
Addressing the Challenges of Synchronization/Communication and
Debugging Support in Hardware/Software Cosimulation

Banit Agrawal Timothy Sherwood
Department of Computer Science

University of California, Santa Barbara
Email: {banit, sherwood}@cs.ucsb.edu

Chulho Shin Simon Yoon

ARM Inc., Irvine, CA
Email: {chulho.shin, simon.yoon}@arm.com

Abstract

 With increasing adoption of Electronic System Level
(ESL) tools, effective design and validation time has
reduced to a considerable extent. Cosimulation is found to
be a principal component of ESL tools to simulate the
hardware designs and software models concurrently. It
helps in providing an integrated system-on-chip design
platform to get rid of most of the design errors in the early
stage. To nail down these design errors early, a better
debugging support of RTL memory on the software side is
extremely useful. We present a just-in-time shadow memory
technique that can allow debugging of RTL memory from a
software perspective.
 While cosimulation is fast compared to a complete
hardware based simulation, the communication and
synchronization overhead between the hardware and
software simulators can be very significant. Since the two
simulators have to communicate almost every cycle, a good
communication platform is necessary to reduce this extra
overhead. To evaluate this overhead, we implement and
evaluate three communication primitives for a real system
design with ARM926EJ-S processor and RTL memory. We
find that a message-queue based communication backplane
can alleviate the communication overhead to a
considerable extent compared to other alternatives.

1. Introduction

Recently, software simulation tools (or ESL tools) are
found to be very useful tools for the hardware designers to
quickly explore a set of architectures with relaxed but
acceptable timing accuracy [4]. The relaxed accuracy is
acceptable because in the beginning stage of design,
exploration speed is more important than accuracy to its
traditional users. In hardware simulation, design is
expressed in a hardware description language (HDL) and

simulated in logic simulators (or HDL simulators). As this
design is closer to hardware, it can provide more accurate
results. But the overall design time and simulation speed
makes embedded software development and validation
impractical considering the ever-increasing scale of
System-on-chip (SoC) designs. Hardware-software
cosimulation is a hybrid approach where some IP models
are expressed in a hardware description language and
others are modeled in software. Cosimulation exploits
benefits of both hardware simulation and software
simulation to provide better flexibility and a fast simulation
platform. It is found to be a viable solution to achieve fast
and efficient architecture exploration. As HDL simulators
require the models to be described in HDL, early-stage
software models cannot be directly simulated with other
hardware models. Similarly, software simulators require
the models to be described in high-level languages like
SystemC or C++, it is not straightforward to integrate with
hardware models. Hence, cosimulation tools bridge the gap
between hardware and software simulation and provide an
architecture exploration platform for complete SoC design
and in addition a verification platform where software
models and hardware models can communicate. In ESL
domain, developing an ESL model that accurately models
the behavior of an existing hardware model takes
significant effort. Though once the model is available,
faster design exploration becomes possible. Transaction-
level models (TLMs) can be integrated with already-
available RTL IP models through cosimulation for
validating a design, not requiring development efforts
needed for building TLMs which in turn allows fast
designer exploration.
 Along with these advantages, there are some unique
challenges associated with cosimulation such as how to
provide better debugging support on the software side or
how to achieve fast simulation speed by reducing the
communication and synchronization overhead. Debugging

on the software side can be extremely difficult if there is no
debugging support for RTL memory components on the
software side. Hence, a good RTL memory view capability
is required. To this end, we present a just-in-time shadow
memory technique (patent pending) that can provide better
debugging capabilities for RTL memory on the software
side. To address the communication overhead, we evaluate
three communication primitives using a real example with
ARM926EJ-S processor with RTL memory. We find that
message queue based implementation can provide much
faster cosimulation compared to other alternatives. Overall,
our contributions in this paper are as follows:

o A just-in-time shadow memory technique is
presented, which aids cosimulation by providing
better debugging capabilities (memory view), fast
cosimulation, disassembly support, and generating
memory traces. (Section 3.1)

o To achieve fast simulation, we need to minimize
the communication and synchronization overhead
between hardware and software simulators. We
implement and evaluate three communication
primitives on a real system design to find the
better communication backplane in different
scenarios. (Sections 3.2 and 4)

 In the next section, we discuss some of the related
works. In Section 3, we present just-in-time shadow
memory techniques for better debugging support and the
implementation details of communication and
synchronization in our cosimulation platform. In Section 4,
we present the communication backplane evaluation to find
the best available communication primitive. We conclude
in Section 5.

