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Abstract

Customized processors use compiler analysis and de-
sign automation techniques to take a generalized architec-
tural model and create a specific instance of it which is op-
timized to a given application or set of applications. These
processors offer the promise of satisfying the high perfor-
mance needs of the embedded community while simultane-
ously shrinking design times.

Finite State Machines (FSM) are a fundamental building
block in computer architecture, and are used to control and
optimize all types of prediction and speculation, now even in
the embedded space. They are used for branch prediction,
cache replacement policies, and confidence estimation and
accuracy counters for a variety of optimizations.

In this paper, we present a framework for automated de-
sign of small FSM predictors for customized processors. Our
approach can be used to automatically generate small FSM
predictors to perform well over a suite of applications, tai-
lored to a specific application, or even a specific instruction.
We evaluate the use of these customized FSM predictors for
branch prediction over a set of benchmarks.

1 Introduction

Customized Processors use compiler analysis and design
automation techniques to take a generalized architectural
model and create a specific instance of it which is optimized
to a given application or set of applications. This process can
range from whole processor synthesis to having a general
processor core where a few specific architecture components
are customized. Typically the design relies upon optimizing
and combining well understood lower level primitives.

One such primitive is the finite state machine predictor,
which is most commonly used as a branch prediction counter
or as form of confidence estimation. The more established
uses of these finite state machine predictors (e.g., branch pre-
diction) are now finding their way into embedded processors
and DSPs [14].

A Finite State Machine (FSM) consists of a set of states,
a start state, an input alphabet, and a transition function that

maps an input symbol and current state to next state. A
Moore machine extends this with an output on each state.
If one considers the case where the alphabet and output sym-
bols are constrained to be only f0; 1g, a finite state machine
can be used to generate yes/no predictions. The output at
a given state is its prediction of the next input. Either in-
tentionally or accidentally, many FSMs in computer archi-
tecture are of this form, the most famous of these probably
being the two-bit saturating counter. In a branch predictor,
these simple state machines generate predictions of taken af-
ter a series of takens, or not-taken after seeing a series of
not-takens.

In this paper we present an automated approach for cre-
ating finite state machines for prediction. We use profiles to
generate a language of predictions of a certain type, which
is expressed as a regular expression. The regular expres-
sion is then converted into a FSM. The VHDL for synthe-
sis is then generated from the FSM. Using this approach we
can automatically generate FSM predictors that perform well
over a suite of applications, tailored to a specific application,
and even a specific instruction. We demonstrate the abil-
ity to generate accurate custom FSM predictors by automat-
ically designing customized branch predictors. We exam-
ine customization of state machine predictors for individual
branches.

In Section 2, we describe the area of custom processor
design. Section 3 describes current FSM predictors used
in computer architecture, and prior work into automatically
generating predictors. Section 4 details our approach to au-
tomatically generate FSM predictors. Section 5 uses our au-
tomated approach to generate a custom branch prediction ar-
chitecture, presents miss rates for our custom architecture,
and examines in detail some of the FSM predictors gener-
ated by our approach. Section 6 describes other potential
uses for FSM predictor customization and initial results for
using our approach for automatic generation of confidence
estimators for value prediction. Finally, section 7 provides a
summary of our research.
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2 Customized Processor Design

The rapidly growing embedded electronics industry de-
mands high performance, low cost systems with increased
pressure on design time. The gap between the two current
methods for dealing with such systems, ASICs and off-the-
shelf processors, leave many unsatisfied with the trade offs
between long design cycles and lower performance.

The designer could choose to design a custom ASIC,
which has the advantages of high performance at the cost of
long design and verification times. An alternative choice is
an off the shelf embedded processor. Embedded processors
allow rapid development times and low development cost in
terms of both time and money, but with performance typi-
cally lagging behind ASICs.

To address this problem there is an emerging technique
which will add a new and important point in the spectrum of
solutions. Automatically generated customized processors
have the promise of delivering the needed performance with
only slightly inflated design time.

A customized processor is a processor tailored to an indi-
vidual application or a set of applications. The idea became
a common research subject in the late eighties and early
nineties with projects such as SCARCE [18] and The Archi-
tect’s Workbench (AWB) [9]. SCARCE was a flexible VLSI
core for building application specific processors. AWB was
a system built to help the designers evaluate design tradeoffs
for building embedded processors.

Currently there is a resurgence of interest customized
processors with many research projects and companies
working in this domain. A great deal of the interest comes
from increased system level integration, where it is increas-
ingly common to place different parts of a system all onto
one chip. To support this it is now common for vendors to
sell descriptions of processor cores rather than actual silicon
itself. These processor core descriptions can then be cus-
tomized for a given application.

There are two major approaches to customized proces-
sors, one approach working towards pre-silicon customiza-
tion, and the other approach pressing for post-silicon re-
configuration or adaptability. The first approach, which is
being adopted by such systems as Hewlett Packard’s PICO
project [20, 1, 23] and Tensilica’s Xtensa [10, 7], is intended
to produce low-cost high-speed fixed hardware for embed-
ded systems. The other approach attempts to take advantage
of post-silicon customization through reconfigurability. Ex-
amples of systems that support reconfigurability are Altera’s
NIOS [27] processor core and the CHIMEARA chip [32].

