
IEEE International Symposium on Performance Analysis of Systems and Software, March 2005

Motivation for Variable Length Intervals
and Hierarchical Phase Behavior

Jeremy Lau† Erez Perelman† Greg Hamerly‡ Timothy Sherwood∗ Brad Calder†

†Department of Computer Science and Engineering, University of California, San Diego
‡Department of Computer Science, Baylor University

∗Department of Computer Science, University of California, Santa Barbara

Abstract

Most programs are repetitive, where similar behavior can
be seen at different execution times. Proposed algorithms au-
tomatically group similar portions of a program’s execution
into phases, where the intervals in each phase have homo-
geneous behavior and similar resource requirements. These
prior techniques focus on fixed length intervals (such as a
hundred million instructions) to find phase behavior. Fixed
length intervals can make a program’s periodic phase behav-
ior difficult to find, because the fixed interval length can be
out of sync with the period of the program’s actual phase be-
havior. In addition, a fixed interval length can only express
one level of phase behavior.

In this paper, we graphically show that there exists a hierar-
chy of phase behavior in programs and motivate the need for
variable length intervals. We describe the changes applied to
SimPoint to support variable length intervals. We finally con-
clude by providing an initial study into using variable length
intervals to guide SimPoint.

1 Introduction

The behavior of a program is not random - as programs
execute, they exhibit cyclic behavior patterns. Recent re-
search [1, 7, 8, 27, 28, 29, 24, 9, 18], has shown that it is possi-
ble to accurately identify and predict these phases in program
execution. Prior research has shown that many programs have
wildly different behavior on even the very largest of scales
(over the complete execution of the program).

Phase behavior can be exploited for accurate architecture
simulation [27, 28], to save energy by dynamically reconfig-
uring caches and processor width [1, 29, 8, 7], to guide com-
piler optimizations [20, 2], to guide remote profiling [21], and
to choose which core to run a process on in a multi-core ar-
chitecture [15]. All of these techniques take advantage of the
phase behavior that exists in programs, and most of them fo-
cus on the phase behavior seen at a specific granularity (fixed
length interval length) of execution.

However, to take advantage of time-varying behavior, we
must first develop tools to automatically and efficiently ana-
lyze program behavior over large sections of execution. To
identify phases, we divide a program’s execution into non-

overlapping intervals [28]. An interval is a contiguous por-
tion of execution (a slice in time) of a program. A phase is a
set of intervals within a program’s execution that have similar
behavior, regardless of temporal adjacency. This means that a
phase may appear many times as a program executes. Phase
classification partitions a set of intervals into phases with sim-
ilar behavior.

In [28], we detected phase behavior by breaking the pro-
gram’s execution up into fixed length intervals, and grouping
similar intervals of execution together with clustering tech-
niques from machine learning. The problem with this ap-
proach is that the fixed length intervals are frequently out of
sync with the actual periodic behavior of the program. This
makes it more difficult to automatically find large scale phase
behavior. In addition, programs exhibit phase behavior at
many different granularities, and focusing on a single fixed
interval length limits phase discovery to a single granularity.
Some programs exhibit a hierarchy of phase behaviors that
can be seen at many different interval lengths.

The goal of this paper is to provide the motivation for why
we need to move to variable length intervals, and to describe
the changes to SimPoint needed to support this. We present
new methods for graphically looking at program behavior, and
present an initial study into using variable length intervals to
build up a hierarchy of phase behavior.

2 Related Work

Phase behavior has been shown to exist when examining a
program’s working set [5], and several researchers have re-
cently examined phase behavior in programs.

Balasubramonian et al. [1] proposed using hardware coun-
ters to collect miss rates, CPI and branch frequency informa-
tion for every 100K instructions. They use the miss rate and
the total number of branches executed for that interval to de-
termine if the program’s behavior for the interval was stable.
This was used to guide dynamic cache reconfiguration to save
energy without sacrificing performance.

Dhodapkar and Smith [7, 8, 6] found a relationship between
phases and instruction working sets, and that phase changes
occur when the working set changes. They propose that by
detecting phases and phase changes, multi-configuration units

1

can be re-configured in response to these phase changes. They
use their working set analysis for instruction cache, data cache
and branch predictor re-configuration to save energy [7, 8].

Huang et al. [12] examine tracking procedure calls via a
call stack, which can be used to dynamically identify phase
changes. More recently they examined using procedure call
boundaries for creating samples to use for guiding statistical
simulation [19].

Isci and Martonosi [13, 14] have shown the ability to dy-
namically identify the power phase behavior using power vec-
tors. Deusterwald et al. [9] recently used hardware counters
and other phase prediction architectures to find phase behav-
ior.

In [27, 28], we proposed that periodic phase behavior in
programs can be automatically identified by profiling the code
executed. We used techniques from machine learning to
classify the execution of the program into phases (clusters).
We found that intervals of execution grouped into the same
phase had similar behavior across all architectural metrics ex-
amined. From this analysis, we created a tool called Sim-
Point [28], which automatically identifies a small set of inter-
vals of execution (simulation points) in a program for detailed
architectural simulation. These simulation points provide an
accurate and efficient representation of the complete execu-
tion of the program. We recently extended this approach to
perform hardware phase classification and prediction [29, 18].

The closest work to ours is the work done by Shen et
al. [26], where they use wavelets and Sequitur to build a hi-
erarchy of phase information to guide the prediction of data
phases of applications. They analyze data reuse distance
traces, and look for patterns in program behavior with wavelet
analysis, whereas our approach is based on code signatures.
They take the data reuse distance phases at the finest granu-
larity and use Sequitur to identify hierarchical phase behavior.
Their approach works well for simple programs that have very
structured data behavior, but their focus on data does not work
with complex programs like vortex and gcc [26]. In com-
parison, we found that using code signatures finds all of the
phase behavior that using data does [17], and is applicable to
complex applications, since we base our phase analysis on the
structure of the program. Our philosophy is that program be-
havior is strongly correlated with the code executed - in other
words, you are what you execute. By examining only code
signatures we can detect phase behavior even in complex pro-
grams like vortex and gcc.

