
Conflict-Avoidance in Multicore Caching for

Data-Similar Executions
Susmit Biswas, Diana Franklin, Timothy Sherwood and Frederic T. Chong

Department of Computer Science

University of California, Santa Barbara,

Santa Barbara, California, USA 93106

{susmit, franklin, sherwood, chong}@cs.ucsb.edu

Abstract—

Power density constraints have affected the scaling of clock
speed in processors, but following Moore’s law we have entered
the multicore domain and we are about to step in the era
of manycores. Harnessing the full potential of large number
of cores is a challenging problem as shared on-chip resources
such as memory subsystem, interconnect networks become the
bottlenecks. One easy and popular way of utilizing parallelism in
large scale systems is by running multiple instances of the same
application as we observe in many domains such as verification,
security etc. and we term it as “multiexecution.” This model of
computation will probably become more popular as the number
of cores in a processor grows.

We identify that leveraging the similarity in data across the
instances of an application by dynamically merging identical data
in a cache can reduce the off-chip traffic and thereby, lead to
faster execution. However, dissimilarities in content increase the
competition for cache lines as well. In this paper we explore
the design space of hybrid mergeable cache architecture that
places dissimilar data blocks in a conventional cache and thereby,
enables us to exploit data similarity more efficiently by reducing
the conflicts. We experiment with benchmarks from various
multi-execution domains and show that our hybrid mergeable
cache design leads to an average of 9.5% additional speedup
over Mergeable cache while running 8 copies of an application,
with an overhead of less than 1.34% in area.

I. INTRODUCTION

As the difficulties of uniprocessor performance scaling have

proven economically daunting, designers have turned to band-

width (parallelism), rather than latency, to scale performance

in future microprocessors. This approach has led to two

significant challenges. First, as a single reference stream scales

to tens, hundreds, or even thousands of reference streams, the

memory system will struggle to service all of the requests in a

timely manner. Second, careful programming will be required

to parallelize applications to hundreds of cores. Programming

both correct and efficient parallel code is challenging, and too

few programmers have the expertise to accomplish both.

One easy though easily overlooked way of using the cores

is by running the same application with different input sets

or configurations to solve a larger problem. We find that

many applications from different domains such as simula-

tions, security etc. are already used in this fashion, but the

applications are run either serially or in parallel to exploit

the computation power of clusters. We term this model of

computation where same program is run multiple times, but

with different input data or parameters, as “multi-execution.”

We believe that multi-execution could become a useful model

of execution as multicores scale, because it is already used in

many domains, and because no software changes are necessary

to take advantage of a multicore system.

Note that an alternative to multi-execution is to write an

explicitly parallel program that takes many instances of an ap-

plication and explicitly shares redundant data. This approach,

however, is labor intensive, difficult to get correct, often

requires source access to libraries and copyrighted/proprietary

codes, and can miss substantial data similarity that can only

be discovered with an efficient dynamic mechanism.

We explore the characteristics of several example appli-

cations from simulation, optimization, database, and learning

domains. We find that the similarity of multi-execution work-

ing sets can be quite high, but careful design is needed to

profitably exploit this similarity in a memory system. Our

previous work used a Mergeable cache, which dynamically

merges cache lines containing identical data from different

instances of the same program running under multi-execution

[3]. While highly successful when data is successfully merged,

we observed that our approach can lead to substantial cache

conflicts when the data remains different and is mapped to

the same line. In other words, there is a fundamental tradeoff

between mapping data to the same line to find similarity and

coping with data that is, in fact, not similar.

In this paper we explore the domain of hybrid Mergeable

caches where a pure Mergeable cache is augmented with a

conventional victim cache to store dissimilar data blocks. A

hybrid Mergeable cache reproduces the benefit lost due to

conflicts in allocating cache lines without posing significant

benefit. In this paper, we present cycle-accurate simulation

results with 3 applications from different domains which suffer

from increase in conflict misses.

