
In Proceedings of the 30th International Symposium on Computer Architecture (ISCA), June 2003.

A Pipelined Memory Architecture for High Throughput Network Processors

Timothy Sherwood George Varghese Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

{sherwood,varghese,calder}@cs.ucsd.edu

Abstract

Designing ASICs for each new generation of backbone
routers is a time intensive and fiscally draining process. In this
paper we focus on the design of a programmable architecture
for backbone routers, based on the manipulation of wide irregu-
lar memory words, that can provide a feasible design alternative
to custom ASICs. We propose a pipelined memory design that
emphasizes worst-case throughput over latency, and co-explore
architectural tradeoffs with the design of several important net-
work algorithms. Through this co-exploration, we show that a
programmable architecture can efficiently exploit behavior in-
herent to most common network algorithms to keep up with next
generation network speeds.

1 Introduction
The constant march of fiber optic link speeds has in recent years
turned into a full speed sprint that has out paced even the ex-
ponential growth predicted for integrated circuits by Moore’s
law. Building backbone routers capable of handling these speeds
currently requires an army of design and verification engineers,
large amounts of silicon, and years of design time.

In order to handle a single 10 Gigabit per second fiber link
(and many routers have 32 links), each line card must process up
to 32 million packets every second1. Next generation products
will have to handle upwards of 125 million packets per second.
Even as bandwidth requirements are increasing, so is the com-
plexity of protocols that need to be supported — from traditional
forwarding functions such as IP lookup, to more recent require-
ments for doing intrusion detection.

Further, a competitive backbone router must not only support
the most recent protocols, but must also take advantage of the
most recent advances in network algorithm design. This is in
stark contrast to more traditional architecture research where it
is assumed that the benchmark is an unchanging standard. In
the core router setting the only requirement is bandwidth, and
anything in the design space can change to maximize bandwidth,
including the architecture and the algorithms themselves.

In this paper we describe a programmable system designed
to efficiently execute a variety of network algorithms and show
that it is a feasible alternative to custom ASICs. To achieve the
high throughput required by core routers, we propose a novel
memory design for our network processor and make use of a
form of non-uniform wide word parallelism.

1assuming a minimum packet size of 40 bytes

We begin the paper in Section 2 explaining the design re-
quirements of modern throughput-driven backbone routers and
show how they differ from traditional latency-driven comput-
ing architectures. The unique requirements of processing net-
work algorithms requires a new bandwidth-centric architecture
that can deliver optimized worst-case performance. In Section 3
we summarize, at a very high level, the space of network proces-
sors and discuss how our design fits into this space. In Section 4,
we then describe and characterize our high throughput memory
design, and contrast it with memory designs geared towards min-
imal latency. A key point of this research is the importance of
understanding both architectural and algorithmic constraints at
the same time. To this end, Section 5 focuses on co-exploring
tradeoffs in both the architectural and algorithmic dimensions,
and shows how a single architecture can perform well across a
broad set of applications, if the algorithms are tuned in unison
with the architecture. The paper is then concluded in Section 6
with a summary of our contributions.

2 Routing in the Backbone
The goal of our research is to develop an architecture capable
of implementing network algorithms at the speeds required by
future backbone routers (10 Gb/s to 40 Gb/s), while remaining
general purpose enough that new algorithms can be implemented
completely in software or with a minimum of additional hard-
ware complexity. In contrast, most programmable network pro-
cessors on the market today target low performance (from 100
Mb/s to 10 Gb/s) low cost edge routers, leaving the task of rout-
ing in the backbone to ASICs.

2.1 Backbone Router Model
The following model of a how a packet and router interact will
help to ground the discussion that follows. A packet arrives at a
router on an input link to an input line card that contains a router
processor. This processor first does any security checks (e.g.,
screening for suspicious strings) and then performs a lookup.
The lookup maps the destination address to the router output link
that the packet should be sent to. The packet is then switched,
using an internal crossbar, to the output line card specified by the
matched prefix.

The input processor may additionally classify the packet us-
ing a database of rules on header fields. At the output line card,
classified packets are buffered in separate queues for each traffic
class (e.g., low delay, high priority). The output line card also
contains a processor which schedules packet queues for trans-
mission on the output link in order to provide QoS (e.g., delay)

1

guarantees.
The traditional approach to high speed router forwarding is

to build custom ASICs that perform the required functions at
these high speeds. Designing such ASICs is increasingly be-
coming a Herculean effort. As bandwidth requirements grow,
network protocols become more complicated, and higher fre-
quencies complicate physical design. Each new generation of
routing ASIC is larger and more complex than the last, requiring
larger teams from design to verification.

To combat this increasing complexity, a software based ap-
proach is needed that requires fewer engineers and less time. For
software to run at the speeds required, we must create a new class
of efficient, easily programmable, and scalable architectures to
which we can map many different network algorithms.

A generalized routing architecture has two major advantages
over the traditional method that uses a myriad of ASICs. First, a
major concern for router designers is to reduce Non-Recurring
Engineering (NRE) costs (e.g., for masks, design time, etc.)
which are becoming a dominant fraction of the overall costs
for ASICs as speeds increase. Second, a programmable pro-
cessor allows changes to the algorithms after installation. Such
changes were not required for the traditional IP path that was
cast in stone, but is becoming increasingly necessary today for
security applications.

To address these issues, we focus on the design of a pro-
grammable architecture capable of handling modern network al-
gorithms at backbone speeds. Note that our goal is not to re-
place the entire router with programmable parts. We continue
to assume a hardwired internal crossbar switch, custom logic for
buffer handling, etc.; the programmable processor only imple-
ments complex algorithms with large amounts of state such as
IP lookups, classification, scheduling, and security checks.

2.2 Routing Requirements

Many initial attempts at designing network processors essen-
tially retrofitted general purpose computer architectures to work
in the networking space. While these are acceptable at low
speeds, the goals of a programmable router processor are very
different from a general purpose computer, and as such are gov-
erned by a different set of requirements. This leads to the fol-
lowing key differences in design assumptions that we address in
our design:

• Throughput is critical, not latency: A single 40 Gigabit link,
forwarding minimum size packets (40 bytes), requires that
125 million packets be handled each second (one every 8
ns). The handling of each packet requires multiple memory
references, causing memory bandwidth to be of paramount
importance. However; while the demand on throughput is
very high, each individual packet may take many hundreds of
nanoseconds from arrival to departure.

• Design for the worst case: This requirement is contrary to the
current trends in processor designs that are based on optimiz-
ing for the average or expected case. In contrast, network ven-
dors rate their products as supporting a particular wire rate. It
is important that the performance delivered by their product
be stable for any combination of test packets with which a

customer chooses to test it. 2 This greatly complicates the
design and analysis of a practical memory system.

• Do not assume locality in the packet stream: The final impor-
tant point of difference follows from the previous two. Ex-
ploiting various forms of locality (e.g., spatial, temporal) in
data sets is a tenet of computer architecture, one that has made
possible the common case performance of desktop systems
today. Unfortunately, because backbone links merge together
millions of individual packet streams [25], and because our
goal is worst case throughput, we cannot rely on inter-packet
locality to improve performance.

The standard worst case assumptions used by network de-
signers [15] is that packets are minimum sized (roughly half the
packets on the Internet are 40 byte TCP acknowledgments [25]),
and there is no locality between packets.

2.3 Our Approach
Our approach to designing a 40 Gb/s router processor was to
first understand the algorithms and techniques in use on many of
today’s high end router ASICs. We generalize from these exam-
ples to propose a programmable architecture capable of achiev-
ing high bandwidth for worst case performance. For each algo-
rithm, we build an analytical model of its behavior and charac-
terize the performance of the algorithm working in unison with
the architecture. We use these models to explore design trade-
offs between the efficiency of the algorithm, and the circuit de-
sign options available for implementation. In our analysis and
simulations we always assume a worst case packet stream for
each algorithm. Likewise, all the results we present are lower
bounds on the achievable performance across all possible packet
streams.