Most of the above related work has focused on identifying
phase behavior using fine-grain fixed length intervals. The
goal of this paper is to automatically build a hierarchy of vari-
able length intervals, and to build a hierarchy of phase classi-
fications.

3 Basic Block Vectors

Basic Block Vectors (BBVs) [27] provide a structure designed
to capture information about changes in a program’s behavior
over time. A basic block is a single-entry, single-exit section
of code with no internal control flow. A Basic Block Vector
(BBV) is a one dimensional array where each element in the
array corresponds to one static basic block in the program.
We start with a BBV containing all zeroes at the beginning of
each interval. During each interval, we count the number of
times each basic block in the program has been entered, and
we record the count in the BBV. For example, if the 50th basic
block is executed 15 times, then bbv[50] = 15. We multiply
each count by the number of instructions in the basic block,
so basic blocks containing more instructions will have more
weight in the BBV.

As in [27, 28], we use BBVs to compare the intervals of
the application’s execution. The intuition behind this is that
the behavior of the program at a given time is directly related
to the code executed during that interval. We use the basic
block vectors as fingerprints for each interval of execution:
each vector tells us what portions of code are executed, and
how frequently those portions of code are executed. By com-
paring the BBVs of two intervals, we can evaluate the similar-
ity of those two intervals. If the distance between the BBVs
is small, then the two intervals spend about the same amount
of time in roughly the same code, and therefore the perfor-
mance of those two intervals should be similar. We use BBVs
to motivate the need for variable length intervals.

In [17], we propose several alternatives to basic block vec-
tors. One of the alternatives is the loop and procedure vec-
tor, where we track the number of times each backward non-
interprocedural branch, each procedure call, and each proce-
dure return is executed. We found that loop and procedure
vectors were comparable to basic block vectors for phase clas-
sification purposes, with fewer dimensions per vector. The
variable length interval selection algorithm proposed in this
paper uses vectors based on loop and procedure counts in-
stead of basic block vectors because of the benefits of reduced
dimensionality.

4 Methodology and Metrics

We performed our analysis for the SPEC2000 programs
ammp, bzip, galgel, gcc, gzip, mcf, and perl. All
programs were run with reference inputs, and bzip, gcc,
and gzip were run with multiple inputs. We chose the above
programs since they were the most interesting and challeng-
ing for phase classification from our prior studies. We collect
all of the frequency vector profiles using SimpleScalar [4].

To generate our baseline fixed length interval results, all
programs were executed from start to completion using Sim-
pleScalar. The baseline microarchitecture model is detailed in
Table 1.

2

I Cache
16k 4-way set-associative, 32 byte blocks, 1
cycle latency

D Cache
16k 4-way set-associative, 32 byte blocks, 1
cycle latency

L2 Cache
128K 8-way set-associative, 64 byte blocks,
12 cycle latency

Main Memory 120 cycle latency

Branch Pred
hybrid - 8-bit gshare w/ 2k 2-bit predictors + a
8k bimodal predictor

O-O-O Issue
out-of-order issue of up to 8 operations per cy-
cle, 64 entry re-order buffer

Mem Disambig
load/store queue, loads may execute when all
prior store addresses are known

Registers 32 integer, 32 floating point

Func Units
2-integer ALU, 2-load/store units, 1-FP adder,
1-integer MULT/DIV, 1-FP MULT/DIV

Virtual Mem
8K byte pages, 30 cycle fixed TLB miss la-
tency after earlier-issued instructions complete

Table 1: Baseline Simulation Model.

4.1 Metrics for Evaluating Phase Classification

Since phases are intervals with similar program behavior, we
measure the effectiveness of our phase classifications by ex-
amining the similarity of program metrics within each phase.
We focus on overall performance in terms of Cycles Per In-
struction (CPI) within each phase. After classifying a pro-
gram’s intervals into phases, we examine each phase and cal-
culate the average CPI of all intervals in the phase. We then
calculate the standard deviation in CPI for each phase, and we
divide the standard deviation by the average to get the Coeffi-
cient of Variation (CoV). CoV measures standard deviation as
a fraction of the average. When we compute the average and
the standard deviation, we weight the CPI of each interval by
the length of the interval, so intervals that represent a larger
percentage of the program’s execution receive more weight in
the calculations.

We use the CoV to compare different phase classification
algorithms. Better phase classifications will exhibit lower
CoV. If all of the intervals in the same phase have exactly
the same CPI, then the CoV will be zero. We calculate an
overall CoV metric for a phase classification by taking the
CoV of each phase, weighting it by the percentage of exe-
cution that the phase accounts for, and then summing up the
weighted CoVs. This results in an overall metric we can use
to compare different phase classifications for a given program.
It represents the average percentage of deviation that a phase
classification exhibits.

5 Problems with Fixed Length Inter-
vals

Prior work in phase classification has concentrated on using
fixed length intervals. In this section we show that fixed length
intervals can result in sub-optimal phase classification. In
phase classification, intervals are the building blocks for form-
ing phases and identifying changes in phase behavior. At this

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

Figure 1: An example of what happens to a signal (top figure)
when it is sampled with different interval lengths. The signal
in this example is a sinusoid, shown in the top figure, and the
intervals it is broken into are drawn vertically in the lower two
figures. The average signal for each interval is shown as the
straight line within an interval. When the interval is dissonant
with the period of the signal, it results in a jagged and unstable
characterization as can be seen in the central figure. The op-
timal interval duration, shown in the bottom figure, captures
exactly one cycle of the repetitive behavior, which results in a
concise and stable characterization of the signal.

level, any noise accumulated in the intervals will have ramifi-
cations on the quality of the phases detected. A fixed interval
length will generally result in several intervals that attempt to
represent a single behavior which can be more concisely rep-
resented. Using fixed length intervals can also result in phases
that do not accurately represent the behaviors of the program.
We present examples of how and why these problems occur.

5.1 Interval Dissonance and Harmony

To illustrate the ramifications of interval length on the repre-
sentation of time-series data, we present a simple example.
Figure 1 shows what happens when a simple sinusoid is sam-
pled at different interval durations. The top figure shows the
signal, a sine wave with a constant period equal to 25.

