
SurfNoC: A Low Latency and Provably Non-Interfering
Approach to Secure Networks-On-Chip

Hassan M. G. Wassel†, Ying Gao†, Jason K. Oberg∗,
Ted Huffmire‡, Ryan Kastner∗, Frederic T. Chong†, Timothy Sherwood†

†UC Santa Barbara ∗UC San Diego ‡Naval Postgraduate School

hwassel@cs.ucsb.edu, yinggao@ece.ucsb.edu, jkoberg@cs.ucsd.edu,
tdhuffmi@nps.edu, kastner@cs.ucsd.edu, {chong, sherwood}@cs.ucsb.edu

ABSTRACT
As multicore processors find increasing adoption in domains
such as aerospace and medical devices where failures have
the potential to be catastrophic, strong performance isola-
tion and security become first-class design constraints. When
cores are used to run separate pieces of the system, strong
time and space partitioning can help provide such guaran-
tees. However, as the number of partitions or the asymme-
try in partition bandwidth allocations grows, the additional
latency incurred by time multiplexing the network can sig-
nificantly impact performance.

In this paper, we introduce SurfNoC, an on-chip network
that significantly reduces the latency incurred by tempo-
ral partitioning. By carefully scheduling the network into
waves that flow across the interconnect, data from different
domains carried by these waves are strictly non-interfering
while avoiding the significant overheads associated with cycle-
by-cycle time multiplexing. We describe the scheduling pol-
icy and router microarchitecture changes required, and eval-
uate the information-flow security of a synthesizable im-
plementation through gate-level information flow analysis.
When comparing our approach for varying numbers of do-
mains and network sizes, we find that in many cases SurfNoC
can reduce the latency overhead of implementing cycle-level
non-interference by up to 85%.

Categories and Subject Descriptors
C.2.1 [PROCESSOR ARCHITECTURES]: Multiple
Data Stream Architectures (Multiprocessors) Interconnec-

This work was funded in part by Grant No. CNS-1239567,
CNS-1162187 and CCF-1117165. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the sponsoring
agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

tion architectures ; C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS]: Real-time and
embedded systems

General Terms: Design, Reliability, Security, Verification.

Keywords: High Assurance Systems, Networks-on-chip,
Non-interference.

1. INTRODUCTION
Programmers are increasingly asked to manage a com-

plex collection of computing elements including a variety of
cores, accelerators, and special purpose functions. While
these many-core architectures can be a boon for common
case performance and power-efficiency, when an application
demands a high degree of reliability or security the advan-
tages become a little less clear. On one hand, the ability to
spatially separate computations means that critical opera-
tions can be physically isolated from malicious or untrust-
worthy components. There are many advantages to provid-
ing physical separation which have been well explored in the
literature [28, 40]. On the other hand, real systems are likely
to use different subsets of cores and accelerators based on
the needs of the application and thus will require a shared
communication network. When a general-purpose intercon-
nect is used, analyzing all the ways in which an attacker
might influence the system becomes far more complicated.
The problem is hard enough if we restrict ourselves to con-
sidering only average-case performance or packet ordering,
but the difficulty of the problem increases even further if we
attempt to prevent even cycle-level variations.

In high-assurance systems it is a common practice to break
the system into a set of domains, which are to be kept sep-
arate. These domains should have no effect on one another.
For example, the Mars Curiosity rover software runs on a
RAD750 processor, a single-core radiation-hardened version
of the Power architecture with a special-purpose separation
kernel [1]. The kernel partitions the tasks, such as guidance,
navigation and the various science packages from one an-
other to help prevent cascading failures. Future space mis-
sions are looking to use multicore systems [23, 33], which
adds another layer of communication, but there are serious
concerns about the introduction of opportunities for inter-
ference between system components [25, 26].

The problem is that typical networks-on-chip have many
internal resources that are shared between packets from dif-
ferent domains, which we would otherwise wish to keep sep-

arate. These resources include the buffers holding the pack-
ets, the crossbar switches, and the individual ports and chan-
nels. Such resource contention introduces “interference” be-
tween these different domains, which can create a perfor-
mance impact on some flows, pose a security threat by cre-
ating an opportunity for timing channels [37], and generally
complicates the final verification and certification process of
the system because all of the ways in which that interaction
might occur must be accounted for. Non-interference means
that injection of packets from one domain cannot affect the
timing of delivery of packets from other domains.

These concerns are similar to, but distinct from, the prob-
lem of providing quality-of-service guarantees. While QoS
can minimize the performance impact of sharing between
domains by providing a minimum guaranteed level of ser-
vice for each domain (or class) [12, 13, 19, 14], as shown
by Wang and Suh, quality of service techniques will still
allow timing variations and thus do not truly support non-
interference [37]. The only way to be certain that the do-
mains are non-interfering is to statically schedule the do-
mains on the network over time. However, a straightfor-
ward application of time multiplexing leads to significant
increases in latencies as each link in the network is now time
multiplexed between many different domains.

The core idea behind our approach is that, if a strictly
time multiplexed link is seen as an oscillating behavior, we
can stagger the phases of these oscillations across the net-
work such that a set of “waves” is created. As these waves
traverse the network they provide an opportunity for pack-
ets of the corresponding domain to travel unimpeded along
with these waves (thus avoiding excessive latency), while
still requiring no dynamic scheduling between domains (thus
preventing timing corruption or information leakage). Chan-
nels in the same dimension and direction appear to “propa-
gate” different domains such that after passing through the
pipeline of the router, the channel is ready to forward a
packet coming from the same dimension and domain without
any additional wait (unless there is contention from packets
of the same domain). In this way packets “surf” the waves in
each dimension. We identify the many potential challenges
of achieving non-interference in a modern network-on-chip
router microarchitecture using gate-level analysis, and we
discuss the details and ramifications of our surf scheduling
methodology, and we argue that our approach truly does not
allow even cycle-level cross-domain interference. Specifically
in this paper:

1. We present a channel scheduling scheme and network
router design which simultaneously supports both low-
latency packet-switched operation and non-interference
between domains.

2. We show that as the network grows in size, as the
number of domains increases, and as the asymmetry
between domains becomes larger, the benefit for a surf-
scheduled network over TDMA continues to increase.

3. We evaluate the latency, throughput, area, and power
consumption of these approaches through a detailed
network simulation.

4. Finally, we argue that the technique is truly sound
through an analysis of the router micro-architecture
and with the help of formal verification via gate-level
information flow analysis.

The rest of the paper is organized as follows. We begin
with a discussion of related work and how our proposed solu-
tion fits in the design space in Section 2. Next, in Section 3,
we describe the core idea behind the SurfNoC schedule fol-
lowed by a detailed router micro-architecture discussion in
Section 4. Section 5 presents the evaluation of the system
and explores the relationship between domains, partition
asymmetry, and scheduling. Then, we provide a gate-level
information-flow analysis in Section 6. Finally, Section 7
concludes the paper with our final thoughts and a discus-
sion of future directions.

2. RELATED WORK
Our proposed solution to non-interference in NoCs touches

on many problems that have been proposed in the litera-
ture, such as timing channels in micro architecture, QoS
in networks-on-chip, fault-containment and composability in
system-on-chips, and security in NoCs. In this section, we
will try to review some of this related work and show how
our work fits in the design space.

