
In Proceedings of the 30th International Symposium on Computer Architecture (ISCA), June 2003.

Phase Tracking and Prediction

Timothy Sherwood Suleyman Sair Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

{sherwood,ssair,calder}@cs.ucsd.edu

Abstract

In a single second a modern processor can execute billions
of instructions. Obtaining a bird’s eye view of the behavior of a
program at these speeds can be a difficult task when all that is
available is cycle by cycle examination. In many programs, be-
havior is anything but steady state, and understanding the pat-
terns of behavior, at run-time, can unlock a multitude of opti-
mization opportunities.

In this paper, we present a unified profiling architecture that
can efficiently capture, classify, and predict phase-based pro-
gram behavior on the largest of time scales. By examining the
proportion of instructions that were executed from different sec-
tions of code, we can find generic phases that correspond to
changes in behavior across many metrics. By classifying phases
generically, we avoid the need to identify phases for each opti-
mization, and enable a unified prediction scheme that can fore-
cast future behavior. Our analysis shows that our design can
capture phases that account for over 80% of execution using less
that 500 bytes of on-chip memory.

1 Introduction
Modern processors can execute upwards of 5 billion instructions
in a single second, yet most architectural features target program
behavior on a time scale of hundreds to thousands of instruc-
tions, less than half a µS. While these optimizations can provide
large benefits, they are limited in their ability to see the program
behavior in a larger context.

Recently there has been a renewed interest in examin-
ing the run-time behavior of programs over longer periods of
time [10, 11, 19, 20, 3]. It has been shown that programs can
have considerably different behavior depending on which por-
tion of execution is examined. More specifically, it has been
shown that many programs execute as a series of phases, where
each phase may be very different from the others, while still hav-
ing a fairly homogeneous behavior within a phase. Taking ad-
vantage of this time varying behavior can lead to, among other
things, improved power management, cache control, and more
efficient simulation. The primary goal of this research is the de-
velopment of a unified run-time phase detection and prediction
mechanism that can be used to guide any optimization seeking
to exploit large scale program behavior.

A phase of program behavior can be defined in several ways.
Past definitions are built around the idea of a phase being an in-
terval of execution during which a measured program metric is
relatively stable. We extend this notion of a phase to include all
similar sections of execution regardless of temporal adjacency.
Simply put, if a phase of execution is correctly identified, there

should only be small variations between any two execution in-
tervals identified as being part of the same phase. A key point of
this paper is that the phase behavior seen in any program metric
is directly a function of the way the code is being executed. If
we can accurately capture this behavior at run-time through the
computation of a singlemetric, we can use this to guide many
optimization and policy decisions without duplicating phase de-
tection mechanisms for eachoptimization.

In this paper, we present an efficient run-time phase tracking
architecture that is based on detecting changes in the propor-
tionsof the code being executed. In addition, we present a novel
phase prediction architecture that can predict, not only when a
phase change is about to occur, but also the phase to which it
is will transition. Since our phase tracking implementation is
based upon code execution frequencies, it is independent of any
individual architecture metric. This allows our phase tracker to
be used as a general profiling technique building up a profile or
database of architecture information on a per phase basis to be
used later for hardware or software optimization. Independence
from architecture metrics allows us to consistently track phase
information as the program’s behavior changes due to phase-
based optimizations.

We demonstrate the effectiveness of our hardware based
phase detection and classification architecture at automatically
partitioning the behavior of the program into homogeneous
phases of execution and to identify phase changes. We show
that the changes in many important metrics, such as IPC and en-
ergy, correlate very closely with the phase changes found by our
metric. We then evaluate the effectiveness of phase tracking and
prediction for value profiling, data cache reconfiguration, and
re-configuring the width of the processor.

The rest of the paper is laid out as follows. In Section 2,
prior work related to phase-based program behavior is discussed.
Simulation methodology and benchmark descriptions can be
found in Section 3. Section 4 describes our phase tracking ar-
chitecture. The design and evaluation of the phase predictor are
found in Section 5. Section 6 presents several potential applica-
tions of our phase tracking architecture. Finally, the results are
summarized in Section 7.

2 Related Work
In this Section we describe work related to phase identification
and phase-based optimization.

In [19], we provided an initial study into the time varying
behavior of programs, showing that programs have repeatable
phase-based behavior over many hardware metrics – cache be-
havior, branch prediction, value prediction, address prediction,

1

IPC and RUU occupancy for all the SPEC 95 programs. Looking
at these metrics over time, we found that many programs have
repeating patterns, and that important metrics tend to change at
the same time. These places represent phase boundaries.

In [20], we proposed that by profiling only the code that was
executed over time we could automatically identify periodic and
phase behavior in programs. The goal was to automatically find
the repeating patterns observed in [19], and the lengths (peri-
ods) of these patterns. We then extended this work in [21], using
techniques from machine learning to break the complete exe-
cution of the program into phases (clusters) by only tracking the
code executed. We found that intervals of execution grouped into
the same phase had similar behavior across all the architecture
metrics examined. From this analysis, we created a tool called
SimPoint [21], which automatically identifies a small set of in-
tervals of execution (simulation points) in a program to perform
architecture simulations. These simulation points provide an ac-
curate and efficient representation of the complete execution of
the program.

The work of Dhodapkar and Smith [10, 9] is the most closely
related to ours. They found a relationship between phases and
instruction working sets, and that phase changes occur when the
working set changes. They propose that by detecting phases and
phase changes, multi-configuration units can be re-configured in
response to these phase changes. They have used their working
set analysis for instruction cache, data cache and branch predic-
tor re-configuration to save energy [10, 9].

The work we present in this paper identifies phases and phase
changes by keeping track of the proportions in which the code
was executed during an interval based upon the profiler used
in [20]. In comparison, Dhodapkar and Smith [10, 9] track the
phase and phase changes solely upon what code was executed
(working set), without weighting the code by its frequency of
execution. Future research is needed to compare these two ap-
proaches.

Additional differences between our work include our exam-
ination of architectures for predicting phase changes, and differ-
ent uses from [10, 9], such as value profiling and processor width
reconfiguration. We provide an architecture that can fairly accu-
rately predict what the next phase will be, along with predicting
when there will be a phase change. In comparison, Dhodapkar
and Smith do not examine phase-based prediction [10, 9], but
concentrate on detecting when the working set size changes, and
then reactively apply optimization.

Merten et al. [15] developed a run-time system for dynami-
cally optimizing frequently executed code. Then in [3], Barnes
et al. extend this idea to perform phase-directed complier op-
timizations. The main idea is the creation of optimized code
“packages” that are targeted towards a given phase, with the goal
of execution staying within the package for that phase. Barnes et
al. concentrate primarily on the compiler techniques needed to
make phase-directed compiler optimizations a reality, and do not
examine the mechanics of hardware phase detection and classi-
fication. We believe that using the techniques in [3] in conjunc-
tion with our phase classification and prediction architecture will
provide a powerful run-time execution environment.