We now consider the effects of dissonance between a fixed
interval length and the period of the signal. The central fig-
ure shows what happens when we split the signal into fixed
length intervals of length 11. Here we see the original sig-
nal in the background, with vertical dashed lines depicting
where the intervals are split. The signal average for each in-
terval is plotted as a point at the end of that interval, and the
solid line in this figure connects these averages to show the
interval-based representation of the signal. In this figure the
solid line is very jagged, because the length of the interval
is out of sync with the period length of the cyclical signal.
Using fixed length intervals may require many intervals to ac-

3

curately represent the signal. We can quantify the number
of intervals required to accurately represent a signal as the
ratio of Least Common Multiple between the interval length
and the period of the signal, and the length of the interval:
(LCM(|interval|, |signalperiod|)/|interval|). In this ex-
ample, it would require a total of 25 intervals to accurately
represent the signal using intervals of fixed length 11.

On the other hand, let us consider harmony between an in-
terval length and the period of the signal. The bottom figure
shows an interval length of 25, equal to the period of the sig-
nal. The same format is used as in the central figure. Here
we see intervals capturing entire cycles of the signal, and the
resulting behavior of the intervals is constant. This is the ideal
situation, since it would require exactly 1 phase to represent
this signal accurately.

In this simple example, fixed intervals with length 25 can
accurately represent the signal. But most programs do not
exhibit simple fixed-frequency phase behavior. For exam-
ple, gzip exhibits low-frequency phase behavior in its low-
IPC phases, and high-frequency phase behavior in its high-
IPC phases. It is unlikely that a single fixed interval length
can accurately capture phase behavior at both these frequen-
cies. Additionally, there are some benchmarks where the pe-
riod changes over time. For example, vpr-route exhibits
behavior patterns corresponding to each routing it tries. As
its simulated annealing algorithm converges on a solution, it
spends less and less time evaluating each solution.

6 Hierarchical Representation of Pro-
gram Execution

In this section we examine two representations of a program’s
execution by only looking at how the code is executed using
the fixed length interval basic block vectors. This is used to
(a) motivate what could be found if we did use variable length
intervals aligned to phase boundaries, and (b) to show that
hierarchical phase behavior exists.

6.1 3D Non-Accumulated Representation

The previous section presented a simple example where fixed
length interval lengths can have significant impact on the rep-
resentation of the signal. Here we examine actual program
execution data, and see how it is even more susceptible to
representation problems when using fixed length intervals.

For the non-accumulated representation, each interval is
represented with a basic block vector (BBV) that indicates
the number of times each basic block was executed in that
interval as described in Section 3. We take this set of basic
block vectors and reduce the number of dimensions down to
three using random linear projection [28]. Then we plot each
3-dimensional vector as a point in space, and draw lines be-
tween the temporally adjacent points to show the execution

order. This provides a visual portrait of how the program ex-
ecutes over time, through its code space. An almost constant
pattern should show up as a tight cluster in space. In theory,
if the boundaries between BBVs always fell perfectly on a
phase transition, then we would expect to see a set of intercon-
nected tight clusters with a lot of BBVs placed on top of each
other. If the boundaries are not aligned with the periodic pro-
gram behavior, then we should see oscillations as discussed
in the prior section. The oscillations should show up as rings
or tori (“donuts”) if we plot these paths in 3-d space. Fig-
ure 2 shows a 3-dimensional representation of the execution
of two benchmarks: gzip-graphic andbzip2-source.
A fixed length interval size of 100 million instructions was
used. In both gzip and bzip there are interesting cycles
that appear. For each program we zoom in on one of the cyclic
regions.

In SPEC2000, the gzip benchmark repeatedly compress
and decompresses the data a total of 5 times, at compression
levels 1, 3, 5, 7, and 9. At compression levels 1 and 3, a
faster version of the deflate algorithm is used. This time-
varying program structure is clearly visible from the gzip
graphs shown in Figure 2. For example we see that execution
bounces back and forth between deflate fast and in-
flate 3 times (deflate fast → inflate → de-
flate fast → inflate), corresponding to compres-
sion and decompression at levels 1 and 3. There are 5 bounces
between deflate and inflate, corresponding to com-
pression and decompression at levels 5, 7, and 9. The vectors
exhibited by each deflation and inflation phase form a torus.
Each cycle around the torus corresponds to the compression
or decompression of a block of data. If correctly sized vari-
able length intervals were used, then each cycle around the
region should become a single interval, instead of a series of
intervals forming a torus. But because the interval length was
too small, we have a large number of intervals composing this
cyclical behavior. In addition, the fixed length interval is out
of sync with the actual period of the phase, because different
points in space are sampled on subsequent iterations around
the torus.

Similarly, SPEC2000’s bzip compresses and decom-
presses the data twice, at compression levels 7 and 9. Thus,
execution bounces between compression and decompression
three times, as seen in Figure 2. Each iteration around the
looping structures corresponds to compression of a block of
data, as seen in the gzip plots. There are two looping struc-
tures within the compression phase - these correspond to com-
pressing blocks with different entropy properties. bzip per-
forms run-length encoding on its front end, and more time is
spent in the run-length encoder on blocks with more contigu-
ous sequences of repetitive bytes.

As seen from these two examples, the majority of a pro-
gram’s execution is spent in loops. The average number of
instructions per loop iteration can change over time. For ex-
ample, fewer instructions are typically needed to decompress
a block of data than to compress a block of data. This means

4

gzip-graphic

deflate_fast

inflate
inflate

deflate

inflate

bzip2-source

uncompressStream

compressStream
compressStream

A

B

Figure 2: The three dimensional non-accumulated representation of gzip-graphic and bzip2-source. Each point
represents an interval during execution, and the line connecting the points represents the execution order in time. The right
figure of bzip2-source has two points labeled A and B, which indicate two temporally adjacent intervals of program
execution. The figure on the left plots the entire execution, while the figure on the right zooms in on a looping region in the
execution. The looping structures are traversed once for each block of data compressed or decompressed.

that the period lengths are not stable over time. An ideal
fixed interval length for one section of execution (compres-
sion) may be dissonant with another portion of the program’s
execution (decompression). Since no single interval length
will do a good job representing the program, we need vari-
able length interval lengths that adjust to the period of the
program’s current behavior pattern.

