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Abstract In this paper, we report the results of a com-
prehensive study of the security level versus the execution
performance (and resource requirements) for hardware imple-
mentations of small elliptic curves, particularly targeted for
lightweight applications, such as RFID tags and sensor nodes.
The case study was performed for small elliptic curves
(41–163 bits) over GF(2m), where finite field elements are
represented using polynomial and Gaussian normal bases.
The idea behind using elliptic curves in this range is that
we obtain small implementations suitable for the men-
tioned applications, however, this would be at the cost
of less security since the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP) would be easier to break, i.e.,
would require fewer resources and less time for such small
curves. Therefore, one must investigate both sides of the
coin: first, hardware resources to implement such ellip-
tic curves and the resulting total execution time for a
single point multiplication; second, hardware resources to
break such a curve and the resulting cost in terms of a
defined metric, such as the total amount devices or dol-
lars to solve the ECDLP in a given time duration. Fol-
lowing this reasoning, we studied the hardware (FPGA)
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implementations of small elliptic curves and determined the
amount of resources (number of ALUTs, MEMs, REGs,
the duration of clock, the total number of clock cycles and
the total execution time) needed for a single point multiplica-
tion operation. We also studied the security level of each one
of these curves, based on an attack model an associated cost
metric. Under our proposed attack model, which we believe
is very innovative; we considered three different platforms,
namely PC, FPGA, and cloud computing. Due to the com-
plexity of Cloud Computing configurations, we considered
two different performance instances, namely, small (low bud-
get) and high performance (relatively high budget). We then
calculated the amount of resources and the total amount of
dollars needed to solve each particular ECDLP, under dif-
ferent assumptions. We believe the results of our study will
allow designers to select the appropriate curve for each appli-
cation and the device, based on the perceived (or real) threat
models that device is operating and the performance require-
ments of the elliptic curve protocol, such as ECDH, ECDH,
or ECIES.

Keywords ECC · ECDLP · Polynomial basis ·
Normal basis · FPGA · VHDL

1 Introduction

Advances in wireless communications and sensor technolo-
gies allow for the development of wireless sensor networks.
However, these networks are resource constrained in terms
of energy, computation, and memory, and they are vulnerable
to attacks due to the use of unsecure wireless communication
channel and lack of infrastructure. In this case, lightweight
cryptography is an important topic due to the trade-off
between cost, security and performance. On the other hand,

123



180 J Cryptogr Eng (2012) 2:179–188

public key cryptosystems are slower than symmetric systems
but they provide high levels of security in a network. In recent
years, elliptic curve cryptosystems (ECC) have increased in
many applications due to the use of smaller key size than other
cryptosystems such as RSA and use less power. In this case,
ECC allows for a compact implementation for a given level
of security. In this work, small elliptic curve hardware imple-
mentations have been designed for lightweight applications.
In addition, in order to show how secure the designed proces-
sors are, an attack model is shown for different key sizes and
using different platforms: PC, FPGA and Cloud Computing
(small and high performance instances). This paper is orga-
nized as follows. Section 2 shows some related works. In
Sect. 3, the mathematical background on elliptic curves and
finite fields is introduced. In Sect. 4, we describe the attack
model for small elliptic curves, based on different platforms:
PC, FPGA and cloud computing using small and high perfor-
mance instances. In Sect. 5, synthesis results of the selected
small elliptic curves are shown. Finally, in Sect. 6, the paper
is concluded.

2 Related work

There has been an increasing research in lightweight appli-
cations because of its applications in sensor networks; some
of the papers about small implementations of cryptographic
algorithms are presented in this section. In [1], a low power
ECC processor is described, which uses 6,718 gates in a
0.13 µm CMOS technology over GF(2131), which is a good
idea of the level of security, which is approximately 65 bits
of real security. In this work, the consumed power is 30 µW
and the operating frequency is 500 MHz. In [2], the author
presents a Modular Arithmetic Logic Unit (MALU) that
can be used for both RSA and curve-based cryptography,
in this case, the field sizes for ECC and HECC are scal-
able. Another part of that work described embedded systems
using hardware/software co-design. The author implemented
RSA 1024 and ECC over an 160-bit prime field on the 8051
microprocessor and the ECC over GF(2163) and HECC over
GF(283) designs on the ARM microprocessor and another
design is a high speed programmable crypto processor sup-
porting ECC over GF(2571) and HECC over GF(2283) syn-
thesized with 0.13 µm CMOS technology. For low-power
implementation, ECC over GF(2131) can be performed using
a power consumption of 22 µW with a 500 kHz clock. In [3],
a configurable library (TinyECC) written in nesC for ECC
operations in wireless sensor networks is described, that can
be flexibly configured and integrated into sensor network
applications. They perform the evaluation on platforms like
MICAz, TelosB, Tmote Sky and Imote 2. TinyECC includes
elliptic curve parameters recommended by SECG. In this
case, TinyECC uses elliptic curve cryptography defined over
a 160-bit prime field, and implements schemes such as