There is also another range of freedom for these
chips, which is the design level. Some systems, such as
CHIMEARA [32], and PRISC [21], concentrate their ap-
plication tailoring at the level internal to a functional unit.
These systems work by tailoring the processor’s functional
units to the application running on it. For example, they

might merge commonly executed expressions into a single
instruction. Other options are to perform the customization
at the architectural level of registers and number of func-
tional units such as Xtensa [10], SCARCE [18] and Lx [8].
This allows the system designer to make high level architec-
tural tradeoffs for the application such as relieving register
pressure or removing unused functional units. Still other de-
signs have co-processors for a given application or type of
application. Xtensa [7] supports the tight integration of co-
processors into an architecture, while PICO [20, 1, 23] au-
tomatically generates co-processors in the form of a custom
designed systolic array.

Even though there is a long history and many differ-
ent projects, all of the projects have a similar high level
overview. Begin with a configurable or parameterizable ar-
chitectural template and customize it to fit the application
at hand. Because all of these systems target a very specific
application or suite of applications, and these applications
are under the designers control, any one of these approaches
could benefit from the techniques we present.

3 Prior Work

In this section we summarize current FSM predictors, and
prior work into automatically finding or generating branch
predictors.

3.1 FSM Predictor Implementations

The majority of FSM predictors used in prior research are
Saturating Up and Down (SUD) counters. Four values de-
fine a SUD counter – (saturation threshold, correct incre-
ment, wrong decrement, and a prediction threshold). A SUD
counter can have a value between 0 and the saturation thresh-
old. If the prediction is correct, the counter is incremented
by the correct increment value. If it is incorrect, the counter
is decreased by the wrong decrement value.

The majority of current processors use a branch predic-
tor that indexes into a table of 2-bit SUD counters [26, 31]
The counter is incremented when the branch is taken, and
decremented with not-taken, with a saturating threshold of
3. When the counter has a value less than or equal to 1,
the branch is predicted as not-taken. If the counter has a
value greater than 1 then it is predicted as taken. Some of
these branch prediction architectures have several prediction
tables, and a Meta table of SUD counters are used to pick
which predictor to use.

Jacobsen et. al. [13] proposed the idea of confidence
estimation and examined its relationship to branch predic-
tion. In their study, they used saturating up and down (SUD)
counters, and Resetting Counters to provide the confidence
estimation. A resetting counter resets the counter back to 0
when there is a misprediction. Lick et. al. [30] searched us-
ing profiling for branch history patterns that provided cor-
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rect predictions and that also had a high degree of confi-
dence. They then examined a confidence estimator that pre-
dicted high confidence when these patterns were seen, and
low confidence when the other patterns occurred. Grunwald
et. al. [11] presented several new metrics for evaluating con-
fidence estimators and provided a detail comparison of using
SUD counters, resetting counters, and static confidence esti-
mation.

Our focus in this research is an automated approach for
generating small FSMs. The outcome of each state of our
FSM counter is a binary decision of yes or no. This captures
most of the implementations of FSM, but not all. Confidence
estimators can return a number representing a probability in-
stead of a binary decision, and several different actions could
be performed based upon the degree of confidence returned.
Even so, most confidence estimation implementations have
only one prediction threshold for the SUD counter used, and
therefore fit into the space of FSM counters our approach
addresses.

3.2 Automatically Generating Predictors

Burtscher and Zorn [2] examined using profiles to find N-
bit value prediction histories that were highly confident. For
each possible history, their profile gave what the prediction
probability would be if values were predicted using that his-
tory. They then used this profile, along with a desired accu-
racy they wanted to achieve, to select which histories would
be used to generate value predictions, and which histories
would predict low confidence. This was then used to guide
confidence estimation for their value prediction architecture.

Chen et. al. [5] examined using techniques from data
compression to improve the performance of branch predic-
tion. They looked at using Prediction by Partial Matching
(PPM), where there are M tables from size 2 to 2M . Each
PPM entry contains a frequency for the number of times the
next bit was 0 (not-taken) and the number of times it was (1)
taken. All of the PPM tables are then searched in parallel for
each history length. The PPM table entry that had the highest
probability was then used for the prediction.

Emer and Gloy [6] have the closest prior work to ours
where they examine using genetic programming with feed-
back to search the predictor design space. They devel-
oped a language to describe valid branch prediction archi-
tectures, which consists of a variety of predictor primitives
(e.g., counters, tables, values), their sizes, and functions
to combine these primitives. Using genetic programming
techniques, they search for new predictors by performing
crossovers and mutating recent candidates, and they evalu-
ate each predictors potential by examining how well it per-
forms for a given set of benchmarks. In contrast, our ap-
proach automatically builds FSM predictors from behavioral
traces, without searching. Our approach can generate FSM
predictors that cannot be represented easily or naturally by

the branch prediction language defined by Emer and Gloy.
Conversely, our approach does not generate or examine the
design space of table based prediction architectures. There-
fore, our approach is better for finding efficient predictors
for small design areas, whereas their approach can poten-
tially find better solutions for designs with larger areas, and
it may be beneficial to combine the two approaches.