Figure 2 shows that it is possible to see periodic behavior
in programs by looking at a non-accumulative representation
of the program’s code space usage over time: the periodic be-
havior of programs results in cyclic patterns in these graphs.
Both these programs also exhibit hierarchical behavior: there
is a high-level behavior pattern between compression and de-
compression, and within each compression and decompres-
sion phase, there is a low-level behavior pattern corresponding
to each block of data compressed or decompressed.

6.2 2D Accumulated Representation

Another way to examine the program’s execution to detect
phase changes is with an accumulative representation. With

this approach, each interval of execution is represented with a
basic block vector that tracks the total number of times each
basic block is executed from the beginning of execution to
the current interval. A fixed length interval size of 1 million
instructions was used. Figure 3 shows a two-dimensional pro-
jection of accumulated basic block vector data for bzip2-
source. Each point represents the accumulated basic block
vector from the start of execution up to a fixed length inter-
val boundary, and the lines connecting the points indicate the
order in which the intervals were executed.

This graph shows that it is easy to find stable program be-
havior by looking at an accumulated representation, because
stable behavior results in a straight line. If the program is exe-
cuting the same distribution of basic blocks, the accumulated
representation will show a straight line, because the same di-
mensions of the accumulated vector will be increased by the
same quantities. Whenever the line bends, the program is exe-
cuting a different distribution of basic blocks, and is therefore
exhibiting a different behavior pattern.

SPEC2000’s bzip2-source benchmark fills a 58MB
buffer with back-to-back copies of a tarfile containing source

5

compressStream

uncompressStream

compressStream

uncompressStream

uncompressStream

compressStream

Figure 3: Two dimensional accumulated representation of bzip2-source. The figure on the left was produced by calculating
the running sum of the vector data in Figure 2. Each point represents the start of execution up through the interval of execution
being plotted. Therefore, each point represents a BBV projected down to 2 dimensions consisting of all of the program’s
execution from start of execution up through that fixed length interval of execution. The figure on the right shows detail of the
bottom left corner of the figure on the left.

for some SPEC benchmarks. The 58MB buffer is large
enough to hold 6.4 copies of the source tarfile. The tarfile
contains a large number of null bytes at the end. This buffer
is first compressed with a block size of 700KB, then decom-
pressed, then compressed again with a block size of 900KB,
and finally decompressed.

All these properties are visible in Figure 3. The 6.4 copies
of the input file can be seen most easily in the decompression
phases. The line shifts upwards every time the end of the orig-
inal input file is reached, because of the large number of null
bytes present at the end of the input file. This changes the
entropy of the block, which causes bzip2 to execute code in
different proportions - more time is spent doing RLE decom-
pression, and less time spent inverting the Burrows-Wheeler
transform. Each circle during compression corresponds to
compressing a block of data, and each spike during the de-
compression phase occurs when writing a decompressed a
block of data. Thus, the block size is not directly visible, but
the number of blocks is.

When a block size of 700KB is used, there are 14 blocks
per copy of the original input file, and if you look closely,
there are 14 little spikes within each “plateau” during the first
decompression phase. When a block size of 900KB is used
during the second decompression phase, there are 11 blocks
per copy of the original input file, and there are 11 little spikes
per plateau visible in the second decompression phase. The
same patterns can be seen by counting loops in the compres-
sion phases.

We experimented with different forms of accumulated fre-
quency data, from accumulating the past N BBVs together to
represent each interval of execution, to accumulating the past
X and future Y original BBVs together (creating a rolling win-
dow) to represent the interval, and we found that they did not
provide any advantage over using the accumulative form start-

ing from the beginning to examine the phase behavior.

7 Supporting Variable Length Inter-
vals in SimPoint

The SimPoint algorithm was originally designed for fixed
length intervals, so modifications were required to handle
variable length intervals. Here we describe the changes which
allow SimPoint to handle variable length intervals. The
changes came primarily in two areas: handling an increased
number of intervals, and dealing with the weights associated
with variable length intervals.

7.1 Clustering for Many Intervals

For each level of the variable length interval hierarchy, we
use k-means clustering to group similar intervals into clus-
ters. The k-means algorithm is fast: each iteration is linear
in the number of clusters, the dimensionality, and the number
of intervals clustered. However, since k-means is an iterative
algorithm, many iterations may be required to reach conver-
gence. Because of this the algorithm can be slow in practice
given a very large number of intervals. In our hierarchical ap-
proach, the lowest levels of the hierarchy contain a very large
number of intervals; for example, perl-splitmail has
2.97 million intervals at the lowest level of its hierarchy.

To speed the execution of SimPoint on very large inputs, we
sub-sample the set of intervals that will be clustered, and run
k-means on only this sample. We sample the dataset (vectors)
using weighted sampling. The number of desired intervals
is specified, and then SimPoint chooses that many intervals
(without replacement). The probability of each interval being

6

chosen is directly proportional to the weight of its cluster (the
number of dynamically executed instructions it represents).

Sampling is common in clustering for datasets which are
too large to fit in main memory [10, 25]. After clustering the
dataset sample, we assign Phase ID labels to all intervals by
locating the nearest cluster center (centroid) to each vector in
the entire dataset, and assigning the label corresponding to
the nearest cluster. For the experiments reported in this paper,
we used a sample size of 100,000 vectors (i.e., no more than
100,000 intervals are used for clustering in SimPoint).

A smaller number of intervals reduces the time required for
clustering, as shown in Figure 4. This graph shows the time
it takes to run SimPoint for different number of intervals. It
shows that if 15% of the intervals are used to create the clus-
tering, then the clustering can be performed in a matter of
minutes. Figure 5 shows for these same points the standard
deviation (distance from interval to cluster center) among all
of the intervals grouped into the final clustering. This also
shows that, if at least 15% of the intervals are used to create
the sample dataset, which are used to pick the centroids, we
achieve about the same deviation as using all of the clusters.