2. Related Works

Cosimulation has been very attractive among the system
designers and researchers since the last decade. The main
challenges associated with hardware-software cosimulation
are achieving faster simulation, better synchronization in
heterogeneous cosimulation environments, visibility of
internal state for debugging, getting better timing accuracy
and availability/type of software models. The strength and
weakness of various cosimulation techniques based on
these challenges are compared in [8]. Most of these
techniques are categorized based on the models used on the
software and hardware side. Similarly, in [14] several key
issues have been presented to combine the capabilities for
software simulation and hardware simulation in a best
possible manner.
 Improving the speed of cosimulation with better timing
accuracy is one of the most important challenges of
cosimulation. Most of the previous works have focused on
improving the speed of cosimulation [1,2,5,7,9,11,12,13],
whereas only a few of them have looked into other
different challenges [3,10]. Passerone et al. [7] proposed a
technique to do fast cosimulation using constrained
software synthesis that utilizes the run time estimation of a

target processor. The estimation accuracy is limited by the
caches, pipelined architectures, and communication cost. In
[10], an integrated cosimulation environment is presented
which allows the designers to model the entire system in
one language C/C++. It does not interface with any HDL
simulators. This technique limits the use of any third-party
hardware core in the overall system design and verification
process. A compiled simulation technique is presented in
[13] that can generate bit-, cycle- and pin-accurate
cosimulation engines which are much faster than the
interpretive simulators. But any design changes require the
recompilation of the system design. The techniques
mentioned above are well suited in homogenous
environments where only one integrated environment is
used.
 In heterogeneous environments, different simulators
interact with each other that present a different set of
problems compared to homogeneous environments. Kim et
al. [1] presented an integrated and heterogeneous
cosimulation environment that provides an automatic
interface generation. Becker et al. [6] used distributed
processes for cosimulation and tested their cosimulation
environment by designing a network interface unit. The
communication timing was less predictable in this
approach due to communication between multiple
distributed processes. Bishop et al. [2] present another
heterogeneous cosimulation environment where time
management and synchronization issues are addressed. In
this scheme, as always, synchronization plays a big role in
the overall cosimulation performance.
 In [9], a trace-driven HW/SW cosimulation technique is
proposed. In this paper, synchronization is addressed as
major performance bottleneck to the system cosimulation.
They alleviate the effect of the synchronization issues by
using a virtual synchronization technique that makes use of
the execution traces and the timing management of the
execution traces. But in this scheme, the accuracy of
cosimulation is dependent on the OS and channel model.
Sung et al. [12] present a backplane approach for hardware-
software cosimulation. This approach tries to minimize the
communication of control data between the simulators.
 A completely different approach is presented by Lee et
al. [5] where architecture simulators inherit circuit
modeling capabilities and react to circuit characteristics
such as latency, energy on a per-cycle basis, and still
provides a considerable throughput. This technique can be
applied to existing cosimulation tools to get delay and
energy estimation along with performance estimation. In a
similar direction, a cosimulation based power estimation
method is presented by Lajolo et al. [3]. Power estimation
for different components of system-on-chip is done using
concurrent and synchronized execution of multiple power
estimators.
 We use an ESL tool [15] that allows us to quickly
evaluate the designs. It uses a SystemC core on the
software side to provide fast cycle-based simulation and
attempts to minimize the flow of information between the

software simulator and RTL simulator. Since most of the
time, the memory components are being simulated on the
HDL side, it gets extremely slow and inflexible to debug
the memory on the software side. To provide better
debugging support of memory components, we present the
just-in-shadow memory technique. Similarly, to address the
issues of communication and synchronization overhead, we
implement three communication primitives available on the
Linux platform and in the next section we present its
implementation details. Then, we use the ESL tool [15] to
evaluate the overhead of a real system design with
ARM926EJ-S processor.