I Cache
16k 4-way set-associative, 32 byte blocks, 1 cycle la-
tency

D Cache
16k 4-way set-associative, 32 byte blocks, 1 cycle la-
tency

L2 Cache
128K 8-way set-associative, 64 byte blocks, 12 cycle la-
tency

Main Memory 120 cycle latency

Branch Pred
hybrid - 8-bit gshare w/ 2k 2-bit predictors + a 8k bi-
modal predictor

O-O-O Issue
out-of-order issue of up to 4 operations per cycle, 64 en-
try re-order buffer

Mem Disambig load/store queue, loads may execute when all prior store
addresses are known

Registers 32 integer, 32 floating point

Func Units 2-integer ALU, 2-load/store units, 1-FP adder, 1-integer
MULT/DIV, 1-FP MULT/DIV

Virtual Mem
8K byte pages, 30 cycle fixed TLB miss latency after
earlier-issued instructions complete

Table 1:Baseline Simulation Model.

3 Methodology
To perform our study, we collected information for ten
SPEC 2000 programs applu, apsi, art, bzip, facerec,
galgel, gcc, gzip, mcf, and vpr all with reference inputs.
All programs were executed from start to completion using Sim-
pleScalar [5] and Wattch [4]. Because of the lengthy simulation
time incurred by executing all of the programs to completion,
we chose to focus on only 10 programs. We chose the above
10 programs since their phase based behavior represents a rea-
sonable snapshot of the SPEC 2000 benchmark suite, along with
picking some of the programs that showed the most interesting
phase-based behavior. Each program was compiled on a DEC
Alpha AXP-21164 processor using the DEC C, and FORTRAN
compilers. The programs were built under OSF/1 V4.0 operating
system using full compiler optimization (-O4 -ifo).

The timing simulator used was derived from the Sim-
pleScalar 3.0 tool set [5], a suite of functional and timing simu-
lation tools for the Alpha AXP ISA. The baseline microarchitec-
ture model is detailed in Table 1. In addition to this, we wanted
to examine energy usage optimizations, so we used a version of
Wattch [4] to capture this information. We modified all of these
tools to log and reset the statistics every 10 million instructions,
and we use this as a base for evaluation.

4 Phase Capture
In this section we motivate the occurrence of phase-based behav-
ior, describe our architecture for capturing it, and examine the
accuracy of using the program behavior in our phase-tracking
architecture to identify phase changes for various hardware met-
rics.

4.1 Phase-Based Behavior
The goal of this research is to design an efficient and general pur-
pose technique for capturing and predicting the run-time phase
behavior of programs for the purpose of guiding any optimiza-
tion seeking to exploit large scale program behavior. Figure 1
helps to motivate our approach to the problem. This figure shows
the behavior of two programs, gcc and gzip, as measured by
various different statistics over the course of their execution from
start to finish. Each point on the graph is taken over 10 mil-
lion instructions worth of execution. The metrics shown are the

2

10B 20B 30B 40B
0

0.5
1

1.5
2

IP
C

0
50000

100000
150000

bp
re

d

0
1E+06
2E+06
3E+06
4E+06

dl
1

0
100000
200000
300000
400000
500000

il1

0
2E+09
4E+09
6E+09

en
er

gy

0
1E+06
2E+06
3E+06

ul
2

0B 50B 100B
0

0.5
1

1.5

IP
C

0
20000
40000
60000

bp
re

d

0
500000
1E+06

1.5E+06

dl
1

0
200
400
600

il1

0

5E+08

1E+09

en
er

gy

0
200000
400000
600000
800000

ul
2

Figure 1: To illustrate the point that phase changes happen across many metrics all at the same time, we have plotted the value
of these metrics over billions of instructions executed for the programsgcc (shown left) andgzip (shown right). Each point on
the graph is an average over 10million instructions. The number of unified L2 cache misses (ul2), the energy consumed by the
execution of the instructions, the number of instruction cache (il1) misses, the number of data cache misses (dl1), the number of
branch mispredictions (bpred) and the average IPC areplotted.

number of unified L2 cache misses (ul2), the energy consumed
by the execution of the instructions, the number of instruction
cache (il1) misses, the number of data cache misses (dl1), the
number of branch mispredictions (bpred) and the average IPC.
The results show that all of the metrics tend to change in unison,
although not necessarily in the same direction. In addition to
this, patterns of recurring behavior can be seen over very large
time scales.

As can be seen from these graphs, even at a granularity of 10
million instructions (which is at the same time scale as operating
system time slices) there can be wildly different behavior seen
between intervals. In this paper, we concentrate on a granularity
of 10 million instructions because it is both outside the scope
of normal architectural timing and is small enough to allow for
many complex phase behaviors to be seen.

4.2 Tracking Phases by Executed Code
Our phase tracker architecture operates at two different time
scales. It gathers profile information very quickly in order to
keep up with processor speeds, while at the same time it com-
pares any data it gathers with information collected over the long
term. Additionally, it must be able to do all that while still being
reasonable in size.

Our phase profile generation architecture can be seen in Fig-
ure 2. The key idea is to capture basic block information during
execution, while not relying on any compiler support. Larger
basic blocks need to be weighed more heavily as they account
for a more significant portion of the execution. To approximate
gathering basic block information, we capture branch PCs and
the number of instructions executed between branches. The in-
put to the architecture is a tuple of information: a branch iden-
tifier (PC) and the number of instructions since the last branch

PC was executed. This allows us to roughly capture each basic
block executed along with the weight of the basic block in terms
of the number of instructions executed, as we did in [20, 21] for
identifying simulation points.

Classifying phases by examining only the code that is ex-
ecuted allows our phase tracker to be independent of any in-
dividual architecture metric. This allows our phase tracker to
be used as a general profiling technique building up a profile or
database of architecture information on a per phase basis to be
used later for hardware or software optimization. Independence
from architecture metrics is also very important to allow us to
consistently track phase information as the program’s behavior
changes due to phase-based optimizations.

At this point it is worth making more explicit the differences
between our technique and that of Dhodapkar and Smith [10, 9].
Dhodapkar and Smith use a bit vector to track the working set of
the code for a particular interval. While our technique is based
on the basic block vectors used in [20]. The bit vectors of Dho-
dapkar and Smith track a metric that is related to which code
blocks were touched, whereas our metric tracks the proportion
of time spent executing in each code block. This is a subtle but
important distinction. We have found that in complex programs
(such as gcc and gzip) there are many instructions blocks that
execute only intermittently. When tracking the pure working set,
these infrequently executed blocks can disguise the frequently
executed blocks that dominate the behavior of the application.
On the other hand, by tracking the frequency of code execution
it is possible to distinguish important instructions (basic blocks)
from a sea of infrequently executed ones. Examining these dif-
ferences in more detail is a topic of future research.

Another advantage of tracking the proportions in which the
basic blocks are executed is that we can use this information to

3

H

+

Branch

Instructions

Accumulator Past Footprints

phase ids

Figure 2: Our phase classification architecture. Each branch PC
is captured along with the number of instructions from the last
branch. The bucket entry corresponding to a hash of the branch
PC is incremented by the number of instructions. After each
profiling interval has completed, this information is classified,
and if it is found to be unique enough, stored in the past footprint
table along with its phase ID.

identify not only when different sections of code are executing,
but also when those sections of code are being exercised differ-
ently. A simple example is in a graphics manipulation program
running a parameterized filter on an input image. If you run a
simple 3x3 blur filter on an image you get very different behavior
than if you run a 7x7 filter on the same image despite the fact that
the same filter code is executing. The 7x7 filter will have many
more memory references and those memory references conflict
very differently in the cache than in the 3x3 case. We have seen
this very behavior in examining the interactive graphics program
xv. Using the proportion of execution for each basic block can
distinguish these differences, because in the 3x3 filter the head
of the loop is called more than twice as frequently as in the 7x7
filter.