The remainder of the paper is organized as follows. We

motivate our approach in section II, and explain the chal-

lenges and techniques of implementing hybrid Mergeable

cache architecture in section III. We illustrate the experimental

methodology in section IV and show results in section V. In

section VI, we discuss previous approaches to reduce memory

accesses, and finally conclude in section VII.

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9 2009

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/I-SPAN.2009.58

80

(a) Experimental setup for determining
similarity

500 1000 1500

References (Million)

20

40

60

80

100

%
 S

im
il

a
ri

ty
 o

f
c

a
c

h
e

s

255.vortex

188.ammp

175.vpr

300.twolf

(b) Data cache similarity

0 1 2 3 4

Cache size (Megabyte)

0

10

20

30

40

50

#
 L

2
 M

is
s

 /
 1

K
 m

e
m

o
ry

 r
e

fs

(c) Cache performance vs. size

Fig. 1. In order to determine the similarity between two executions we compared cache contents of two cache simulation for two different input sets as
shown in (a), and we observed that there exists high similarity across two execution of the same application. Figure 1(b) and 1(c) are borrowed from [3].
In (b) we show the similarity of cache content for four applications where cache snapshots are taken at an interval of 10M instructions for all runs while
simulating 1 MB direct-mapped cache. Similarity is computed using line-by-line comparison of the caches and taking the ratio of identical lines to total lines.
By merging identical cache blocks from different processes we can increase the effective cache capacity per core and thereby, improve cache performance.
As cache performance has a non-linear relationship with cache size, merging duplicate cache lines to reduce cache requirements has the potential to improve
cache performance substantially, even with small increases in effective cache capacity.

II. MOTIVATION

Today processor manufacturing industry has stepped into the

multicore and manycore domain as scaling processor clock

speed stumbled against power density wall. One easy way

to use these cores effectively without writing efficient and

explicitly parallel program, as stated in our prior work [3]

is by running multiple instances of the same application with

different input sets. This model of computation is already in

use in several domains such as simulations, security etc. In

a set of experiments, similar to one showed in Figure 1(a),

they observed that there exists high data similarity across the

executions of the same application (Figure 1(b)). We proposed

a Mergeable cache design that identifies identical data blocks

dynamically and keeps a single copy of them, increasing the

cache space and thereby, improving application performance

as shown in Figure 1(c).

The Mergeable cache[3] shows significant potential in iden-

tifying and merging identical data in order to reduce off-chip

traffic. By reducing the L2 miss rate and merging writebacks

to DRAM, the Mergeable cache experiences an average of

2.5x speedup with minor power and area overhead. Despite

these benefits, the Mergeable cache has one disadvantage. The

addressing scheme, which is the key to tractable merging,

can lead to an increase of conflict misses in sets with little

data similarity. Because all cache lines with the same virtual

address belonging to different processes are mapped to the

same set in the cache, in regions of low data similarity, this

can lead to an increase in conflict misses for this set as each

cache block from different processes will be placed in different

cache line, thereby, increasing capacity pressure on the cache.

As the processes are run using the same application, it is

highly likely that all processes will be using the same virtual

addresses at the same time, and as the number of processes

grows, the pressure on the associativity increases, magnifying

this problem. This effect is most obvious in vortex, where

there is a slight slowdown when the Mergeable cache is used.

This phenomenon is observed in more than just vortex. An

application may have low data similarity either temporally

or spatially. Temporally-low data similarity would be phases

where a low percentage of the current working set is identical,

and spatially-low data similarity would mean that while some

sets in the cache have high similarity, another nontrivial

number of sets in the cache do not have high similarity,

leading to conflict misses in specific sets in the cache. So even

applications that benefit overall from the Mergeable cache may

have portions of the data that would incur fewer misses in a

conventional cache.