3 Network Processors
In this section we describe two popular network processor
models (shared memory multi-threaded multi-processors, and
pipelines of processors using partitioned memory). We then de-
scribe our underlying wide-word processing model, made pos-
sible by deeply pipelining on-chip memory. As with any inter-
disciplinary work, we can only touch upon a sampling of related
work in network processors and refer the interested reader to [22]
for a more comprehensive survey.

3.1 Independent Processors with Shared Memory
The top of Figure 1 (part a) shows a common architecture for
many network processors such as the Intel IXP1200. Inter-
nally, the processor contains several (e.g., 6 for the IXP) CPUs.
The packet stream is divided among CPUs, with each processor
working on multiple separate packets (threads) at the same time.
When the processing for one packet stalls because of a memory
reference, a CPU resumes processing for the next thread. Using
fast context switching between threads, and 4 contexts per pro-
cessor, the IXP1200 can process 21.4 M packets/second [23].

The main drawback of this design is that it is built around
traditional memory, which is optimized for latency rather than

2A router that cannot process packets at wire rates can drop (possibly important) packets
before they are even examined and additionally may be susceptible to Denial-of-Service
attacks using worst-case traffic.

2

throughput. To achieve high memory bandwidth, multiple pro-
cessors and thread contexts are used to generate multiple pend-
ing accesses. The problem is that each processor does all of the
forwarding for an assigned packet, and each independent proces-
sor needs independent access to a large amount of shared state
(e.g., the global forwarding database.).

The only known way around this problem is to either repli-
cate the state for each processor (e.g., replicate the 100,000 en-
try forwarding tables across all CPUs), or to share the state in
some fashion. Replication is prohibitively expensive for the
large problem sizes that routers need to deal with, especially
given limited (e.g., 32 Mbits of SRAM) on-chip memory. The
problem with sharing state is in providing independent access to
the entirety of the state. In the worst case, if every data access of
every processor was to the same bank of memory, all the benefit
of multiprocessing would be lost because all memory accesses
would be serialized. While these techniques work well on sys-
tems with small problem size or without worst-case performance
constraints, neither of these options meets the requirements we
set forth in Section 2.2.

3.2 Pipeline of Processors
The lack of memory bandwidth in the traditional shared memory
model has led some companies like Intel and AMCC to move
to a pipeline of processors, with multiple distributed memories.
The model is that each processing element in the pipeline does
part of the processing of a packet for all packets; for example, in
the middle of Figure 1 (b) processing element 1 can do the initial
processing of a lookup and pass the results to processing element
2 for completion. The drawbacks of pipelined architectures are:

a) Memory Utilization/Contention Tradeoff: The simplest
way to design the pipeline is to statically partition the process-
ing state (e.g., IP lookup table) among processors to avoid con-
tention, as shown in Figure 1 (b). In algorithms such as IP
lookup, the data structure is a tree, and the different levels of
the tree are partitioned among the pipeline of processors. The
work at the root of the tree is assigned to the first processing ele-
ment, the root’s children are assigned to the second element, and
so on. Unfortunately, the trees are not balanced; the shape of the
tree can vary from lookup database to database. Thus the mem-
ory needs of each CPU in the pipeline becomes unpredictable.
This in turn means that static partitioning of the limited avail-
able on-chip memory among multiple distributed memories can
be very wasteful of memory.

b) No support for writes: A pipeline of processors work best
for functions such as lookups where writes are done only oc-
casionally and not in real-time. However, there are important
router forwarding functions that require forwarding time writes.
For example QoS scheduling involves real-time writes to update
flow tracking registers, which then may have to be forwarded to
all of the other independent memories. This make a worst case
analysis on the mapped algorithm very difficult.

3.3 Our Solution: Pipelined Wide Word Memory
Our solution is motivated by the problems described above,
which are all caused by the need for worst case memory band-
width. We avoid these problems as follows. First, we make each
memory access wide to increase the number of bits retrieved per
access. Second, we observe that a memory subsystem consists

Processor 1

P5P6

P3 P4

Processor 2

P2P1

All processing state
shared or replicated

Input packets Output packets

a) INDEPENDENT MULTITHREADED PROCESSORS

Processor 2
Output packetsInput packets

P4P5P6 P1

P2P3

Processor 1

Part of state Part of state

b) PIPELINE OF PROCESSORS

Output packetsInput packets

P4

P5P6 P1

P3

All processing state
in pipelined memory

c) IRREGULAR WIDE-WORD PIPELINED MEMORY

P2

Word3

Word4

Word2

Processing

Figure 1: Two common approaches to parallelism in network
processors versus our pipelined memory design. In the top pic-
ture (a), input packets are distributed among multiple processing
units to divide the load. Each processing element works on the
complete handling of a packet but can work on multiple packets
(threads) at a time. Thus each processing element must access
all of the memory state. In the middle picture (b), input pack-
ets flow through a pipeline of processing elements. Each pro-
cessing element performs a portion of the processing for each
packet, one packet at a time. Thus each processing element need
only access separate parts of the memory state. In our scheme
(c), there is no need to partition the data structures, and mem-
ory throughput requirements are met by using wide words and
pipelined memory.

of memory banks and an interconnect that ferries data read from
a bank to the output. Traditional memory maintains the invariant
that two readers do not access the same block by ensuring that
there is only one reader in the entire subsystem. However, this
is unnecessarily restrictive. In summary, our memory subsystem
uses:

• Wide Words: We note that the performance of many network
algorithms can be increased significantly by the use of wide
data words. Instead of having to worry about multiple in-
dependent readers of memory having bank conflicts, we can
instead provide aggressive memory bandwidth to one reader
at a time through wide word access.

• Internally Pipelined Memory: Circuit design realities force
traditional memories to sacrifice worst case throughput in or-
der to reduce latency. Because our applications are incredibly

3

latency tolerant, we can greatly increase the throughput by
internally pipelining the memory to allow the memory sys-
tem to work on multiple packets at once. For example, in the
packet stream of Figure 1, the memory can be delivering a
word required to process packet P1, while at the same time
fulfilling a read request for packet P2.

To best utilize our wide-word pipelined memory, our under-
lying processor model is also different from either of the archi-
tectures described above (shown in Figure 1 (a) and (b)). Our
design in Figure 1 (c) has one multi-threaded processor work-
ing on multiple packets at the same time. When a wide word is
delivered from the memory system, multiple computation units
work together over the whole word performing the calculations
needed to process that word and generate the next address. Mul-
tiple packets have their processing interleaved, as our pipelined
memory allows multiple memory requests to be outstanding at a
single time.

4 Memory Architecture
In this section we describe the details of our approach, including
a description of the tradeoffs of wide word and pipelined memo-
ries, the model of the machine presented to the programmer, and
a characterization of the architecture.

4.1 Motivation for Wide Word Memory Architectures
Network algorithms traverse large data structures and are de-
signed to provide worst-case bounds on both processing time
and memory. The use of wide memory word accesses is very
common within network ASIC designs as a means of increasing
memory bandwidth and reducing processing times. An example
of this can be found in the way that tree-based IP lookup algo-
rithms are typically implemented. IP lookup can be efficiently
implemented by storing prefixes in a trie that looks up one bit
of the address at a time and goes either right or left through the
trie based on this bit. In hardware trie algorithms, a state ma-
chine traverses the trie using bits in the destination address to
obtain the output port. One technique to decrease search time
is to reduce the tree height by packing multiple nodes in a trie
path into a single wide word [24]. This allows more than one
bit to be looked up at a time using a single memory access, but
increases the size of the memory access and the fan-out of the
trie. This is just one example of how wide-words can be used
in network algorithms. In Section 5, we briefly explain for each
of our algorithms how a wide word can be used to speed up the
algorithm.