The same general idea applies to other data structures as
well. Take for example a linked list. As the number of nodes in
the linked list traversal changes over different loop invocations,
the number of instructions executed inside the loop versus the
time spent outside the loop also changes. This behavior can be
captured when including a measure of the proportion of the code
executed, and this can distinguish between link list traversals of
different lengths.

4.3 Capturing the Code Profile

To index into the accumulator table in Figure 2, the branch PC
is reduced to a number from 1 to Nbuckets using a hash func-
tion. We have found that 32 buckets is sufficient to distinguish
between different phases even for some of the more complex
programs such as gcc. A counter is kept for each bucket, and
the counter is incremented by the number of instructions from
the last branch to the current branch being processed. Each ac-
cumulator table entry is a large (in this study 24-bit), saturating
counter, which will not saturate during our profiling interval of
10 million instructions. Updating the accumulator table is the
only operation that needs to be performed at a rate equivalent to

the processor’s execution of the program (once for every branch
executed). In comparison, the phase classification described be-
low needs to only be performed once every 10 million instruc-
tions (at the end of each interval), and thus is not nearly as per-
formance critical.

We note that the hashing function we use is fundamentally
the same as the random projection method we used to generate
phases in [21]. In this prior work, we make use of random pro-
jections of the data to reduce the dimensionality of the samples
being taken. A random projection takes trace data in the form of
a matrix of size L×B, where L is the length of the trace and B is
the number of unique basic blocks, and multiplies it by a random
matrix of size B ×N , where N is the desired dimensionality of
the data which is much smaller than B. This creates a new ma-
trix of size L × N , which has clustering properties very similar
to the original data. The random projection method is a powerful
technique when used with clustering algorithms, and for captur-
ing phase behavior as we showed in [21]. The hashing scheme
we use in this paper is essentially a degenerate form of random
projection that makes a hardware implementation feasible while
still having low error. If all the elements of the random projec-
tion matrix consist of either a 0 or a 1, and they are placed such
that no column of the matrix contains more than a single 1, then
the random projection is identical to this simple hashing mech-
anism. We have designed our phase classification architecture
around this principle.

Figure 3 shows the effect of applying the above mentioned
technique for capturing the phase behavior of the integer bench-
mark gzip. The x-axis of the figure is in billions of instructions,
as is the case in Figure 1. Each point on the y-axis represents an
entry of the phase tracker’s accumulator table. Each point on the
graph corresponds to the value of the corresponding accumulator
table entry at the end of a profiling interval. Dark values repre-
sent high execution frequency, while light values correspond to
low frequency. The same trends that were seen in Figure 1 for
gzip can be clearly seen in Figure 3. In both of these figures,
when observing them at the coarsest granularity, we can see that
there are at least three different phases labeled A, B and C. In
Figure 3, the phase tracker table entries 2, 5, 7, 13 and
17 distinguish the two identical long running phases labeled A
from a group of three long running phases labeled C. Phase table
entries 12 and 20 clearly distinguish phase B from both A and
C. This figure is pictorial evidence that the phase tracker is able
to break the program’s execution into the corresponding phases
based solely on the executed code, and that these phases corre-
spond to the behavior seen across the different program metrics
in Figure 1.

4.4 Forming a Footprint
After the profiling interval has elapsed, and branch block infor-
mation has been accumulated, the phase must then be classified.
To do this we keep a history of past phase information.

If we fix the number of instructions for a profiling interval,
then we can divide each bucket by this fixed number to get the
percentage of execution that was accounted for by all instruc-
tions mapped to that bucket. However, we do not need to know
the exact percentages for each bucket. Instead of keeping the

4

0B 50B 100B

A
cc

um
ul

at
or

 E
nt

ry

1

5

10

15

20

{ { { { {{ { { { {A B B B B BA C C C

Figure 3: Visualization of the accumulator table used to track
program behavior forgzip. The x-axis is in billions of instruc-
tions, while the y-axis is the entry of the accumulator table. Each
point on the graph corresponds to the value of the accumulator
table at the end of a profiling interval where dark values corre-
spond to more heavily accessed entries. The same trends that
were seen in Figure 1 can be clearly seen in Figure 3.

full counter values, we can instead compress phase information
down to a couple of the most significant bits. This compressed
information will then be kept in the Past Footprint table as shown
in Figure 2.

The number of counter value bits that we need to observe is
related to Nbuckets. As we increase the number of buckets, the
data is spread over more buckets (table entries), making for less
entries per bucket (better resolution) but at the cost of more area
(both in terms of number of buckets and more bits per bucket).
To be on the safe side, we would like anydistribution of data into
buckets to provide useful information. To achieve this we need
to ensure that even if data is distributed perfectly evenly over
all of the buckets, we would still record information about the
frequency of those buckets. This can be achieved by reducing
the accumulator counter by:

(bucket[i]× Nbuckets)/(intervalsize)

If the number of buckets and interval size are powers of two,
this is a simple shift operation. For the number of buckets we
have chosen (32), and the interval size we profile over, this re-
duces the bucket size to 6 bits, and thus requires 24 bytes of stor-
age for each unique phase in the Past Footprint table. In practice
we see that the top 6 bits of the counter are more than enough
to distinguish between two phases. In the worst case, you may
need one or two more bits to reduce quantization error, but in
reality we have not seen any programs that cause this to be an
issue.

If too few buckets are used, aliasing effects can occur due
to the hashing function, where two different phases will appear
to have very similar Footprints. Therefore, we want to use a
sufficiently large number of buckets to uniquely identify the dif-
ferences in code execution between phases, while at the same
time use only a small amount of area.

To examine the aliasing effect and determine what the appro-
priate number of buckets should be, Figure 4 shows the sum of
the differences in the bucket weights found between all sequen-
tial intervals of execution. The y-axis shows the sum total of
differences for each program. This is calculated by summing the

4 8 16 32 64 128
Number of Counters

0%

20%

40%

60%

80%

100%

V
is

ib
le

 P
h

as
e

D
if

fe
re

n
ce

applu
apsi
art
bzip2
facerec

galgel
gcc
gzip
mcf
vpr

Figure 4: The percent difference found between Footprints from
sequential intervals of execution, when varying the number of
counters used to represent the footprints. The results are nor-
malized to the difference between intervals found when having
an infinite number of buckets to represent the footprint; 32 buck-
ets captures most of the benefit.

differences between the buckets captured for interval i and i− 1
for each interval i in the program. The x-axis is the number of
distinct buckets used. All of the results are compared to the ideal
case of using an infinite number of buckets (or one for each sep-
arate basic block) to create the Footprint. On the program gcc
for example, the total sum of differences with 32 buckets was
72% of that captured with an infinite number of buckets. In gen-
eral we have found that 32 buckets was enough to distinguish
between two phases.

