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Abstract 
 

     With increasing adoption of Electronic System Level 
(ESL) tools, effective design and validation time has 
reduced to a considerable extent. Cosimulation is found to 
be a principal component of ESL tools to simulate the 
hardware designs and software models concurrently. It 
helps in providing an integrated system-on-chip design 
platform to get rid of most of the design errors in the early 
stage. To nail down these design errors early, a better 
debugging support of RTL memory on the software side is 
extremely useful. We present a just-in-time shadow memory 
technique that can allow debugging of RTL memory from a 
software perspective.  
     While cosimulation is fast compared to a complete 
hardware based simulation, the communication and 
synchronization overhead between the hardware and 
software simulators can be very significant. Since the two 
simulators have to communicate almost every cycle, a good 
communication platform is necessary to reduce this extra 
overhead. To evaluate this overhead, we implement and 
evaluate three communication primitives for a real system 
design with ARM926EJ-S processor and RTL memory. We 
find that a message-queue based communication backplane 
can alleviate the communication overhead to a 
considerable extent compared to other alternatives.  
 
1. Introduction 
 
Recently, software simulation tools (or ESL tools) are 
found to be very useful tools for the hardware designers to 
quickly explore a set of architectures with relaxed but 
acceptable timing accuracy [4]. The relaxed accuracy is 
acceptable because in the beginning stage of design, 
exploration speed is more important than accuracy to its 
traditional users. In hardware simulation, design is 
expressed in a hardware description language (HDL) and 

simulated in logic simulators (or HDL simulators). As this 
design is closer to hardware, it can provide more accurate 
results. But the overall design time and simulation speed 
makes embedded software development and validation 
impractical considering the ever-increasing scale of 
System-on-chip (SoC) designs. Hardware-software 
cosimulation is a hybrid approach where some IP models 
are expressed in a hardware description language and 
others are modeled in software. Cosimulation exploits 
benefits of both hardware simulation and software 
simulation to provide better flexibility and a fast simulation 
platform. It is found to be a viable solution to achieve fast 
and efficient architecture exploration. As HDL simulators 
require the models to be described in HDL, early-stage 
software models cannot be directly simulated with other 
hardware models. Similarly, software simulators require 
the models to be described in high-level languages like 
SystemC or C++, it is not straightforward to integrate with 
hardware models. Hence, cosimulation tools bridge the gap 
between hardware and software simulation and provide an 
architecture exploration platform for complete SoC design 
and in addition a verification platform where software 
models and hardware models can communicate. In ESL 
domain, developing an ESL model that accurately models 
the behavior of an existing hardware model takes 
significant effort. Though once the model is available, 
faster design exploration becomes possible. Transaction-
level models (TLMs) can be integrated with already-
available RTL IP models through cosimulation for 
validating a design, not requiring development efforts 
needed for building TLMs which in turn allows fast 
designer exploration. 
     Along with these advantages, there are some unique 
challenges associated with cosimulation such as how to 
provide better debugging support on the software side or 
how to achieve fast simulation speed by reducing the 
communication and synchronization overhead.  Debugging 



on the software side can be extremely difficult if there is no 
debugging support for RTL memory components on the 
software side. Hence, a good RTL memory view capability 
is required. To this end, we present a just-in-time shadow 
memory technique (patent pending) that can provide better 
debugging capabilities for RTL memory on the software 
side. To address the communication overhead, we evaluate 
three communication primitives using a real example with 
ARM926EJ-S processor with RTL memory. We find that 
message queue based implementation can provide much 
faster cosimulation compared to other alternatives. Overall, 
our contributions in this paper are as follows:  

o A just-in-time shadow memory technique is 
presented, which aids cosimulation by providing 
better debugging capabilities (memory view), fast 
cosimulation, disassembly support, and generating 
memory traces. (Section 3.1) 

o To achieve fast simulation, we need to minimize 
the communication and synchronization overhead 
between hardware and software simulators. We 
implement and evaluate three communication 
primitives on a real system design to find the 
better communication backplane in different 
scenarios. (Sections 3.2 and 4) 

      In the next section, we discuss some of the related 
works. In Section 3, we present just-in-time shadow 
memory techniques for better debugging support and the 
implementation details of communication and 
synchronization in our cosimulation platform. In Section 4, 
we present the communication backplane evaluation to find 
the best available communication primitive. We conclude 
in Section 5.  
 