4 Automated Design of a FSM Predictor

To design a FSM predictor we go through a fairly com-
plex design flow starting with profile information and fin-
ishing with synthesizable VHDL code. While the tech-
niques described here can be used for any sort of predictor,
we describe building FSM predictors for branch prediction
throughout this section to help explain our approach. For
clarity use a more general notation of 1 and 0 instead of
taken and not taken respectively. We start off with a high
level overview of the design chain we have developed and
then discuss each step in detail with an example.

4.1 Overview

Regular expressions provide us with a way to specify pat-
terns and then have them converted into finite state machines
because they are both related by formal language. A formal
language is a set of strings, either finite or infinite, made up
of a sequence of elements from an alphabet, in our case the
set of zeros and ones.

A regular expression provides a recursive way of testing
an input string to see if it belongs to a given language. The
alternative is to define an iterative way of testing a string,
which is what a finite state machine does. The two are related
because they both perform the same function, recognizing
strings, and a mapping from one to the other can always be
found.

We now show a way of exploiting this relationship for
the purpose of creating a predictor. Let us say that si =

fb1; b2; :::; big, which means si is the string formed by the
concatenation of all the input sequences from the start until
i. Now let s = fs1; s2; :::; sig. This is the set of all possible
inputs the predictor could see over time. If we pick a subset
L, of s, where L is the set of input strings that satisfy some
metric we have chosen, we can say that L is the language of
predict 1.

In this way, the problem of creating a FSM predictor re-
duces to that of finding a regular expression that describes L
in a compact manner. Once we have the regular expression
that recognizes L we can use established methods to convert
it into a finite state machine that recognizes L. If we do this
translation correctly the finite state machine will indicate that
it recognizes a member from L when it sees an input string
in L. Because we picked L to be only the subset of s that we
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want to predict 1 on, we know that when we recognize this
input string sequence that we should predict 1.

To find the language L we use profile information from
the application. From the profile a model of the data is built,
and this model can then be analyzed to find histories that
are biased toward predicting 1. This set of histories is then
compressed to a usable form and converted into a regular
expression.

4.2 Modeling

To design a FSM predictor we start by tracing the target ap-
plication suite, creating a representative sequence of predic-
tions for the applications. Since the intended use of our ap-
proach is for customized processor design in the embedded
space, we believe that collecting accurate traces is possible.

Another issue is determining what to trace, which de-
pends on the intended use of the predictor. For branch pre-
diction, we have two states 0 and 1, and the trace consists of
a series of branch outcomes. We will use the following trace
for the rest of the examples in this section:

t = 0000 1000 1011 1101 1110 11111

The next step after trace generation, is to build up a sta-
tistical model for the data. For this we use an Nth order
Markov Model. An Nth order Markov Model is a table of
size 2N which contains P [1jlast N inputs] for each of the
possible 2N last N inputs in the trace. N serves as a limit to
the amount of history that we may use in making our predic-
tions.

For our example trace, we build up the following proba-
bilities for a second order Markov table (N=2):

P [1j00] = 2=5 P [1j01] = 3=5

P [1j10] = 3=4 P [1j11] = 6=8

P [1j00] is generated by finding all times that 00 is fol-
lowed by a 1, in this case there are 5 cases of the pattern 00,
and 2 of them are followed by a 1.

The corresponding predict 0 probabilities are calculated
by subtracting the predict 1 probability from 1 because we
only have 2 symbols in our alphabet. Note that while this
scales exponentially with the size of N, it is still very reason-
able for even the largest values of N we have examined. Hav-
ing more knowledge of history after a certain point does not
improve accuracy and we found that point was well within
the reach of the techniques described. For the predictors we
are generating we did not see the need to go beyond N = 9.

4.3 Pattern Definition

Now that we have the probabilities that we need, we can con-
tinue with the next step which is picking the histories that

1 the trace is divided up into groups of four only for readability, it has nothing to do
with the trace itself

we will eventually build the language L from. In the case of
a branch predictor, where we simply wish to minimize the
number of mispredictions, the task is straight forward. We
simply pick all the histories that have a probability of pre-
ceding a 1 which is greater than or equal to 1=2 to form the
language “predict 1”. In our example above, that would be
the set of histories f01; 10; 11g. We would like to predict a
1 whenever one of these histories appears in the input based
upon our profile, since they had a probability greater than
1=2. Of course histories with probability equal to 1=2 can go
either way.

We can make further design trade offs at this point in
the form of don’t care patterns. Some patterns only occur
very rarely, and their inclusion into the set of histories will
have almost no effect on the performance of the predictor but
will make the job of minimizing more complicated. These
history patterns can be placed into a third set, separate from
the “predict 1” and “predict 0” sets, called the “don’t care”
set. We have found that by placing only the 1% least seen
histories in the “don’t care” set we can reduce the size of
the predictor by a factor of two with negligible impact on
prediction accuracy.