Timing Channels and Non-interference in Micro-
architecture: There has been a recent renewed interest
in the analysis of timing channel attacks and mitigations
through micro-architecture state such as cache interference [2,
38, 39] and branch predictors [3, 4]. One approach to these
problems is a technique that can verify non-interference of
hardware/software systems (including high-performance fea-
tures such as pipelining and caching) using gate-level infor-
mation flow tracking [36, 34, 35]. More recently, a NoC
timing channel protection scheme for a system with secu-
rity lattices was been proposed [37]. This paper proposes
a priority-based arbitration scheme to allow packets with
LOW labels to always win arbitration (except when they
reach a pre-specified quota during each system epoch to pre-
vent denial-of-service attacks from the LOW domain). This
ensures that information cannot flow from the domain with
a HIGH label to the domain with a LOW label, but allows
for information flow in the other direction. It can be ex-
tended to multiple security labels as long as they form a
lattice. In this work, we propose a technique that assures
multi-way non-interference in NoCs with low latency over-
head to allow for verification of high-assurance systems such
as those in aerospace and automotive systems.

QoS in Network-on-chips: Techniques for achieving
NoC quality-of-service guarantees have been proposed based
on solutions to analogous problems in macro-scale networks.
These approaches for the most part attempt to limit the
rates of each flow [12, 13, 19, 14]. However, quality-of-service
guarantees are known to be not sufficient for timing channel
protection [37]. Optimizations that allow flows to go over
their designated rate when uncontended and the lack of fault
containment are problematic for high-assurance systems [28]
because of the high cost of any unaccounted variation in such
systems. The time division approach proposed here provides
for both fault containment and timing channel elimination.

Security in NoCs: Security in NoCs has been studied
from several aspects that focus on specific attack mitigations
such as defending against denial-of-service (DoS), battery-
draining attacks [9] and maintaining access control of spe-
cific memory regions in shared- memory systems [9, 27], and
buffer overflow attacks [20, 21]. Gebotys and Zhang have fo-
cused on confidentiality by providing encryption techniques
for data transmitted over the NoC in a SoC setting [10].

(a) Odd cycles. (b) Even cycles

Figure 1: Time-division multiplexing scheduling in a 16-
node 2D mesh (only one direction of channels is shown for
illustration purposes).

Availability is handled in the Tile64 iMesh networks by sepa-
rating (and in fact physically separating) the network acces-
sible by user applications from the network used by the OS
and IO device traffic [40]. Our scheme can protect against
DoS and bandwidth depletion attacks between domains be-
cause of the static time allocation to different domains.

Non-interference in NoCs: Non-interference in NoCs
has been studied in the system-on-chip domain to provide
composability and fault containment as well as predictabil-
ity of latency for real-time performance guarantees [15, 24].
Composability means that the system can be analyzed as a
set of independent components, which allows for easier ver-
ification of the overall system without having to verify all
possible interleavings of events in the system. This has been
especially critical in high-assurance systems that require a
very high level of verification because of the safety rami-
fications of the system. Æthearal proposed a time-division
multiplexed (TDM) virtual circuit switching network to pro-
vide guaranteed services (GS) for performance-critical ap-
plications with real-time deadlines and a packet-switched
best-effort (BE) network for applications with fewer require-
ments [11]. A lighter version that only provides GS was pro-
posed to further simplify routers [31, 16]. More recently, Ste-
fan and Goossens proposed a modification to Æthearal that
enables multi-path routing, both static and dynamic (based
on a true random number generator), in order to enhance
security by using a non-deterministic path instead of the
source-routing used in Æthearal [30]. In addition, the need
for real-time worst-case execution time (WCET) analysis in-
spired a set of work, such as, the T-CREST project, which
tries to build a time-predictable multi-core for real-time ap-
plications. They proposed an integer programming tech-
nique to minimize the length of static schedule of all-to-all
circuit switching connections in a TDM way [29]. Bui et al.
proposed an on-time network-on-chip using real-time packet
scheduling, admission control, and run-time path configura-
tion [6]. We believe that such an admission control technique
is orthogonal to SurfNoC. SurfNoC can be augmented by
an admission control mechanism to provide time-predictable
packet delivery.

Regarding packet-switching networks, the Avici TSR [8]
uses separate virtual channels for each destination in the
network, but packets destined to different locations share
physical channels. Under saturation, physical channels are
allocated fairly, but destinations can go over their fair share

(a) Odd cycles (b) Even cycles

Figure 2: Surf scheduling in a 16-node 2D mesh (only one
direction of channels is shown for illustration purposes).

when the network is not saturated, which can leak informa-
tion by detecting the variation of bandwidth a certain node
receives.

To the best of our knowledge, our scheme is the first to
provide a packet-switched network that can guarantee two-
way (or multi-way) non-interference and timing channel pro-
tection in a way that is both a) provable down to the gate-
level implementation and b) provides low-latency overhead.

3. SURFNOC ARCHITECTURE

3.1 A Motivating Example
Consider the 16-node half-mesh network (channels are

drawn in one direction left-to-right and top-down for illus-
tration purposes) in Figure 1, assuming that even nodes be-
long to domain 0 and odd nodes are part of domain 1. A
straightforward way to support non-interference is by parti-
tioning the virtual channels and time-multiplexing the phys-
ical channels and crossbars between different domains such
that channels are only allowed to propagate packets from
domain 0 (black) on even cycles and packets from domain
1 (grey) on odd cycles (assuming a single-cycle routers), as
shown in Figures 1a and 1b. This time-multiplexing scheme
ensures that the latency and throughput of each domain is
completely independent of the other domain’s load. How-
ever, this baseline scheme means that packets will have to
wait an extra cycle at each hop. Even worse, as we scale
the number of domains from 1 to D, assuming a single-cycle
router, each packet will have to wait D − 1 cycles per hop.
This is a high price to pay, and one that continues to get
worse the further away you attempt to communicate. If we
want to maintain to non-interference, we will still need these
strict time-varying partitions, but by changing the phase of
their oscillations we can dramatically reduce the latencies
involved.

A better schedule for time-multiplexing will make sure
that domains wash over the network as a wave, such that
each dimension appears to be “propagating”one domain in a
pipelined fashion. Figure 2a shows a simplified view of this
point. Every link still rotates evenly through domain 0 and
domain 1, but if we consider the top row in Figure 2a, we can
see alternating channels (grey, black, grey). In the next cycle
(shown in Figure 2b, the channels used to propagate packets
from domain 0 (black) will carry packets from domain 1
(grey), and vice versa.

Before entering the network, the packet waits in the in-

jection port until its domain’s turn. The schedule ensures
that when the packet is ready to egress the router, there
will be no delay waiting for its domain’s turn at the down-
stream router. The only exceptions to this rule are when a
packet needs to change dimensions (such as when the packet
turns from traveling along the X dimension to the Y dimen-
sion) and when there is contention from packets in the same
domain.