We illustrate this phenomenon in Figure 2(c). In this graph,

the two addressing schemes are compared, without the benefit

of merging. The graph shows that for vortex, the addressing

scheme used in the Mergeable cache, in which the PPID is

not used in the index, would lead to more than 3× as many

L2 cache misses if it were not for some merging. Even more

surprising is that in twolf, the addressing scheme would lead to

11× more L2 cache misses, yet this is not a poorly performing

application using the Mergeable cache. It is only the high

degree of merging in twolf that leads to speedups. Thus,

several applications could benefit even more from a hybrid

scheme that dynamically divides the cache into two segments

- one that performs merging and another that uses conventional

addressing. The conventional segment of the cache is used as a

victim cache to Mergeable segment to reduce conflict misses.

III. DESIGN

We observed in Figure 2(c) that dissimilarity in data leads

to an increase in conflicts as page coloring enforces mapping

blocks with the virtual address to the same cache set. This

conflict can be avoided if the same virtual address from all

processors are not mapped to same cache set. However, this

addressing scheme is required to keep merging candidates in

the same cache set as the goal of reducing conflict misses and

grouping merging candidates are conflicting.

We resolve this conflict by using a hybrid Mergeable cache

where a Mergeable cache is assisted by a small conven-

tional victim cache. Data lines which can be merged reside

in a Mergeable segment, and lines with dissimilar content

81

(a) Ideal Block Merging (b) Page Coloring for mapping same virtual
address to same cache set

mcf ammp vortex twolf
0.0

0.5

1.0

1.5

N
o

rm
a

li
z
e

d
 L

2
 M

is
s

e
s

Private cache

 Shared Cache Non-Skewed Indexing

 Shared Cache Skewed Indexing

3 11

(c) Dissimilarity in data increases the conflict misses due
to the mapping enforced by page coloring

Fig. 2. In order to achieve ideal block merging as shown in (a), a page coloring scheme is used that enforces mapping of same virtual address to the
same cache set in a Mergeable cache, but we show in (c) that this page coloring scheme leads to increase in conflict misses. We show the comparison of
normalized L2 misses for two cache addressing schemes - Mergeable and conventional. The conventional cache divides the address between tag, index, and
offsets. A pure Mergeable cache[3] uses bits before and after the PPID for the index, and the PPID and vTag for the tag. No merging is performed to show
the effect of only the indexing scheme.

Fig. 3. VA-Mergeable cache architecture. Modifications to traditional cache
are indicated as shaded blocks. The cache is partitioned in Mergeable and
non-Mergeable(traditional) cache segments. When a line is evicted from L1
and moved to L2, all lines of the cache set which the evicted line gets mapped
to, are copied in CAM and compared for identical content.

are moved to a non-Mergeable cache. Using conventional

addressing in the non-Mergeable segment enables us to avoid

the conflicts induced by page coloring. When a cache line

is evicted from an upper-level cache, it is written to the

Mergeable segment at first. If a cache line is not able to merge

with any pre-existing cache line having the same address and

data, it replaces an old line, which is moved to the non-

Mergeable segment. We term the hybrid Mergeable cache as

VA-Mergeable (Victim Assisted) cache. We experimented with

different sizes of the victim cache and found 16-KB, 16 way

cache to be an appropriate size as it provides a good balance

between performance and overhead. The LRU replacement

policy in the Mergeable cache ensures that lines shared by

more processes are not replaced by lines having low sharing

unless they have not been accessed recently.

A VA-Mergeable cache provides the advantage of utilizing

the full cache when data similarity is low without increasing

the cache miss rate significantly, yet storage efficiency is

increased by merging identical lines in the Mergeable cache.

This benefit comes at a price - the Mergeable cache was able

to evict dirty merged lines, allowing a single write-back with

an enhanced address to write to all blocks. With the hybrid

approach, this benefit is lost, and we will see that this can

reduce the benefits of the victim cache approach.
a) Architectural details:: In order to support dynamic

data merging, minor modifications to the cache architecture are

necessary as shown in Figure 3. Though our implementation

performs merging in the L2 cache, this technique is applicable

in all lower level shared caches. The Mergeable segment uses

the similar technique as used in our prior work[3].