Because of the common use of wide words in a number of
special purpose networking ASICs for lookups, classification
and QoS, we believe it is important to abstract this ability in
a programmable architecture by exploiting wide word access in
the memory design and exposing wide word access at the pro-
gramming level.

4.2 A High Throughput Pipelined Memory
While multithreading and pipelining are very standard ideas in
the network processor context, one of our main contributions is
showing how to get high worst case memory throughput by inter-
nally pipelining the memory. In the traditional memory layouts
that prior network processors are designed around, only one or

Word3

Output packetsInput packets

P4
P5P6 P1

P2P3

Processor

PIPELINED WIDE-WORD ARCHITECTURE

Mux/Demux

Memory Tile

Pipeline Register
Word7

Word2

Word1

Word6

Word4

Word5

Figure 2: This figure shows how our pipelined tree-based mem-
ory can have many accesses flowing through it at the same time.
At any given time, there is only one wide word access going to
a memory bank, and all the memory banks are at the leaves of
the tree. At each level in the tree (for the single ported version)
there are at most two words in flight, one going up to the memory
arrays and one coming back down.

Output packetsInput packets

P4P5P6 P1P2
P3

Single Processor

All processing state

WIDE-WORD PROGRAMMING MODEL

Figure 3: While the actual architecture shown in Figure 2 is
quite complex, the programmer need only worry about program-
ming their algorithms for a simple wide-word processor. This
is because the architecture is designed to provide good perfor-
mance even in the worst case, so there is no need to worry about
the careful location of data structures in banks, or partitioning
the program state between two separate memories as in Fig-
ure 1(b).

two (if multi-ported) memory lookups can be performed at the
same time in the worst case. These designs use large memory
tiles, trying to minimize the interconnect delay for latency, and
rely on common case techniques such as locality and indepen-
dent accesses to provide sufficient bandwidth. As such, the worst
case throughput of such systems is limited to one or two trans-
actions being processed by the memory at the same time, when,
in the worst case, all the lookups fall into the same bank.

In contrast, our new memory design trades off latency for
throughput. We propose pipelining the memory design using
smaller memory tiles to process many transactions at the same
time (see Figure 2). This will result in a higher latency per trans-
action, but the number of transactions per unit time will be sig-
nificantly higher than in a traditional memory design. To achieve
this, we start by breaking the memory into smaller tiles, each of
which is capable of reading out a wide word each memory cy-

4

cle. The cycle times for these smaller banks are two to three
times faster than monolithic memory banks, even assuming op-
timal internal partitioning. Our design will have a larger inter-
connect delay, and hence a larger overall latency; however by
pipelining the interconnect, we achieve better overall through-
put because the delay of each stage is smaller than the overall
latency of a traditional (non-pipelined) memory design. There-
fore, the memory design can have N lookups in flight, where N
is the number of pipeline stages (twice the height of the tree to
go up and back down) of the memory layout.

Figure 2 shows a high level diagram of our design. The mem-
ory has been divided into many small banks. At the bottom of
each small bank is a pipeline latch that grabs the data we need.
Data read from a bank then needs to travel from the tile (which
could be quite far away) back to the processor. This is done over
a deeply pipelined tree interconnect. When an access is made,
a lookup is performed in parallel at the leaves of the tree, and
each cycle the correct data item marches its way down through
the pipelined tree to the root where it is read out by the proces-
sor. Since the tree is balanced and full, and there is only one
memory access actively accessing the banks at a time, we are
guaranteed that during the entire journey over the interconnect
there will be no conflicts. This ensures that we will always be
getting one wide word of data each cycle. The tree intercon-
nect is not a trivial piece of real estate, because it needs to mux,
demux, latch, and move large words of memory over a long dis-
tance. In fact, as we will see in Section 5, the interconnection
network accounts for between 10% and 30% of the total area of
the memory system.

By multithreading applications, using small tiled memo-
ries with access to wide words, and including an efficient bal-
anced interconnect with worst case bounds, our design effec-
tively supports many in-flight accesses to memory to provide
high throughput.

One final hardware optimization which we include in our
memory design trade off analysis, is the use of multi-ported
memories. Multi-ported memory is slightly slower (Virage re-
ports 10%), significantly less dense (75% larger for the same
number of bits), and requires even more overhead in the form of
interconnect area. Despite all of these draw backs, multi-ported
memory provides two accesses to each memory bank even in the
worst case. As we will see later, even though the penalty is sig-
nificant, using more ports can be a good idea for more aggressive
implementations.

4.3 Characterization of Architecture
Now that we have presented the main architectural ideas, we
need a method of exploring and testing our ideas along with
some intuition as to how the architecture reacts to different pa-
rameters.

In order to do this we need a way of quantifying the effect
of memory bank delays and areas along with interconnect over-
heads. To calculate the memory bank parameters we used an
analytical model together with a design walker that can estimate
the area and delay of .13u SRAM for each bank. This was then
validated against industry memory compilers (from Virage and
Austria). For the interconnect, we modeled an H-Tree with addi-
tional area for pipeline registers and mux/demux modeled from

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Stages

0%

20%

40%

60%

80%

100%

cycle time
area overhead

Figure 4: Quantifying the overhead and benefit of pipeline
stages. For the line labeled cycle time, the y-axis is the per-
centage reduction in cycle time for access to a single memory
bank. For the line labeled area overhead the y-axis is the
percentage area overhead due to additional interconnect. Re-
member that the pipeline is not linear, but is instead a tree: this
is why the pipeline area overhead increases non-linearly with
number of stages.

8 128

256

512

1024

Word Width (bytes)

0

200

400

600

M
em

 B
an

d
w

id
th

 (
G

B
/s

ec
)
perfect
50 (area)
100 (area)
150 (area)

Figure 5: Total memory bandwidth in Gigabytes per second ver-
sus the size of word accessed. The line labeled perfect as-
sumes linear scaling of bandwidth with word size. In reality
there are diminishing gains above words of 256 bytes caused
by interconnect overhead cutting in on the the amount of area
we can use for sub-dividing the memory banks.

VLSI layouts.

To gain some initial intuition as to how some of the key pa-
rameters of our memory design trade off against one another, we
present Figures 4 and 5. These figures show the effect of in-
creasing the number of pipeline stages and the width of the word
used.

Figure 4 shows the overhead and benefit resulting from using
different numbers of pipeline stages for a word size of 128 bytes
and 1 read-write port. The first line (drawn with a solid line) is
the cycle time normalized to a traditional memory organization
(which has been banked internally for latency). With only one
stage, the memory is not pipelined at all and thus the cycle time
is 100%. As we increase the number of stages, the cycle time
decreases as the memory is divided into smaller and smaller in-
dependent tiles. Doing this sub-division comes at a cost, and
the second line quantifies this cost in terms of area overhead (in
terms of percent increase in area over a single memory block).
The overhead comes from both the cost of splitting a tile into 2

5

smaller tiles and the increased area due to interconnect.
Figure 5 shows the total memory bandwidth versus the size

of word accessed. If there are no circuit level limitations to in-
creasing the size of memory words, the bandwidth should in-
crease linearly (drawn as the perfect line in the graph). In
reality there is an overhead in increasing the width of the words
due to increased interconnect area and slower bank access times.
In Figure 5 there are 3 lines drawn, for different constraints on
the area. The lines show the maximum memory bandwidth that
can be achieved by our system under the given area constraints.
Even up to quite large widths (over 128 bytes) there is not that
much impact on bandwidth because it is all pipelined. We start
to see smaller benefits (caused by interconnect overhead cutting
in on the amount of area we can use for sub-dividing the mem-
ory banks, and by poor memory folding) when we get to widths
above 256 bytes.

The above graphs are just a sampling of the tradeoffs in-
volved in our architecture and do not even include any tradeoffs
at the algorithmic level. In Section 5, we provide a detailed ex-
amination of the tradeoffs we considered.