As an optimization, we constrain our schedule such that
two directions of the router propagate packets from the same
domain at the same time. For example, the top-left router
in Figure 2b propagates packets from domain 0 (black) both
to the right and down. In this case, any packet which is sent
in a downward and/or rightward direction will only have
to wait to enter the network and will have no additional
waits during turns between dimensions (again, unless there
is intra-domain contention). Of course, this example is very
simple as it has only two domains, even divisions, and does
not consider the latency of the network routers. In the next
section, we will show how to devise a detailed strategy for
k-ary n-cube meshes and tori networks and discuss how non-
interference can be shown at the level of an implementation.

3.2 SurfNoC Scheduling
The most basic routing algorithm in meshes and tori is

dimension-ordered routing. That is, a packet walks through
a dimension until it cannot move further without going far-
ther from the destination and then transfers to an other
dimension. Thus, routing is linear in each dimension, which
provides an opportunity to reduce wait time between hops.
This way, packets will only have to wait when they enter
(exit) the network from (to) the injection (ejection) channel
and when they change dimensions. We will describe this
idea in detail in the rest of this section.

The straightforward way to support time-division multi-
plexing is to operate the whole network in time slices that
are divided between application domains. That is a packet
waits at each hop until the network is forwarding packets
from its domain. This approach leads to a zero-load latency
L0 that is proportional to the number of application domains
D, pipeline depth P , and the number of hops H, as shown
in Equation 1. This solution might work efficiently for a
small number of domains such as two to four domains, but
in high-assurance applications as many as tens or hundreds
of domains can be found [28].

T0 = HP +H(D − 1) (1)

Building on the technique we developed in the motivating
example, we propose SurfNoC scheduling, in which different
routers (and in fact different ports of the same router) can
forward packets from different domains in the same cycle.
In this schedule, a packet waits until it can be forwarded in
one dimension (i.e., its output channel is forwarding packets
from its domain in this cycle) and then does not experience
any wait at any downstream router in this dimension (as-
suming there is no contention from packets from the same
domain) in a way similar to the schedule developed in the
half-mesh example. After finishing the first dimension, the
packet may experience another wait until it can be forwarded
in the next dimension. We call this schedule Surf schedul-
ing because a packet is like a surfer who waits to “ride” a
wave until some location and then waits to “ride” another
wave. In this analogy, waves are dimension pipelines. Equa-

tion 2 shows the maximum zero-load latency and clearly
shows that the overhead is additive not multiplicative as in
the straightforward way. The term (n − 1 + 2) comes from
n− 1 transitions between dimensions and two waits during
injection and ejection. It is worth noting that this is the
maximum wait, not the typical one, as the schedule may
require less wait.

T0max = HP + ((n− 1) + 2)(D − 1) (2)

The way to implement these different“waves”is by schedul-
ing different directions in a router independently; an idea in-
spired by dimension-slicing used in dimension-ordered rout-
ing in meshes and tori. We used what we call direction-
slicing of the pipelines, such that each direction has its own
pipeline. This pipeline is a virtual one going through differ-
ent routers (not in the same router). We will describe this
idea in the case of a 2D mesh or torus.

In a 2D mesh or torus, each dimension has two direc-
tions (E and W for the x-dimension; N and S for the y-
dimension). The pipelines of directions of the same dimen-
sion (i.e. N,S and E,W) are running in opposite directions
as shown in Figure 3. In this technique, each port of a router
is scheduled independently of all other ports in a pipelined
way such that the downstream router in the same direction
will forward packets from the same domain after P cycles
where P is the pipeline depth of the router. These schedules
are imposed on output channels of each router to avoid tim-
ing channels based on contention in the allocator (as detailed
in the next section).

Figure 3 illustrates an example of a 16-node 2D mesh
schedule of three domains (colored white, grey, black). There
are two waves south-east (SE) (as the one shown in Fig-
ure 2) and north-west (NW) running in the mesh. Each
channel propagates packets according to the following sched-
ule (white, white, gray, and black) and repeats. It is worth
noting that using such a schedule results in half of the band-
width being allocated to the white domain, whereas the
black and grey domains guarantee only a quarter of the
bandwidth for each of them. This illustrates the benefit of
our schedule in statically allocating non-uniform bandwidth
to domains.

4. ROUTER MICROARCHITECTURE
The micro-architecture of the SurfNoC router has two

main goals:

1. Ensuring a timing-channel-free contention between pack-
ets, i.e., contention can occur between packets from the
same domain but not between packets from different
domains;

2. Scheduling the output channels of each router in a way
that maintains the surf schedule across the whole net-
work;

In order to achieve these two goals, we used a dynamic
number of virtual channels that are partitioned between do-
mains independent of load (§4.1). We analyzed the VC al-
locator and switch allocators to make sure they are timing-
channel free (§4.2). The scheduling of output channels is
done through masking requests to the switch allocator from
packets until its turn to use the output channel arrives in
the wave pipeline (§4.3).

S

R
(a) T=1

S

R
(b) T=2

S

R
(c) T=3

S

R
(d) T=4

S

R
(e) T=5

S

R

(f) T=6

Figure 3: Surf scheduling in a 16-node 2D mesh with three application domains (denoted by white, grey, and black) assuming
single-cycle routers for the purpose of illustration. The schedule runs as white, white, grey, and black and repeats, giving the
white domain half the bandwidth. A packet (the white box under the node S) belonging to the white domain is sent from the
node marked by S to the node marked by R. The figure contains six consecutive cycles. At T = 1, the packet is forwarded on
the S port in the y-dimension (which is scheduled to forward white packets). It keeps moving in the y-dimension until T = 3
when it needs to move in the x-dimension on the W port. The packet waits 2 cycles (T=4 and T= 5) until it is the white
domain’s turn on the W port, and finally it is forwarded to its destination on T = 6. Another wait may happen again in the
destination router (R) to forward the packet on the ejection port waiting for the white domain’s turn.

4.1 Partitioning Virtual Channels
Spatial partitioning of the queues is not a new idea [37,

8]. Static partitioning of virtual channels is done through
restricting the routing algorithm so that it generates out-
put virtual channels in the range allowed for the domain of
the packet. This partitioning ensures non-interference be-
tween packets from different domains while they wait in the
buffers before being forwarded, i.e., eliminating the head-of-
line (HOL) problem between domains.

4.2 Allocators
The SurfNoC router has two allocators, the VC alloca-

tor and the SW allocator. We used a separable allocator
as the baseline allocator. These allocators use round-robin
arbiters. This may lead to timing channels if requests are
allowed from different domains to the same resource. We
will detail how we prevent that from happening for both
allocators.

Virtual Channel Allocators: The requesters of the VC
allocator are packets requesting the upstream router virtual

channels. The resources are virtual channels of the upstream
routers. By restricting the routing circuit to only issue re-
quests for virtual channels that belong to the correspond-
ing domain, contention is guaranteed to be between packets
from the same domain. Actually, we can use this property
to reconstruct the VC allocator to be D VC allocators of
size v × v, where D is the number of domains, and v is the
number of virtual channels per domain (across ports, not per
port) instead of one large VC allocator of size V ×V , where
V = D.v. This design can help save power by power-gating
some of these allocators if the number of required domains
is less than D for a certain application. Figure 4 depicts an
example of a 3 × 3 VC allocator and illustrates the ratio-
nale behind the non-interference support in the VA stage as
well as the optimization of separate D allocators. This also
shows that we can use any arbiter or allocator design for VC
allocation because it is intrinsically interference-free.

