved partition in the
cache, each of its memory accesses is a cache hit, and be-
cause there are no branches in its code, the kernel never
has a pipeline stall. Thus context switches always complete
within a fixed execution time. Further, the kernel explicitly
controls the state of all micro-architectural features, using
partitionID register for the cache, and relying on the pro-
cessor skeleton to reset the state of the pipeline, memory
controller and the I/O bus-controller when a lease timer ex-
pires. Finally, while not implemented in our prototype, the
kernel can optionally save and restore the entries on the lease
stack. Saving the lease stack for each partition allows sched-
ulers that run inside partitions to use different scheduling
granularities than that of the kernel, without being aware of
the time bounds that they themselves run within.

Fine-grained Scheduling. We propose a novel hard-
ware stack implementation that allows execution time and

memory bounds to have arbitrary durations and yet is ver-
ifiably secure at the bit level. The time and space bounds
for each partition are stored in a hardware stack in the CPU
skeleton. This stack has to verifiably ensure that code in-
side a partition cannot over-write its own lease bounds, i.e.
the current stack pointer should never affect any stack entry
below the top of stack. The implementation in Execution
Leases [30] protects lower stack entries by bit-encoding the
timer values (e.g. each bit represents 32 cycles), and con-
structing each timer entry to have less time units than the
previous entry. This restricts scheduling granularities to be
aligned with the bit-encoding and introduces artificial per-
formance overheads.

We provide a more flexible stack implementation by en-
coding the safety property in the logic for the stack pointer
instead of the timer values (Figure 4). By choosing the stack
pointer as the critical state, we free up the timers themselves
to be assigned arbitrary values. We encode the stack pointer
so that each bit corresponds to a stack entry, and on every
clock cycle, the value assigned to each bit of the stack pointer
is predicated upon all the lower stack pointer bits being true;
i.e. a stack entry is valid only if all timers lower than itself
are still active. Thus while information clearly flows from
lower stack pointer bits to higher ones, higher bits never af-
fect the lower ones. Our two information flow control tech-
niques can be observed here: while timer[0] is permanently
trusted, the rest of the stack is time-multiplexed between
both security levels.

We modified the set_timer instruction to receive arbi-
trary values as the time limit, and added a mode bit that a
caller can use to specify whether the callee executes in kernel
or user mode. This bit is set to 0 by the kernel when it sched-
ules a user-space code in order to protect the partition ID
register. Our CPU implementation has three separate lease
stacks of 2 entries each, one for execution time (PC) and one
each for local and global memory bounds.

Read/Write Protection: Information flow policies such
as non-interference [14], Biba [10], and Bell & La Padula [9]
allow information to flow along one direction in a security
lattice, e.g trusted parameters can be read but not tampered
with. In order to support security policies that allow uni-
directional information flow, we modify the lease implemen-
tation to support read-only, write-only, or read-write control
over memory bounds. In contrast, the original implemen-
tation of Leases allowed complete access to memory regions
that are specified as part of the lease and could only support
isolation in memory. The kernel uses the instruction set-
membound global/local, timer, addr_range, RO/WO/RW to
specify whether the memory region is Read-Only, Write-
Only, or Read-Write, and the memory controller enforces
these permissions at run-time.

To enforce isolation, we specify non-overlapping memory
bounds for the partitions1. To implement communication,
one option is for two communicating partitions to share a
memory region. This requires the partitions to be initialized
so that communicating partitions are adjacent. Since our
CPU implements two distinct memory regions per partition,
one partition can share memory areas with a maximum of
four other partitions to facilitate zero-copy communication.

1Embedded systems typically operate exclusively on physi-
cal memory, eliminating channels associated with both alias-
ing and dynamic allocation



Figure 4: Implementing flexible timers with bit-
level isolation. Isolation: Untrusted code (in gray)
does not taint the lowest stack entry (1), and when
the timer expires, the current timer value becomes
trusted (path 2-3-4-6). A timer, when it expires,
resets all timers above itself (5) and thus enforces
nested leases. Flexibility: Instead of timer values,
the stack pointer is encoded to ensure bit-level iso-
lation. Hence the actual timers can be assigned ar-
bitrary values.