3. Addressing Cosimulation Challenges

In this section, we address some of the key challenges in
cosimulation by presenting the idea of just-in-time shadow
memory that provides better debugging capabilities and
also present how it is implemented in our synchronization
and communication paradigm.

3.1 RTL Memory Debugging
One of the most common practices of cosimulation is that
the core models run on an ESL simulator while memory
subsystems (including the bus subsystems in most cases)
are simulated on an RTL simulator. The reason being is
that off-the-shelf ESL core models are more increasingly
available in a mature state while the memory subsystem is
likely to be the major target of a system design. In such
cases, debugging gets difficult on the system simulation
side because it doesn’t know anything about the memory
on the RTL side and it cannot provide any debug accesses
to memory directly. Many times, protected IP cores are
simulated on the RTL side and debug accesses to the RTL
memory or RTL peripherals with memory-mapped
registers gets extremely difficult. A just-in-time shadow
memory1 technique is presented, which provides a shadow
memory on the ESL simulator side and it captures all
debug writes to the RTL side and services all the debug
reads. This technique is described in detail in the next
subsection.

3.1.1 Just-in-time shadow memory
Just-in-time shadow memory technique1 helps in providing
a uniform memory view, debug read/write access to RTL
memory, disassembly support. In this technique, an
identical copy of the RTL memory is maintained on the
ESL simulator. All the debug read requests from the ESL
simulator are served from shadow memory instead of RTL
memory. The debug writes from the ESL simulator has to
be written to both shadow memory and RTL memory.
 The key difficulties in maintaining the identical copy
are debug writes from ESL simulator, normal writes from
the ESL simulator, and writes on the RTL side. All of these

1 Just-in-time shadow memory technique is filed for patent.

different types of write accesses are updated on both sides
as shown in Figure 1.
 The debug writes from ESL simulator are sent to the
RTL side as memory write command using file-based
sockets. Just before the starting of the next cycle, any
pending write accesses are updated on the RTL side by the
use of programming language interface (PLI) of the RTL
simulator. In this case, it becomes necessary to know the
signal name of memory object in RTL design to do
PLI/FLI/VPI/VHPI accesses. We provide a cosimulation
configuration interface where user can specify the signal
name of the memory and type of object. The wrapper
library on the RTL side looks for the memory signal names
when it is loaded for the first time in the RTL simulator.
 Normal writes through signals should also be updated on
the shadow memory side. This requires little changes to the
RTL memory code to do a PLI/FLI/VPI/VHPI access. This
access is responsible to send a memory write command on
the ESL simulator. A separate thread on ESL simulator side
is listening for any write commands from the RTL side. On
receiving the memory write command from the RTL side,
shadow memory is updated instantaneously. All RTL
writes are also communicated to shadow memory in a
similar fashion. A very minimal change is required on ESL
simulator to make available the just-in-time shadow
memory support, which can be quickly done with the help
of provided examples.
 All the write updates are communicated to either side to
maintain an identical copy on both sides. Hence, the
shadow memory and RTL memory are kept cycle-wise
consistent. This considerably reduces the time to view the
memory, to enable debug read/writes, and helps providing
better debugging support on the ESL simulator through a
well-defined debug interface.

 S

of
tw

ar
e

si
de

Shadow Memory

Read shadow
memory

Write shadow
memory

R
T

L
C

om
m

an
d

Li
st

en
er

Communication Layer

Debug writesDebug reads

RTL Memory/Peripheral wth
memory-mapped registers

Write RTL
memory PLI

Read RTL
memory PLI

 R

T
L

si
de

P
en

di
ng

 w
rit

e
re

qu
es

ts

Normal
read/writes

RTL writes

1 1

Figure 1: Just-in-time shadow memory block diagram. All
the debug reads are read from shadow memory. Debug
writes are written to shadow memory and pending writes are
queued on RTL side. All the normal RTL writes are written
back to shadow memory using a running thread on the ESL
simulator side.