Switch Allocator: The SW allocator assigns output ports
to virtual channels. Since any virtual channel can request
any port, we cannot apply the same technique we used for

3x1 Arb
For IVC0

3x1 Arb
For IVC1

3x1 Arb
For IVC2

3x1 Arb
For OVC1

3x1 Arb
For OVC2

r00

r01
r02

r10

r11
r12

r20

r21
r22

g00
g10

g20

g10
g11

g12

g20
g21

g22

3x1 Arb
For OVC0

Figure 4: Virtual channel allocator: A 3x3 separable input-
first VC allocator. In this example, we assume that VC0
and VC2 are assigned to domain 0 and VC1 is assigned to
domain 1. Dashed lines show signals that can never be 1
due to route computation restrictions. This example shows
that we can reconstruct the allocator into smaller ones.

Port 0

VC0

VC1

Port 1

Port 2

VC0

VC1

VC0

VC1

Port 3

VC1

VC0

(a) No speedup

Port 0

VC0

VC1

Port 1

Port 2

VC0

VC1

VC0

VC1

Port 3

VC1

VC0

(b) Crossbar with input
speedup

Figure 5: Crossbar with input speedup to eliminate con-
tention on switch input port between VCs from different
domains.

the VC allocator of dividing the allocator into separate smaller
allocators. Another problem arises from the fact that switch
ports are shared among virtual channels from different do-
mains (as shown in Figure 5a), which means that requests
to the switch can be denied if two VCs (belonging to two dif-
ferent domains) on the same input port and requesting two
legitimate (according to the surf schedule) output ports will
contend on the crossbar input port leading to one of them
being delayed, and thus a timing channel exists. We can
solve this problem by using the input speedup parameter of
the crossbar with value D, and hence no contention between
domains on switch input ports exists. Figure 5b shows an
example of such configuration.

By solving the input port request of the allocator, we can
now design the switch allocator as a separable one of size
Dp × p where p is the number of ports of the router. It
is worth noting that it does not matter if the allocator is
input-first or output-first because of two reasons. First, an
input arbiter is responsible for one input to the crossbar that
is shared between VCs from the same domain. Second, by
using dimensional order routing and the surf scheduling, a
VC can request only one output port. Requests to an out-
put port are masked using the scheduler state so that only
requests from the domain which owns the current time slot
reaches the allocator (i.e., no contention between different
domains can happen in the output arbiter).

Requests
from VCs

To SW
Allocator

Scheduler State

2+1

White

White

Grey

Black

Figure 6: Scheduler: The scheduler output is used to mask
requests to the switch output ports according to the surf
schedule.

4.3 Scheduler
The scheduler is a set of p tables each indexed by a counter,

one for each router output port. The initial state of the
counter is pre-determined at design time in order to enforce
the surf schedule. The number of slots in the tables is de-
termined by the number of domains. The selected element
from the array is used as input to a decoder. The decoder
output is used to mask requests to the switch allocator as
shown in Figure 6. If the number of domains D is greater
than the router pipeline depth (including channel traversal)
P , the schedule table is initialized according to Equation 3,
where Si[d] is the schedule of port i at index d, l is the lo-
cation of the node in the dimension of port i, and l′ is the
location of the node in the other dimension.

Si[d] =

{
((D − P)(l + l′) + d) mod D if i ∈ {0, 2}
(−(D − P)(l + l′) + d) mod D if i ∈ {1, 3}

(3)

4.4 Pipelining and separation discussion
We have so far discussed separation with respect to each

pipeline stage separately, but the question remains whether
pipelining and pipeline stalls can cause interference or not.
We will discuss each pipeline stage, and the basic idea is to
ensure that stalls do not induce interference between sepa-
rate domains.

Buffer write and route computation (BW/RC): This
stage is the first stage of the pipeline, and because we are
assuming a credit-based flow control, flits do not enter the
router unless there is a guaranteed space in the buffer for
them. Spatial separation is ensured because VC allocation
is done in the upstream router. Route computation can be
done in parallel for all flits at the front of all virtual channels
(waiting for RC). No interference can be caused in this stage.

Virtual channel allocation (VA): At this stage, all flits
send requests to the VC allocator. Using our design, in-
terference can happen between virtual channels from the
same domain but not between those from distinct domains.
Stalled flits because of lack of free virtual channels (in the
downstream router) prevent only flits from the same vir-
tual channel from making progress. This can be ensured by
recording state in the pipeline for each virtual channel, i.e.,
stalls due to virtual channel allocation have to be per virtual
channel (not per input port).

Parameter	
 Baseline-­‐small	
 Baseline-­‐fast	
 Surf	
 and	
 TDMA	

VCs	
 12	
 32	
 See	
 Table	
 2	

Buffers	
 per	
 VC	
 4	
 4	
 See	
 Table	
 2	

Input	
 Speedup	
 1	
 32	
 See	
 Table	
 2	

Flits	
 per	
 packet	
 1	

Router	
 delay	
 4	
 cycles	

SW	
 and	
 VC	

Allocators	

Seperable	
 (input-­‐first)	

RouEng	
 DoR	

Table 1: Simulation Parameters.

Domains	
 1	
 2	
 4	
 8	
 16	
 32	

Number	
 of	
 VCs	
 per	
 port	
 16	
 16	
 16	
 32	
 32	
 32	

Number	
 of	
 flits	
 per	
 VCs	
 8	
 8	
 8	
 4	
 4	
 4	

Input	
 speedup	
 1	
 2	
 4	
 8	
 16	
 32	

Table 2: Different configurations

Switch allocation (SA): Switch allocation can fail, due
to contending flits for switch ports (limited to virtual chan-
nels from the same domain), which causes stalls in the pipeline.
We avoid stalling the whole port (which leads to interference
between domains) by having a separate state in the pipeline
stage for each virtual channel. Switch allocation can also
be stalled because of lack of buffering in the downstream
router, i.e., waiting for a credit. The effect of this stall is
limited to a single virtual channel, and can be handled by
the same way we addressed a stall resulted from a failed SW
allocation.

The key idea here is that stalls can affect flits in the stalled
stage and all previous stages only from the same virtual
channel. Thus, we can guarantee separation because we
statically assign virtual channels to domains.

5. EVALUATION
In this section, we evaluate the performance and sepa-

ration features of our SurfNoC scheme. We also evaluate
the area and power overhead compared to a mesh network
without non-interference support.