For more complex communication patterns, the microkernel
has to move data into partition “inboxes”.

3.3 I/O: Using Off-The-Shelf Protocols and
Devices Securely

We complete our embedded system by implementing an
I/O protocol to connect the CPU and separation kernel sys-
tem to peripheral devices. I2C is a serial two-wire bus proto-
col that is commonly used in many embedded systems, for
e.g. to configure RF tuners, video decoders and encoders
and audio processors. It is also present on chipsets designed
by Philips, National Semiconductor, Xicor, Siemens, and
many others [17]. We show, for the first time, that it is pos-
sible to implement a provably secure I2C master controller
that can then interface with commodity I2C devices.

Implicit information leaks occur when, for example, the
I2C bus master first communicates with an untrusted slave,
and then with a trusted slave. The master’s current state
will first depend on information received from the untrusted
slave, and appear as a covert channel underneath the ISA
to software, where the untrusted slave affects the timing of
trusted communication. At the gate-level, this implicit flow
takes the form of an explicit ACK message from the un-
trusted slave to the trusted master’s state machine, causing
the master’s state machine to be labeled untrusted. Thus
even if the bus master seems to be behaving “correctly” and
the devices are not snooping on the bus, there are still in-
formation flows between devices on the bus.

Trusted Bus Adapter: To restrict these implicit flows,
we propose to overlay a time division multiplexed (TDMA)
schedule over an I2C bus, and introduce adapters to con-
nect external devices to the shared system bus (Figure 1).
Each adapter’s time slot is a trusted kernel parameter, and
the adapters enforce that for each slot only the currently
addressed device has access to the bus while the remain-
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Figure 5: Our toolchain for verifying information
flow properties of embedded systems. Once the de-
sign has been debugged using conventional tools, our
abstraction and augmentation tools create a new de-
sign that operates on security labels and unknown
values in addition to traditional digital values. This
augmented design can then be simulated using stan-
dard hardware simulators to generate output labels.
These are then compared with labels specified by
the desired information flow policy to determine if
the design conforms to the policy.

ing adapters disconnect their corresponding slave devices.
When a lease timer expires, the bus master state machine
is reset to a trusted state to eliminate the implicit flows
mentioned earlier. We implement the adapters to not only
impose a TDMA schedule on the bus but also conform to
the I2C specification. The adapters do so by driving the
clock signal to a device low when its slot has expired, and
since the I2C protocol doesn’t rely on wall-clock time, the
devices hold on to data until the I2C clock goes high again.
As a result, we can use unmodified I2C-compliant devices in
our I/O subsystem.

The CPU - I/O Interface: The I2C Bus Master state
machine is implemented in hardware as part of the CPU.
Programs in each partition (device drivers local to each
partition) use two instructions in dest_reg, dev_addr and
out dev_addr, src_reg to transfer a 32b value between
a register and an I2C device that the partition is allowed
to address. Since peripheral devices are typically slower
than a CPU, a device driver can use the instruction i2c_on
dest_reg to record into dest_reg whether the I2C bus is
currently in the middle of a transmission.

We have described a system that manages the flow of
unknown and untrusted bits such that arbitrary untrusted
computation is tightly bounded by trusted bits. The chal-
lenge now is to verify that an implementation of the high-
level description correctly enforces an information flow pol-
icy.

3.4 Verification: Removing Analysis Logic
Overhead

Given a system in which the hardware and software co-
operate to enforce a specific policy, we want to verify that
the measures taken by a small, known portion of the soft-
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ware and hardware will be sufficient to prevent unauthorized
labels from ever appearing at certain memory locations and
output ports. This policy of non-interference prevents un-
trusted information from leaking to trusted ports, but allows
trusted information to appear on untrusted output ports (or
memory locations).

Our static analysis technique, ∗-logic (star-logic), works
on a given hardware-software design in three steps: first it
creates an abstract design that soundly estimates all possible
executions of the given design, then it augments the abstract
design with information flow tracking logic, and finally sim-
ulates this augmented design until all possible states of the
abstract design are explored. Figure 5 shows how these three
steps fit into the traditional hardware design flow, and Fig-
ure 6 presents the individual steps in more detail.