A large number of intervals also leads to more potential
phases that can be discovered. This is a property of the gran-
ularity at which a program is examined: at coarse granularity,
few large intervals represent a high level view of program be-
havior and complete characterization can be achieved with a
few phases; at fine granularity, many small intervals reveal
detailed program behavior and more phases are needed for
characterization. We use the k-means algorithm to classify
code signatures from each interval of execution into k clus-
ters (phases), where k ranges over 1..N . SimPoint picks a
single k from this range that is a good characterization of pro-
gram behavior. We found a good range for setting N (max K)
for the SPEC 2000 benchmarks based on the interval granu-
larity chosen when using a fixed length granularity between 1
to 100 million interval size [24].

When using smaller interval sizes or variable length inter-
vals, it is not necessarily clear what to set N to, especially
with a large number of intervals. Therefore, we use a sim-
ple heuristic to quantify an upper bound on the number of
expected phases. This value is computed as the square root
of the total number of intervals: N =

√|intervals|. Em-
pirically we discovered that as the granularity becomes finer,
the number of phases discovered increases at a sub-linear rate.
The upper bound defined by this heuristic works well for the
SPEC benchmarks. We note, however, if SimPoint contin-
uously picks the number of phases to be N , then this value
should be increased sufficiently so it is no longer picked by
SimPoint [11]. It is also possible to expedite the search for k
by sampling through the range of 1..N (e.g., only trying even
values for k would reduce the search space by half, or only
trying every 5th value for k would reduce the search space by
5 times, etc).

7.2 Consuming Variable Length Intervals

Different variable length intervals can represent different pro-
portions of a program’s execution, as opposed to fixed length
intervals which each represent the same proportion. Each
variable length interval has an associated weight we denote
wi, which represents the percentage of the total program ex-
ecution for that interval. We have modified several parts of
SimPoint so that it handles these weights.

The k-means clustering algorithm has two steps that it re-
peats: determining which cluster each interval belongs to
(called the expectation step), and repositioning each cluster
center to the mean of the intervals that it owns (called the max-
imization step). The expectation step is not changed by vari-
able length intervals. The maximization step handles weights
wi by applying them during the recomputation of the cluster
centers. Cluster j is computed as the weighted mean of the
variable length intervals xi that belong to that cluster:

cj =
∑n

i=1 wiximij∑n
i=1 wimij

Here mij = 1 if interval i belongs to cluster j, and 0 other-
wise, and mij is determined during the expectation step. The
resulting k-means algorithm behaves just like the k-means al-
gorithm for fixed length intervals, but larger intervals have
more influence than smaller intervals over the cluster center
locations.

The BIC criterion that we use to choose the best cluster-
ing also needs modification to handle variable length inter-
vals. The BIC is the log likelihood of the clustering minus a
complexity penalty. We adjust the log likelihood, but keep the
penalty the same. The likelihood calculation sums a contribu-
tion from each interval, so larger intervals should have greater
influence. The weighted log likelihood becomes:

L =
n

∑n
i=1 wi log Pr(xi)∑n

i=1 wi

where Pr(xi) is the probability of interval xi. In our case,
this probability comes from the k-means clustering model of
a mixture of spherical Gaussians:

Pr(xi) =
w(i)∑n
i=1 wi

exp(1
2σ2 ||xi − c(i)||2)
(2πσ2)d/2

Here c(i) is the cluster center that xi belongs to (the center
closest to xi), and w(i) is the weight associated with cluster
c(i) (the sum of the weights of all points belonging to the clus-
ter; this is the denominator in the earlier equation for cj). The
total weighted log likelihood function then simplifies to:

L =
n

∑n
i=1 wi log w(i)∑n

i=1 wi
− n log

n∑

i=1

wi − dn

2
log(2πeσ2)

We must also compute the variance σ2 of the clustered inter-
vals in a way that accounts for the weights:

σ2 =
∑n

i=1 wi||xi − c(i)||2
d

∑n
i=1 wi

7

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1000 10000 100000 1e+06 1e+07

tim
e

(s
ec

on
ds

)

number of sampled intervals

gcc-166
gzip-program

perlbmk-splitmail

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1000 10000 100000 1e+06 1e+07

re
la

tiv
e

cl
us

te
rin

g
st

d.
 d

ev
.

number of sampled intervals

gcc-166
gzip-program

perlbmk-splitmail

Figure 4: (Left graph) The vertical axis shows the amount of time (in seconds) required to run the SimPoint tool to cluster
several program traces with different sample sizes. Sample sizes are shown on the horizontal axis, with the rightmost points
being the total trace (no sampling used). Using smaller samples can greatly reduce the time needed to run SimPoint. These
times are for one run of SimPoint k-means clustering with k set to 10.

Figure 5: (Right graph) The vertical axis shows the relative clustering standard deviation, and the horizontal axis shows the
number of intervals clustered. Clustering only a sample of the vectors reduces time required, but samples which are too small
could result in poor clusterings. Here we vary the number of intervals clustered using SimPoint’s sampling functionality, from
the whole program (rightmost points) to sampling a smaller number of intervals (moving left). The clustering standard deviation
is the average distance of each vector from its closest cluster center. This plot shows the standard deviation for a sample divided
by the standard deviation based on clustering all the data, giving a relative standard deviation. Lower values are better.

All these general equations can be simplified in the common
case that

∑n
i=1 wi = 1.

These changes do not change the algorithms with respect
to fixed length intervals. In other words, setting all wi = 1/n
(as in fixed length intervals) would produce the same results
as the former SimPoint algorithm. Thus these changes allow
SimPoint to smoothly handle both fixed length and variable
length intervals.

8 Initial Study of Using SimPoint with
Variable Length Intervals

In this section we present an initial investigation into using
SimPoint with variable length intervals. First we describe an
initial algorithm for breaking a program’s execution into vari-
able length intervals that are better aligned to phases com-
pared to fixed length intervals, creating a hierarchy of these,
and then using them with SimPoint.

8.1 Creating a Hierarchy of Variable Length
Intervals

We examine an approach similar to Shen et al. [26], but based
on code instead of data. The approach we examine collects a
trace of loop branches, procedure calls, and procedure returns
executed by each program. We use Sequitur [16, 22] to find
patterns in the loop, call, and return traces, and we use the
Sequitur output to generate variable length intervals. Each of
these steps will now be described in more detail.