5.1 Experimental setup
We implemented a model of the SurfNoC router in Book-

Sim 2.0 [7], a cycle-level interconnection network simulator.
The simulator is warmed up until steady state is reached
and statistics are reset, then a sample of the packets is mea-
sured from the time it enters the source queue until it is
received. For latency measurements, the simulation runs
until all packets under measurement leave the network. Ta-
ble 1 provides the simulation parameters used for differ-
ent schemes. We evaluated four schemes, two which do
not provide separation guarantees, while the other two sup-
port strong separation. The non-separation baselines are an
input-queued router with minimal resources, which achieves
almost 40% saturation throughput (Baseline-small), and a
similar router but with much more resources (buffers and
input-speedup in the crossbar switch), which we call Baseline-
fast. We chose to use two baselines because the separation

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

2	
 7	
 12	
 17	
 22	
 27	
 32	

Ze
ro
-­‐lo

ad
	
 la
te
nc
y	

(c
yc
le
s)
	

Number	
 of	
 domains	

baseline-­‐small,64	
 baseline-­‐fast,64	
 tdma,64	
 surf,64	

(a) 64 Nodes

0	

50	

100	

150	

200	

250	

300	

350	

400	

2	
 7	
 12	
 17	
 22	
 27	
 32	

Ze
ro
-­‐lo

ad
	
 la
te
nc
y	

(c
yc
le
s)
	

Number	
 of	
 domains	

baseline-­‐small,256	
 baseline-­‐fast,256	
 tdma,256	
 surf,256	

(b) 256 Nodes

Figure 7: Zero-load latency for different network size and
different number of security domains (the two baselines are
overlapped because zero-load latency does not depend on
buffers and crossbar input speedup).

supporting router includes more resources and would achieve
more throughput than a baseline with minimal area, which
will hide the lost throughput due to the static scheduling.
The non-interference supporting schemes are a straightfor-
ward (TDMA) (the whole network forwards packets from
the same domain) and an input-queued router which en-
forces the surf schedule (Surf). Table 2 shows the different
configurations used for different numbers of domains for Surf
and TDMA.

5.2 Impact on latency
We first examine the impact of our non-interference sup-

port on latency with a different number of domains, and a
different number of nodes under the uniform random traffic
pattern. In order to understand the effect of time-division
multiplexing of channels, we measure zero-load latency (la-
tency at offered load of 0.1% of capacity for only one domain)
and plot it for different numbers of domains in Figure 7. In
this figure, we plot latency in cycles (y-axis) vs. number of
domains on the x-axis for two network sizes of 64-nodes (Fig-
ure 7a) and 256-nodes (Figure 7b). We compare four config-
urations: baseline-small, baseline-fast, TDMA and Surf. It
is clear that the latency overhead of Surf scales much bet-

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

0	
 50	
 100	
 150	
 200	
 250	

Ze
ro
-­‐lo

ad
	
 la
te
nc
y	

(c
yc
le
s)
	

Number	
 of	
 Nodes	

baseline-­‐small	
 baseline-­‐fast	
 tdma	
 surf	

Figure 8: Zero-load latency versus different network size
with 16 domains (the two baselines are overlapped because
zero-load latency does not depend on buffers and crossbar
input speedup).

ter than TDMA for the same network size (for example, the
overhead is reduced the overhead from 66 (19.1) to 19 (4.6)
cycles by 71.3% (75.8%) for network sizes of 64 nodes with 16
(4) domains. The savings is even greater (up to 84.7%) for
a 256-node network. We can see that there is one exception
to this reduction in latency which happens for five domains.
It is a subtle case that happens only for five domains, be-
cause the packet leaves the router after one cycle of switch
traversal (ST), spends one cycle for link traversal (LT) and
after two cycles of buffer write (BW) and virtual channel
allocation (VA) in the upstream router (total of four cycles
during which the upstream router propagates packets form
other domains), it becomes ready for switch allocation (SA)
without any wait using TDMA leading to the same latency
overhead of surf scheduling. One would also notice that the
benefits are higher for larger networks because of the in-
creased average number of hops. We can conclude that, in
general, the savings of surf scheduling is more scalable with
larger networks as well as a higher number of domains.

In order to clearly understand how the overhead scales
with network sizes or average number of hops, we re-plotted
zero-load latency of 2D mesh networks of sizes varying from
16 to 256 nodes with 16-domains under the uniform random
traffic pattern. It is clear that the latency of both baselines
increases with network size due to a higher average number
of hops. We can see that the overhead of surf scheduling
is almost independent of network size (average number of
hops), leading to a line parallel to the baseline with con-
stant overhead of 19 cycles (except for 16-nodes) because the
packet wait-time depends only on the number of dimensions
and the number of domains. On the other hand, the larger
the network, the higher the overhead for TDMA schedul-
ing because a packet has to wait for its turn at each hop
in the path to its destination. This clearly shows that our
scheme is scalable with network size and proves our intuition
of latency overhead independence of number of hops.

Zero-load latency is just one latency metric; thus, we now
study latency as a function of network offered load. Fig-
ure 9 shows average latency measured after convergence as
a function of offered load for a 2D mesh network of 64-nodes
under uniform random and transpose traffic patterns. We

30	

40	

50	

60	

70	

80	

90	

100	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	

Av
er
ag
e	

la
te
nc
y	

(c
yc
le
s)
	

Network	
 Offered	
 load	
 (flits/cycles)	

baseline-­‐small	
 baseline-­‐fast	
 tdma	
 surf	

(a) Uniform random (2 Domains)

30	

40	

50	

60	

70	

80	

90	

100	

0	
 0.05	
 0.1	
 0.15	
 0.2	
 0.25	

Av
er
ag
e	

la
te
nc
y	

(c
yc
le
s)
	

Network	
 Offered	
 load	
 (flits/cycles)	

baseline-­‐small	
 baseline-­‐fast	
 tdma	
 surf	

(b) Transpose (2 Domains)

Figure 9: Average latency as a function of aggregate offered
load of all domains for 2D mesh network of 64 Nodes: We
can see that latency is stable below the network saturation
point.

vary aggregate offered load on the x-axis, i.e., if we have
D domains, the value of the x-axis is the sum of offered
load of all D domains. We used two domains in this experi-
ment. We can see that surf scheduling maintains its latency
savings at all offered load values lower that the saturation
point of the network. We can also see that loss saturation
bandwidth of the separation supporting networks is small
compared to that of the baseline-fast configuration. We will
examine individual domain throughput of the network in the
next section.

5.3 Throughput
We want to understand the effect of non-interference on

throughput from three perspectives: single-domain through-
put, aggregate network throughput and single-domain through-
put independence of other domains load. We checked these
properties for a 2D mesh network with 64-nodes with two
and sixteen domains.

Figure 10 shows the effect of supporting non-interference
on single-domain throughput for the two schemes: TDMA
and Surf. We observe that before the saturation point, the
throughput of a single domain (only one domain is allowed

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

O
ne

	
 d
om

ai
n	

th
ro
ug
hp

ut
	
 (fl

its
/c
yc
le
)	

One	
 domain	
 offered	
 load	
 (flits/cycle)	

baseline-­‐small	
 baseline-­‐fast	
 tdma	
 surf	

(a) 2 Domains

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

O
ne

$d
om

ai
n$
th
ro
ug
hp

ut
$(fl

its
/c
yc
le
)$

One$domain$offered$load$(flits/cycle)$

baseline4small" baseline4fast" tdma" surf"

(b) 16 Domains

Figure 10: Throughput as a function of offered load of one
domain (only one domain is injecting) for 2D 64-nodes mesh
using different number of domains.

to inject packets in the network regardless of the number of
domains) is exactly the same as if the network is not parti-
tioned. However, we can also see that one domain satura-
tion throughput is inversely proportional to the number of
domains. In fact, it is almost half (one-sixteenth) of the sat-
uration throughput of the baseline configuration using the
same resources (buffers and input speedup of the switch), as
can be seen in Figure 10a (10b) for two (sixteen) domains.
This even distribution of bandwidth is expected because of
uniformly dividing the virtual channels among domains and
time-division multiplexing of channels.