4.5 Classifying a Footprint to a Phase ID
After reducing the vector to form a footprint, we begin the clas-
sification process by comparing the footprint to a set of repre-
sentative past footprint vectors. We compare the current vector
to each vector in the table. The next section details how we per-
form the comparison and determine what a match is. If there is
a match, we classify the profiled section of execution into the
same phase as the past footprint vector, and the current vector
is not inserted into the past footprint table. If there is no match,
then we have just detected a new phase and hence must create a
new unique phase ID into which we may classify it. This is done
by choosing a unique phase ID out of a fixed pool of IDs. When
allocating a new phase ID, we also allocate a new past footprint
entry, set it to the current vector, and store with that entry the
newly allocated phase ID. This allows future similar phases to
be classified with the same ID. In this way only a single vector
is kept for each unique phase ID, to serve as a representative of
that phase. After a phase ID is provided for the most recent in-
terval, it is passed along to prediction and statistic logging, and
the phase identification part of our algorithm is completed.

To examine the number of phase IDs we need to track, Fig-
ure 5 shows the percentage of execution that can be accounted
for by the top p phases, where p is shown on the x-axis. Re-
sults are graphed for the programs that had the min (galgel)
and max (art) coverage, gcc, gzip, and the overall average.
These results show that most of the program’s phase behavior
can be captured using a relatively small number of phase IDs.

5

0 10 20 30 40 50
Number of Hardware Detected Phases

0%

20%

40%

60%

80%

100%
P

er
ce

n
t

o
f

P
ro

g
ra

m
 C

ov
er

ed

max
avg
min
gcc
gzip

Figure 5: Results of the minimum number of phases that need
to be captured versus the amount program execution they cover.
The y-axis is the percent of program execution that is covered.
The x-axis is the minimum number of phases needed to capture
that much program execution.

If we only track and optimize for the top 20 phases in each ap-
plication, we will capture and be able to accurately apply phase
prediction/optimizations to over 90% of the program’s execution
on average. In the worst case (min), we are able to optimize most
of the program (over 80%) by only targeting a small number (20)
of important recurring phases.

4.5.1 Finding a Match
We search through the Footprint histories to find a match, but
this query is complicated by the fact that we are not necessar-
ily searching for an exact match. Two sections of execution that
have very similar footprints could easily be considered a match,
even if they do not compare exactly. To compare two vectors
to one another, we use the Manhattan distance between the two,
which is the element-wise sum of the absolute differences. This
distance is used to determine if the current interval should be
classified as the same phase ID as one of the past footprint inter-
vals.

If we set the distance threshold too low, the phase detection
will be overly sensitive, and we will classify the program into
many, very tiny phases which will cause us to lose any bene-
fit from doing run-time phase analysis in the first place. If the
threshold is too high, the classifier will not be able to distinguish
between phases with different behavior. To quantify this effect,
we examine how well our hardware technique classifies phases
for a variety of thresholds compared to the phases found by the
off-line clustering algorithm used in SimPoint [21].

The SimPoint tool is able to make global decisions to opti-
mize the grouping of similar intervals into phases. The off-line
algorithm makes no use of thresholds, instead its decisions are
based solely on the structure found in the distribution of pro-
gram behaviors. Our technique must be far more simplistic be-
cause it must be performed on-line and with limited computa-
tional overhead. This reduction in complexity comes at the cost
of increased error.

The Different Phases line in Figure 6 shows the ability of
our hardware technique to find phase changes (transitions be-
tween one phase and the next) when different thresholds are used

12 13 14 15 16 17 18 19 20 21 22 23 24
Lg Distance Threshold

0%

20%

40%

60%

80%

100%

M
is

cl
as

si
fi

ca
ti

o
n

s

Different Phases
Same Phase

Figure 6: Results showing how well our hardware phase tracker
classifies two sequential intervals of execution as being from
“Different” or the “Same” phase of execution. The percent of
misclassifications are shown in comparison to the phase classi-
fications found using the off-line clustering SimPoint tool [21].

to perform the phase classification. For example, when using a
Manhattan distance of 1 million as our threshold (shown as 20
on our x-axis because it is in log2), our hardware technique iden-
tified 80% of the phase changes that occurred in the more com-
plex off-line SimPoint analysis. Conversely, 20% of the phase
changes were incorrectly classified as having the same phase ID
as the last interval of execution.

Likewise, the Same Phases line in Figure 6 represents the
ability of our hardware technique to accurately classify two se-
quential intervals as being part of the same phase as a function
of different thresholds (again as compared to the off-line cluster-
ing analysis). For example, when using a Manhattan distance of
1 million (shown as 20 on the x-axis), our hardware technique
identified 80% of the intervals that stayed in the same phase
as correctly staying in the same phase, but 20% of those inter-
vals were classified as having a different phase ID from the prior
phase.

A misclassification occurs when two sequential intervals of
execution are classified as being in the same phase or in different
phases using our hardware approach when the off-line clustering
analysis tool found the opposite for these two intervals.

If we are too aggressive and our hardware phase analysis in-
dicates that there are phase changes when there are actually no
noticeable changes in behavior, then we will create too many
phase IDs that have similar behavior. This can create more over-
head for performing phase-based optimization. On the other
hand, if we are too passive in distinguishing between different
phases, we will be missing opportunities to make phase specific
optimizations.

In order to strike a balance between having a high capture
rate and reducing the percent of false positives, we chose to use
a threshold of 1 million. When comparing this with the interval
size of 10 million instructions, this means that a difference in the
phase behavior will be detected if 10% of the executed instruc-
tions are in different proportions. In choosing 1 million, we have
on average a 20% misclassification rate. Note, that a misclassi-
fication does not necessarily mean that an incorrect optimization

6

will be performed. For example, if we have a “Same Phase” mis-
classification (the two intervals were really from the same phase,
but were classified into different phases), then a phase change is
observed using our hardware technique when there was not one
in the baseline classifier. If the two hardware detected phases
have the same optimization applied to them, then this misclassi-
fication can have no effect.

4.6 Per-Phase Performance Metric Homogeneity
Using the techniques presented above, we can perform phase
classification on programs at run-time with little to no impact
on the design of the processor core. One of the goals of phase
classification is to divide the program into a set of phases that are
fairly homogeneous. This means that an optimization adapted
and applied to a single segment of execution from one phase,
will apply equally well to the other parts of the phase. In order to
quantify the extent to which we have achieved this goal, we need
to test the homogeneity of a variety of architectural statistics on
a per-phase basis.

Figure 7 shows the results of performing this analysis on the
phases determined at run-time. Due to space constraints we only
show results for two of the more complicated programs gcc and
gzip. For both programs, a set of statistics for each phase is
shown. The first phase that is listed (separated from the rest) as
full, is the result of classifying the entire program into a single
phase. The results show that for gcc for example, the average
IPC of the entire program was 1.32, while the average number
of cache misses was 445,083 per ten million instructions. In
addition to just the average value, we also show the standard
deviation for that statistic. For example, while the average IPC
was 1.32 for gcc, it varied with a standard deviation of over
43% from interval to interval. If the phase-tracking hardware is
successful in classifying the phases, the standard deviations for
the various metrics should be low for a given phase ID.