4.4 Programmer’s View of Memory
We would like to avoid forcing the programmer to deal with
wide word memory layout problems. For instance, lower speed
network algorithms are often implemented using interleaved
DRAM chips such as RAMBUS, where great care must be taken
by the programmer to lay out the data structure in appropriate
banks to avoid bank conflicts. This clearly increases program-
ming effort and in some cases makes efficient design impossible.
The task of layout is further complicated by the fact that most of
the algorithms are both dynamic and irregular in nature. This, as
discussed in Section 3, makes partitioning and replication a very
difficult problem to solve, especially in the worst case.

Instead, the model which we would like to present to the pro-
grammer is that of a large single unified on-chip memory. It will
be our task to make sure that the internal memory design details
required for a high speed design are hidden from the program-
mer. Figure 3 is a high level view of the model we present to
the programmer. The figure is simple because the model pre-
sented is simple. The memory appears as a large uniform block
of wide words. The processor performs a read, does a wide
word operation, and then writes that word back to the memory
(if it needs to). The challenge is to provide a high performance
(high throughput) architecture that can still be programmed in
this straight forward way.

4.5 Mapping an Algorithm to Wide Words
While the details of designing and programming algorithms for
our architecture are outside the scope of this paper, we comment
briefly on how this can be done. The first task is the transforma-
tion of the applications to take advantage of the wide-word ac-
cesses made available to the programmer. As mentioned earlier,
our applications walk large data structures, and thus by default
contain many dependent memory accesses. One way that this
maps to our architecture is by taking multiple dependent mem-
ory references (such as a region of a tree) and flattening them
into a single wide word access. However, different algorithms
can use the wide words in different ways.

The next task is the processing of each wide word that comes
back from memory using a rule based system. The wide word is
partitioned into pieces (not necessarily at byte boundaries), and
each piece has a small amount of computation performed on it
in lock-step (similar to functional units for VLIW). This is fol-
lowed by a merging step which takes the piece-wise results and
makes final decisions or computations (such as which of many
next-pointers to follow in a tree).

4.6 Related Architectures
Now that our architecture has been described at a high level, it
is important to describe how our architecture differs from other
well known architectures which are not specific to networking.

The Imagine stream processor [19] is a close relative to our
design. Both are designed for memory bandwidth and focus on
total throughput as a metric of performance. However, the Imag-
ine stream processor is built for graphics and signal processing
applications that are compute intensive. The Imagine model of
computation is one of streaming data between dependent opera-
tions, and is built around the reuse and locality commonly found
in applications in that domain. The applications we target, on
the other hand, navigate through large data structures optimized
for worst case performance. Thus Imagine uses reuse to tol-
erate large memory read times with standard memory designs,
while we use a pipelined non-traditional memory to get large
throughput without reuse assumptions. On the other hand, our
architecture has a higher overall access latency which would be
undesirable in many other contexts.

We also share similarities with vector architectures. Vector
architectures, much as we propose, operate on very long words
of data, or vectors. IRAM [14] is an example of such an on-
chip vector architecture. Again, the difference is both in the
assumed reuse of a vector and in the applications. Vector ma-
chines were built with large regular scientific codes in mind. In
order to perform a vector operation the programmer must write
his application in the form of vectors. The problem with the net-
work algorithms that we target is that the applications are not
regular. Each word that we operate on describes a node in a tree
(or a state in a state machine) rather than an array of numbers on
which to perform arithmetic.

The final point of comparison is with VLIW architectures.
VLIW architectures operate on long irregular instruction words.
Each word is a set of independent instructions that can operate
on any machine state. Our approach is more akin to a Very Long
Data Word architecture in that we limit operations to the scope
of one word at a time. However, our ideas can be combined with
a very large instruction word that feeds the logic that works on
long data words.

5 Co-Exploring Network Algorithms
and Memory Design

The computer architecture community tends towards a passive
view of the software that it is tasked with executing. This is
because it is simply not possible to make sweeping changes to
the algorithms and data structures used in most general purpose
environments. By contrast, we propose to take advantage of pa-
rameterized network algorithms and data structures that can ex-

6

ploit our wide word architecture. We do so to expose tradeoffs
between the algorithm’s need for resources, and the architectural
and circuit level realities. This is an important contribution of
our work, and in this section we show that co-exploration in this
domain space is both needed and useful.

5.1 Algorithm and Memory Design Co-Exploration
In Section 4.3 we examined some of the behaviors of our pro-
posed architecture to illustrate the nature of the tradeoffs we have
to deal with, but to do so we made many simplifications in terms
of the parameters examined. As we are about to show, in reality
the interaction between the parameters is far more complex.

Figure 6 is a graphical representation of the interaction of
the parameters in both the algorithmic and architectural design
spaces. Software elements are shown as ellipses and hardware
elements are shown as boxes. The goal is to fix one of the
two outputs (network throughput or area), and then to minimize
the other. This graphical representation shows what makes this
problem both difficult and interesting: there are many dependen-
cies that interact in complex ways.

For example, if we fix the amount of area allowed, and we
want to increase the amount of network bandwidth, we can try to
reduce the total number of memory accesses required to process
each packet. This can be done by extracting more wide-word
parallelism from the application, but in order to do this we need
to increase the size of the words read from memory. Increasing
the word size affects almost everything else in the system includ-
ing memory cycle times and interconnect overhead. This exam-
ple also demonstrates another key point: algorithms are closely
coupled with the choice of hardware parameters. Ignoring one,
while attempting to optimize the other will be far from the best
design.

The results in this section were generated by examining
many different architectural and parameter sets, including but
not limited to: the width of word in the memory and algorithm,
the total size of the memory, the tiling of the memory, the num-
ber of read, write, and the read-write ports in the memory. Once
the architecture model has been specified, the algorithm is mod-
eled to take advantage of the architecture at hand. Each algo-
rithm takes advantage of the memory width available, the num-
ber of ports (read and write) for access, and is limited by the
amount of memory available.

While we are certainly not the first to propose design space
exploration for network processors [7, 26] we believe that we
are the first to systematically co-explore algorithmic and archi-
tectural tradeoffs together under worst case performance con-
straints.

5.2 Network Algorithms
Note that there are two different time scales at which routers
process information: forwarding time and route time. The com-
putations that occur in route time are those that set up the data
structures used by forwarding time algorithms; route time com-
putations happen relatively infrequently (on the order of every
millisecond) compared to the rate at which forwarding happens
(on the order of nanoseconds). For this reason we are not tar-
geting the route time operations which form the bulk of router
software. In contrast, computations that happen in forwarding
time are the small amounts of code that need to be performed

Wide Word
Parallelism

Memory Access
Per Packet

Total Memory
Required

Network
Bandwidth

Interconnect
Area

Memory
Area

Word Width

Memory
Cycle Time

Read/Write
Buffer Area

Total
Area

Problem
Size

Memory
Tile Size

Number
of Ports

Figure 6: A graphical representation of the dependencies be-
tween hardware (drawn as boxes) and software (drawn as el-
lipses) when attempting to quantify wide-word pipelined memory
network processor performance and area.

on every single packet that flows through the system. Making a
chip that scales to these speeds while maintaining programma-
bility and scalability is the real hardware challenge for backbone
routers.

The tasks that need to be performed on each packet may be
broken down into the following categories: Lookups, QoS, Clas-
sification, and Security. We define our benchmarks as a set of
requirements, such as performing an IP lookup or classifying a
packet stream rather than limiting ourselves to a particular im-
plementation. Standard network processing benchmark suites ei-
ther focus primarily on end user or edge functionality [8, 16, 27],
or tie directly to a set of source code, neither of which is suited
to our end goal of backbone router deployment. While the fol-
lowing algorithms are by no means an exhaustive set, they do
provide a coarse generalization of the different types of algo-
rithms used in modern and next-generation core routers. We use
these to show the broad applicability of our architecture rather
than as a hard proposal for a new benchmark suite. For each of
these four algorithms we provide a description of the function-
ality, briefly explaining how it may take advantage of wide word
accesses, and examine how well the algorithm maps to our ar-
chitecture in terms of its estimated performance. We begin with
a more in depth look at IP lookup, as it is one of the canonical
examples of network algorithms.