Step 1: Abstraction. The designer implements a sys-
tem’s trusted computing base and specifies the rest of the
system as unknown (represented as ∗), where the unknown
part represents the contents of memory for all the secret
and unclassified processes and all the input ports. The ∗-
logic tool takes the concrete implementation and a speci-
fication of unknown parts to generate an abstract system
that operates on both known and unknown values. An
abstract 2-input AND gate is thus a logic function from
{0, 1, ∗} × {0, 1, ∗} → {0, 1, ∗}, and evaluates its inputs to
decide whether the output is a 0, 1, or unknown. This tool
builds upon the observation in GLIFT that if one input of a
2-input AND gate is a 0, the output is a 0 and the other in-
put is ineffective even if it is unknown (∗). For other input
cases, the unknown input will cause the output to be un-
known. The purpose of this abstract system is to track the
flow of unknown values through the system, and in doing
so strictly over-approximate all possible executions of the
partially specified system. As a result, simulating the ab-
stract design will mark as unknown all state that can ever
be affected by the unknown inputs. This soundness prop-
erty can be proven formally using the Abstract Interpreta-
tion framework [27], but the formal proof is out of scope of
this manuscript.

Step 2: Augmentation. The augmentation step takes
two inputs as well: the abstract design from the first step,

and an information flow lattice (such as trusted< untrusted)
that specifies a set of labels and implies rules for how they
they are to be propagated. This second tool then convolves
the lattice with the abstract design to create a new design
that operates on both abstract values and labels, effectively
propagating whether each bit is unknown and/or untrusted.
Using the truth table for an AND gate, we can construct
an augmented truth table where the inputs can assume a
value that is one of {0U , 1T , 0U , 0T , ∗U , ∗T } (encoded re-
spectively as {000, 001, 010, 011, 110, 111}), and the output
is computed to be one of the same. The first bit in the new
tuple of values that the gate will operate on is 0 if the original
value is concrete or 1 if the value is unknown. The second bit
is the actual value if known and 1 otherwise. The final bit is
0 for U and 1 for T . Thus an n-input m-output digital gate
is replaced by a gate with 3n inputs and produces 3m out-
puts. These augmented gates are then interconnected just
as original gates of the system were. The augmented logic,
again being a hardware design itself, can then be simulated
using existing hardware synthesis and simulation tools.

Step 3: Simulation. The final step in the process is
to simulate the resulting augmented system to check that
it conforms to a specified information flow policy for ev-
ery possible state of the augmented machine. Covering the
set of all possible logic states, is made tractable by the ab-
straction from step 1, and because the concretely specified
system that comprises the trusted computing base only has
a practically enumerable number of states (a scenario very
common to high assurance systems). To specify information
flow policies a designer has to initialize the system by as-
signing security labels for each input, output, and memory
location. During simulation, if an output or some state bit
of the system is found to have an illegal label (e.g. a trusted
output port has an untrusted label), then the system under
test has to be modified for correct information flow control.
In this way dataflow assertions (such as “no classified infor-
mation should egress the system via port 2”) can be checked
as standard logic assertions (“the label bit for out-port 2
should never be set to True”).



4. RESULTS
Figure 5 shows our toolchain to analyze hardware designs

written in behavioral Verilog or VHDL (so that hardware
designers can use their tools of choice for design entry).
Verilog/VHDL designs are synthesized using Synopsys De-
sign Compiler into a gate-level netlist using the and_or.db
library. The result of this synthesis is a netlist that con-
sists of just AND, OR, and NOT gates along with registers
and memory. This netlist is input to our abstraction tool,
which replaces gates and bits of the netlist with their ab-
stract counterparts and outputs the abstract netlist. The
abstract netlist is then input to our augmentation tool that
generates information flow tracking logic for the abstract
design to create the final netlist. Finally, the augmented
design is simulated using hardware synthesis and simulation
tools such as Altera Quartus.