Underneath the phase marked full are the five most fre-
quently executed phases from the program as identified by our
phase tracker. The phases are weighted by the percentage of the
program’s executed instructions they account for. For gcc, the
largest phase accounts for 18.5% of the instructions in the entire
program and has an average IPC of 0.61 and a standard devi-
ation of only 1.6% (of 0.61). The other top four phases have
standard deviations at or below this level, which means that our
technique was successful at dividing up the execution of gcc
into large phases with similar execution behavior with respect to
IPC. Note, that some metrics for certain phases have a high stan-
dard deviation, but this occurs for architecture features/metrics
that are unimportant for that phase. For example, the phase that
occurs for 7.2% of execution in gcc has only 75 L1 instruction
cache misses on average. This is an L1 miss rate of 0.00075%,
so an error of 215% for this metric will not likely have any effect
on the phase.

When we look at the energy consumption of gcc, it can be
observed that energy consumption swings radically (a standard
deviation of 90%) over the complete execution of the program.
This can be seen visually in Figure 1, which plots the energy
usage versus instructions executed. However, after dividing the
program into phases, we see that each phase has very little vari-

ation within itself. All have less than 2% standard deviation.
By analyzing gcc it can also be seen that the phase partitioning
does a very good job across all of the measured statistics even
though only onemetric is used. This indicates that the phases
that we have chosen are in some way representative of the actual
behavior of the program.

5 Phase Prediction
The prior section described our phase tracking architecture, and
how it can be used to classify phases. In this section we focus on
using phase information to predict the next phase. For a variety
of applications it is important to be able to predict future phase
changes so that the system can configure for the code it will soon
be executing rather than simply reacting to a change in behavior.

Figure 8 shows the percentage interval transitions that are
changes in phase, for our set of benchmarks. For all of these pro-
grams, phase changes come quite often, but it should be noted
that this statistic alone cannot gauge the complexity of the pro-
gram behavior. The program gcc switches less than 10% of
the time but switches between manydifferent phases. The other
extreme is art which switches almost half the time, but it is
only switching between a few distinct phases. In this case, large
repeating patterns can be observed. No two phases executing se-
quentially are that similar, but there is an order to the sequence.
By adding in a prediction scheme for these cases, we not only
take advantage of stable conditions as in past research, but actu-
ally take advantage of any repeating patterns in program behav-
ior.

5.1 Markov Predictor
The prediction of phase behavior is different from many other
systems in which hardware predictors are used. Because of this
new environment, a new type of predictor has the potential to
perform better than simply using predictors from other areas of
computer architecture (branch and address prediction, memory
disambiguation, etc.).

After observing the way that phases change, we determined
that two pieces of information are important. First, the set of
phases leading up to the prediction are very important, and sec-
ond, the durationof execution of those phases is important.

A classic prediction model that is easily implementable in
hardware is a Markov Model. Markov Models have been used
in computer architecture to predict both prefetch addresses [13]
and branches [8] in the past. The basic idea behind a Markov
Model is that the next state of the system is related to the last set
of states.

The intuition behind this design is that phase information
tends to be characterized by many sections of stable behavior
interspersed with abrupt phase changes. The key is to be able to
predict when these phase changes will occur, and to know ahead
of time what phase they will change to. The problem is that the
changes are often preceded by stable conditions, and if we only
consider the last couple of intervals we will not be able to tell
the difference between sections of stable behavior that precede
a phase change, and those sections that will continue to be sta-
ble. Instead, we need a way of compressing down stable phase

7

phase IPC (stddev) bpred (stddev) dl1 (stddev) il1 (stddev) energy (stddev) ul2 (stddev)
full 1.32 (43.4%) 27741 (135.5%) 445083 (110.7%) 50763 (203.2%) 6.44E+08 (90.0%) 227912 (139.7%)

18.5% 0.61 (1.6%) 34665 (22.0%) 753382 (5.4%) 125091 (23.2%) 1.03E+09 (1.8%) 395997 (5.3%)
18.1% 1.95 (0.3%) 13048 (3.9%) 28112 (15.1%) 43 (73.9%) 3.22E+08 (0.2%) 1006 (5.6%)
7.2% 0.64 (0.2%) 843 (15.1%) 885081 (0.1%) 75 (215.5%) 9.78E+08 (0.3%) 443655 (0.1%)
4.0% 1.49 (1.2%) 10145 (7.6%) 703554 (6.8%) 15591 (5.2%) 4.20E+08 (1.1%) 354084 (7.0%)
3.9% 1.76 (1.6%) 2015 (13.6%) 98947 (5.9%) 102 (45.1%) 3.57E+08 (1.6%) 15595 (12.6%)

phase IPC (stddev) bpred (stddev) dl1 (stddev) il1 (stddev) energy (stddev) ul2 (stddev)
full 1.33 (16.3%) 56045 (11.1%) 90446 (58.2%) 60 (138.1%) 4.82E+08 (13.5%) 22880 (112.0%)

17.1% 1.24 (3.4%) 53300 (10.8%) 96960 (10.1%) 12 (44.2%) 5.05E+08 (3.5%) 24218 (8.6%)
9.4% 1.23 (3.8%) 54973 (11.5%) 99523 (11.3%) 11 (45.5%) 5.09E+08 (3.8%) 24518 (9.3%)
8.8% 1.76 (0.6%) 56449 (4.8%) 37331 (5.6%) 241 (8.4%) 3.55E+08 (0.6%) 5617 (15.6%)
8.0% 1.22 (4.3%) 54791 (6.8%) 99671 (11.9%) 40 (25.7%) 5.14E+08 (4.4%) 28153 (11.0%)
7.4% 1.24 (3.1%) 55215 (11.1%) 96701 (9.6%) 12 (35.4%) 5.04E+08 (3.2%) 23701 (8.4%)

g
cc

g
zi

p

Figure 7: Examination of per-phase homogeneity compared to the program as a whole (denoted byfull). For the two programs
and each of the top 5 phases of each program, we show the average value of each metric and the standard deviation. The name
of the phase is the percent of execution that it accounts for in terms of instructions. These results show that after dividing up the
program into phases using our run-time scheme the behavior within each phase is quite consistent.

applu

apsi

art

bzip2

facerec

galgel

gcc

gzip

m
cf

vpr

0%

20%

40%

60%

80%

100%

P
h

as
e

Tr
an

si
ti

o
n

s

Figure 8: The percent of execution intervals that transition to
a different phase from the prior execution interval’s phase as
found by our phase tracking architecture with 32 footprint coun-
ters using a 1 million Manhattan threshold.

information into a piece of information that we can use as state.

5.2 Run Length Encoding Markov Predictor
To compress the stable state we use a Run Length Encoding
(RLE) Markov predictor. The basic idea behind the predictor
is that it uses a run-length encoded version of the history to in-
dex into a prediction table. The index into the prediction table is
a hash of the phase identifier and the number of times the phase
identifier has occurred in a row.

Figure 9 shows our RLE Markov Phase ID prediction archi-
tecture. The the lower order bits of the hash function provide an
index into the prediction table, and the higher order bits of the
hash function provide a tag. When there is a tag match, the phase
ID stored in the table provides a prediction as to the next phase
to occur in execution. When there is a tag miss, the prior phase
ID is assume to be the next phase ID to occur in the program’s
execution. We found that predicting the last phase ID to be 75%
accurate on average.