5.2.1 IP Lookup
The most fundamental activity that a router must engage in is
the forwarding of packets. In order to determine which link any
given packet must forward to, a lookup must be performed. IP
lookup takes a stream of destination IP addresses3 as input, and
is tasked with finding the output port that each packet must be
forwarded too. This is complicated by the rules for packet for-
warding, which require a longest prefix operation.

We spend more time describing IP lookup than the other al-
gorithms because we use IP lookup as an example of the various
techniques we have developed, and with the hope of giving the
reader an intuition behind the architectural and algorithmic deci-

3Each destination IP address is either 32-bits (IPv4) or 128-bits (IPv6)

7

Original Port

1� → P1
0� → P2
01� → P3
011� → P4

Expanded Port

10� → P1
11� → P1
00� → P2
01� → P3
0111� → P4
0110� → P4

Figure 7: IP lookup table before and after controlled prefix ex-
pansion. The table on the left is smaller, but the table on the right
can be more efficiently traversed because all of the patterns are
aligned on 2-bit boundaries which allow 2-bits to be traversed
at a time as opposed to 1 in the unexpanded table

sions we examine. For a survey of IP lookup algorithms we refer
the reader to [21].

The left table in Figure 7 is an example IP lookup table.
Any packet that enters the system is matched against the rule
set, finds the longest match, and forwards the packet to the listed
port. For example, a packet going to the address 1111 in our
example will go out on port 1 (P1) because it matches 1�, and
it is the only match. If a packet was going to address 0110, it
would match three different patterns, 0�, 01�, 011�, but only the
longest pattern, in this case 011�, is used and the packet would
be forwarded to Port 4 (P4).

One solution to this problem is a Content Addressable Mem-
ory, or CAM. While CAMs can work well in some instances,
they have trouble scaling both to the number of prefixes in mod-
ern routing tables (due to the increased size as compared to
SRAM) and in available bandwidth. Instead, most of today’s
high end routers use a tree-like representation of the list of pre-
fixes, and then walk this tree at high speed in hardware. A
Patricia-Tree [17] is an example of this sort of tree that many
people are familiar with.

Using Wide Words: While the Patricia-Tree can be effec-
tive in lower speed software-only routing implementations, the
state of network algorithms has advanced significantly since the
creation of Patricia-Trees. Instead, several routers use a Multi-
Bit Trie approach as is detailed in [24, 9]. In this approach, the
lookup tree is expanded so that multiple bits can be searched in
parallel. An example of this can be seen on the right side of
Figure 7. In the expanded table, you can see that all patterns are
aligned on 2-bit boundaries which allows the table to be searched
2 bits at a time. At the same time you can see that the functional-
ity of the table has not changed. The address 0110 now matches
0110� (and in addition 01�), but the effect is the same (being
forwarded to Port 4).

In general you can align the entries on any n-bit boundaries,
enabling the lookup of n address bits at a time, and reducing the
number of tree accesses (and memory access) by a factor of n.
This optimization comes at the cost of expanded table sizes; in
this example the table has gone from size 4 to 6, and generally
the larger the number of bits that are looked up in parallel, the
larger the table will get.

Because the memory expansion of multi-bit tries is large, the
tables can grow large (on the order of 100,000 prefixes) and the
amount of on-chip SRAM is limited. Thus, many routers today
use compressed multibit tries such as the Lulea [9] scheme. Such
schemes compress away the redundant portions of multi-bit trie
nodes by adding bitmaps indicating repeated values in a multi-bit

node. Bitmap compression can reduce memory needs consider-
ably, at the cost of a increased memory accesses per node to read
the bitmaps.

However, our wide word architecture provides us with a sim-
ple alternative first described in [18]. We can represent all the
prefixes (and their corresponding pointers to other nodes) that
lie within a multi-bit trie node without expansion. Assuming
a node fits in a wide word, the entire node can be read in one
memory access and the destination address can be compared in
parallel with all the prefixes in the word. The longest matching
prefix within this node is selected and the corresponding pointer
is followed to fetch the next multi-bit trie node in the tree. Es-
sentially, we are doing a parallel associative lookup of the node’s
contents to finesse the need for expansion or bitmaps.

Co-exploration: In Figure 8 we can see the overall tradeoffs
that can be made by varying the parameters of both the architec-
ture and the width of word used by the multi-bit trie algorithm.
The x-axis is area in square millimeters, while the y-axis is the
network bandwidth that can be supported by each algorithm. Ev-
ery set of parameters that we examined is shown as a point on the
graph. Pareto-optimal points are highlighted as circles. For this
work a set of parameters is considered Pareto-optimal if there
exists no other measured set of parameters that has both smaller
area and better performance. For a reasonably sized system of
100 square millimeters, our technique can support throughputs
approaching 100 Gbits/s assuming 40-byte packets. The key to
achieving these bandwidths is the tradeoff between the extent
to which IP lookup can exploit wide word access by searching
multiple bits at a time, and the circuit level realities discussed in
Section 4.

To search the space of IP addresses with wide words, you
need to double the length of your word to search one more bit at
a time, so there is a logarithmic relationship between the word
size and the total number of memory accesses that the algorithm
will need to make. In Figure 9, we examine this tradeoff for a
particular slice of the parameters. For each algorithm, we plot
the points for the highest throughput for each word size for a
memory with 1 port that is limited to an area of 50 square mil-
limeters. The results show that for IP Lookup, a width of 128
bytes is the best balance for all of the constraints.

5.2.2 Quality of Service
Supporting quality of service (QoS) primitives is a standard re-
quirement for any high speed router today. Based on packet clas-
sification at the input port, packets are separated into queues at
the output port of the router. For example, all web traffic may be
directed to one queue. QoS is provided by a scheduling policy
which determines which queue is serviced next to send a packet
on the output link.

The simpler scheduling functions allow queues to be priori-
tized (e.g., for Voice over IP), rate limits to be applied to some
queues using so-called token buckets, and simple, weighted
round-robin schemes such as Deficit Round Robin (DRR). A
DRR scheduler services queues in round-robin order, allowing
each queue to send a quantum Q of bits in each round-robin cy-
cle. Since only whole packets can be sent, and packet sizes may
not fit into the quantum Q, the DRR scheduler keeps track of
the quantum not used by a queue in one opportunity and gives it

8

0 100 200 300
Area (mm^2)

0

50

100

IP
L

o
o

ku
p

 (
G

b
it

/s
)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. ..
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.
. .

.
. .

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.
.

.

. . ..
. .

. .
.

.
. .

.
.

.

.
.

.

.
.

.

.

.
.

.

. .

.
.

..

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.

.

. . ..
. .

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.

.

. . ..
. .

. .
.

.
. .

.
.

.

.
.

.

.
.

.

.

.
.

.

.
. ..
. ..
. .

.
. .

.
. .

0 100 200 300
Area (mm^2)

0

20

40

60

80

100

P
-H

ea
p

 (
G

b
it

/s
)

.

. .
.

. .
.

.
.

.

.
.

.

.
.

.

.
. .

.

. .
.

.
.

.

.
.

.

.
.

.

.
.

.

.
. .

.

.
..

.
.

.

.
.

.

.
.

.

.
.

.

.

.
. .

.

. ..

.
.

.

.
.

.

.
.

.

.
..

.

.

.

.
.

.

.

.
..

.
..

.
.

.

.
.

.

.
.