2. Related Works 
 
Cosimulation has been very attractive among the system 
designers and researchers since the last decade. The main 
challenges associated with hardware-software cosimulation 
are achieving faster simulation, better synchronization in 
heterogeneous cosimulation environments, visibility of 
internal state for debugging, getting better timing accuracy 
and availability/type of software models.  The strength and 
weakness of various cosimulation techniques based on 
these challenges are compared in [8]. Most of these 
techniques are categorized based on the models used on the 
software and hardware side. Similarly, in [14] several key 
issues have been presented to combine the capabilities for 
software simulation and hardware simulation in a best 
possible manner.  
     Improving the speed of cosimulation with better timing 
accuracy is one of the most important challenges of 
cosimulation. Most of the previous works have focused on 
improving the speed of cosimulation [1,2,5,7,9,11,12,13], 
whereas only a few of them have looked into other 
different challenges [3,10]. Passerone et al. [7] proposed a 
technique to do fast cosimulation using constrained 
software synthesis that utilizes the run time estimation of a 

target processor. The estimation accuracy is limited by the 
caches, pipelined architectures, and communication cost. In 
[10], an integrated cosimulation environment is presented 
which allows the designers to model the entire system in 
one language C/C++. It does not interface with any HDL 
simulators. This technique limits the use of any third-party 
hardware core in the overall system design and verification 
process. A compiled simulation technique is presented in 
[13] that can generate bit-, cycle- and pin-accurate 
cosimulation engines which are much faster than the 
interpretive simulators. But any design changes require the 
recompilation of the system design. The techniques 
mentioned above are well suited in homogenous 
environments where only one integrated environment is 
used. 
     In heterogeneous environments, different simulators 
interact with each other that present a different set of 
problems compared to homogeneous environments. Kim et 
al. [1] presented an integrated and heterogeneous 
cosimulation environment that provides an automatic 
interface generation. Becker et al. [6] used distributed 
processes for cosimulation and tested their cosimulation 
environment by designing a network interface unit. The 
communication timing was less predictable in this 
approach due to communication between multiple 
distributed processes. Bishop et al. [2] present another 
heterogeneous cosimulation environment where time 
management and synchronization issues are addressed. In 
this scheme, as always, synchronization plays a big role in 
the overall cosimulation performance. 
     In [9], a trace-driven HW/SW cosimulation technique is 
proposed. In this paper, synchronization is addressed as 
major performance bottleneck to the system cosimulation. 
They alleviate the effect of the synchronization issues by 
using a virtual synchronization technique that makes use of 
the execution traces and the timing management of the 
execution traces. But in this scheme, the accuracy of 
cosimulation is dependent on the OS and channel model. 
Sung et al. [12] present a backplane approach for hardware-
software cosimulation. This approach tries to minimize the 
communication of control data between the simulators. 
     A completely different approach is presented by Lee et 
al. [5] where architecture simulators inherit circuit 
modeling capabilities and react to circuit characteristics 
such as latency, energy on a per-cycle basis, and still 
provides a considerable throughput. This technique can be 
applied to existing cosimulation tools to get delay and 
energy estimation along with performance estimation.  In a 
similar direction, a cosimulation based power estimation 
method is presented by Lajolo et al. [3]. Power estimation 
for different components of system-on-chip is done using 
concurrent and synchronized execution of multiple power 
estimators.  
     We use an ESL tool [15] that allows us to quickly 
evaluate the designs. It uses a SystemC core on the 
software side to provide fast cycle-based simulation and 
attempts to minimize the flow of information between the 



software simulator and RTL simulator. Since most of the 
time, the memory components are being simulated on the 
HDL side, it gets extremely slow and inflexible to debug 
the memory on the software side. To provide better 
debugging support of memory components, we present the 
just-in-shadow memory technique. Similarly, to address the 
issues of communication and synchronization overhead, we 
implement three communication primitives available on the 
Linux platform and in the next section we present its 
implementation details. Then, we use the ESL tool [15] to 
evaluate the overhead of a real system design with 
ARM926EJ-S processor.  
 
3. Addressing Cosimulation Challenges 
 
In this section, we address some of the key challenges in 
cosimulation by presenting the idea of just-in-time shadow 
memory that provides better debugging capabilities and 
also present how it is implemented in our synchronization 
and communication paradigm. 