Once we have passed this stage of the design flow, the
function of the predictor is set and will not change signif-
icantly. The finite state machine that will be designed will
return a 1 when histories in the “predict 1” set are seen, and
0 when histories in the “predict 0” set are seen. The output
of the “don’t care” set is still undecided at this point, and
the next stage will take advantage of this to compress the
description of the sets.

4.4 Pattern Compression

Now that we have our three sets, “predict 1”, “predict 0” and
“don’t care”, the next step is to compress our description of
the sets into a usable form. This is done by a standard logic
minimization tool, where the input is a truth table. The input
side of the truth table is the history patterns captured by our
Markov Model, and the output side is the set that the history
pattern belongs to. If we continue with our example, we have
the out set partitioned up as follows:

“predict 1” = f01; 10; 11g

“predict 0” = f00g

“don’t care” = ;

From this we generate a truth table, where all the histo-
ries that are contained in the “predict 1” set have there output
defined as one, and likewise for the “predict 0” set.

f00 ! 0; 01 ! 1; 10 ! 1; 11 ! 1g

We then use the logic minimization tool Espresso [22], to
minimize this truth table down to a set of logic functions that
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describe the set of inputs that produce a 1. The logic func-
tion that is output is our compact description of the “predict
1” set, and it recognizes those histories that we wish to pre-
dict 1 or 0 on. This step also merges the “don’t care” set into
the “predict 1” and “predict 0” sets in such a way as to min-
imize the number of unique terms. The logic function that is
generated is a sum of products representation. The “predict
1” set will satisfy this function and the “predict 0” set will
not.

((x 1) _ (1 x))

Here we see the sum of products representation of our
truth table, where an x represents an input that is unimportant
to the outcome of the function. From this description we
can now build our regular expression that will capture the
language L.

4.5 Regular Expression Building

Once we have the minimized representation of the set of his-
tories we need to build a regular expression which will match
these history patterns whenever they come up in the sample
input. More specifically, whenever we see an input string,
whose trailing N bits match the minimized patterns for the
“predict 1” set we return true.

We can build a regular expression as follows. Each term
is a clause, each 0 is a 0, each 1 is a 1, and each don’t care,
denoted as x, matches either a 0 or a 1. Let use start with a
single term, from above, (1 x). This translates to the regular
expression 1f0j1g because it is a 1 followed by either a 0 or
1. Similarly (x 1) translates to f0j1g1. Since a match can
be caused by either one, we write the whole expression as
f1f0j1gg j ff0j1g1g. However this is not quite complete.

Remember that the languageLmust describe all possible
inputs for which it needs to return 1, not just the last two bits
of the input. We overcome this problem by specifying the
language to be any string that ends in the desired histories,
which can be done by concatenating any number of 1s or 0s
in the front of the histories. Thus our final regular expression
for the above history is:

f0j1g?f 1f0j1g j f0j1g1 g

Once we have the desired regular expression there is still
the matter of converting it to an efficient FSM.

4.6 FSM Creation

The first step in building a FSM from a regular expression
is the construction of a non-deterministic finite state ma-
chine, which is a state machine that can be in more than
one state at a time. Building a non-deterministic FSM is a
fairly straight forward process of enumerating paths. Once
the non-deterministic FSM is completed it is converted to a
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After State RemovalWith Start-Up States

Figure 1: The state machine on the left was generated from
the sequence t shown in section 4.2 and optimized with
Hopcroft’s partitioning algorithm. The state machine on the
right is what results from removing the start-up states and re-
numbering. This is the final state machine for t. Note that the
patterns ending in 01, 10, and 11 are still captured correctly.
The number in brackets shows the prediction produced by
each state in the state machine.

deterministic state machine using subset construction [12].
Subset construction can sometimes lead to an exponential
blow up in the number of states, and there are better algo-
rithms known which take advantage of reduced alphabets,
but we have found subset construction to be more than suffi-
cient for the predictors we examine in this paper.

At this point we now have a fully implementable fi-
nite state machine, however there are two more steps we
take to reduce the number of states used by the state ma-
chine. We start by applying Hopcroft’s partitioning algo-
rithm [12]. This algorithm removes both unreachable and
redundant states, although there are still unneeded states in
the state machine.

4.7 Start State Reduction

Since the state machine must recognize all strings in the lan-
guage, there are unnecessary start up states that are only used
at the beginning of the execution where history bits are un-
defined. Since we are only interested in the steady state op-
eration of the state machine, i.e. those strings with a length
greater than N, we can cut out those nodes that are only used
in parsing strings less than N in length. This goes against
what was said earlier about not changing the semantics of
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the state machine, but this optimization only effects the be-
havior of the state machine on a small constant number of
strings. There can be up to 2N start up states, and they typi-
cally account for around one half of all states in the machine.

If we look to figure 1 the problem can be clearly seen.
The figure shows the state machines generated from our orig-
inal sequence t. In the state machine on the left, the states S1
and S3 are not need needed after just the first couple of ac-
cesses to the state machine. We would like to remove these
to save both state and transition logic complexity.