.

.

.

.

.

. . .

.
. ..

. ..

.
.

.

.
.

.

.
.

.

.

.

.

.

.

.

. . .

.
. ..
. ..
.

..
. .

.
. ..

. ..

.

.
.

.
.

.

. .
.

. .
.

.
.

.

.
.

.

.

.
. .

.

. .
.

.
.

.

.
.

.

.
.

.

.
. .

.

.
..

.
.

.

.
.

.

.
.

.

.

.
. .

.

. ..

.
.

.

.
.

.

.
.

.

.
..

.
.

.

.

.
..

.
..

.
.

.

.
.

.

.
.

.

.

.

. . .

.
. ..

. ..

.
.

.

.
.

.

.
.

.

.

.

.

.

. . .

.
. ..

. ..
.

..
. .

.
. ..

. ..

.

.
.

. . .

.
.

.
.

..
.

..
.

.
.

.

..
.

..
.

.

0 100 200 300
Area (mm^2)

0

5

10

A
h

o
-C

o
r

(G
b

it
/s

)

.
.

..
.

.
.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.
.

.

.
.

.

.

.

.

.
.

.
.

.
..

.

.
.

.

.

.

.
. ..

.
.

.

.

.

.

.

.
. ..

.
..

.

.

.

.
.

.

.
.

..

.

.

.

.
.

.
. .

.
. ..

.
.

.

.

.
.

.
.

.

.
.

.
.

.
.

.

.
.

.

.
.

.
.

.
..

.

.
.

.
. ..

.
.

.

.

.

.
. ..

.
..

.

.

.

.

.
.

..

.

.

.

.
.

.

.
.

. .
.

. .
.

. .

0 100 200 300
Area (mm^2)

0

10

20

30

B
V

-C
la

ss
 (

G
b

it
/s

)

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.
. ..
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..
. .

.
. ..
.

.
.

.
.

.

.

.

.

.

.

.

.

.
. ..
.

.
.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.
.

.
.

.
.

.

.
. .

.
. .

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.
. ..
.

.
.

.

.

.

.

.

.

.

.

.

. . ..
.

.
.

.

.

.

.

.

.

.

.

.

.

. . ..
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

. . ..
. .

.
. ..
.

.
.

.
.

.

.

.

.

.

.

.
. ..

.
.

.

.
.

.

.
.

.

.
.

.

.

.
.

.
.

.
.

.
.

.

.
. .

.

.
. ..
. .

.
. .

.
. .

.
. .

Figure 8: Tradeoffs for the different algorithms, as discovered by exploring the algorithm and architecture in unison for each
algorithm individually. The x-axis is area in square millimeters and the y-axis is the network bandwidth that can be supported by
each algorithm. All points examined are shown and Pareto-optimal points are shown as circles.

back in the next. All of these schemes maintain some per queue
state on which the scheduler must base its decision as to which
queue to send from next. The number of queues can be large;
some routers have around 64,000 queues per output link.

More sophisticated schedulers, such as Weighted Fair
Queueing [10, 3] and Virtual Clock [28, 29], have been designed
to guarantee delays for delay-sensitive traffic, such as video, by
implementing a scheme similar to earliest deadline schedulers.
Thus each packet carries a deadline (or time stamp); the basic
real time bottleneck is to select the lowest time stamp packet for
transmission.

A natural data structure to compute the lowest time stamp is a
heap. A heap is also useful in simple forms of QoS. For example,
a heap can be used in rate limiting queues [11] and computing
priorities, It can also be used in DRR to compute which queue
to visit next in round robin order, while skipping over queues
that have no data. An example of a data structure that allows the
basic heap operations at high speeds and has a compact hardware
implementation is the Pipelined-heap structure, or P-heap [4].

Using Wide Words: The P-heap is a structure that sup-
ports fully pipelined operation on a heap through the use of a
side buffer that is used to communicate information between
the stages, each of which is a level of the heap. The technique
presented in [4] is designed with a hardware implementation in
mind, but we adapt this technique to explore the algorithm space
with our wide word memory design. We extend this work by
supporting an even more aggressive heap structure that instead
of being a binary heap (where each node has up to 2 children),
can support heaps of arbitrary fanout. Through the use of wide
words, we can support a higher out degree at each node in the
heap, which means that the total height of the tree will be re-
duced. Note that wide word heaps, without the use of pipelining,
have been implemented in custom ASICs in the past [11].

Co-exploration: The P-heap, unlike the Multi-bit Trie, is
a balanced tree, which makes the analysis a bit simpler. In the
case of this balanced heap, we can say that the height of the tree
is strictly a function of the log of the number of nodes and the
log of the fanout. However the structure is complicated by the
fact that there are forwarding time writes. The major tradeoff
for this structure is the fan-out of the nodes versus the memory
and width constraints of the system. Here there is a constant size
overhead associated with each node for storing the active and
value fields (discussed in [4]), a counter which grows logarith-

mically in size with the number of nodes (the capacity), and a
list of pointers which grows linearly with the fanout and loga-
rithmically with the size of the memory. All of these must be
examined in conjunction with the architectural tradeoffs.

Intuitively, by increasing the width of the memory we can
make fatter nodes which then allows us to flatten the height of
the heap. A flatter heap means less accesses to the heap are nec-
essary in the worst case (where we need to access a path to the
leaf nodes in the heap). Less memory access per packet means
that more packets can be processed with a fixed amount of mem-
ory bandwidth, which means better throughput.

In Figure 8, we can see the results of performing the co-
exploration of parameters. The pipelined heap application, as
mapped to our architecture, can almost reach 100 Gbit/s with
100 square millimeters. This is similar to the IP lookup algo-
rithm. The major difference between the way IP lookup and
P-heap are implemented, is that in P-heap there is almost noth-
ing to be gained in using more than 100 square millimeters. This
is due to the fact that for P-heap there is expensive to increase
the fan-out of the data structure (in terms of more overhead and
control bits), which means that the algorithm benefits less from
extremely wide words. Figure 9 shows this point for a slice of
the parameters. As can be seen in the Figure, P-heap performs
better with word sizes around 64 bytes. Above 64 bytes, the al-
gorithmic gains of wider words do not balance out against the
performance of the memory sub-system.

5.2.3 Security
Another problem that network infrastructure providers are en-
countering is the growing need to be able to track and block
particular types of data on the network, such as worms. The
”Code Red II” worm, for example, is a piece of self-replicating
malicious code that exploits a vulnerability in Microsoft IIS
servers [6]. It has had an estimated world wide economic im-
pact of over $2.6 billion dollars [1], and it can be stopped using
a packet filter which checks for the string ”scripts/root.ex-e?” in
the URI content along with a quick examination of the packet
length.

There are many existing software systems that are designed
to detect network intrusion or other malicious behavior. Unfor-
tunately, the act of determining whether a particular packet is
dangerous or not requires an examination of the payload of the
packet. One operation in particular is essential, the ability to
scan the packet contents for a set of strings which are known

9

8 32 64 128

256

Word Width (bytes)

0%

20%

40%

60%

80%

100%

T
h

ro
u

g
h

p
u

t

Aho-Cor
BV-Class
IPLookup
P-Heap

Figure 9: Graph of word width versus realized network band-
width (as a percentage of the best achieved on a per-algorithm
basis) for memory with 1 port, and limited to an area of 50
square millimeters.

to cause trouble. Readers may be familiar with efficient algo-
rithms for string matching such as Boyer-Moore [5], which are
designed to find a single string in a long input.

Our problem is slightly different, we are searching for one
of a set of strings from the input stream. Instead of simply
iterating a standard one-string matching algorithm, the set of
strings that we are looking for can be folded into a single state-
machine. This method, the Aho-Corasick algorithm [2], is what
is used in the fgrep utility as well as the latest versions of the
Snort [20] network intrusion detection system.