3.1 RTL Memory Debugging 
One of the most common practices of cosimulation is that 
the core models run on an ESL simulator while memory 
subsystems (including the bus subsystems in most cases) 
are simulated on an RTL simulator. The reason being is 
that off-the-shelf ESL core models are more increasingly 
available in a mature state while the memory subsystem is 
likely to be the major target of a system design. In such 
cases, debugging gets difficult on the system simulation 
side because it doesn’t know anything about the memory 
on the RTL side and it cannot provide any debug accesses 
to memory directly. Many times, protected IP cores are 
simulated on the RTL side and debug accesses to the RTL 
memory or RTL peripherals with memory-mapped 
registers gets extremely difficult. A just-in-time shadow 
memory1 technique is presented, which provides a shadow 
memory on the ESL simulator side and it captures all 
debug writes to the RTL side and services all the debug 
reads. This technique is described in detail in the next 
subsection. 

3.1.1 Just-in-time shadow memory                                                                                                                                               
Just-in-time shadow memory technique1 helps in providing 
a uniform memory view, debug read/write access to RTL 
memory, disassembly support. In this technique, an 
identical copy of the RTL memory is maintained on the 
ESL simulator. All the debug read requests from the ESL 
simulator are served from shadow memory instead of RTL 
memory. The debug writes from the ESL simulator has to 
be written to both shadow memory and RTL memory. 
      The key difficulties in maintaining the identical copy 
are debug writes from ESL simulator, normal writes from 
the ESL simulator, and writes on the RTL side. All of these 
                                                        
1 Just-in-time shadow memory technique is filed for patent. 

different types of write accesses are updated on both sides 
as shown in Figure 1.  
     The debug writes from ESL simulator are sent to the 
RTL side as memory write command using file-based 
sockets. Just before the starting of the next cycle, any 
pending write accesses are updated on the RTL side by the 
use of programming language interface (PLI) of the RTL 
simulator. In this case, it becomes necessary to know the 
signal name of memory object in RTL design to do 
PLI/FLI/VPI/VHPI accesses. We provide a cosimulation 
configuration interface where user can specify the signal 
name of the memory and type of object. The wrapper 
library on the RTL side looks for the memory signal names 
when it is loaded for the first time in the RTL simulator. 
     Normal writes through signals should also be updated on 
the shadow memory side. This requires little changes to the 
RTL memory code to do a PLI/FLI/VPI/VHPI access. This 
access is responsible to send a memory write command on 
the ESL simulator. A separate thread on ESL simulator side 
is listening for any write commands from the RTL side. On 
receiving the memory write command from the RTL side, 
shadow memory is updated instantaneously. All RTL 
writes are also communicated to shadow memory in a 
similar fashion. A very minimal change is required on ESL 
simulator to make available the just-in-time shadow 
memory support, which can be quickly done with the help 
of provided examples. 
      All the write updates are communicated to either side to 
maintain an identical copy on both sides. Hence, the 
shadow memory and RTL memory are kept cycle-wise 
consistent. This considerably reduces the time to view the 
memory, to enable debug read/writes, and helps providing 
better debugging support on the ESL simulator through a 
well-defined debug interface.  
 

   
   

   
  S

of
tw

ar
e 

si
de

Shadow Memory

Read shadow
memory

Write shadow
memory

R
T

L 
C

om
m

an
d

Li
st

en
er

Communication Layer

Debug  writesDebug  reads

RTL Memory/Peripheral wth
memory-mapped registers

Write RTL
memory PLI

Read RTL
memory  PLI

   
   

   
  R

T
L 

si
de

P
en

di
ng

 w
rit

e
re

qu
es

ts

Normal
read/writes

RTL writes

1 1

 
Figure 1: Just-in-time shadow memory block diagram. All 
the debug reads are read from shadow memory.  Debug 
writes are written to shadow memory and pending writes are 
queued on RTL side. All the normal RTL writes are written 
back to shadow memory using a running thread on the ESL 
simulator side. 