This can be done by removing all nodes unreachable
from the steady state operation of the state machine. All
start–up states are unreachable from the steady state opera-
tion of machine because you can never have undefined his-
tory past the start–up phase. We exploit this fact by sim-
ply removing nodes unreachable from steady state which we
then know are start up nodes.

Figure 1 shows that the startup states S1 and S3 have
been removed and the remaining states have been renum-
bered. Note that the behavior of the finite state machine is
still unchanged past those start up states.

4.8 Synthesis

At this point we have almost reached our final destination.
We have a finite state machine which produces prediction
based on the input. The predictions are governed by the last
N bits of the input string, and that information is efficiently
encoded into a finite state machine, as can be seen in figure 1.
Starting from any node, and traversing the edges in the FSM
following patterns (01, 10, 11) in our “predict 1” set will end
at a node with a prediction of 1. Similarly, we will predict 0
for the pattern (00) in our “predict 0” set, starting from any
node.

The final step is to actually do synthesis. Since the fi-
nite state machine is a well understood and commonly used
primitive, every synthesis tool has some form of finite state
machine input format. The job of synthesis is to find a effi-
cient hardware implementation for the state machine. This
includes finding a good encoding for the states and their
transitions. We translate our description of the finite state
machine to VHDL, which is then read and analyzed by the
Synposys design tool.

5 Customized Branch Predictors

In this section we examine applying our automated approach
to designing FSM predictors to the customization of branch
predictors. We first describe our customized branch predic-
tion architecture, and then the training approach we use for
building the customized FSM branch predictors. We then
evaluate the performance and area of the customized predic-
tor and compare it to a range of prior branch predictors.

Address Target 2-bit SUD

...
...

...

0x120032C

0x1200204
0x1201008

Custom FSM

PC

Figure 2: Customized branch prediction architecture. The
architecture contains a traditional coupled BTB with 2-bit
saturating up-down counters for conditional branch predic-
tion. In addition, customized branch predictors are added for
individual branches. A customized branch entry contains a
tag (address), target and a custom FSM predictor for predict-
ing the direction of the branch. The tag is associated with
the branch that the FSM predictor was built for and is locked
down by the system software.

5.1 Customized Branch Prediction Architecture

It is increasingly common for current embedded proces-
sors to have branch prediction. For example, Intel’s XScale
(StrongARM-2) processor [14] has a 128 entry Branch Tar-
get Buffer (BTB), and each entry in the BTB has a 2-bit satu-
rating counter which is used for branch prediction. Our goal
is to build a branch predictor for a given application that will
have the performance of a large general purpose predictor,
with about the same area that is already being used by em-
bedded branch predictors.

Our approach is to take a baseline predictor such as the
local 2-bit counters from the XScale architecture, and ex-
tend this with custom designed FSM predictors for the hard
to predict branches. We use the standard two bit counters
for most branches and use the custom FSM predictors for
branches that do not work well with the default predictor. In
doing this, we limit both the amount of additional area we
have to add to get good performance and the amount of code
we have to hard-wire into the processor.

The custom branch architecture we propose is seen in fig-
ure 2. We extend XScale’s coupled BTB branch prediction
architecture with a set of custom predictors that are hard-
wired to particular branches. These custom predictors have
the addresses that are associated with them locked down by
the system software. While the state machines are fixed in
hardware and are targeting specific branches, we wish to al-
low some software configurability should a re-compile of the
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software be needed after fabrication. This will allow the
branches to move around in the address space but still use
their custom state machines as long as the branch prediction
patterns do not change.

The address of the branch is used to index into the BTB
as well as the custom predictors. The custom branch entries
perform a fully associative tag lookup to search for a match.
If there is a match in the standard table then the two-bit sat-
urating up-down counter is used to predict the bias of the
branch. If instead there is a match in the custom table then
the output on the current state of the corresponding state ma-
chine is used for prediction. In the next section we describe
how we generated the FSM predictors hard-wired into this
architecture.

5.2 Generating Traces to Train FSM Branch Pre-
dictors

There are many different types of branch traces one could
concentrate on to generate FSM predictors, and we only fo-
cus on one in this paper. For the custom branch prediction
architecture in Figure 2, traces are generated on a global ba-
sis, and then used to generate a FSM predictor for individ-
ual branches. To generate a FSM for a specific branch, the
traces used to train the FSM generator could include the lo-
cal history of the branch, global history, or a combination
of the two. We examined all of these and found that it is
better to concentrate on capturing global correlation rather
than a local history pattern because of the global correlation’s
tendency to be more repeatable across different inputs, and
our approach is efficient at finding and taking advantage of
global correlations between branches.