3.2 Synchronization/Communication
In this subsection, we talk about the synchronization and
communication details.

3.2.1 Synchronization
In our implementation, all events taking place between two
clock cycle edges are abstracted to one point during the
cycle. At this point, two simulation interface functions,
communicate and update are called [15]. In communicate
function, all inter-component communication is done as the
name implies. In update function, shared resources are
updated while no communication takes place. The main
scheduler calls these two functions of each component that
comprises a system while emulating concurrency of the
hardware components of the system. For cosimulation, we
have chosen the rising edge of a clock cycle for
synchronization between the ESL simulator and the logic
simulator. At the rising edge, the two functions,
communicate and update are both called before returning
control to the logic simulator.
 Figure 2 illustrates how the ESL simulator and a logic
simulator are synchronized while communicating for
changes in signal values. There are four important events
involved with the synchronization:
 1) Beginning of the ESL simulator cycle
The ESL simulator waits on a blocked read. The logic
simulator executes and upon next rising edge of the clock it
will send data via socket. The data arriving at the socket
releases the blocked read on the ESL simulator side. All

updates on signals in HDL simulation are sampled by the
ESL simulator.
 2) & 3) Communicate and Update
The ESL simulator’s cycle-based computation is done in all
models existing in the simulator. Changes in all the signals
are accumulated in a data buffer while the HDL simulator
is waiting on a blocking read.
 4) End of the ESL simulator cycle
Within the callback for this event, changes in all the signals
are sent to the HDL simulator via a socket. (This releases
the HDL simulator’s blocking read).
 The HDL simulator samples the changes on signal
values sent by the ESL simulator and applies them to the
corresponding signal objects. Once the HDL simulator is
free, it computes the changes on the signals connected to
the transactor and accumulates them in a buffer for next
event. The ESL simulator is also let go free and the
callback for the event of the beginning of ESL simulator
cycle will be called incurring the next cycle’s wait on
blocking read. The same entire process is continued for
every cycle for both simulators.

3.2.2 Communication
As described in the previous subsection, at the
synchronization points we need to transfer the changes in
all exported signals using a communication primitive.
Communication layer between the ESL simulator and RTL
simulator plays a key role in overall performance and
cycle-accurate synchronization. In our implementation,
we generate a proxy module (in HDL) which specifies all
the exported signals from the software side to the hardware

Blocked

Blocked

Running

Blocked

Running

RTL clock rises

Accumulating data buffer with
signal changes

write to socket
(blocked)

socket read
(blocked)

socket read servedNew HDL
Signal Values

socket read
(blocked)

transactor’s signal value
changes are accumulated

on a data buffer

cycle finished

cycle started

write to socket
(blocked)

wait

wait

HDL Simulator The ESL Simulator

Update signal values (XTOR)

Running

socket read served

Update signal values
(XTOR-mapped singals)

New Transactor’s
Signal Values

wait

Figure 2: Synchronization between the ESL simulator and logic simulators. The light grey part shows when the simulator is
blocked for a read/write operation, whereas the dark grey region shows the running status of the simulators.

side. All the master signals are driven from the ESL
simulator’s side and all the slave signals are driven from
the RTL side. The communication data is in the form of
driving these signals on either side.
 All communications between the system components
on ESL simulator side are in the form of transactions or
signals. But RTL side does not understand the transaction-
level modeling. Hence, all the transactions to the RTL side
must be converted into signals. A transactor that converts a
transaction to a set of signals is placed in the ESL system
design to export required signals. The transactor is
responsible for driving and reading all the exported signals
accurately. The implementation of the converter is based
on the protocol of the transaction and should be
implemented by the system designer.
 The RTL layer library uses VPI/PLI accesses in case of
Verilog and FLI/VHPI accesses in case of VHDL to access
all the exported signals in RTL simulation. We find that
our cosimulation speed is mainly limited by the speed of
RTL simulation. Therefore, we try to minimize the number
of PLI/VPI/FLI accesses to the RTL code as much as
possible. There is also some delay overhead associated for
communicating the data from RTL side to our side and vice
versa on each cycle. We try to minimize the amount of data
to be communicated by sending only the value changes in
signals rather than the values of all the exported signals in
each cycle.
 All the data exchange between the simulator and logic
simulators is done using file-based socket in Unix-based
systems. While in window platform, a TCP/IP socket is
used to transfer the data. Although TCP/IP based socket is
a solution for remote cosimulation, but remote
cosimulation is generally less preferred. For local
cosimulation, file-based socket communication provides
good performance on Unix-based systems because it does
not incur the TCP/IP protocol overhead. System V IPC in
Unix-based systems provides communication primitives
such as shared memory, semaphores, and message queue.
We compare the performance of cosimulation by
implementing these communication primitives, which we
discuss next.