4.1 CPU Implementation
This section presents implementation details of our CPU

(Star-CPU) and compares its functionality and area-delay
with prior work. We implemented the Star-CPU in Verilog,
generated a gate-level netlist using Synopsys Design Com-
piler, and synthesized this using QuartusII v9.1 with Altera
EP2S15F48C43 FPGA as the target device. The Star-CPU
pipeline is single-issue, executes in-order, and has 4 stages
(fetch, decode, execute, and commit/write-back). It has 8
general purpose registers, a mode bit to indicate kernel/user
mode, and a partition ID register to record the current secu-
rity context. The memory hierarchy includes a 2kB direct-
mapped data cache, and 64kB each of instruction and data
memory. The data cache is implemented on the FPGA us-
ing comparator logic and registers and requires one cycle if
a memory access is a hit, while the memory is implemented
using on-chip block RAMs that take two cycles to service
a memory request. To emulate memory access latency in
an ASIC implementation of the system, the memory con-
troller is implemented to introduce an additional delay of
100 cycles. Without micro-architectural features such as
branch predictors, TLBs, and Out-of-Order execution, the
Star-CPU pipeline stalls on each cache miss and requires
the compiler to ensure that a register used in a conditional
jump instruction has the desired value at least 4 instructions
before it is used.

Area-Delay Comparison. Figure 8 quantifies the size
and performance advantages of the Star-CPU against the
Execution Lease CPU and against the Star-CPU with dy-
namic GLIFT logic (Star-GLIFT). The Star-CPU provides
caches, pipelining, and kernel support beyond the Lease
CPU in equivalent area and clock-frequency, and provides
static security guarantees compared to Star-GLIFT in al-
most 1/4 the logic, 1/2 the memory, and 2X the clock-
frequency.

The Star-CPU’s base functionality is implemented in 5756
ALUTs (Adaptive Look-Up Tables in an Altera FPGA, where
1 ALUT corresponds very approximately to 9-12 gates), and
while the base functionality in the Lease CPU requires only
1511 ALUTs, it requires 5040 ALUTs when the dynamic
analysis logic is factored in [30]. Thus the Star-CPU re-
places analysis logic overhead with a cache and pipeline
logic. In terms of performance, the Star-CPU and Lease
CPU have similar frequencies (99 MHz vs. 104MHz), but
the unpipelined Lease CPU only commits one instruction
every 5 cycles. Further, without a cache, every memory ac-
cess in the Lease CPU goes to main memory.

Instruction Description 

set_�mer
  
R1,

 
R2, R3

  Set PC lease. Arguments R#: register or immediate.  

 R1: �mer, R2: restore PC, R3: kernel/user mode 

set_membound
  

R1, R2, R3
  Set local or global memory bounds.   

 R1: memory range, R2: �mer, R3: read/write mode 

set_par��onID  Immediate  If mode == kernel, then par��onID = Immediate 

last_PC  [R1]  Mem[R1] = PC in commit stage when the last �mer expired 

jgtz /jump  R2, R1  Jump if R1 >= 0 or uncondi�onally.  PC = R2 or Memory[R2] 

load/store/mov  R2, R1  Immediate and register direct addressing modes 

add,sub,lsh,rsh 

and,or,not,cmplt   

 
ALU instruc�ons. Register arguments

 

in/out  R1, dev_addr  Read and write to I C transfer register 

io_on  R1   R1 = 1 if I C  transac�on is ongoing 

no-op  No-op instruc�on 

R1, R2, R3 

2

2

Figure 7: Figure shows the ISA for the Star-CPU
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Figure 8: Area and Frequency comparison among
secure CPUs.

Comparing the verified Star-CPU to Star-GLIFT, we ob-
serve that the Star-GLIFT CPU requires 23,956 ALUTs for
logic and 2×133kB for state and state labels, whereas the
Star-CPU only requires 5756 ALUTs and 133kB for state.
Adding dynamic tracking logic for the complex control logic
of the CPU introduces substantial delays and reduces the
maximum operating frequency of the Star-GLIFT CPU to
55MHz (from 99MHz for the verified Star-CPU). In sum-
mary, the verified Star-CPU provides better functionality
than the Lease CPU, and static verification in comparison
to Star-GLIFT CPU with much lesser area and delay.