The first step we perform in building our custom branch
prediction architecture is to profile the application with our
base predictor, in this case the local 2-bit counters. This iden-
tifies those branches that are causing the greatest amount of
mispredictions. For each of these branches we generate a
Markov Model as discussed in section 4. To generate the
Markov Models that we need for the branches we are con-
centrating on, we keep track of a single global history regis-
ter of length N. When a branch is encountered in the trace,
we update that branch’s Markov Model with the outcome of
the branch, given the history in the global history register.
The Markov table is then fed into the FSM generator, and a
customize FSM predictor is generated for that branch. Since
the number of global histories that a given branch might see
before it is being predicted is small compared to the 2N pos-
sible histories, the Markov Models can be compressed down
significantly by only storing non-zero entries. For all the cus-
tom branch prediction results in this paper we use a history
of length 9.

For this design only the branch that the custom predictor
is generated for uses the FSM for prediction, based on a tag
match as described earlier. We update the custom finite state
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Figure 3: Area of a random sample of the custom FSM pre-
dictors taken from all of the benchmarks we examined. The
area was determined by Synopsys and plotted against the
number of states in that machine. The strong linear bound
allows us to estimate area for design tradeoffs and evalua-
tion

machines in a different manner than the standard local 2-bit
counters. We update all of the custom predictors in parallel
on every branch, rather than only matching branches. On an
update, the branch predictor moves each FSM predictor from
one state to the next based upon the prediction of the branch.

5.3 Methodology

We used ATOM [28] to profile the applications and gener-
ate the Markov Models over the full execution of the bench-
marks. All applications were compiled on a DEC Alpha
AXP-21264 architecture using the DEC C compiler under
OSF/1 V4 operating system using full optimizations (-O4).
We chose a set of six benchmarks which could conceiv-
ably be used in an embedded environment and have interest-
ing branch behavior. Three of the applications compress,
ijpeg, and vortex are from the SPEC95 benchmark
suite. We also include three programs from the Medi-
aBench application suite. Gsm decode does full-rate
speech transcoding, g721 decode does voice decompres-
sion, and gs is an implementation of a postscript interpreter.

The Markov models for the top mispredicted branches
in each program were generated using ATOM. After the
Markov models were generated, generating all of the FSM
predictors for each program using our automated approach
took from 20 seconds to 2 minutes on a 500 MHZ Alpha
21264. To evaluate the performance of the FSM predic-
tors, we modeled the custom branch prediction architecture
in Figure 2 in ATOM, and gathered their misprediction rate
and compared that against general purpose predictors.
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5.4 Estimating Area of FSM Predictors

In order to enable us to make high level design choices before
synthesis, it is important to be able to estimate the area that
our automatically generated state machines will take up. To
establish a relationship between the state machine descrip-
tions and their area we took a random sample of custom FSM
predictors generated across all of the benchmarks we exam-
ined. These account for 10% of all of the FSM predictors
generated. We then synthesized these state machines with
Synopsys.

Figure 3 shows the number of states in the state machine
versus the area of the implementation. Each triangle repre-
sents one FSM predictor. The x-axis is the number of states
in a given state machine, while the y-axis is the area as re-
ported by Synopsys.

The results show, for most state machines, that the area is
linearly proportional to the number of states in the machine.
This trend line is drawn in with a dashed line. However this
is not the case for all of the FSM predictors. For the state
machines with a large number of states, the area is much less
than would be predicted by this approximation. For these
FSM predictors, there is a large number of states, but the ma-
chine is highly regular. Because of this the state machine can
be optimized down to a size much smaller than even some of
the more chaotic state machines with less state.

We use the linear line in Figure 3 to estimate the area for
the rest of the FSM predictors in the results to follow. Even
though the approximation does not hold for all of the predic-
tors, it does bound the area of the predictors by the number
of states in the state machine. We can use this approximation
to make conservative estimates of area. For the rest of this
paper we use this approximation to quantify area rather than
performing synthesis on each state we wish to examine.

5.5 Branch Prediction Results

We compare out customized predictor against three other
branch predictors. The first predictor we compare against
is the the gshare predictor predictor of McFarling [17]. The
second predictor is a meta chooser predictor that contains a
two-level local history branch prediction table, a global his-
tory table, and a meta chooser table that determines whether
to use the local or global prediction for predicting the cur-
rent branch. We call this the Local Global Chooser (LGC)
predictor, and it is similar to the predictor found in the Alpha
21264. The final predictor we compare against is a set of per-
branch two bit counters, as is found in the XScale processor.
The XScale processor has a 2-bit counter associated with ev-
ery branch target buffer entry, and not-taken is predicted on
a BTB miss.

Figure 4 contains the results for the six programs com-
paring our custom FSM predictors to the gshare, LGC, and
XScale predictors. The x-axis is the total area of the pre-
dictor, including the BTB structure, while the y-axis is the

misprediction rate. The results for the LGC and gshare were
gathered over a range of sizes. We present results for cus-
tom predictors trained on inputs, which are different than the
ones used for measuring performance. These results are de-
noted custom-diff. The custom-same results are when we use
the same input for training and comparison, and it provides
a limit to how well the FSM predictors may perform for that
input.