4. Evaluating Communication Primitives

In this section, we present evaluation of communication
backplane between the hardware and software simulators.
Since the communication and synchronization overhead
affects the overall speed of simulation, there is a pressing
need to realistically quantify the cosimulation performance
considering different communication primitives. We
implement three communication primitives available in
Linux system: 1) shared memory 2) message queue and 3)
file-based socket. Since shared memory does not come
with its own synchronization, we had to implement the
synchronization part of the shared memory using
semaphores. Due to this extra overhead, we found that
cosimulation performance is almost more than hundred

times worse than message queue or file-based socket
implementation. So we need to find better synchronization
mechanism for shared memory and we concentrate on
message queue and file-based socket for the rest of our
analysis.
 We implement message queue communication routines
and use the built-in features for synchronization. The main
limitation in message queue is that the maximum size of
the packet supported is 8192 bytes. Hence, to send larger
size packets, it has divided into many chunks before
communicating. We implement the file-based socket in the
same way as message queue and the maximum size of the
packet supported is 64 Kbytes.

4.1 Changing Message Size
We first evaluate the message queue and file-based socket
primitives using a standalone environment where we
change the size of the message. We communicate a million
packets using both primitives and record the time of
execution and using this time, we calculate the time of
communicating a message of particular size for both
primitives. The communication time for different sizes of
messages (for both primitives) is shown in Figure 3. The
message size is shown on the x-axis in log scale, whereas
y-axis shows the communication time in µs. As we can see
that increase in communication time is less than 7% when
we increase the message size up to 1024 bytes. But as we
increase the message size from 1024 to 8192 bytes, we see
a sharp increase in the communication overhead. In the
case of message queue, the communication time increases
about 20% when we increase the message size from
4kbytes to 8Kbytes. For the same size increase in file-based
socket, the percentage increase in communication time is
found to be 25%. When we compare both message queue
and local socket, we find that message queue provides a
significant lower communication overhead for all the
message sizes. For example, to communicate a message of

Figure 3: Evaluating communication primitives by varying
packet size. The communication time overhead is shown
on y-axis and packet size is shown on the x-axis in log
scale.

4kbytes, local socket based implementation requires more
than two times of the communication overhead in message
queue based implementation.

4.2 Evaluating ARM926EJ-S Based System
 We evaluate both the communication primitives using an
ARM926EJ-S system with RTL memory. We consider
three scenarios: 1) When shadow memory is enabled and
cache is disabled 2) Shadow memory is enabled and cache
is enabled 3) shadow memory is disabled and cache is
disabled. We measure the cosimulation performance in
these three different scenarios for both message queue and
file-based socket and the results are presented in Figure 4.
When cache is disabled, the memory traffic is much higher
and it involves much higher communication overhead as
shown in the figure. We find that message queue
implementation provides almost 50% more performance
compared to file-based socket implementation for
communication backplane. This is true for all three
scenarios. From Figure 4, we can also see that we get slight
increase in cosimulation performance when shadow
memory is enabled (comparing scenario 2 and 3). For all
the three scenarios, communication overhead is two times
less in message queue based communication platform than
that compared to local file based socket. Hence, message
queue based communication backplane can provide
significant performance advantage compared to a local file
based socket implementation.