Rows Area(mm2) Latency(ns) Power(nW)

2 0.0132 0.507 0.0048
4 0.0140 0.513 0.0055
8 0.0156 0.525 0.0071
16 0.0190 0.549 0.0102

TABLE I
OVERHEAD OF 256-BIT WIDE CAM OBTAINED USING CACTI 4.2 FOR

45nm TECHNOLOGY NODE.

The Mergeable cache first splits the address into two parts

- the vTag and the PPID which is then expanded to process

flags. If the tag in a conventional cache requires tagsize bits

per line, the new hardware needs (tagsize−log2(P)+P) bits

per line, where P is the number of processors. Along with this

increase of (P − log2(P)) bits per line, the Mergeable cache

also needs a CAM for comparing the data of a line entering

the cache to the data contained in its set in the cache. The

82

length of each line in the CAM is equal to the cache’s line

size, and it contains the same number of lines as the cache

associativity. The area and power numbers for the CAM are

listed in Table I.

In this paper we model a set-associative cache with 8-

way associativity partitioned into 8 banks similar to the AMD

Opteron’s cache. Using Cacti[10] we find that the area of an 8-

way CAM is 0.0156mm2. Cacti reports cache configurations

where three knobs, area, delay and power are tuned to find

an optimal configuration that satisfies an objective function.

Inspecting different cache configurations we compute the

power, delay and area of a Mergeable and VA-Mergeable

cache and then compare them to a conventional cache in Table

II. We chose the appropriate configurations by finding the

design point closest to a conventional cache. In our study we

pessimistically assume that accessing victim cache requires

two cycles. As the victim cache is accessed only upon a miss

in the Mergeable segment, we calculate the power usage of the

victim cache (assuming 25% miss rate of Mergeable cache

which is found to be the worst in vortex) as 1/4th of the

power calculated using Cacti. Overall, VA-Mergeable cache

poses an overhead of 1.43% in area and additional 1.22%
power overhead.

IV. METHODOLOGY

In this section, we describe our experimental methodology

and simulation framework which is built on the PolyScalar[1]

multiprocessor simulator. PolyScalar is a multi-processor ver-

sion of the Simplescalar[7] simulation tool and uses PISA as

the instruction set architecture. The processor configuration is

described in Table III.

We simulate multiple cache architectures in this work. In

all these caches we assume an exclusive policy in order to

maximize the number of unique lines that can be stored on-

chip. In other words, no line can be contained in more than

one cache at any time. We perform our experiments with the

following cache architectures.

1) Shared Cache: processors share a large L2 cache.

2) Shared Cache with victim cache: the L2 cache is aug-

mented with a 16 KB, 16 way victim cache. We evaluate

this configuration to illustrate that the speedup in a

hybrid cache is not a result of the increase in cache

capacity for to a victim cache. We restrict the cache

size to 16 KB as victim caches have diminishing returns

while overheads increase with the size of it.

3) Mergeable Cache: processors share a large, Mergeable

L2 cache in which cache lines are merged if and only

if their contents match.

4) VA-Mergeable Cache: processors share a large L2 cache

that is composed of two segments - Mergeable cache and

non-Mergeable victim cache which resembles the victim

cache in the second configuration.

We simulate both instruction and data memory accesses

in L2 cache but keep a single copy of instruction cache

lines because the text section is shared by all the processes

running the same application. So, instruction memory access

has the same effect on a conventional L2 and mergeable L2

cache. In our simulations, one core is allocated to a single

process. However, process migration can be supported because

our hardware uses the physical address based PPID, not the

processor ID. In our cache architecture, process migration does

not pose any issue as memory pages and L2 cache lines do

not need to be moved in case of migration.