3.2 Synchronization/Communication 
In this subsection, we talk about the synchronization and 
communication details.  

3.2.1 Synchronization 
In our implementation, all events taking place between two 
clock cycle edges are abstracted to one point during the 
cycle. At this point, two simulation interface functions, 
communicate and update are called [15]. In communicate 
function, all inter-component communication is done as the 
name implies. In update function, shared resources are 
updated while no communication takes place. The main 
scheduler calls these two functions of each component that 
comprises a system while emulating concurrency of the 
hardware components of the system.   For cosimulation, we 
have chosen the rising edge of a clock cycle for 
synchronization between the ESL simulator and the logic 
simulator. At the rising edge, the two functions, 
communicate and update are both called before returning 
control to the logic simulator.  
    Figure 2 illustrates how the ESL simulator and a logic 
simulator are synchronized while communicating for 
changes in signal values. There are four important events 
involved with the synchronization: 
   1) Beginning of the ESL simulator cycle 
The ESL simulator waits on a blocked read. The logic 
simulator executes and upon next rising edge of the clock it 
will send data via socket. The data arriving at the socket 
releases the blocked read on the ESL simulator side. All 

updates on signals in HDL simulation are sampled by the 
ESL simulator.  
   2) & 3) Communicate and Update 
The ESL simulator’s cycle-based computation is done in all 
models existing in the simulator. Changes in all the signals 
are accumulated in a data buffer while the HDL simulator 
is waiting on a blocking read. 
   4) End of the ESL simulator cycle 
Within the callback for this event, changes in all the signals 
are sent to the HDL simulator via a socket. (This releases 
the HDL simulator’s blocking read). 
      The HDL simulator samples the changes on signal 
values sent by the ESL simulator and applies them to the 
corresponding signal objects. Once the HDL simulator is 
free, it computes the changes on the signals connected to 
the transactor and accumulates them in a buffer for next 
event.  The ESL simulator is also let go free and the 
callback for the event of the beginning of ESL simulator 
cycle will be called incurring the next cycle’s wait on 
blocking read. The same entire process is continued for 
every cycle for both simulators. 

3.2.2  Communication 
As described in the previous subsection, at the 
synchronization points we need to transfer the changes in 
all exported signals using a communication primitive. 
Communication layer between the ESL simulator and RTL 
simulator plays a key role in overall performance and 
cycle-accurate synchronization.     In our implementation, 
we generate a proxy module (in HDL) which specifies all 
the exported signals from the software side to the hardware 

Blocked

Blocked

Running

Blocked

Running

RTL clock rises

Accumulating data buffer with
signal changes

write to socket
(blocked)

socket read
(blocked)

socket read servedNew HDL
Signal Values

socket read
(blocked)

transactor’s signal value 
changes are accumulated

on a data buffer

cycle finished

cycle started

write to socket
(blocked)

wait

wait

HDL Simulator The ESL Simulator

Update signal values (XTOR)

Running

socket read served

Update signal values
(XTOR-mapped singals)

New Transactor’s
Signal Values

wait

 
Figure 2: Synchronization between the ESL simulator and logic simulators. The light grey part shows when the simulator is 
blocked for a read/write operation, whereas the dark grey region shows the running status of the simulators. 



side. All the master signals are driven from the ESL 
simulator’s side and all the slave signals are driven from 
the RTL side. The communication data is in the form of 
driving these signals on either side.  
      All communications between the system components 
on ESL simulator side are in the form of transactions or 
signals. But RTL side does not understand the transaction-
level modeling. Hence, all the transactions to the RTL side 
must be converted into signals. A transactor that converts a 
transaction to a set of signals is placed in the ESL system 
design to export required signals. The transactor is 
responsible for driving and reading all the exported signals 
accurately. The implementation of the converter is based 
on the protocol of the transaction and should be 
implemented by the system designer.  
      The RTL layer library uses VPI/PLI accesses in case of 
Verilog and FLI/VHPI accesses in case of VHDL to access 
all the exported signals in RTL simulation. We find that 
our cosimulation speed is mainly limited by the speed of 
RTL simulation. Therefore, we try to minimize the number 
of PLI/VPI/FLI accesses to the RTL code as much as 
possible. There is also some delay overhead associated for 
communicating the data from RTL side to our side and vice 
versa on each cycle. We try to minimize the amount of data 
to be communicated by sending only the value changes in 
signals rather than the values of all the exported signals in 
each cycle.  
     All the data exchange between the simulator and logic 
simulators is done using file-based socket in Unix-based 
systems. While in window platform, a TCP/IP socket is 
used to transfer the data. Although TCP/IP based socket is 
a solution for remote cosimulation, but remote 
cosimulation is generally less preferred. For local 
cosimulation, file-based socket communication provides 
good performance on Unix-based systems because it does 
not incur the TCP/IP protocol overhead. System V IPC in 
Unix-based systems provides communication primitives 
such as shared memory, semaphores, and message queue. 
We compare the performance of cosimulation by 
implementing these communication primitives, which we 
discuss next. 
 