4.2 Kernel Implementation
Our full-system prototype is representative of a high as-

surance avionics system [1]. Each trust domain in the system
is assigned a partition, and a micro-kernel manages these
partitions’ access to the CPU, physical memory, and periph-
eral devices. The kernel implements an ARINC 653 sched-
uler (a standard in avionics systems) which requires that all
partitions be statically defined at compile time in the form
of a major frame period that repeats forever. Within a ma-
jor frame, the schedule specifies one or more execution time
slots for each partition, leaving the partitions free to imple-
ment standard, priority-based schedulers within their time
slots.

Specifically, our prototype instantiates 4 partitions: the
first partition to run programs responsible for controlling
trusted avionics functions, the second partition for untrusted
programs such as passenger internet and non-critical diag-
nostics, the third partition for a trusted cross-domain guard
responsible for one-way communication among the above
two partitions, and the fourth partition reserved for trusted
kernel functions that require hardware access such as a con-



 Context Switch 1: // from par��on 0 to 1 

       // save current state: 10 cycles   

       set_partitionID   KERNEL_ID; 

       store  ctxt_arr [PID0][0],  gen_reg [0]; … 

       store  ctxt_arr [PID0][7],  gen_reg [7]; 

       last_PC  ctxt_arr [PID0][8]; 

 

       // restore incoming state: 9 cycles 

       load  gen_reg [0],  ctxt_arr [PID1][0];  … 

       load  gen_reg [7],  ctxt_arr [PID1][7]; 

       set_partitionID   PID1; 

Kernel Scheduler 1: // uses reserved registers R1 and R2 

       // set bounds and �mers for par��on 1: 10 cycles 

       load R1, PID1_BOUNDS_G; load R2, PID1_TIME_G; 

       set memboundsg  R1, R2, PID1_RW_G; 

 

       load R1, PID1_BOUNDS_L; load R2, PID1_TIME_L; 

       set memboundsl   R1, R2, PID1_RW_L; 

 

       load R1, PID1_TIMER; load R2, Context Switch2_PC; 

       settimer  R1, R2, USR_MODE;  

 

       jump  ctxt_arr [PID1][8];   

      // returns to context switch2 () in kernel mode 

Context switch time = 2 x pipeline depth + context save + context restore  + kernel scheduler   = 37 cycles 

Figure 9: Kernel scheduler and context switch func-
tions in assembly. Security policies are expressed
through the values of partition parameters for mem-
ory and time bounds. The functions are small since
the ISA and CPU are designed for information flow
control.

text switch. To effect a context switch, the kernel partition
gets one time slot after each of the other partitions’ slots.
In actual systems, the partitions are sized so that they meet
hard real-time guarantees demanded by critical application;
we opt for arbitrary durations for each partition in order
to demonstrate how to verify non-interference between the
trusted and untrusted partitions.

To verify non-interference, we instantiate the trusted ker-
nel scheduler and the context switch partition with concrete
values, while the other three partitions are instantiated as
unknown (∗). The cross-domain guard partition overlaps
a read-only memory region with the trusted avionics parti-
tion and a write-only partition with the untrusted partition.
This ensures that information can only flow in one direc-
tion from trusted to untrusted. Note, however, that cross-
domain guards can also be required to impose restrictions
on the type of information that can be transferred. Enforc-
ing such rules requires verifying the guard program logic
using alternative formal verification techniques; bit-level in-
formation flow analysis is too coarse-grained to provide such
guarantees.

The scheduler is small; the trusted, concretely specified
scheduler and context switch code only requires 87 assembly
instructions. This is primarily because the ISA in Figure 7 is
explicitly designed for information flow control. The time re-
quired to switch contexts is an important performance met-
ric for a kernel. In our system prototype, it takes the kernel
partition 37 cycles to switch one partition and schedule
another: 4 cycles each to flush and re-fill the pipeline, 19
to save and restore partition ID, general purpose registers
and the last executed PC, 10 to set new memory and time
bounds and to jump to the PC for the restored context.