ECDH, ECDSA, and ECIES. In [4], the design of an ECC
processor over the 192-bit prime field is shown. In this case,
the ECC processor shows an area of 0.35 mm2 using 180 nm
CMOS technology at a frequency of 175 kHz for RFID appli-
cations. In [5], an ECC implementation is performed on the
8bit ATMEGA128 micro-controller, which is the heart of
MICA2 platform. However, they chose an elliptic curve over
GF(2113) because it offered more security than GF(2109). In
that case, ECDLP over GF(2109) was solved and it took 17
months. In this work, the authors implemented ECDH and
ECDSA schemes. In [6], the authors present the design of an
elliptic curve processor for RFID over GF(2131), GF(2139),
GF(2163) using 0.25 µm CMOS technology. They imple-
mented an elliptic curve version of Schnorraes identification
protocol. In [7], the authors are focused on processing unit of
a sensor node. In this case microcontrollers are suitable for
wireless sensor network environments. Hence the selection
of the microcontroller depends on the applications, energy
consumption, storage, speed, and external I/O ports. In this
work, microcontrollers are classified by their capabilities:
Weak microcontrollers are highly constrained; Heavy duty
ones are very powerful microcontrollers and Normal ones
are resource-constrained but powerful enough to hold a com-
plex application. In [8], a comparison between three different
PKC implementations is given: Rabins scheme, NTRUEn-
crypt architecture, and ECC architecture. For Rabins scheme
the multiplier circuit consumes a chip area of less than 17,000
gates with an average power consumption of 148.18 µW. For
NTRUEncrypt architecture, it takes up a chip area of less than
3,000 gates consuming less than 20 µW, while a highly paral-
lelized variant with 84 arithmetic units uses up to 16200 gates
and approximately 120 µW at 500 kHz. For ECC architec-
ture over a prime field, where p = (2101 + 1)/3, the area is
equivalent to 18,720 gates and consumes just under 400 µW
of power at a clock frequency of 500 kHz. In [9], the imple-
mentation of NTRUEncrypt in ASIC standard cell logic is
presented. It uses about 3,000 gates with an average power
consumption of less than 20 µW. Also, the authors present an
implementation of Rabin’s Scheme in a chip area of less than
17,000 gates with its accompanying static power consump-
tion of 117.5 µW. Both of them are working at the frequency
of 500 kHz. In [10], the authors presented a review of selected
lightweight cryptographic implementations on hardware and
software for symmetric and asymmetric ciphers. Besides a
hardware implementation of ECC over GF(2113), GF(2131),
GF(2163), and GF(2193).

3 Mathematical background

Elliptic curve cryptosystems are widely used in modern infor-
mation technologies. In this section, some mathematical fun-
damentals are presented.
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3.1 Elliptic curves arithmetic over GF(2m)

An elliptic curve E over the binary field GF(2m), is defined
by the Eq. 1,

y2 + xy = x3 + ax2 + b (1)

where a and b ∈ GF(2m), b �= 0. It is well known that the
set of points P = (x, y), where x, y ∈ GF(2m), that satisfy
the equation, together with the point ∞, called the point at
infinity serving as the identity, form an additive commutative
group Ea,b.

3.2 Representation of elements of binary fields

The binary field GF(2m) or characteristic two finite field con-
tains 2m elements and can be view as a vector space over
GF(2) with dimension m. All field elements can be repre-
sented uniquely as binary vectors of dimension m. There is
a variety of ways to represent elements in a binary finite
field, depending of the choice of a basis for representation.
Polynomial basis and normal basis are commonly used and
supported by the NIST [12] and other standards.