We only update the predictor when there is (1) a change in
the phase ID, or (2) when there is a tag match. We only insert an
entry when there is a phase ID change, since we want to predict

last
ID

Phase ID
=

Run
Count

1
0

+1

0

H
tag

Markov Table

ID

Figure 9: Phase Prediction Architecture for the Run Length En-
coded (RLE) Markov predictor. The basic idea behind the pre-
dictor is that two pieces of information are used to generate the
prediction, the phase id that was just seen, and the number of
times prior to now that it has been seen in a row. The index into
the prediction table is a hash of these two numbers.

when the phase is going to change. Execution intervals where
the same phase ID occurs several times in a row do not need
to be stored in the table, since they will be correctly predicted
as “last phase ID”, when the there is a table miss. This helps
table capacity constraints and avoids polluting the table with last
phase predictions. For the second update case, when there is
a tag match, we update the predictor because the observed run
length may have potentially changed.

5.3 Predictor Comparison
We compare our RLE Markov phase predictor with other pre-
diction schemes in Figure 10. This Figure has four bars for ev-
ery program, and each bar corresponds to the prediction accu-
racy of a prediction architecture. The first and simplest scheme,
Last Phase, simply predicts that the next phase is the same as
the current phase, in essence always predicting stable operation.
The prediction accuracy of this scheme is inversely proportional
to the rate at which phases change in a given benchmark. For
the program gzip for example, there are long periods of execu-
tion where the phase does not change, and therefore predicting
no-change does exceptionally well.

In order to insure that we were not simply providing an

8

applu

apsi

art

bzip2

facerec

galgel

gcc

gzip

m
cf

vpr

avg

0%

10%

20%

30%

40%

50%
P

h
as

e
M

is
p

re
d

ic
ti

o
n

s Last Phase
Std Markov-1
Std Markov-2
RLE Markov-2

Figure 10: Phase ID Prediction Accuracy. This figure shows
how well different prediction schemes work. The most naive
scheme,last, simply predicts that the phases never change.
The bars markedMarkov andRLE Markov show how well
we can predict the phase identifiers if we use a Markov predic-
tion scheme with a Markov table size of 256 entries.

expensive filter for noise in the phase IDs, we also compared
against a simple noise filter which works by predicting that the
next phase will be the most commonly occurring of the last three
phases seen. This is not shown, as it actually performed worse
on all of the programs.

Additionally we wanted to examine the effect of a simple
Markov model predictor for history lengths of 1 and 2. The
Markov model predictor does a better job of predicting phase
transitions than Last Phase, but it is limited by the fact that
long runs will always be predicted as infinitely stable due to the
history filling up. However, it is still very effective for facerec
and applu, but does not provide much benefit for either art or
galgel.

The final bar, RLE Markov, is our improved Markov pre-
dictor which compresses stable phases into a tuple of phase
id and duration. All of the Markov predictors simulated had
256 entries taking up less than 500 bytes of storage. Using
RLE Markov outperforms both the Last Phase and tradi-
tional Markov on all the benchmarks. It performs especially
well compared to other schemes on both applu and art. Over-
all, using a Run-Length Encoded Markov predictor can cut the
phase mispredictions down to 14% on average.

6 Applications
This section examines three optimization areas in which a phase-
aware architecture can provide an advantage. We begin by ex-
amining the relationship between phase behavior and value lo-
cality. We then demonstrate ways to reduce processor energy
consumption by adjusting the aggressiveness of the data cache
and the instruction front end.

6.1 Frequent Value Locality
Prior work on value predictors has shown that there is a great
deal of value locality in a variety of programs [14, 7]. Recently,
researchers have started to take advantage of frequently loaded

values for the purpose of optimizing caches. For example, Yang
and Gupta [22] proposed a data cache organization that com-
presses the most frequently used program values in order to save
energy. Another way of exploiting value locality is through value
specialization, which can be done either statically or dynami-
cally [6, 17, 16] to create specialized versions of procedures or
code-regions based upon the values frequently seen. These tech-
niques are built on the idea of finding the most frequent values
for loads over the whole program, and then specializing the pro-
gram to those frequent values.

We examine the potential of capturing frequent values on a
per-phase basis and compare this to the frequent values aggre-
gated over the entire program, as would be used in value code
specialization [6]. To perform this experiment we first gathered
the top 16 values that were loaded over the complete execution
of the program and stored them into a table. We then examined
the percentage of executed loads that found their loaded value in
this table. This result is shown as Static in Figure 11. While
significant portions of some programs are covered by just these
few top values (such as applu), over half of the programs have
less than 10% of their loaded values covered by these top values.

The question is: can we do better by exploiting hardware-
detected phase information? To answer this question we take the
top 16 values for each phase, as detected by the hardware phase
tracker. These top values will be shared across a single phase
even if it is split into two or more different sections of execution.
Each load in the program is then checked against the top val-
ues for its corresponding phase. The Phase Coverage bar
in Figure 11 shows the percent of all load values in the program
that were successfully matched to it’s per-phase top value set.

Without any notion of loads or values, our method of divid-
ing up phases is very successful at assisting in the search for fre-
quent values. By just tracking the top 16 values of each phase,
we are able to capture the values from almost 50% of the exe-
cuted loads on average. The Perfect bar shows percentage of
loads covered if one captures the top 16 load values for each and
every interval (i.e., 10 million instructions) separately. This is in
effect the best that we could hope to achieve for an interval size
of 10 million instructions, because the 16 entries in the value ta-
ble are custom crafted for each interval individually. As shown
in Figure 11, the phase-tracker compares favorably with the op-
timal coverage. Two thirds of the total possible benefit from
per-interval value locality can be captured by per-phase value
locality. It is important to point out this graph by itself is not
a good indicator of usefulness as near perfect coverage could
be achieved simply by making every interval a separate phase.
However, as shown in Figure 5 only a few phases (around 20)
are used to cover at least 80% of the program’s execution.

6.2 Dynamic Data Cache Size Adaptation
In a modern processor a significant amount of energy is con-
sumed by the data cache, but this energy may not be put to
good use if an application is not accessing large amounts of data
with high locality. To address this potential inefficiency, previ-
ous work has examined the potential of dynamically reconfigur-
ing the data caches with the intention of saving power. In [2],
Balasubramonian et. al. present two different schemes with

9

applu

apsi

art

bzip2

facerec

galgel

gcc

gzip

m
cf

vpr

avg

0%

20%

40%

60%

80%

100%
F

re
q

u
en

t V
al

u
e

C
ov

er
ag

e
Optimal Coverage
Phase Coverage
Static Coverage

Figure 11: The percent of the program’s load values that are
found in a table of the most frequently values loaded over the
whole program (Static Coverage), on a per-phase basis (Phase
Coverage), and on a per execution interval basis (Optimal Cov-
erage).

which re-configuration may be guided. In one scheme, hard-
ware performance counters are read by re-configuration software
every hundred thousand cycles. The software then makes a de-
cision based on the values of the counters. In another scheme,
re-configuration decisions are performed on procedure bound-
aries instead of at fixed intervals. To reduce the overhead of re-
configuration, software to trigger re-configuration is only placed
before procedures that account for more than a certain percent-
age of execution.