In order to understand the effect of separation on aggre-
gate throughput of the whole network, we run an experiment
varying offered load of all domains from zero to one and mea-
suring the aggregate network throughput (average number
of packets received during a certain time slot) of all domains
for all configurations. The results are plotted in Figure 11
for 2 and 16 domains. In this experiment“baseline-fast”uses
the same buffer and input speedup values of the separation-
supporting configurations(TDMA and Surf) in order to mea-
sure the performance loss due to non-interference support
using the same set of resources. Although we can see that
saturation throughput is reduced by around 11.7%, aggre-

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Th
ro
ug
hp

ut
	
 (fl

its
/c
yc
le
	
)	

One	
 domain	
 offered	
 load	
 (flits/cycle)	

baseline-­‐small	
 baseline-­‐fast	
 tdma	
 surf	

(a) 2 Domains

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9"

Th
ro
ug
hp

ut
)(fl

its
/c
yc
le
)))

One)domain)offered)load)(flits/cycle))

baseline4small" baseline4fast" tdma" surf"

(b) 16 Domains

Figure 11: Aggregate network throughput as a function of
offered load of one domain (all domains are injecting pack-
ets) for 2D 64-nodes mesh using different number of do-
mains.

gate throughput loss is only limited to 4.9% and 20.5% for
2 and 16 domains, respectively. Figure 11a clearly shows
that the network can operate when offered load is below
saturation throughput without any performance loss. Non-
interference configurations have higher saturation through-
put than the small baseline because they use more resources,
and lower than the fast baseline that includes the same re-
sources because of unused time slots due to schedule en-
forcement. Moreover, we can see in Figure 10b that if all
domains are trying to inject packets at just 10% of the net-
work capacity, the network reaches saturation, leading to
increased latencies. This can be tackled by non-uniformly
allocating the bandwidth according to application-specific
requirements.

Non-uniform bandwidth allocation: In order to verify
the benefits of assigning bandwidth non-uniformly, we per-
formed an experiment on a 2D mesh network with 64 nodes
and three domains. Bandwidth (VCs and time slots in the
schedule) is assigned as follows: a quarter of the bandwidth
is assigned to domain-0 and domain-1, each; and half of
the bandwidth is assigned to domain-2. This non-uniform
allocation is done by devising a schedule with four slots

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Th
ro
ug
hp

ut
	
 	
 (
fli
ts
/c
yc
le
)	

Domain	
 0	
 offered	
 load	
 (flits/cycle)	

baseline-­‐fast-­‐0	
 baseline-­‐fast-­‐1	
 surf-­‐1	

Figure 12: Separation of uniformly distributed bandwidth.
Throughput as a function of domain 0 offered load. We can
see that, by using surf scheduling, domain 1 throughput is
independent of domain 0 load (the same trend was measured
for domain 0 throughput while varying domain 1 load).

and assigning domain-3 time slots to domain-2. Saturation
throughput, as expected, is 0.09 for both domain 0 and 1,
while it is 0.21 for domain 2. Latency at a 5% injection rate
is 36 (53) cycles for domain-2 and 39 (53) cycles for domains
0 and 1 using surf scheduling (straightforward tdma). This
shows that our scheme can have latency benefits as well as
throughput benefit by designing a non-uniform surf sched-
ule.

We examine the non-interference between domains by vary-
ing one domain’s offered load while keeping the other do-
main’s offered load constant at the maximum in a 2D 64-
node mesh with two domains. We plot both domain’s through-
put for baseline-fast and domain 1 throughput for surf as a
function of domain 0 offered load in Figure 12. We can see
that domain 1 throughput is independent of domain 0 traffic
if we use the surf scheduling but not for the baseline case.

5.4 Area and power overhead
Area: The SurfNoC router requires modifications to the

crossbar, more buffering, and a bigger switch allocator (due
to a bigger crossbar). For a D domain network, we added
D input speedup in the crossbar. Crossbar area scales lin-
early with the input speedup D because we increase only
one dimension of the crossbar. We verified this trend using
Synopsis Design Compiler (version E-2010.12-SP5-2 using
TSMC 45nm CMOS library) to synthesize a parameterized
RTL crossbar implementation [5], and it scales linearly. For
example, while a 5×5 crossbar occupies 620.93 library units,
a 20 × 5 crossbar consumes area of 2540.16 library units,
which is a factor of 4.16 for input speedup four.

Baseline-small uses 48 entries per input port, assuming
32-bit flits, DSENT [32] (with 45 nm bulk LVT running at
1 GHz with 0.3 injection rate) estimates the buffer area of
0.0125 mm2. On the other hand, surf and baseline-fast uses
128 entries occupying 0.0327 mm2, a factor of 2.62 overhead
against the baseline-small.

We also added the scheduler, which is mainly p copies
of a a counter (where p is the number of output ports), a
table of D entries, a D × 2D decoder, and D.p AND gates
(assuming that each domain requests one port regardless of

the number of VCs per domain). We estimate the scheduler
to be of negligible area compared to the router. For example,
the storage requirement for a 16-domain 5-port router is just
324 bits.

Power: Having seen area overhead, we now discuss power
consumption overhead. Using DSENT’s estimates, the power
consumption of buffers increases from 11.9 mW for the baseline-
small to 29.3 mW for the baseline-fast and surf schemes, an
overhead of 146%. Crossbar with input speedup D power
consumption scales linearly with D because dynamic power
consumption is directly proportional to capacitance, which
is directly proportional to wire length, which increases only
linearly with input speedup without output speedup. Us-
ing the same synthesis results, Design Compiler estimates a
5×5 crossbar to consume 74.26 µW of power, while a 20×5
crossbar consumes 309.26 µW , a factor of 4.1 for an input
speedup of 4.

Having an input-speedup of D might be prohibitive in
cases of large D. However, there is a trade-off between wait
time at the switch allocator (SA) and input-speedup of the
crossbar switch, i.e., performance/resources trade-off. Keep-
ing our surf schedule in place while arbitrating the crossbar
input port between VCs from different domains in a static
deterministic round-robin manner (regardless of requests),
is the most straight-forward way. For example, in the case
of 32 domains, we can use an input speedup of 4 instead of
32, and a flit will wait up to 7 cycles until it enters the cross-
bar. In general, if input speedup is S and D is the number
of domains (where 1 ≤ S ≤ D), flits can wait up to an extra
D/S − 1 cycles to enter the crossbar and would wait longer
than D− 1 in turns. This would be one way to avoid cross-
bars of excessive size (and the slower clock rates they incur)
as well. Maximum zero-load latency of such a scheme will
be given using Equation 4. This essentially creates a con-
tinuum of design between a strict TDMA (in fact, slightly
worse for S = 1) and a full surf schedule (S = D).