The Aho-Corasick algorithm works by building up a state
machine that is fed the string to be searched. The state machine
is generated by building up a tree of all the strings that need to
be searched for, and a set of failure edges that are traversed when
a search string on the path is not found.

This is another tree-like structure, but because of the failure
edges (which point back to other parts of the tree), its traversal is
not strictly tree-like. Another major difference between this al-
gorithm and the others discussed thus far is the fact that this data
structure must be accessed on every single byte of the packet,
not just once for the packet header as in IP Lookup. This, as
we will see, results in an order of magnitude less performance
than the other three algorithms mentioned (as measured in total
network bandwidth supported). However, we believe that this is
a benchmark of growing importance and should be captured by
our architecture.

Using Wide Words: To examine the behavior of the algo-
rithm on real data, we generated the Aho-Corasick state machine
for a set of strings used for actual intrusion detection and packet
filtering. For this we used the default string set supplied with
Snort, which includes, as part of it’s rule base, a set of over
1000 suspicious strings resulting in an Aho-Corasick state ma-
chine with more than 10,000 nodes.

Because our data is no longer a proper tree (due to back
edges), and because we want to ensure the worst case perfor-
mance of the algorithm (across any packet stream), we now need
to worry about the worst case cycle in the data structure. After
building up a real state-machine from the Snort data, we found
the major bottleneck to the system were several states at the top
of the tree with very high fan-out. The root node in particular

could have pointers to upwards of 150 possible next nodes, and
the worst case cycle would always go through the root node. To
combat this problem, we used our wide word resources to make
these large nodes fit into less memory words. This handling of
the large fan out nodes near the top of the state machine benefits
the worst case performance as the total number memory access
are reduced.

Co-exploration: In Figure 8 we can see that our architec-
ture, at 100 square millimeters, can only handle 8 Gbit/s. This
poor performance (relative to IP lookup in terms of total sup-
ported bandwidth) is due to a combination of effects. By far the
largest contributer to the poor performance is the requirement
that one node must be traversed for every byte in the packet.

When we only have to worry about packet headers, life is
much easier because we only need to do one operation (such
as lookup the IP address) for every 40-bytes of network traf-
fic. However, when we are forced to examine the payload, we
need to process every byte of network traffic, which is time con-
suming by its very nature. The second effect is that our current
mapping of the Aho-Corasick algorithm is not making full use
of our wide-word architecture. We should be able to map large
sections of the state machine to wide words, and developing bet-
ter implementations of the Aho-Corasick algorithm is a topic of
our future research.

5.2.4 Classification
In recent years the trend has been for routers to rely less on tra-
ditional destination-based forwarding and more on the idea of
service differentiation. The main idea is that services, such as
allocations of bandwidth or reduced latency handling, are de-
termined by the type of traffic that is being handled. Deter-
mining what type of traffic a particular packet qualifies as, and
hence what rules apply to it, is driven by the header fields in the
packet. For example, the destination address, source address and
TCP/UDP port numbers could be used to classify priority voice
over IP data.

Classification of a packet is done with a set of rules, each
with an associated priority. Each rule specifies the type of packet
that it applies to, typically in the form of a range or wild-card,
and the rule with the highest priority that matches is the only
one that is applied. For example, one rule might match all traffic
going from address 001� to 0100� on port 80 (web). Thus clas-
sification can be considered to be rule based forwarding, with
priorities to handle conflicts. Even within the core, fairly large
(e.g., 2000 rule) classifiers are commonly used for security. For
example, many of the rules appear to be denying traffic that is
from specified subnetworks and is directed at particular servers
or subnetworks within an ISP.

Among the best performing classification algorithms are
the HiCuts algorithm [13] and the Bit-Vector Linear Search
(BVLS) [15]. The HiCuts algorithm is a decision tree which
makes range checks at each node in the tree. It can benefit from
a wide word architecture by merging multiple decision nodes
into a single node to reduce tree height. While both algorithms
can benefit from wide words, we chose to expose the tradeoffs
using the conceptually simpler BVLS scheme. For a survey of
classification schemes we refer the reader to [12].

Using Wide Words: In the BVLS algorithm, a separate trie

10

is created for each of the fields (destination address, source ad-
dress, port numbers, etc.) that can be used for rule matching. At
the leaves of each of these tries is a long bit vector. Each element
(bit) in the vector corresponds to a rule (from the classification
rule set), and the vector is a list of rules that are eliminated from
possibly matching because they do not match in this particular
field. All of the the tries are walked based on the packet header
information, leaving us with a set of vectors (one for each field).
Each vector is the set of rules that have been eliminated, and if
we take the logical OR of this set of vectors, we will be left with
one vector that tells us which rules have not been eliminated yet,
and thus, are matched.

There are two places where we can use wide word access
to speed the data structures involved. The first way is to speed
the walking of the separate tries used for each of the fields. The
wide word access can be used in a way similar to that described
in Section 5.2.1 and we do not discuss the tradeoffs again here.

The other advantage to be had from wide words is in operat-
ing on the long bit vectors themselves. Because there is one bit
in the vector for each rule, and we need to examine over 2000
rules, and the bit vector OR operation requires many accesses to
the memory. Note, our 2000 rule data set is similar to a rule set
used by a major ISP. Using wide words here is a fairly simple
matter of needing less separate words per vector when the vec-
tors are longer that the word length. By using the wide word,
we can operate on more of the bits at a time, and as such, we
achieve a near linear increase in the bandwidth from an algorith-
mic standpoint.

Co-exploration: In Figure 8 we can see that using the BVLS
algorithm can support approximately 20 Gbit/s at 100 square
millimeters. While this number is short of the goal of 40 Gbits/s
we set for ourselves, there are several areas that can be improved
in terms of the implementation of the algorithm. Our current im-
plementation of the algorithm is limited primarily by the initial
trie lookups, which is why the shape of graph is similar to that for
IP lookups. In addition, we can further improve these numbers
by using wide words to target the initial trie lookups (currently
not done), or by using an algorithm such a HiCuts [13].

5.3 Combined Analysis
Now that we have examined how each of the algorithms map to
our full architecture, it makes sense to break down the effect of
each of our contributions. We examine the best performance that
can be obtained with and without the presented techniques for a
constrained area in order to show this breakdown. Figure 10 was
generated by taking a hard area limit, in this case 100 square mil-
limeters, and by trying to find parameters of the algorithms and
architecture such that total bandwidth supported is maximized,
but the total area budget is not over-spent. Because of this, all
these configurations have close to 100 square millimeters.

There are 5 bars on the graph. The first 4 are bars, where we
view each algorithm independently (as was done in the previous
sections), show results for tuning the architecture individually
for each algorithm. The first bar, labeled Standard, is the base
case where we assume a fairly simple algorithm that is limited to
using 8-bytes of memory for each node, and where the memory
access time is similar to a standard on-chip memory (with the
decode logic separated from the actual read). While this base

IPLookup P-Heap Aho-Cor BV-Class 0%

20%

40%

60%

80%

100%

T
h

ro
u

g
h

p
u

t

Standard WideWord PipeMem Both Single-Unit

Figure 10: Examination of the best configurations found under
different assumptions. The first 4 bars assume the architecture is
tuned to a given architecture, while the last bar show what hap-
pens if a single architecture is tuned to the suite of applications.
Results are normalized to the best configuration found for each
algorithm.

case may or may not be an accurate representation of the state
of the art, it does provide a point of comparison to show the
importance of our other techniques.

The next bar on the graph shows the effect of having a mem-
ory system that has support for wide-word memory access, but
it is not pipelined past the standard method. Note that, while this
memory is not tiled into pipeline stages, internally the memory
has been designed such that the internal delays are optimized us-
ing memory sub-banking to break up the otherwise exorbitantly
long row and column lines. The third bar is the effect of just
using a pipelined memory, without any use of wide words to de-
liver more parallelism or memory bandwidth.