8.1.1 Collecting Traces

We instrument programs with ATOM [30] to collect traces of
each loop branch, procedure call, and procedure return exe-
cuted. In addition, we collect a trace of the number of in-
structions that execute between tracked events (loop branches,
calls, and returns).

8.1.2 Finding Patterns in the Traces

We treat this branch trace as a string, and use Sequitur [16, 22]
to find hierarchical patterns in this string. Sequitur takes a
string and constructs a grammar with a rule “S” that expands
to the input string. It tries to build the most compact grammar
possible. For example, given the string “aabaabaac”, Sequitur
may produce the following grammar:

S->112c
1->2b
2->aa

The terminology is: “1->2b” is a rule, “2b” is a produc-
tion, “2” is a nonterminal, and “b” is a terminal. A symbol is
a terminal or a nonterminal.

Sequitur will generate a rule if the rule can be used more
than once in the grammar. Rules that are used only once are
eliminated. These two constraints are repeatedly applied to
the input string to build the grammar. Sequitur is a linear-
time algorithm, and we use it to find patterns in our loop, call
and return traces. We only run Sequitur on the trace of loop,
call, and return events: Sequitur does not know how many
instructions executed between events. This information would

8

confuse Sequitur, because Sequitur will only generate a rule
when it finds an exact match between two productions.

8.1.3 Generating Variable Length Intervals

We next use the results of Sequitur to determine how to break
the program’s execution (trace) into variable length intervals.
Given a Sequitur grammar that represents the entire loop, call,
and return trace, we need to determine where each variable
length interval will begin and end. The symbols in rule “S”
provide convenient endpoints for variable length intervals, be-
cause they represent the boundaries of the largest repetition
patterns found by Sequitur. The “S” rule often also contains
symbols that represent very small portions of the program’s
execution, so we do some filtering. We count the number of
instructions represented by each symbol in “S,” then sort the
counts, and generate intervals for the symbols in “S,” starting
from the heaviest-weight symbol, until we have generated in-
tervals for 90% of the program’s execution, or we find a sym-
bol that expands to less than 10,000 instructions, whichever
comes first.

The remaining symbols are placed into transition intervals,
and adjacent transition intervals are combined into larger tran-
sition intervals [18]. The result is a partitioning of the pro-
gram’s execution trace into variable length intervals, where
no non-transition interval is smaller than 10,000 instructions.
Transition intervals are still intervals: our variable length in-
tervals cover 100% of the program’s execution. The 10,000
instruction threshold is used as a filter for the Sequitur gram-
mar to ensure that we have intervals for all of a program’s
large behavior structures, and to keep us from generating
many small intervals for insignificant behavior structures.

We take the variable length interval trace described above
and build a loop and procedure code vector to represent each
variable length interval, which each dimension in the vector
represents the number of times the procedure call, return or
loop was executed for that interval. These variable length in-
tervals represent the leaf level (the lowest level) in our variable
length hierarchy. The next step is to create a hierarchy of the
variable length intervals to choose from, which is done using
a combination of SimPoint and Sequitur as described in the
next section.

8.2 Creating a Hierarchy of Variable Length
Intervals

Now that we have a method for partitioning a program’s ex-
ecution into variable length intervals, we build a hierarchy
of variable length intervals that correspond to the program’s
phase behavior.

8.2.1 Constructing the Hierarchy

When we divided each program’s execution into variable
length intervals, Sequitur conveniently provided us with a hi-
erarchical representation of the patterns in our loop, call, and

return trace. But Sequitur relies on exact matches - a single
difference in a pair of strings results in the generation of two
different rules (or no rules at all). This restriction limits the
depth of the hierarchy that Sequitur generates.

Our goal is to build the deepest hierarchy possible, so all
the patterns in the program’s behavior are visible, even at the
largest of scales. To do this, we extend Sequitur’s hierarchy
by allowing approximate matches. This is done by taking the
vectors that correspond to the variable length intervals found
in the previous section, and running them through SimPoint to
find similar vectors. SimPoint produces a set of labels, which
map each vector to a Phase ID. Given a set of Phase ID labels,
we map each interval of execution to its Phase ID, producing
a trace of Phase IDs, and we run this Phase ID trace through
Sequitur. The resulting Sequitur output is the second level of
the hierarchy. Finally, we merge the original hierarchy and
the second level hierarchy to create the overall variable length
interval (VLI) hierarchy structure.

We iterate this process, generating vectors, running Sim-
Point to produce traces of Phase IDs, and running Sequitur
on the Phase IDs, until a small number of symbols remain in
Sequitur’s “S” rule (< 10).

8.2.2 Hierarchy of Variable Length Intervals

One challenge is showing that the hierarchies we build ac-
tually represent important phase transitions at the different
levels of the hierarchy. We do this by showing time-varying
graphs where we plot the average IPC for the complete execu-
tion of each VLI region for a given level of the hierarchy. Fig-
ure 6 shows the hierarchy for two of the programs with com-
plex phase behavior, and 5 hierarchy levels are shown for each
program. The top graph for each program is the highest level
in the hierarchy and the lowest levels are the bottom graphs
for each program. IPC is on the y-axis, and the program’s
execution (time) is on the x-axis. For each variable length in-
terval we plot the average IPC (shown on the Y-axis) for the
VLI over that interval’s complete execution (corresponding
X-axis). These graphs show that at all levels of our hierar-
chy, the variable length intervals we create reflect the actual
behavior of the program at the lowest level. It shows that our
algorithm is grouping together the program’s execution into
variable length intervals that represent phase changes at these
different granularities. At the highest levels, the structure of
the variable length intervals is visible on these graphs.

8.3 Using the Hierarchy of Variable Length In-
tervals with SimPoint

Now that we have a hierarchy of intervals, we need to select a
set of intervals that meets our needs. The intervals generated
at each level of the hierarchy are highly variable in length.
Most applications, including SimPoint, require intervals that
are more homogeneous in length. We describe an algorithm
for interval selection next.