We selected benchmarks from several domains such as

simulation, visualization, machine-learning etc. where multi-

execution is used in practice. For all the applications practical

scenarios are used to construct input and parameter variations.

In this work we selected applications that suffer from the

increase in conflict misses due to constraints in page-coloring.

We selected three benchmarks from the SPEC2000-Cpu

suite and use SPEC2000 train inputs for 300.twolf, 175.vpr,

255.vortex. Note that Simpoint based simulations are not

feasible in our experiments as warming up the large L2 cache

has large impact on the accuracy of the simulation. Instead,

we run simulations until completion to ensure that results are

not skewed due to the initialization phase. Characteristics of

these applications are summarized in Table IV.

V. RESULTS

Figure 4 shows the performance of a conventional and

Mergeable cache with and without a victim cache. These

results show the tradeoffs between three separate influences.

The Mergeable cache provides two benefits that decrease the

bandwidth to DRAM - merging identical data to reduce L2

misses and writing back merged data to reduce the number of

lines written back. The disadvantage, though, is the increase

in conflicts due to the addressing scheme in sets where little

merging occurs. In the pure Mergeable case, we can see

this phenomenon. The victim cache reduces the number of

L2 misses due to conflicts, but it splits the merged data,

increasing the number of write-backs occurring. We can see

that with twolf and vpr, as the number of processes increases,

the opportunities for merging increase. These opportunities in

some sets are partially offset by the conflicts in other sets.

The victim cache provides substantial improvement, 15% with

8 processes. Vortex, on the other hand, suffers more from

the increase in write-backs than the decrease in L2 conflict

misses, leading to a slowdown of 1.75%. In the 8-process

case, adding a victim cache to the conventional cache increases

performance by 8.58%, and a pure Mergeable cache improves

performance by 29.79%. The combination of a Mergeable

cache and victim cache provides an additional 9.5% speedup

beyond the Mergeable cache alone.

VI. RELATED WORK

Several prior proposals use compiler and architectural sup-

port to reduce main memory access and in turn speed up

execution. In our previous work [3] we proposed Mergeable

cache architecture which is unable to address the issue of

increase in conflicts due to page coloring based mapping

constraints. Our proposal for VA-Mergeable cache addresses

the shortcomings and recovers the lost benefit.

In order to reduce memory stalls, Mahlke et al.[6] pro-

posed a profile-guided data partitioning technique. Thread

83

Type Banks Area(mm2) Latency(ns) Dyn Rd Pow(mw) Dyn Wr Pow(mw)

Conventional 8 33.65 2.62 1173.69 1343.28

Mergeable 8 33.91 2.63 1168.99 1342.81

VA-Mergeable 8+2 33.91+0.19 2.63, 1168.99+ 69.8829/4 1342.81 + 74.0376/4
= 34.10 0.65 (victim) = 1186.46 = 1361.32

TABLE II
ASSUMING 8 PROCESSORS SHARING A 4MB-8WAY SET ASSOCIATIVE CACHE, WE CALCULATED OVERHEAD OF TAG ARRAYS AND BIT VECTORS IN A

MERGEABLE, VA-MERGEABLE AND CONVENTIONAL CACHE USING CACTI 5.3. AS USING PPID AS BITVECTORS INSTEAD OF BITS IN TAG ARRAY

REDUCES THE CAM, THE OVERHEAD IN AREA AND POWER ARE 1.34% AND 1.21% (AVERAGE OF READ AND WRITE POWER) RESPECTIVELY. THESE

NUMBERS DO NOT INCLUDE THE OVERHEAD FOR THE CAM USED FOR MERGING CACHE BLOCKS.