5. Conclusion

Hardware-software cosimulation is becoming more popular
because of simulation speed and its usefulness in co-
verification space. We addressed some of the key
challenges associated with cosimulation including

debugging support and communication overhead. We
presented the just-in-time shadow memory technique that
provides RTL memory view, debug read/write accesses to
RTL memory and better debugging capabilities on the ESL
simulator side. The synchronization issues along with our
implementation details between an RTL simulator and an
ESL simulator was also described. We also presented a
study of communication backplane implemented using
different communication primitives. We find that message
queue is a better solution for communication backplane
instead of file-based sockets when cosimulation
performance is evaluated for a real system design. In the
future, we plan to investigate the communication primitives
for cosimulation using a multi-core system design.

References

[1] Kyuseok Kim, Yongjoo Kim, Youngsoo Shin and Kiyoung Choi,

“An integrated hardware-software cosimulation environment with
automated interface generation”, Seventh IEEE International
Workshop on Rapid System Prototyping, pp. 66 – 71, June 1996.

[2] William D. Bishop and Wayne M. Loucks, "A Heterogeneous
Environment for Hardware / Software Cosimulation," in the
Proceedings of the 30th Annual Simulation Symposium, pp. 14-22,
Atlanta, Georgia, April 1997.

[3] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, “Cosimulation-
Based Power Estimation for System-on-Chip Design”, IEEE
Transactions on VLSI Systems, Vol. 10, No. 3, pp. 253-266, June
2002.

[4] C. Lennard and D. Mista. "Taking Design to the System Level",
ARM White paper, April 2005.

[5] S. Lee, S. Das, V. Bertacco, T. Austin, D. Blaauw, and T. Mudge,
.Circuit-Aware Architectural Simulation,. in the 41st Design
Automation Conference (DAC-2004), June 2004.

[6] D. Becker, R. K. Singh, and S. G. Tell. “An engineering
environment for hardware/software co-simulation”. In Readings in
Hardware/Software Co-Design, Kluwer Academic Publishers,
Norwell, MA, 550-555.

[7] C. Passerone, L. Lavagno, M. Chiodo, and A. Sangiovanni-
Vincentelli, "Hardware/Software Co-Simulation for Virtual
Prototyping and Trade-off Analysis", in Proceedings of the 34th
Design Automation Conference (DAC'97), Anaheim, California,
USA, June 9-13, 1997, pp. 389-394.

[8] J. Rowson. "Hardware/Software Co-Simulation," Design
Automation Conference Proceedings, June 1994, pg 439.

[9] D. Kim, Y. Yi and S. Ha. "Trace-Driven HW/SW Cosimulation
Using Virtual Synchronization Technique", Design Automation
Conference Proceedings June 13-17 2005

[10] L. Séméria and A. Ghosh. "Methodology for hardware/software co-
verification in C/C++". In ASP-DAC 2000: pages 405-408.

[11] C. Liem, F. Naçabal, C. A. Valderrama, P. G. Paulin, and A. A.
Jerraya. "System-on-a-Chip Cosimulation and Compilation". IEEE
Design & Test of Computers 14(2), pages 16-25, 1997.

[12] W. Sung and S. Ha. "Optimized Timed Hardware Software
Cosimulation without Roll-back". In DATE 1998, pages 945-946.

[13] V. zivojnovic and H. Meyr. "Compiled HW/SW co-simulation". In
Proceedings of the 33rd Annual Conference on Design Automation,
Las Vegas, Nevada, United States, June 03 - 07, 1996.

[14] B. Bailey, R. Klein, S. leef. "Hardware/software Co-Simulation
Strategies for the future", White paper.

[15] ARM Ltd., "Cycle-Accurate Simulation Interface (CASI) –
RealView ESL API”
(http://www.arm.com/products/DevTools/RealViewESLAPIs.htm

0

0.5

1

1.5

2

2.5

3

3.5

4

shadow memory enabled
and cache disabled

shadow memory enabled
and cache enabled

shadow memory
disabled and cache

enabled

T
o

ta
l s

im
u

la
ti

o
n

tim
e

in
 s

ec
o

n
d

s

file based socket message queue

Figure 4: Communication/Synchronization overhead for a
real system with ARM926EJ-S processor with RTL memory.
Three configurations are compared as shown. Message
queue based implementation is shown to perform better in
all the three cases,