T0max = HP + ((n− 1) + 2)(DD/S− 1) +H(D/S− 1) (4)

6. NON-INTERFERENCE VERIFICATION
In order to prove non-interference between domains of

our arbitration scheme, we used Gate-level information-flow
tracking (GLIFT) logic [36, 35]. GLIFT logic captures all
digital information, including implicit and timing-channel
flows, because all information flows represent themselves in
decision-making circuit constructs such as multiplexers. For
example, an arbitration operation leaks information if the
control bits of the multiplexers depend on one of the two
domains, but it will not leak information (or cause interfer-
ence) if arbitration is based on a static schedule. GLIFT
tracking logic can accurately capture this fact because it is
precise (i.e., not conservative in the primitive shadow gates
but is conservative in the compositional shadow circuit). For
example, a shadow-AND gate propagates a label of HIGH
only if the output of the AND gate depends on the HIGH in-
put (i.e., if one input of a two-input AND gate is LOW zero,
the output is guaranteed to be zero and thus does not de-
pend on the HIGH input). GLIFT automatically generates
conservative shadow logic that can be used to prove non-
interference between domains for a given circuit. Shadow
logic is a tracking logic used as a verification technique (and
is not intended to be part of the final system, thus does not

cost any area or power). Using gate-level analysis, we dis-
covered interference in the switch allocator during initial de-
signs of the system. Moreover, contention between domains
on the crossbar switch input ports was discovered using the
same analysis technique (hence, our input-speedup idea). In
essence, we used GLIFT analysis to design the architecture
in addition to verifying the final design.

We integrated the scheduler (§4.3) enforcing the surf sched-
ule into a Verilog implementation of a switch allocator [18].
We used a two-domain allocator that allocates requests of
different virtual channels to output ports. We modified the
allocator to have a request per VC rather than per input port
(as in the original design [18]). We synthesized the allocator
using Synopsis Design compiler, then generated its shadow
logic and verified the separation property using simulation
of the resulting circuit. We assigned a LOW label for VC 0
requests and a HIGH label for VC 1. We tested inputs for
VCs sharing the same input port requesting different and
same output ports. In all cases, grant signals had the same
label of their respective virtual channel, which proves that
grants are independent of requests from the other domain.
We also reversed labels of VC0 (HIGH) and VC1 (LOW) to
verify that separation holds for the other direction of infor-
mation flow (Domain 0 to Domain 1). This proves that the
crossbar arbitration, and consequently sharing of physical
channel, are timing-channel free, which (in addition to static
VC allocation) ensures network non-interference. Freedom
of two-way information flow, or complete non-interference,
was verified.

7. CONCLUSIONS
Networks-on-chip play an important role in integrating

many components, whether they are accelerators, cores, or
memories. Not only are they increasingly prevalent in con-
sumer general-purpose silicon, but they are also seeing in-
troduction in high-assurance domains, where security and
verification accuracy are crucial to saving time, money, and
potentially even lives. Separation is an important property
that allows designers to reason about systems efficiently by
defining sub-components that can be verified independently
while limiting the design space.

While we believe this paper is an important step regard-
ing gate-level separation in NoCs, there are many ques-
tions that merit further investigation. First, we make no
use of application-level knowledge that might shed light on
the expected communication patterns. Co-scheduling com-
municating tasks (with global traffic knowledge) [22] to be
near to one another might introduce the opportunities for
non-homogeneous yet non-interfering schedules across the
network. Application-level knowledge of lattice-based in-
formation flow policies might be combined with this work
to allow more flexibility in scheduling between compara-
ble domains [37]. Second, our approach uses a dimension-
ordered routing that is oblivious to our time-division mul-
tiplexing scheme (surf-scheduling). As such, a packet will
only change dimensions after it finishes traversing one di-
mension. A non-interference-aware routing technique might
minimize wait time by introducing more turns opportunisti-
cally. In general, the relationship between interference and
more aggressive optimizations would be interesting to ex-
plore. Third, there are other topologies to consider, e.g.,
high-radix routers such as flattened butterflies [17]. Al-
though flattened butterflies can use dimension-order rout-

ing and thus surf scheduling might directly be applied, non-
minimal routing is usually required to improve throughput.
Enforcing a surf-like schedule with adaptive routing might
increase latency. However, all of these open questions re-
quire a foundation from which to build.

The foundation we propose here is SurfNoC, a low-latency
time-division-multiplexed packet-switched k-ary n-cube net-
work. SurfNoC exploits the dimension-ordered routing al-
gorithms in mesh networks by scheduling channels in each
dimension in a pipelined fashion so that packets propagate
in the dimension as if there are no domain restrictions on
channels. Packets have to wait for their domain’s turn only
when they enter, exit, and potentially when changing dimen-
sions. We discuss our wave-based domain scheduled network
and describe the implementation at the level of the router
micro-architecture with respect to non-interference support.
Importantly, while several works have discussed interference
at a high level, we believe this is the first time that true cycle-
level non-interference has been proven to hold at the gate-
level. In addition to the formal gate-level analysis needed to
demonstrate that, we show that our schedule latency over-
head scales efficiently with the number of separation do-
mains compared to a straightforward synchronous TDMA
scheme (saving up to 75% of latency overhead in the case
of a 64-node with 32 domains). Although each domain’s
throughput suffers as the network is partitioned (as would
be expected), the aggregate network performance remains
very close to the no-separation baseline. More importantly,
the latency overhead remains constant with respect to net-
work size.

8. ACKNOWLEDGMENTS
The authors would like to thank Tim Levin, Cynthia Irvine,

Xun Li and the anonymous reviewers for insightful com-
ments on this paper.

9. REFERENCES
[1] NASA’S Mars rover Curiosity powered by Wind River.

http://www.windriver.com/announces/curiosity/Wind-River_
NASA_0812.pdf.

[2] O. Aciiçmez. Yet another microArchitectural attack: exploiting
I-Cache. In Proceedings of the 2007 ACM workshop on
Computer security architecture, CSAW ’07, pages 11–18, New
York, NY, USA, 2007. ACM.

[3] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. Predicting secret keys
via branch prediction. In Proceedings of the 7th
Cryptographers’ track at the RSA conference on Topics in
Cryptology, CT-RSA’07, pages 225–242, Berlin, Heidelberg,
2006. Springer-Verlag.

[4] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. On the power of
simple branch prediction analysis. In Proceedings of the 2nd
ACM symposium on Information, computer and
communications security, ASIACCS ’07, pages 312–320, New
York, NY, USA, 2007. ACM.

[5] D. U. Becker. Efficient Microarchitecture for Network-on-Chip
Routers. PhD thesis, Stanford University, August 2012.

[6] D. Bui, A. Pinto, and E. A. Lee. On-time network on-chip:
Analysis and architecture. Technical Report
UCB/EECS-2009-59, EECS Department, University of
California, Berkeley, May 2009.

[7] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2003.

[8] W. J. Dally, P. P. Carvey, and L. R. Dennison. The Avici
terabit switch/router. In IEEE Hot Interconnects, 1998.