Processors 2 - 8 Branch Penalty 3 Cycles

Issue/Commit Width 8/8 DRAM Latency 200 Cycles

I-Fetch Q 8 Mem Ports 2

LSQ Size 64 System Bus Transfer Rate 8GB/s

RUU Size 128 L2 Cache 4MB, 8 way, 32 byte lines
16 KB, 16 way victim cache

ALU/FPU/Mult/Div 4/4/1/1 L2 Latency 6 Cycles

Branch 2-level, 1024 Entry L1 I-Cache 32KB + 32 KB, Direct Mapped
Predictor History Length 10 L1 D-Cache 32 byte lines

BTB size 2048 L1 I,D-Cache Ports 4

RAS entries 8 L1 Latency 1 Cycle

TABLE III
CONFIGURATION OF THE SIMULATED PROCESSORS. WE DO NOT INCREASE THE SIZE OF THE L2 CACHE WITH THE NUMBER OF PROCESSORS SHARING

IT. THE PARAMETERS USED IN SIMULATIONS ARE CHOSEN JUDICIOUSLY FROM STATE OF THE ART PROCESSORS.

Benchmark Description Input Modification Run Footprint

Length rsz vsz

175.vpr FPGA Place and Route routing-channel-width 3.3 B 2.67 1.35

255.vortex Database random insert, lookup 5.85 B 15.71 14.38

300.twolf Place and Route intercell gaps 4.13 B 11.60 10.35

TABLE IV
BENCHMARKS AND INPUT DESCRIPTIONS. THE OBSERVED MEMORY FOOTPRINT SIZES (IN UNITS OF MEGABYTES) REPORTED ARE AVERAGE OF 20

RUNS WHERE RESIDENT MEMORY SIZE AND VIRTUAL MEMORY SIZE ARE ABBREVIATED AS rsz AND vsz RESPECTIVELY.

Fig. 4. Speedup for all benchmarks simulated with 4-MB, 8-way L2-cache with 32B blocks running 8 instances of each application. Mergeable cache show
speedup in all benchmarks, but suffers from alignment of dissimilar data in the same cache set resulting in increased conflict misses. VA-Mergeable cache
addresses this problem and improves performance by 9.5% on average.

level speculation[4][12] using compiler and architectural sup-

port speeds up application execution by spawning specula-

tive threads. Though these techniques speed up execution

significantly, with increasing number of cores in a chip, the

demand for memory bandwidth is also increased. Several

cache optimization schemes have been proposed for reducing

memory access. Chang et al. proposed cooperative caching

technique[5] in a multiprocessor to reduce off-chip access

84

using a cooperative private cache either by storing a single

copy of clean blocks or providing a victim-cache-like, spill-

over memory for storing evicted cache lines. An orthogonal

study, which has similar motivation as our work, is the data

cache compression technique as proposed by Alameldeen et al.

[2]. Compressing the L2 data results in reduction of the cache

space required to store data, and also the off-chip accesses and

bandwidth. However, compressing and decompressing cache

lines add extra overhead in cached data accesses leading to

larger access latency.

Kleanthous et al. proposed CATCH[8] to store unique

contents in instruction cache by means of hashing, but their

proposed system does not support modifications in cached

data. In an execution DBI tool such as Valgrind[9], this

approach might lead to inconsistencies. For data caches where

block contents change frequently, this technique, being oblivi-

ous of the sharing by other processes, leads to inconsistent

behavior. Another technique which motivates our approach

is the copy-on-write[13] mechanism used in virtual machines

and operating systems. In the copy-on-write technique, data

initially shared by multiple processes become different once

one of them writes to it and separated memory regions never

merge again. In the VMWare ESX server, content based page

searching is performed by using comparison of hashes created

from page content. However, data sharing at a page granu-

larity results in low benefit, while increasing the overhead

by performing linear search for identical pages. Moreover,

VM-based schemes are employed primarily to reduce main

memory footprint only by exploiting idle cycles in application

execution. In compacting virtual machine memory it is an

impactful technique, but reducing memory footprint while

running applications not only increases the execution time,

but consumes memory bandwidth as well. In our scheme,

cache lines are merged at memory write operations and sharing

is done at a finer granularity while keeping search latency

low. Multiversion Memory[11] stores multiple versions of the

data to increase fault tolerance. We take a different approach

in this work and propose merging similar data to reduce

main memory accesses. Cache line merging can be performed

independently from other techniques, and hence can be used

as another optimization along with existing techniques.