3.2.1 Polynomial basis

Finite fields of order 2m are called binary fields or character-
istic two finite fields. One way to construct GF(2m) is to use
a polynomial basis representation: The elements of GF(2m)
are the binary polynomials of degree at most m − 1:

GF(2m) = am−1xm−1 + . . . + a2x2 + a1x + 1 :
ai ∈ 0, 1, 0 ≤ i ≤ m − 1 (2)

Let p(x) = xm + pm−1xm−1 + . . . + p2x2 + p1x + 1
(where pi ∈ GF(2)) be an irreducible polynomial of degree
m over GF(2). Irreducibility of p(x) means that the polyno-
mial cannot be factored as a product of binary polynomials
with degree less than m. In [11], Seroussi shows different irre-
ducible trinomials and pentanomials for different key lengths.

The field element is usually denoted by the bit string
(am−1am−2 . . . a1a0) of length m, thus the elements of
G F(2m) can be represented by the set of all binary strings
of length m. The multiplicative identity element ’1’ is repre-
sented by the bit string (00…01) while the additive identity
element is represented by the bit string of all 0’s.

Field operations: the following arithmetic operations are
defined on the elements of GF(2m) when using a polynomial
basis representation with reduction polynomial p(x):

Addition: If we define the elements a, b ∈ GF(2m) to be
the polynomials A(x) = ∑m−1

i=0 ai xi , B(x) = ∑m−1
i=0 bi xi

respectively, then their sum is written:

S(x) = A(x) + B(x) =
m−1∑

i=0

(ai + bi )xi (3)

Where, a = (am−1am−2 . . . a1a0) and b=(bm−1bm−2 . . . b1b0)

are elements of GF(2m), then a+b = c = (cm−1cm−2 . . . c1c0)

where the bit additions in Eq. (3) (ai + bi ) are performed
modulo 2.

Multiplication: finite field multiplication of two field ele-
ments, where A(x) = ∑m−1

i=0 ai xi , B(x) = ∑m−1
i=0 bi xi and

C(x) = ∑m−1
i=0 ci xi can be carried out by multiplying A(x)

and B(x) and performing reduction modulo p(x) or alterna-
tively by interleaving multiplication and reduction, then the
multiplication is shown as follows:

(b(x)am−1xm−1 + . . . + b(x)a1x + b(x)a0) mod p(x) (4)

C(x) =
m−1∑

i=0

b(x)ai xi mod p(x) (5)

Inversion: if a is a nonzero element in GF(2m ), the inverse
of a, denoted a−1 is the element c ∈ GF(2m) for which
a ∗ c = 1.

3.2.2 Normal basis

Normal basis representations of an element over the finite
field GF(2m) have the computational advantage that squaring
an element can be done very efficiently. However multiplying
different elements can be cumbersome, in general for this
reason ANSI X9.62 specifies that Gaussian Normal Basis
(GNB) should be used, thus the multiplication is both simpler
and more efficient [12]. A normal basis for GF(2m) is as
follows: {β, β2, β22

, . . . , β2m−1}, where β ∈ GF(2m) and
any element α ∈ GF(2m) can be written as follows:

a =
m−1∑

i=0

β2i
(6)

The type T of a GNB is a positive integer, and allows mea-
suring the complexity of the multiplication operation with
respect to that basis. Generally, the type T of smaller value
allows making a more efficient multiplication. For a given m
and T , the field GF(2m) can have at most one GNB of type
T . A GNB exists whenever m is not divisible by 8. Let m
and T be positive integers. Then the type T of a GNB for
GF(2m) exists if and only if p = T m + 1 is prime. Table 1
shows different irreducible trinomials and pentanomials for
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Table 1 Type of GNB for
different key lengths m Type

41 2

53 2

79 4

89 2

97 4

113 2

163 4

different key lengths. If {β, β2, β22
, . . . , β2m−1} is a GNB

in the finite field GF(2m), then the element a = ∑m−1
i=0 β2i

is
represented by the binary string (am−1am−2 . . . a1a0), where
ai ∈ {0, 1}. In this case, the bit string of all 1’s represents
the multiplicative identity element. The bit string of all 0’s
represents the additive identity element. An important result
for the arithmetic of the GNB is the Fermat’s little Theorem.
For all β ∈ GF(2m) so that:

{β2}m = β (7)

This theorem is important to carry out the squaring of an
element in the finite field GF(2m).

Field operations: the following arithmetic operations are
defined on the elements of GF(2m), when using a normal
basis representation. The following arithmetic operations are
defined on the elements of GF(2m), when using a GNB of
type T :

Addition: If (am−1am−2 . . . a1a0) and (bm−1bm−2 . . . b1b0)

are elements of GF(2m), then a+b=c=(cm−1cm−2 . . . c1c0)

where ci = (ai + bi ) mod 2.