4. Evaluating Communication Primitives 
 
In this section, we present evaluation of communication 
backplane between the hardware and software simulators. 
Since the communication and synchronization overhead 
affects the overall speed of simulation, there is a pressing 
need to realistically quantify the cosimulation performance 
considering different communication primitives. We 
implement three communication primitives available in 
Linux system: 1) shared memory 2) message queue and 3) 
file-based socket. Since shared memory does not come 
with its own synchronization, we had to implement the 
synchronization part of the shared memory using 
semaphores. Due to this extra overhead, we found that 
cosimulation performance is almost more than hundred 

times worse than message queue or file-based socket 
implementation. So we need to find better synchronization 
mechanism for shared memory and we concentrate on 
message queue and file-based socket for the rest of our 
analysis.  
     We implement message queue communication routines 
and use the built-in features for synchronization. The main 
limitation in message queue is that the maximum size of 
the packet supported is 8192 bytes. Hence, to send larger 
size packets, it has divided into many chunks before 
communicating. We implement the file-based socket in the 
same way as message queue and the maximum size of the 
packet supported is 64 Kbytes.  
 
4.1  Changing Message Size 
We first evaluate the message queue and file-based socket 
primitives using a standalone environment where we 
change the size of the message. We communicate a million 
packets using both primitives and record the time of 
execution and using this time, we calculate the time of 
communicating a message of particular size for both 
primitives. The communication time for different sizes of 
messages (for both primitives) is shown in Figure 3.  The 
message size is shown on the x-axis in log scale, whereas 
y-axis shows the communication time in µs. As we can see 
that increase in communication time is less than 7% when 
we increase the message size up to 1024 bytes. But as we 
increase the message size from 1024 to 8192 bytes, we see 
a sharp increase in the communication overhead. In the 
case of message queue, the communication time increases 
about 20% when we increase the message size from 
4kbytes to 8Kbytes. For the same size increase in file-based 
socket, the percentage increase in communication time is 
found to be 25%.  When we compare both message queue 
and local socket, we find that message queue provides a 
significant lower communication overhead for all the 
message sizes. For example, to communicate a message of 

 
Figure 3: Evaluating communication primitives by varying 
packet size. The communication time overhead is shown 
on y-axis and packet size is shown on the x-axis in log 
scale. 



4kbytes, local socket based implementation requires more 
than two times of the communication overhead in message 
queue based implementation.  
 
4.2   Evaluating  ARM926EJ-S  Based  System 
    We evaluate both the communication primitives using an 
ARM926EJ-S system with RTL memory. We consider 
three scenarios: 1) When shadow memory is enabled and 
cache is disabled 2) Shadow memory is enabled and cache 
is enabled 3) shadow memory is disabled and cache is 
disabled. We measure the cosimulation performance in 
these three different scenarios for both message queue and 
file-based socket and the results are presented in Figure 4. 
When cache is disabled, the memory traffic is much higher 
and it involves much higher communication overhead as 
shown in the figure. We find that message queue 
implementation provides almost 50% more performance 
compared to file-based socket implementation for 
communication backplane. This is true for all three 
scenarios. From Figure 4, we can also see that we get slight 
increase in cosimulation performance when shadow 
memory is enabled (comparing scenario 2 and 3). For all 
the three scenarios, communication overhead is two times 
less in message queue based communication platform than 
that compared to local file based socket. Hence, message 
queue based communication backplane can provide 
significant performance advantage compared to a local file 
based socket implementation.  
 
5. Conclusion 
 
Hardware-software cosimulation is becoming more popular 
because of simulation speed and its usefulness in co-
verification space. We addressed some of the key 
challenges associated with cosimulation including 

debugging support and communication overhead. We 
presented the just-in-time shadow memory technique that 
provides RTL memory view, debug read/write accesses to 
RTL memory and better debugging capabilities on the ESL 
simulator side. The synchronization issues along with our 
implementation details between an RTL simulator and an 
ESL simulator was also described. We also presented a 
study of communication backplane implemented using 
different communication primitives. We find that message 
queue is a better solution for communication backplane 
instead of file-based sockets when cosimulation 
performance is evaluated for a real system design.  In the 
future, we plan to investigate the communication primitives 
for cosimulation using a multi-core system design. 
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all the three cases,  