VII. CONCLUSION

In our prior work [3], we introduced the notion of “multi-

execution” which is used in practice in many domains. Multi-

execution refers to the scenario where an application is run

with different parameters or inputs to sweep a design space or

solve a larger problem. We proposed Mergeable cache that dy-

namically merges identical cache blocks to increase effective

cache capacity per core and improves performance of appli-

cations significantly. However, in our study we observed that

page coloring based mapping constraint forces two dissimilar

blocks to be mapped to same cache set, and in turn increases

cache conflicts. In this paper we explore the design space of a

hybrid Mergeable cache and show that a conventional victim

cache (non-Mergeable) assisted Mergeable (VA-Mergeable)

cache is able to recover the lost benefits. In applications or
application-phases with low similarity, VA-Mergeable cache

has the capability to improve performance over Mergeable

cache by 9.5% in average and up to 15%.

In our experiments we observed that using a conventional

cache as the victim cache leads to multiple writebacks to

DRAM of the identical data, which a pure Mergeable cache

can exploit by merging writes. The effect is most prominent

in vortex where a pure Mergeable cache performs best. In our

future work, we aim to address this issue by reducing the

number of writebacks to DRAM.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the National Science

Foundation under CAREER Grant No. 0855889 and MRI-

0619911 to Diana Franklin, Grant No. FA9550-07-1-0532

(AFOSR MURI) and NSF 0627749 to Frederic T Chong,

Grant No. CCF-0448654, CNS-0524771, CCF-0702798 to

Timothy Sherwood.

REFERENCES

[1] PolyScalar: http://users.csc.calpoly.edu/∼franklin/PolyScalar/Home.htm.
[2] A. R. Alameldeen and D. A. Wood. Adaptive Cache Compression for

High-Performance Processors. In ISCA ’04: Proceedings of the 31st

Annual International Symposium on Computer Architecture, pages 212–
223, Washington, DC, USA, 2004. IEEE Computer Society.

[3] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood, and F. T.
Chong. Multi-Execution: Multicore Caching for Data-Similar Execu-
tions. In Proceedings of the International Symposium on Computer

Architectures (ISCA’09), June 2009.
[4] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. Au-

gust. Revisiting the Sequential Programming Model for Multi-Core.
In Proceedings of the 40th IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 69–84, December 2007.
[5] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors.

In ISCA ’06: Proceedings of the 33rd Annual International Symposium

on Computer Architecture, pages 264–276, Washington, DC, USA, 2006.
IEEE Computer Society.

[6] M. Chu, R. Ravindran, and S. Mahlke. Data Access Partitioning for
Fine-grain Parallelism on Multicore Architectures. In MICRO ’07:

Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 369–380, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-1997-1342, University of
Wisconsin, Madison, June 1997.

[8] M. Kleanthous and Y. Sazeides. CATCH: A Mechanism for Dynamically
Detecting Cache-Content-Duplication and its Application to Instruction
Caches. In Design, Automation and Test in Europe, 2008 (DATE ’08),
pages 1426–1431.

[9] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proceedings of ACM

SIGPLAN 2007 Conference on Programming Language Design and

Implementation (PLDI’07), San Diego, California, USA.
[10] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Access and Cycle

Time Model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May
1996.

[11] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast Check-
point/Recovery to Support Kilo-Instruction Speculation and Hardware
Fault Tolerance. (TR-1420), October 2000.

[12] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede
Approach to Thread-Level Speculation. ACM Transactions on Computer

Systems, 23(3):253–300, 2005.
[13] C. A. Waldspurger. Memory Resource Management in VMware ESX

Server. SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

85