4.3 I/O Implementation
The I2C devices and adapters are also processed using the

verification flow mentioned above (note that the CPU and
kernel can be verified independently of the I/O by treating
the I/O interface in the CPU as trusted and unknown). Our
experiment use a single master and three slaves connected
to the bus using adapters. Each adapter synthesized indi-
vidually requires 49b of state and the slave requires 21b. We
wish to verify that information does not flow from the un-
trusted slave to any other device, and set up a test where
the master is trusted and known, communicates with an un-
trusted slave that is unknown (∗U ). The I2C bus has two
trusted slaves, one specified and one unknown.

Figure 10: Figure shows how to check for a safe re-
set of the I2C adapter to a trusted state (based on a
trusted signal time_valid). The Modelsim simulation
waveform begins with the adapter in an untrusted
time slot (time_valid = 1). During the untrusted
communication, the adapter’s state bit stays un-
known (as indicated by the MSB of ad_state being 1)
and untrusted (ad_state_shadow = 1) until the time
slot expires (indicated by the time_valid signal). At
that point, the adapter’s state machine is reset to a
trusted state (indicated by the ad_state_shadow sig-
nal going low).

4.4 Verification Results
We simulate the augmented designs of the CPU and the

I/O system for one loop of the kernel scheduler, come back to
the initial state, and verify that all security labels for mem-
ory and outputs follow the desired policy for every state of
the system. Figure 10 shows a screenshot of verifying that
the I2C adapter state is reset to trusted once an untrusted
time slot has ended. We simulate a complete I2C transac-
tion, letting transmitted data values be unknown, and verify
that no untrusted value ever appears on the adapter outputs
to the trusted slave devices. This experiment used 3 slaves
and 3 adapters with a total of 184 state bits, and if we
assume that the hardware modules’ contributions are pro-
portional to their individual sizes, our technique can verify
the 184b system by specifying ∼128b concretely and eval-
uating all combinations of the rest in a single execution of
the augmented system.

The ∗-logic verification technique scales to handle large
embedded system designs, as shown in Figure 8. Of the
total 133kB state for the Star-CPU, only 3264b are required
to specify the micro-kernel’s scheduler, context switch code,
and partition bounds. The verification scales because its
complexity grows linearly with the size of the design under
test, as each module is replaced by its augmented module.

Total verification time includes the time for both synthe-
sizing the design and simulating it for a kernel scheduler
loop. The augmented logic takes considerably longer to syn-
thesize as compared to the basic design under test. The aug-
mented Star-CPU, with 48093 ALUTs, required 14 hours to
synthesize with QuartusII v9.1 as compared to just 7 min-
utes for the basic design with 5756 ALUTs. Once synthe-
sized, simulating one loop of the kernel scheduler only takes
a few seconds. All measurements were made on a 1GHz
AMD Athlon 64 X2 Dual Core Processor with 1MB cache
and 2.7GB RAM.

In the future, we will integrate ∗-logic with other formal
techniques that can work with richer abstractions. While
such techniques do not readily scale to large systems, these
can complement ∗-logic to verify that the system is secure for
a set of implementations or kernel parameter values instead
of one specific implementation.

5. CONCLUSIONS
Embedded systems are trusted by people to do everything

from stopping their cars to controlling the beating of their
hearts, yet all too often these systems compromise strong



security for rich functionality. We have shown, for the first
time, that complete statically verifiable information flow se-
curity is compatible with the convenience of continuous, un-
bounded operation and dynamic optimizations – even when
we consider timing channels and other hardware/software
leaks as part of our threat model. Our system is designed
around an architectural skeleton that allows a micro-kernel
to safely multiplex mixed-trust programs on the hardware,
and can do so in 1/4th the area and with double the clock
frequency as more restrictive prior work. These advances
are due in part to the development of a tool that can stati-
cally verify information flows through full systems at the bit
level, allowing us to verify a 133kB system by specifying only
3264b concretely, and leaving behind the hardware dynamic
flow tracking considered in prior work. While more work is
required to examine the broad applicability and scalability of
this approach, by implementing and verifying a full-system
prototype (including a CPU, a micro-kernel, and I2C based
I/O) we have demonstrated that a useful balance between
flexibility and hardware information leakage is not only pos-
sible but can even be relatively efficient.
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