The curve for the custom FSM predictors is generated by
increasing the number of branches to be customized. The
top-left most point in the curve is the XScale architecture
with custom branch predictor. As we add more FSM predic-
tors, the number of mispredictions is reduced and at the same
time the area to implement the predictor grows. The results
show that for all programs the misprediction rate decreases
as we devote more and more chip area to the prediction of
branches.

The first thing that is very noticeable is that there is lit-
tle to no difference between custom-diff and custom-same.
This implies that our training output has done a good job
capturing the behavior that is inherent to the program. One
could certainly use more than one input for training, and in-
deed this would be a good idea for verifying that the models
generated correctly capture the behavior of the program.

For all of the programs, the custom predictors achieve
the lowest misprediction rate of any predictor for their size.
To beat the performance of these small predictors you would
need a general purpose predictor that is 2 to 5 times larger.
For some of the programs, even these large table sizes cannot
perform better than our custom predictors.

For the program compress all of the benefit comes
from the state machine for one branch. The misprediction
rate is reduced from 23% to 16.5% by adding one custom
FSM predictor. Adding more FSM predictors simply in-
creases the area with little to no improvement in mispredic-
tion rate. Moderate table sizes of a LGC can outperform our
customized predictors because there the branch causing the
most mispredictions benefits from having local history. This
branch would benefit from having a loop count instruction in
a embedded processor, or could easily be captured via cus-
tomizing the branch predictor to perform loop termination
prediction to predict the branch [24].

For g721, we can see that the XScale does a very good
job of capturing the behavior of most of the branches in the
program. However with little extra area we can reduce the
misprediction rate from 8% to just over 7%. For vortex
and gs the misprediction rate is reduced significantly from
XScale’s default local 2-bit counters. For gs it is reduced
from just under 5% to just over 4%, and for vortex the im-
provement is a reduction in miss rate from 13% to 3%. For
these two programs, a local-global chooser of over two times
the size of the custom predictor is needed to get a lower mis-
prediction rate.

The best results are seen for ijpeg and gsm. For both
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Figure 4: Misprediction rate versus estimated area for the six benchmarks examined. Results are shown for the baseline XScale
predictor, gshare, a meta predictor with a chooser between local and global history (LGC), and the customized branch predictor.
The customized branch predictor results are for training on a the same input used for testing, custom-same, and training on a
different input, custom-diff.
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of these programs the misprediction rate is far below that
of even the largest table we examined. These programs do
not benefit from local history. This can be seen by compar-
ing how LGC performs against gshare for these programs.
Since our scheme captures the global correlation so effi-
ciently we can outperform the largest gshare by half a per-
cent for ijpeg and over a full percent for gsm while only
using a fifth of the area.

5.6 Custom Finite State Machine Examples

Figures 5 and 6 are two examples of simple finite state ma-
chines that were generated using the techniques presented.
Figure 5 serves as a good starting point for understanding
how the state machines are used to generate predictions.

The state machine in figure 5 was automatically gener-
ated to target a particular branch in ijpeg. Each state is
annotated with a prediction, shown in brackets. The state
machine is updated by traversing an edge. An update with
taken will traverse the edge labeled 1, while not-taken will
traverse the edge labeled 0. This particular state machine
was generated to capture a branch that is highly correlated
with the branch that is two branches back in the history. For
example, we would like to predict a 1 if the history patterns
is “10” or “11” and predict 0 in all other cases. As can be
seen in the figure, this is successfully captured by the finite
state machine.

If you start in any state of the machine and you follow
two transitions, first a 1 and then either a 0 or a 1, you will
end up in a state that is labeled a 1. The converse is also true.
If you follow an edge labeled 0, followed by either a 1 or a
0, the state you end up in will predict 0. This property is is
maintained into even the most complicated predictor.

Figure 6 is a slightly more complex state machine, this
time generated for one of the branches in gs. This state
machine captures two different patterns, 0x1x and 0xx1x

where x is a “don’t care”. If, as above, you traverse any set
of edges that match either of these patterns you will end up at
a state predicting a 1. If the edges you traverse do not match
these patterns you will end up in a state predicting 0.

For this branch there are four global history patterns that
are seen the majority of the time, 001001010which is biased
taken, 010011010 which is biased not-taken, 010101010

which is biased taken, and 110010010which is biased taken.
There are other patterns which contribute but these repre-
sent over 90% of the patterns seen by this state machine. If
you trace through these patterns, or just the last five digits of
them, starting from any state you will end up in a state that
predicts correctly. Because of this fact, it does not matter
that we are updating the branch predictors for branches that
may have never been trained on. No matter what state the
machine has gotten itself into, as long as the final sequence
of branches leading up to the branch is captured by one of the
patterns the state machine will make the correct prediction.

s0
[0]

0

s1
[0]

1

s2
[1]

0
s3
[1]

1 0

1

0

1

Figure 5: Finite state machine generated for a branch in
ijpeg. This simple state machine captures the history pat-
tern 1x.

s0
[0]

1

s1
[0]

0

s2
[0]

0

s3
[0]

1

0

s4
[0]

1

0

s5
[0]

1

s6
[1]

0

s7
[1]

1

s8
[1]

0

s9
[1]

1

0

1

0

1

0

1

0

s10
[1]

1

1

0

Figure 6: A slightly more complex state machine generated
from gs that captures two patterns. Patterns that match 0x1x

or 0xx1x predict taken while all others predict not-taken.
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These results show that our automated steps can be used
to accurately identify branches that are highly correlated, and
the nature of the correlation. This information could then be
used to potentially guide additional compiler and hardware
optimizations.