9

 0
 1
 2
 3
 4
 5

 0
 2
 4

 0
 2
 4

 0
 2
 4

 0
 2
 4

 0 1
 2 3
 4 5
 6 7

 0
 2
 4
 6

 0
 2
 4
 6

 0

 2

 4

 0

 2

 4

gcc-166 galgel

Figure 6: Time-varying graphs showing average IPC per variable length interval for each level in our hierarchy. The highest
levels are at the top of each graph. IPC is on the y-axes, and time is on the x-axes. At the highest levels, the structure of the
variable length intervals is visible on these graphs. The bottom-most graphs show the average IPC for fixed length intervals of
ten million instructions.

8.3.1 Selecting Intervals from the Hierarchy

We assume our goal is to create a set of variable length inter-
vals that meet a minimum and maximum interval length re-
quirement for simulation purposes. To build a set of intervals
that satisfy the length requirements, we perform a postorder
depth-first traversal of the hierarchy, starting from “S”. For
each production, we count the number of instructions repre-
sented by each symbol. If each symbol expands to at least
the minimum number of instructions, or if accumulating the
instruction counts for all symbols in the production results in
more instructions than the maximum allowed, we create an in-
terval for each symbol in the production. Otherwise, we place
all the instructions in the entire production into one interval.
Either way, the interval(s) that result are returned, and they
may be further accumulated at a higher level.

It is important to note that the variable length intervals cho-
sen are broken up based upon procedure call and loop bound-
aries guided by the Sequitur grammar. When working with
fixed length intervals, it is certainly possible to choose a “bad”
interval length that is dissonant with the actual periodic behav-
ior of the program. But when working with the variable length
intervals in our hierarchy, it should not be possible to choose
a “bad” interval length, because all the interval lengths that
appear in our hierarchy are tuned to the program’s periodic
behavior found in its control flow.

8.3.2 Initial SimPoint Results

We now evaluate the use of the variable length hierarchy to
choose a small number of large representative samples from
an application to guide program analysis or simulation with
SimPoint. For some applications it is advantageous to pick
a small number of reasonable sized samples for this analysis.
It was recently shown that phase information can accurately
guide SMT simulation [3], but this approach requires a small
number of phases to be practical. Using a large interval length

will result in a smaller number of phases. In addition, some
research groups (e.g., Intel) simulate large samples (on the
size of 300 million instructions or more), so that they do not
have to deal with warmup issues [23].

The SimPoint algorithm [28] is a phase classification algo-
rithm based on the k-means clustering algorithm. SimPoint
groups together fixed length intervals of execution with sim-
ilar behavior. We modified the SimPoint algorithm to group
together variable length intervals as described in Section 7.
We use the algorithm described in Section 8.3.1 to select a
set of variable length intervals from our hierarchy, and we run
these intervals through our VLI SimPoint (SimPoint modified
to support variable length intervals), to produce a phase clas-
sification. We first examine the CoV of CPI to make sure that
the intervals in each cluster have similar CPI. The CoV calcu-
lation is described in Section 4.

Figure 7 compares the results of our variable length ap-
proach and standard fixed length SimPoint for large interval
lengths. Fixed length interval lengths of 100M, 300M, 500M,
and 1000M are compared against using variable length inter-
vals chosen from the VLI hierarchy in the range of 100M-
500M and 500M-1000M instructions. The CoV of CPI re-
sults show that we are able to achieve a lower CoV of CPI
with our variable length intervals compared to fixed length in-
tervals. This means that the clusterings produced by SimPoint
are more homogeneous (in terms of CPI) with our variable
length intervals, compared to fixed length intervals. This is
expected, because we align our variable length intervals with
changes in each program’s behavior patterns, so our variable
length intervals will exhibit more similarity.

Figure 8 shows the percent error in estimated CPI. This
graph shows that we are usually able to pick better representa-
tives for each SimPoint cluster with variable length intervals,
compared to fixed length intervals. This follows from the CoV
of CPI results, because it is easier to pick a good representa-
tive for each cluster when the clusters are more homogeneous.

Figure 9 shows the number of instructions used to repre-

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

am
m

p

bz
ip2

-p

bz
ip2

-s
gc

c-
1

gc
c-

e

gz
ip-

g

gz
ip-

p
m

cf

pe
rl-

s
vp

r-r av
g

C
o

V
 C

P
I

100M 300M VLI 100-500

500M 1000M VLI 500-1000

Figure 7: Coefficient of Variation of CPI. 100M, 300M,
500M, and 1000M are results for standard fixed length Sim-
Point run at the corresponding granularity, while VLI 100-
500 is our variable length approach given a minimum inter-
val length of 100M and a maximum of 500M, and VLI 500-
1000 corresponds to a minimum of 500M and a maximum of
1000M.

0

10

20

30

40

50

60

70

80

90

am
m

p

bz
ip2

-p

bz
ip2

-s
gc

c-
1

gc
c-

e

gz
ip-

g

gz
ip-

p
m

cf

pe
rl-

s
vp

r-r av
g

%
 C

P
I E

rr
o

r

100M 300M VLI 100-500

500M 1000M VLI 500-1000

Figure 8: Percent error in SimPoint estimated CPI for the vec-
tors in Figure 7

0

1000

2000

3000

4000

5000

6000

am
m

p

bz
ip2

-p

bz
ip2

-s
gc

c-
1

gc
c-

e

gz
ip-

g

gz
ip-

p
m

cf

pe
rl-

s
vp

r-r av
g

m
ill

io
n

s
o

f
in

st
ru

ct
io

n
s

100M 300M VLI 100-500

500M 1000M VLI 500-1000

Figure 9: Number of instructions used to represent each pro-
gram for CPI estimation. The same vectors from Figure 7 are
shown.

sent the program. Our 100M-500M variable length intervals
require about as many instructions to represent the program as
fixed length 300M, and variable 500M-1000M requires about
as many instructions as fixed length 1000M.