The bar labeled Both is the most aggressive solution that we
found for a given algorithm, but with the same constraint on the
total area. Because this represents the best we could do using
the techniques presented, and because the actual values for this
can be seen in Figure 8, we have chosen to normalize all results
for each algorithm to this bar. This bar represents, for a given
algorithm, the best configuration tailor made to that algorithm.

In addition to these first four bars, which are tuned to each
application separately, it is important to note the performance of
the best overall performing configuration. The final bar, labeled
single-unit, shows what happens if we pick a single best config-
uration, and map all of the algorithms to that configuration. This
means that the architecture is tuned to optimize for the suite of
applications rather than to a specific individual. The tuning is
done by picking the architecture that has the highest geometric
mean across all of the benchmarks. The difference between this
bar and the Both bar shows the amount we lose from using a
single system as opposed to systems custom tailored to each ap-
plication, which is surprisingly little. This presents the hope that
a single implementation could be used to achieve high perfor-
mance from all of the applications we have examined.

6 Summary
This paper has focused on creating a programmable and scal-
able network processor solution for next generation backbone
routers to achieve 40+ Gb/s. The two traditional network pro-
cessor models we discussed have issues with scaling. The first

11

model uses independent processors with shared memory; the
use of traditional memory designs optimized for latency lim-
its the achievable memory throughput. The second model uses
pipelined processors with partitioned memory to obtain high
memory throughput. However, the second approach does not
support writes and does not balance memory across partitions,
both of which are important for router functions such as QoS
and lookups.

To solve these issues we propose using a unified pipelined
wide word memory. One of our main contributions is to achieve
high memory throughput for a single, unified memory by inter-
nally pipelining the memory. This allows our design to process
many transactions at the same time. In addition, the use of wide
words allows our design to increase memory bandwidth, leverag-
ing the fact that many network algorithms can be sped up using
wide words.

Another contribution of this work is our co-exploration of
the algorithm design with the design of the wide word pipelined
memory architecture. We performed this co-exploration for sev-
eral important network algorithms, which include IP lookup,
QoS, Security, and Classification. We performed co-exploration
by creating a parameterized version of these network algorithms
and data structures that can exploit our wide word architecture.
We then examined the tradeoffs between four different memory
configurations varying the memory bandwidth achieved, word
width and overall memory size. Through this co-exploration, we
showed that a programmable architecture can efficiently exploit
behavior inherent to many common network algorithms, and this
is achieved by using our wide word pipelined memory. In par-
ticular, we found that a single set of parameters worked nearly
optimally across all the IP functions we examined, suggesting
that these parameters could be used as the basis for a 40 Gbps
network processor design.

Acknowledgments
We would like to thank Jeremy Lau, Kristina Sherwood, and
our anonymous reviewers for providing useful comments on this
paper, and Nathan Tuck for his feedback on both the writing
and analytical models. This work was funded in part by Semi-
conductor Research Corporation grant No. SRC-2001-HJ-897,
NSF grant No. ANI-0074004, a grant from NIST on the Sensilla
Project, and a grant from Intel.

References
[1] Malicious code attacks had $13.2 billion economic impact in 2001. Com-

puter Economics, Jan 2002.

[2] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[3] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair queueing algo-
rithms. IEEE/ACM Transactions on Networking, 5(5):675–689, 1997.

[4] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for
high-speed network switches. In Proc. of IEEE Infocomm, March 2000.

[5] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communi-
cations of the ACM, 20(10):761–772, 1977.

[6] CERT/CC. Code Red worm exploiting buffer overflow in IIS indexing ser-
vice DLL. CERT Advisory CA-2001-19, Jan 2002.

[7] Patrick Crowley and Jean-Loup Baer. A modeling framework for network
processor systems. In in Network Processor Workshop in conjunction with
Eighth International Symposium on High Performance Computer Architec-
ture (HPCA-8), Cambridge, MA, February 2002.

[8] Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N. Ber-
shad. Workloads for programmable network interfaces. In IEEE 2nd Annual
Workshop on Workload Characterization, Austin, Texas, October 1999.

[9] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink.
Small forwarding tables for fast routing lookups. In Proceedings of SIG-
COMM, pages 3–14, 1997.

[10] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queuing algorithm. In Proc. SIGCOMM ’89, September 1989.

[11] Z. D. Dittia, G. M. Parulkar, and J. R. Cox. The APIC approach to high per-
formance network interface design: Protected DMA and other techniques.
In Proc. of IEEE INFOCOM ’97, April 1997.

[12] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE
Network Magazine, 15(2), 2001.

[13] Pankaj Gupta and Nick McKeown. Packet classification using hierarchical
intelligent cuttings. In Proceedings of Hot Interconnects VII, August 1999.

[14] Christoforos E. Kozyrakis, Stylianos Perissakis, David Patterson, Thomas
Anderson, Krste Asanović, Neal Cardwell, Richard Fromm, Jason Golbus,
Benjamin Gribstad, Kimberly Keeton, Randi Thomas, Noah Treuhaft, and
Katherine Yelick. Scalable processors in the billion-transistor era: IRAM.
Computer, 30(9):75–78, 1997.

[15] T. V. Lakshman and Dimitrios Stiliadis. High-speed policy-based packet
forwarding using efficient multi-dimensional range matching. In Proceed-
ings of SIGCOMM, pages 203–214, 1998.

[16] Gokhan Memik, William H. Mangione-Smith, and Wendong Hu. Netbench:
A benchmarking suite for network processors. In IEEE International Con-
ference Computer-Aided Design (ICCAD), 2001.

[17] D. R. Morrison. Patricia - practical algorithm to retrieve information coded
in alphanumeric. Journal of the ACM, 15(4):514–534, October 1968.

[18] Radia Perlman. Interconnections: Bridges, Routers, Switches, and Internet-
working Protocols. Addison-Wesley, 2nd edition, October 1999.

[19] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo
Lopez-Lagunas, Peter Mattson, and John D. Owens. A bandwidth-efficient
architecture for media processing. In 31st International Symposium on Mi-
croarchitecture, pages 3–13, November 1998.

[20] Martin Roesch. Snort – lightweight intrusion detection for networks. In
Proceedings of LISA’99: 13th Systems Administration Conference, pages
229–238, November 1999.

[21] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP
address lookup algorithms. IEEE Network Magazine, 15(2):8–23, 2001.

[22] Niraj Shah. Understanding network processors. Ver 1.0, September 2001.

[23] Tammo Spalink, Scott Karlin, Larry L. Peterson, and Yitzchak Gottlieb.
Building a robust software-based router using network processors. In Sym-
posium on Operating Systems Principles, pages 216–229, 2001.

[24] V. Srinivasan and G. Varghese. Fast address lookups using controlled prefix
expansion. ACM Transactions on Computer Systems, 7(1):1–40, February
1999.

[25] Kevin Thompson, Miller Gregory J, and Rick Wilder. Wide-area internet
traffic patterns and characteristics. IEEE Network Magazine, 11(6):10–23,
November 1997.

[26] Tilman Wolf. A network processor performance and design model with
benchmark parameterization. In in Network Processor Workshop in con-
junction with Eighth International Symposium on High Performance Com-
puter Architecture (HPCA-8), Cambridge, MA, February 2002.

[27] Tilman Wolf and Mark A. Franklin. CommBench - a telecommunications
benchmark for network processors. In Proc. of IEEE International Sym-
posium on Performance Analysis of Systems and Software, pages 154–163,
April 2000.

[28] L. Zhang. Virtual clock: A new traffic control algorithm for packet switch-
ing networks. In Proceedings of SIGCOMM ’90, 1990.

[29] L. Zhang. Virtual clock: A new traffic control algorithm for packet switch-
ing networks. ACM Transactions on Computer Systems, pages 101–125,
May 1991.

12