6 Other Uses of Finite State Machine Predictors

In this section we describe how FSM predictors are used in
a few areas of computer architecture, and summarize initial
results for using automated FSM predictors to guide confi-
dence estimation used to guide value prediction.

6.1 Cache Management

Cache management schemes have been proposed that per-
form intelligent replacement [16], cache exclusion [29], and
they use a small FSM counter to determine when the opti-
mization should be applied. In addition, prefetching archi-
tectures have used FSM predictors to determine when to ini-
tiate prefetching for a load and to guide stream buffer alloca-
tion [25].

6.2 Power Control

Manne et. al. [15] examined using confidence estimation to
find branches that had a high miss rate, and then for those
branches, stall the fetch unit until the branch direction is
resolved. This can save a significant amount of power for
branches that have a high miss rate, and is beneficial for
low power processors. Musoll [19] proposed using hardware
predictors to predict whether an access to certain hardware
blocks can be avoided in order to save power.

6.3 Value, Address, and Load Speculation

Confidence counters have been used to guide many spec-
ulative execution architectures. These include value pre-
diction, address prediction, instruction reuse, memoization,
load speculation, and memory renaming [3]. In all of these
architectures, speculation occurs to hide latency caused by a
real or potential dependency. When a misprediction occurs,
the penalty can be costly. Therefore, confidence estimation
counters are used to guide when to use the speculative opti-
mization.

Calder et. al. [4, 3] and Burtscher and Zorn [2] both
noted the need for improved confidence estimation for value
prediction. In [4, 3], we examined Saturating Up and Down
(SUD) counters with several different saturation thresholds
and wrong decrement values to vary the accuracy and cover-
age, and this was done by trial and error. We showed that no
one SUD counter worked best for all programs. A very accu-
rate SUD counter was needed for mispredicted values when
using squash recovery to obtain increases in performance,

but this resulted in low coverage of potential value predic-
tions. In contrast, when value prediction used re-execution
recovery, it did not have to be as accurate, since the miss
penalty is small, and the SUD counter could instead concen-
trate on achieving a high coverage.

We examined using our automatically generated FSM
predictors for value prediction confidence estimation. The
level of accuracy that can be achieved from a value predic-
tion architecture can be easily configured by increasing or
decreasing the prediction threshold of the confidence esti-
mation counter. We examined generating custom FSM con-
fidence estimators to achieve 50%, 60%, 70%, 80%, and
90%, and 95% accuracy, and examined the corresponding
coverage that resulted. We compared this result to the best
confidence estimators that have been proposed for value pre-
diction in prior research [4, 2].

We found that our custom FSM confidence estimators
could consistently achieve higher coverage when confining
both techniques to the same area and accuracy. For exam-
ple, if we fix the accuracy to be achieved by the confidence
estimation predictor to be 80%, then using our automati-
cally generated FSM confidence estimators achieves 80%
coverage, whereas the best existing confidence estimation
approach achieved only a coverage of 63% of value predic-
tions. Additional research into finding efficient FSM confi-
dence predictors and evaluating their performance improve-
ments is part of our future research.

7 Summary

Predictive finite state machines are a fundamental building
block in computer architecture and are used to control and
optimize all types of prediction and speculation. In this paper
we present an automated approach to generating FSM pre-
dictors using profile information. This approach can be used
to develop FSM predictors that perform well over a suite of
applications, tailored to a specific application, or even a spe-
cific instruction.

The algorithm we present uses profiling to build a
Markov model of the global correlation present in a target
application. From this model we define a set of patterns to
capture. These patterns are compressed into a usable form
and then translated into a regular expression. From the reg-
ular expression we use subset construction to build a finite
state machine. This state machine is then optimized for our
uses using Hopcroft’s Partitioning Algorithm and Start State
Reduction.

We also present a customized branch prediction architec-
ture that makes use of these custom built finite state machine
predictors. The FSM predictors are generated for branches
that are not easily captured by local two-bit counters. These
custom state machines take up little area, and can efficiently
and accurately capture the global correlation behavior of the
target application. The global correlation is shown to be cap-
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tured across input sets and results are presented for a variety
of predictor sizes.

For all of the programs examined, our custom predictors
achieve a misprediction rate less than a general purpose pre-
dictor of twice it’s size or more. For two of the programs,
the custom branch misprediction rates are lower than gen-
eral purpose predictors of five times their size.

As customized processors become an increasingly attrac-
tive design option, the techniques presented in this paper
will offer the embedded systems designers the ability to ef-
ficiently and effectively take advantage of application spe-
cific prediction structures to increase performance and re-
duce area.
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