Another form of re-configurable cache that has been pro-
posed dynamically divides the data cache into multiple parti-
tions, each of which can be used for a different function such
as instruction reuse buffers, value predictors, etc [18]. These
techniques can be triggered at different points in program exe-
cution including procedure boundaries and fixed intervals. The
overhead of re-configuration can be quite large and making these
policy decisions only when the large scale program behavior
changes, as indicated by phase shifts in our hardware tracker,
can minimize overhead while guaranteeing adequate sensitivity
to attain maximum benefit.

We examined the use of phase tracking hardware to guide an
energy aware, re-sizable cache. The energy consumption of the
data cache can be reduced by dynamically shifting to a smaller,
less associative cache configuration for program phases that do
not benefit significantly from more aggressive cache configura-
tions. By targeting only those phases that are predicted to have
energy savings due to cache size reduction, our scheme is able
to reduce power with very little impact on the performance.

We examined an architecture with two possible cache con-
figurations, 32KB 4-way associative and 8KB direct mapped. In
Figure 12, the trade off between these two configurations is plot-
ted. For each program, we use the 32KB cache configuration as
the baseline result. The labeled circles in Figure 12 show the
total processor energy savings and performance degradation for
each program if only the smaller (8KB) cache size is used. For
example, a processor with a smaller cache configuration for the
program applu is both 5% slower and uses 5% less energy.

0% 2% 4% 6% 8%
Slowdown

0%

2%

4%

6%

8%

10%

E
n

er
g

y
S

av
in

g
s

0
0

1

2

2,

3

3

44
5

5

6
6

7
8

9

0 applu
1 apsi

2 art
3 bzip2

4 facerec
5 galgel

6 gcc
7 gzip

8 mcf
9 vpr

Small Cache

Phase Aware

Figure 12: Data Cache Re-configuration. The tradeoff between
energy savings and slowdown for two different cache policies.
All results are relative to a 32KB 4-way associative cache. The
circles in the graph (each labeled with a number for the program
the data point is from) show the energy and performance of an
8KB direct mapped cache. The triangles show the tradeoff of in-
telligently switching between an 8KB direct mapped and a 32KB
4-way data cache based on phase classification and prediction.

Two programs, vpr and apsi, actually use more energy with a
smaller cache due to large slow downs. These two points are off
the scale of this graph and are not shown.

While examining energy savings and slow down is interest-
ing, it is important to note that there is more than one way to
reduce both energy and performance. Voltage scaling in particu-
lar has proven to be a technology capable of reaping large energy
savings for a relative reduction in performance. For our results,
we assume that for voltage scaling a performance degradation of
5% will yield an approximate energy saving of 15%. We use this
rule of thumb as our guideline for determining when to reduce
the active size of the cache. In Figure 12, this simple model of
voltage scaling is plotted as a dashed line. When the cache size
is reduced, most programs fall far short of this baseline, meaning
that voltage scaling would provide a better performance-energy
tradeoff. There are a couple of exceptions, in particular mcf,
bzip, and gzip do well even without any sort of phase-based
re-configuration.

The shaded triangles in Figure 12 show what happens if
we use phase classification and prediction to guide our re-
configuration. When a new phase ID is seen, we sample the IPC
and energy used for a few intervals using the 32KB 4-way cache,
and a few intervals for the 8KB direct mapped cache. These sam-
ples could be kept in a small hardware profiling table associated
with the phase ID. After taking these samples, if we find that a
particular phase is able to achieve more than three times the en-
ergy savings relative to the slow down seen when using the 8KB
cache, we then predict for this phase ID that the smaller cache
size should be used. This heuristic means that the small cache
size is used only if re-configuration would beat voltage scaling
for that phase. After a decision has been made as to the con-

10

0% 5% 10% 15% 20% 25%
Slowdown

0%

10%

20%

30%

40%

50%

E
n

er
g

y
S

av
in

g
s 0

0

1

1

2

3

3

4,

4

5

5

6

6

7

7,

8

99

Low Issue

Phase Aware

0 applu
1 apsi

2 art
3 bzip2

4 facerec
5 galgel

6 gcc
7 gzip

8 mcf
9 vpr

Figure 13: Processor Width Adaptation. The tradeoff between
energy savings and slowdown for two different front end poli-
cies. All results are relative to an aggressive 8–issue machine.
The circles in the graph (each labeled with a number for the
program) show the energy and performance of a less aggressive
2–issue processor. The triangles show using the phase classifier
and predictor for switching between 2–issue and 8–issue based
on phase changes.

figuration to use for a phase ID, the corresponding cache size is
stored in the phase profiling table/database associated with that
phase ID. The phase classifier and predictor are then used to pre-
dict when a phase change occurs. When a phase change predic-
tion occurs, the predicted phase ID looks up the cache size in the
profiling table, and re-configures the cache (if it is not already
that size) at the predicted phase change.

For all programs, our re-configuration is able to beat
or tie voltage scaling. For example, using phase-based re-
configuration results in a slowdown of 0.5% for applu, while
the total energy savings is 4.5%. Even the program apsi, which
had increasedenergy consumption in the small cache configura-
tion, is able to get almost 5% energy savings with only a 1%
slowdown.

6.3 Dynamic Processor Width Adaptation
One way to reduce the energy consumption in a processor is to
reduce the number of instructions entering the pipeline every cy-
cle [12, 1]. We call this adjusting the width of the processor.
Reducing the width of the processor reduces the demand on the
fetch, decode, functional units, and issue logic. Certain phases
can have a high degree of instruction level parallelism, whereas
other phases have a very low degree. Take for example the top
two phases for gcc shown in Figure 7. The intervals classified
to be in the first phase consisting of 18.5% of execution have an
IPC of 0.61 with a high data cache miss rate. In comparison,
the intervals in the second most frequently encountered phase
(accounting for 18.1% of execution) have an IPC of 1.95 and
very low data cache miss rates. We can potentially save energy
without hurting performance by throttling back the width of the
processor for phases that have low IPC, while still using aggres-
sive widths for phases with high IPC.

In the current literature, decisions to reduce or increase the
fetch/decode/issue bandwidth of the processor are made either
at fixed intervals (relatively short intervals such as 1,000 cy-
cles) [12] or, as in the case of branch confidence based schemes,
when a branch instruction is fetched [1]. It can very difficult to
design real systems that save energy by reconfiguring at these
speeds, but a hardware phase-tracker can help make these deci-
sions at a coarser granularity while still maintaining performance
and energy benefits.

We examined an architecture that could be configured with 2
different widths - one where up to 2 instructions are decoded and
up to 2 issued per cycle, and one where up to 8 instructions are
decoded and up to 8 issued per cycle. When a new phase ID is
seen by the phase tracker, we sample the IPC for three intervals
with a width of 2 instructions, and three intervals with a width
of 8 instructions. If there is little difference in the IPC between
these two widths, then we assign a width of 2 instructions to this
Phase ID in our profiling table, otherwise we assign a width of
8 instructions. During execution, we use the phase ID predictor
to effectively predict the width for the next interval of execution
and adjust the processor’s width accordingly. Our results show
that the chosen configuration for a given phase can be trained
(1) with only a few samples, and (2) only once to accurately
represent the behavior of a given phase ID. This requires very
little training time due to the fact that 20 or fewer phase IDs
are needed to capture 80% or more of a program’s execution as
shown in Figure 5.