[9] L. Fiorin, G. Palermo, and C. Silvano. A security monitoring
service for NoCs. In Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and
system synthesis, CODES+ISSS ’08, pages 197–202, New York,
NY, USA, 2008. ACM.

[10] C. H. Gebotys and Y. Zhang. Security wrappers and power
analysis for SoC technologies. In Proceedings of the 1st
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis,
CODES+ISSS ’03, pages 162–167, New York, NY, USA, 2003.
ACM.

[11] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network
on chip: concepts, architectures, and implementations. Design
Test of Computers, IEEE, 22(5):414 – 421, Sept.-Oct. 2005.

[12] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC:
a heterogeneous network-on-chip architecture for scalability
and service guarantees. In Proceedings of the 38th annual
international symposium on Computer architecture, ISCA ’11,
pages 401–412, New York, NY, USA, 2011. ACM.

[13] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive virtual
clock: a flexible, efficient, and cost-effective QoS scheme for
networks-on-chip. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pages 268–279, New York, NY, USA, 2009. ACM.

[14] B. Grot, S. W. Keckler, and O. Mutlu. Topology-aware
quality-of-service support in highly integrated chip
multiprocessors. In Proceedings of the 2010 international
conference on Computer Architecture, ISCA’10, pages
357–375, Berlin, Heidelberg, 2012. Springer-Verlag.

[15] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken.
CoMPSoC: A template for composable and predictable
multi-processor system on chips. ACM Trans. Des. Autom.
Electron. Syst., 14(1):2:1–2:24, Jan. 2009.

[16] A. Hansson, M. Subburaman, and K. Goossens. Aelite: A
flit-synchronous network on chip with composable and
predictable services. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages 250 –255,
april 2009.

[17] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology
for on-chip networks. In MICRO 40: Proceedings of the 40th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 172–182, Washington, DC, USA,
2007. IEEE Computer Society.

[18] M. Kinsy and M. Pellauer. Heracles: fully synthesizable
parameterized MIPS-based multicore system. Technical Report
MIT-CSAIL-TR-2010-058, MIT Computer Science and
Artificial Intelligence Laboratory, December 2010.

[19] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized
frames for guaranteed quality-of-service in on-chip networks. In
Proceedings of the 35th Annual International Symposium on
Computer Architecture, ISCA ’08, pages 89–100, Washington,
DC, USA, 2008. IEEE Computer Society.

[20] S. Lukovic and N. Christianos. Enhancing network-on-chip
components to support security of processing elements. In
Proceedings of the 5th Workshop on Embedded Systems
Security, WESS ’10, pages 12:1–12:9, New York, NY, USA,
2010. ACM.

[21] S. Lukovic and N. Christianos. Hierarchical multi-agent
protection system for NoC based MPSoCs. In Proceedings of
the International Workshop on Security and Dependability
for Resource Constrained Embedded Systems, S&D4RCES ’10,
pages 6:1–6:7, New York, NY, USA, 2010. ACM.

[22] S. Ma, N. Enright Jerger, and Z. Wang. DBAR: an efficient
routing algorithm to support multiple concurrent applications
in networks-on-chip. In Proceedings of the 38th annual
international symposium on Computer architecture, ISCA ’11,
pages 413–424, New York, NY, USA, 2011. ACM.

[23] M. Malone. Talk on OPERA RHBD Multi-core.
https://nepp.nasa.gov/mapld_2009/talks/083109_Monday/03_
Malone_Michael_mapld09_pres_1.pdf.

[24] R. Obermaisser and O. Hoftberger. Fault containment in a
reconfigurable multi-processor System-on-a-Chip. In Industrial
Electronics (ISIE), 2011 IEEE International Symposium on,
pages 1561 –1568, june 2011.

[25] E. Ong, O. Brown, and M. J. Losinski. System F6: Progress to
Date. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?
filename=0&article=1016&context=smallsat&type=additional. in
Small Satellite Constellations: Strength in Numbers, Logan,
UT, 2012, p. 7.

[26] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale,
G. Karsai, and J. Willemsen. F6com: A component model for
resource-constrained and dynamic space-based computing
environments. In 16th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed
Computing, 2013.

[27] J. Porquet, A. Greiner, and C. Schwarz. NoC-MPU: A secure
architecture for flexible co-hosting on shared memory MPSoCs.
In Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pages 1 –4, march 2011.

[28] J. Rushby. Partitioning for Avionics Architectures:
Requirements, Mechanisms, and Assurance. NASA Contractor
Report CR-1999-209347, NASA Langley Research Center, June
1999. Also to be issued by the FAA.

[29] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A
statically scheduled time-division-multiplexed network-on-chip
for real-time systems. In Proceedings of the 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, NOCS
’12, pages 152–160, Washington, DC, USA, 2012. IEEE
Computer Society.

[30] R. Stefan and K. Goossens. Enhancing the security of
time-division-multiplexing networks-on-chip through the use of
multipath routing. In Proceedings of the 4th International
Workshop on Network on Chip Architectures, NoCArc ’11,
pages 57–62, New York, NY, USA, 2011. ACM.

[31] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens. A TDM
NoC supporting QoS, multicast, and fast connection set-up. In
Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, pages 1283 –1288, march 2012.

[32] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L.-S. Peh, and V. Stojanovic. DSENT - A tool
connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling. In Proceedings of
the 2012 IEEE/ACM Sixth International Symposium on
Networks-on-Chip, NOCS ’12, pages 201–210, Washington,
DC, USA, 2012. IEEE Computer Society.

[33] J.-L. Terraillon. Multicore processors - the next generation
computer for ESA space missions. http://www.cister.isep.ipp.
pt/ae2012/presentations_pdf/thursday/k/terraillon.pdf.
”Keynote address.”.

[34] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and
T. Sherwood. Execution leases: a hardware-supported
mechanism for enforcing strong non-interference. In
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages 493–504,
New York, NY, USA, 2009. ACM.

[35] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin,
B. Hardekopf, R. Kastner, F. T. Chong, and T. Sherwood.
Crafting a usable microkernel, processor, and I/O system with
strict and provable information flow security. In Proceedings of
the 38th annual international symposium on Computer
architecture, ISCA ’11, pages 189–200, New York, NY, USA,
2011. ACM.

[36] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong,
and T. Sherwood. Complete information flow tracking from the
gates up. In Proceedings of the 14th international conference
on Architectural support for programming languages and
operating systems, ASPLOS ’09, pages 109–120, New York,
NY, USA, 2009. ACM.

[37] Y. Wang and G. Suh. Efficient timing channel protection for
on-chip networks. In Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, pages 142 –151,
may 2012.

[38] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of
the 34th annual international symposium on Computer
architecture, ISCA ’07, pages 494–505, New York, NY, USA,
2007. ACM.

[39] Z. Wang and R. B. Lee. A novel cache architecture with
enhanced performance and security. In Proceedings of the 41st
annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 41, pages 83–93, Washington, DC,
USA, 2008. IEEE Computer Society.

[40] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal. On-chip interconnection architecture of the tile
processor. IEEE Micro, 27(5):15–31, Sept. 2007.