The CoV of CPI and percent CPI error results show that
variable length intervals are more important at large granu-
larities. At these coarser granularities, significant portions of
a program’s phase behavior can lie in a single interval. At
high granularities, even a slight interval misalignment can re-
sult in substantial accuracy loss. The variable length intervals
accurately encapsulate phases at all levels and provide accu-
rate representation of a workload at any granularity. Overall,
the results show that variable length intervals provide more
consistent results than fixed length intervals.

9 Summary

The goal of this paper is to motivate the need to move towards
variable length intervals aligned to a program’s actual phase
boundaries and to describe the changes made to SimPoint to
support variable length intervals.

Prior work on automated phase classification [28] focused
on using fixed length intervals for identifying phase behav-
ior in programs. But when interval lengths are out of sync
with the phase behavior exhibited by the program, many more
intervals are required to represent each behavior pattern, com-
pared to an appropriately sized variable length interval. By
examining how programs use their code space with 3D non-
accumulative graphs and 2D accumulative graphs, we can see
how fixed length intervals split up the execution space, and
that better representations can be made if intervals are aligned
to a program’s actual phase boundaries. More importantly,
these graphs showed that programs have a hierarchy of phase
behavior at many different granularities, which is more diffi-
cult to discover with fixed length intervals.

Two changes to SimPoint were needed to support this work.
The first was the ability to support many more intervals than
the previous design. This was accomplished by performing
the clustering on a randomly selected subset of intervals, and
then classifying the remaining intervals using that clustering.
The other major change was supporting non-uniform weights
in k-means and the BIC criterion. These changes were de-
scribed in Section 7.

Finally, we presented initial results using SimPoint and Se-
quitur with variable length intervals for creating a hierarchy
of variable length intervals.

Acknowledgments

We would like to thank the anonymous reviewers for provid-
ing helpful comments on this paper. This work was funded in
part by NSF grant No. CCR-0311710, NSF grant No. ACR-
0342522, UC MICRO grant No. 03-010, and a grant from In-
tel and Microsoft.

11

References
[1] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures.
In 33rd International Symposium on Microarchitecture, pages
245–257, 2000.

[2] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. W.
Hwu. Vacuum packing: Extracting hardware-detected program
phases for post-link optimization. In 35th International Sym-
posium on Microarchitecture, December 2002.

[3] M. V. Biesbrouck, T. Sherwood, and B. Calder. A co-phase ma-
trix to guide simultaneous multithreading simulation. In IEEE
International Symposium on Performance Analysis of Systems
and Software, March 2004.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report CS-TR-97-1342, U. of Wisconsin,
Madison, June 1997.

[5] P.J. Denning and S. C. Schwartz. Properties of the working-set
model. Communications of the ACM, 15(3):191–198, March
1972.

[6] A. Dhodapkar and J. Smith. Comparing program phase detec-
tion techniques. In 36th International Symposium on Microar-
chitecture, December 2003.

[7] A. Dhodapkar and J. E. Smith. Dynamic microarchitecture
adaptation via co-designed virtual machines. In International
Solid State Circuits Conference, February 2002.

[8] A. Dhodapkar and J. E. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In 29th Annual In-
ternational Symposium on Computer Architecture, May 2002.

[9] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Character-
izing and predicting program behavior and its variability. In
International Conference on Parallel Architectures and Com-
pilation Techniques, October 2003.

[10] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering
algorithms revisited. SIGKDD Explorations, 2(1):51–57, 2000.

[11] G. Hamerly, E. Perelman, and B. Calder. How to use simpoint
to pick simulation points. ACM SIGMETRICS Performance
Evaluation Review, 31(4), March 2004.

[12] M. Huang, J. Renau, and J. Torrellas. Positional adaptation
of processors: Application to energy reduction. In 30th An-
nual International Symposium on Computer Architecture, June
2003.

[13] C. Isci and M. Martonosi. Identifying program power phase
behavior using power vectors. In Workshop on Workload Char-
acterization, September 2003.

[14] C. Isci and M. Martonosi. Runtime power monitoring in high-
end processors: Methodology and empirical data. In 36th In-
ternational Symposium on Microarchitecture, December 2003.

[15] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen. Processor power reduction via single-ISA heteroge-
neous multi-core architectures. Computer Architecture Letters,
2, April 2003.

[16] J. Larus. Whole program paths. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 1999.

[17] J. Lau., S. Schoenmackers, and B. Calder. Structures for phase
classification. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, March 2004.

[18] J. Lau, S. Schoenmackers, and B. Calder. Transition phase clas-
sification and prediction. In 11th International Symposium on
High Performance Computer Architecture, February 2005.

[19] W. Liu and M. Huang. Expert: Expedited simulation exploiting
program behavior repetition. In International Conference on
Supercomputing, June 2004.

[20] M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George, J. Gyl-
lenhaal, and Wen mei W. Hwu. An architectural framework
for run-time optimization. IEEE Transactions on Computers,
50(6):567–589, June 2001.

[21] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware remote
profiling. In International Symposium on Code Generation and
Optimization, March 2005.

[22] C. G. Nevill-Manning and I. H. Witten. Compression and ex-
planation using hierarchical grammars. In The Computer Jour-
nal vol. 40, 1997.

[23] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large in-
tel itanium programs with dynamic instrumentation. In Sumb-
mitted to MICRO, 2004.

[24] E. Perelman, G. Hamerly, and B. Calder. Picking statistically
valid and early simulation points. In International Confer-
ence on Parallel Architectures and Compilation Techniques,
September 2003.

[25] F. Provost and V. Kolluri. A survey of methods for scaling up
inductive algorithms. Data Mining and Knowledge Discovery,
3(2):131–169, 1999.

[26] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction.
In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2004.

[27] T. Sherwood, E. Perelman, and B. Calder. Basic block distri-
bution analysis to find periodic behavior and simulation points
in applications. In International Conference on Parallel Archi-
tectures and Compilation Techniques, September 2001.

[28] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically characterizing large scale program behavior. In Pro-
ceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,
October 2002.

[29] T. Sherwood, S. Sair, and B. Calder. Phase tracking and pre-
diction. In 30th Annual International Symposium on Computer
Architecture, June 2003.

[30] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proceedings of the Con-
ference on Programming Language Design and Implementa-
tion, pages 196–205. ACM, 1994.

12