Figure 13 is a graph of the results seen when applying phase-
directed width re-configuration. The white circles in the graph
show the behavior of running the programs on only a 2–wide
machine relative to the more aggressive 8–wide machine. The
dotted line again shows what could potentially be achieved if
voltage scaling was used. While mcf and art save a lot of en-
ergy with little performance degradation on a 2–wide machine,
the other programs do not fair as well. The program apsi, for
example, has a slowdown of over 22% with an energy savings of
around 30%. This does not compare favorably to voltage scal-
ing (as discussed in Section 6.2). On the other hand if we use
phase-directed width throttling on apsi, a total processor en-
ergy savings of 18% can be achieved with only 2.2% slowdown.

For all of the programs we examined, with one exception,
the slowdown due to phase aware width throttling was less than
4%, while the average energy savings was 19.6%. This result
demonstrates that there is significant benefit to be had in the re-
configuration of processor front end resources even at very large
granularities. In the worst case, this will mean a re-configuration
every 10 million instructions, and on average every 70 million
instructions. This should be designable even under conservative
assumptions.

7 Summary
In this paper we present an efficient run-time phase tracking ar-
chitecture that is based on detecting changes in the code being
executed. This is accomplished by dividing up all instructions
seen into a set of buckets based on branch PCs. This way we ap-
proximate the effect of taking a random projection of the basic

11

block vector, which was shown in [21] to be an effective method
of identifying phases in programs.

Using our phase classification architecture with less than 500
bytes of on-chip memory, we show that for most programs, a sig-
nificant amount of the program (over 80%) is covered by 20 or
less distinct phases. Furthermore, we show that these phases,
while being distinct from one another, have fairly uniform be-
havior within a phase, meaning that most optimizations applied
to one phase will work well on all intervals in that phase. In the
program gcc, the IPC attained by the processor on average over
the full run of execution is 1.32, but has a standard deviation
of more than 43%. By dividing it up into different phases, we
achieve much more stable behavior, with IPCs ranging between
0.61 and 1.95, but now with standard deviations of less than 2%.

In addition to this, we present a novel phase prediction archi-
tecture using a Run Length Encoding Markov predictor that can
predict not only when a phase change is about to occur, but to
which phase ID it will transition to. In using this design, which
also uses less than 500 bytes of storage, we achieve a phase
prediction miss rate of 10% for applu and 4% for apsi. In
comparison, always predicting that the phase will stay the same
results in a miss rate of 40% and 12% respectively.

We also examined using our phase tracking and prediction
architecture to enable new phase-directed optimizations. Tra-
ditional architecture and software optimizations are targeted at
the average or aggregate behavior of a program. In comparison,
phase-directed optimizations aim at optimizing a program’s per-
formance tailored to the different phases in a program. In this pa-
per, we examined using phase tracking and prediction to increase
frequent value profiling coverage, and to provide energy savings
through data cache and processor width re-configuration.

We believe our phase tracking and prediction design will
open the door for a new class of run-time optimization that tar-
gets large scale program behavior. Even though we present a
hardware implementation for phase tracking, a similar design
can be implemented in software to perform phase classification
for run-time optimizers, just-in-time compilation systems, and
operating systems. Hardware and software optimizations that
can potentially benefit the most from phase classification and
prediction are (1) those that need expensive profiling/training
before applying an optimization, (2) those where the time or
cost it takes to perform the optimization is either slow or ex-
pensive, and (3) those that can benefit from specialization where
they have the same code/data being used differently in different
phases of execution. By using our dynamic phase tracking and
prediction design, phase-behavior can be characterized and pre-
dicted at the largest of scales, providing a unified mechanism for
phase-directed optimization.

Acknowledgments

We would like to thank Jeremy Lau and the anonymous review-
ers for providing useful comments on this paper. This work
was funded in part by NSF CAREER grant No. CCR-9733278,
Semiconductor Research Corporation grant No. SRC-2001-HJ-
897, and an equipment grant from Intel.

References
[1] J.L. Aragon, J. Gonzalez, and A. Gonzalez. Power-aware control specula-

tion through selective throttling. In Proceedings of the Ninth International
Symposium on High-Performance Computer Architecture, February 2003.

[2] R. Balasubramonian, D. H. Albonesi,
A. Buyuktosunoglu, and S. Dwarkadas. Memory hierarchy reconfiguration
for energy and performance in general-purpose processor architectures. In
33rd International Symposium on Microarchitecture, pages 245–257, 2000.

[3] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. W. Hwu. Vacuum
packing: Extracting hardware-detected program phases for post-link opti-
mization. In 35th International Symposium on Microarchitecture, Decem-
ber 2002.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In 27th Annual In-
ternational Symposium on Computer Architecture, pages 83–94, June 2000.

[5] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, U. of Wisconsin, Madison, June 1997.

[6] B. Calder, P. Feller, and A. Eustace. Value profiling and optimization. Jour-
nal of Instruction Level Parallelism, March 1999.

[7] B. Calder, G. Reinman, and D.M. Tullsen. Selective value prediction. In
26th Annual International Symposium on Computer Architecture, pages 64–
74, June 1999.

[8] I.-C. Chen, J. T. Coffey, and T. N. Mudge. Analysis of branch prediction
via data compression. In Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 128–
137, October 1996.

[9] A. Dhodapkar and J. E. Smith. Dynamic microarchitecture adaptation via
co-designed virtual machines. In International Solid State Circuits Confer-
ence, February 2002.

[10] A. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via
dynamic working set analysis. In 29th Annual International Symposium on
Computer Architecture, May 2002.

[11] M. Huang, J. Renau, and J. Torrellas. Profile-based energy reduction in
high-performance processors. In 4th Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), December 2001.

[12] A. Iyer and D. Marculescu. Power aware microarchitecture resource scaling.
In Proceedings of the DATE 2001 on Design, automation and test in Europe,
pages 190–196, 2001.

[13] D. Joseph and D. Grunwald. Prefetching using markov predictors. In 24th
Annual International Symposium on Computer Architecture, June 1997.

[14] M.H. Lipasti, C.B. Wilkerson, and J.P. Shen. Value locality and load value
prediction. In Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 138–147, Oc-
tober 1996.

[15] M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George, J. Gyllenhaal, and
Wen mei W. Hwu. An architectural framework for run-time optimization.
IEEE Transactions on Computers, 50(6):567–589, June 2001.

[16] M. Mock, C. Chambers, and S.J. Eggers. Calpa: a tool for automating
selective dynamic compilation. In 33rd International Symposium on Mi-
croarchitecture, pages 291–302, December 2000.

[17] R. Muth, S.A. Watterson, and S.K. Debray. Code specialization based on
value profiles. In Static Analysis Symposium, pages 340–359, 2000.

[18] P. Ranganathan, S. V. Adve, and N.P. Jouppi. Reconfigurable caches and
their application to media processing. In 27th Annual International Sympo-
sium on Computer Architecture, pages 214–224, June 2000.

[19] T. Sherwood and B. Calder. Time varying behavior of programs. Technical
Report UCSD-CS99-630, UC San Diego, August 1999.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
September 2001.

[21] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, October 2002.

[22] J. Yang and R. Gupta. Frequent value locality and its applications. Spe-
cial Issue on Memory Systems, ACM Transactions on Embedded Computing
Systems, 1(1):79–105, November 2002.

12