Squaring: Let a = (am−1am−2 . . . a1a0) ∈ GF(2m), then

a2 = (
∑m−1

i=0 aiβ
2i

)2 =
∑m−1

i=0 aiβ
2i+1

=
∑m−1

i=0 ai−1β
2i

due to Fermat’s little Theorem β2m = β; then a2 =
(am−2 . . . a1a0am−1), in this case, squaring is a simple rota-
tion of the vector representation.

Multiplication: in order to perform a multiplication, first,
it is necessary to build a function F(U,V) on inputs U =
(um−1um−2 . . . u1u0) and V = (vm−1vm−2 . . . v1v0) as
follows:

F(U, V ) =
p−2∑

k=0

U j (k+1)Vj (p−k) (8)

From Eq. 8 the sub indexes j(k+1) and j(p−k) can be
computed as is shown in Algorithm 1.

The computation of J (k) needs only be performed
once per basis. Then, the product (cm−1cm−2 . . . c1c0) =
(am−1am−2 . . . a1a0) × (bm−1bm−2 . . . b1b0) can be com-
puted. In this case, Algorithm 2 shows the GNB multipli-
cation algorithm.

Inversion: if a �= 0 and a ∈ GF(2m), the inverse of a, is
the unique element c ∈ GF(2m) for which ac = 1, where
c = a−1. The algorithm used for inversion is based on the
identity:

a−1 = a2m−2 = (a2m−1−1)2 (9)

In [13], Itoh and Tsujii proposed a method that mini-
mizes the number of multiplications to calculate the inver-
sion, which is based on the following identities:

a2m−1−1 =
{

(a2
m−1

2 −1
)2

m−1
2 a2

m−1
2 −1

m odd

a(a2m−2−1)2 m even
(10)
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3.3 Elliptic Curve Point Multiplication

This work uses the López and Dahab [14] point multipli-
cation, which does not have any extra storage requirements
and the same operations (doubling and addition points) are
performed in each iteration of the main loop, then it poten-
tially increases the resistance to timing attacks. In terms
of finite field multiplication, the approximate cost of com-
puting kP using López and Dahab algorithm is 6m + 20,
which is an efficient implementation of Montgomery’s lad-
der method for computing kP on non-supersingular elliptic
curves over GF(2m). the Algorithm 3 is shown as follown
next.

4 Attack model for small elliptic curves

In this paper, small elliptic curves for lightweight appli-
cations are considered, this section will analyze the time
to solve the Elliptic Curve Discrete Logarithm Problem
(ECDLP) for each curve as well as the amount of resources
that are needed to break an ECC system using different plat-
forms. The best algorithm to solve the ECDLP is Pollard’s
rho algorithm [15]. The method searches for a collision in
a pseudo-random walk through the points in a curve. In this
case, the expected number of iterations or steps to solve the

ECDLP is:
√

π×2m

2 . Taking into account the equation for the
number of steps to solve the ECDLP, the time in days to solve
the ECDLP performed for one machine is:

Fig. 1 Number of cycles of finite field multiplication based on [16]

Tbrk−days =
√

π2m

2

60 × 60 × 24 × l
(11)

where l is the number of iterations per second in one machine.
Due to one iteration or step is equivalent to the time to per-

form one point addition; in this work a point addition uses
López Dahab projective coordinates which is the most pop-
ular way to represent points in elliptic curves over GF(2m).
In this case, a point addition operation costs 8M +5S = 9M
[16]. Where M and S are the time to perform one multi-
plication and one squaring over GF(2m) respectively. Based
on [17], the number of machines to carry out an attack in
seconds in order to solve the ECDLP is shown as follows:

√
π2m

2
freq. of machine
no. of cycles per step

no. of cores of the machine

× time to break in seconds
(12)

In this work, results from the López Dahab multiplication
[16] are used and scaled to a lower field in order to obtain
the number of cycles for finite field multiplication over small
fields. In this case, three different processors are taken into
account in order to calculate the number of cycles to per-
form one finite field multiplication. From a core 2 65 nm
(core 2 I) the number of cycles to perform the finite field mul-
tiplication is determined by 0.0018 m2+1.0629 m−11.0869;
the number of cycles for a core 2 45 nm (core 2 II) is
determined by 0.0017 m2 + 0.9929 m − 17.447 and the
number of cycles for a core i7 45 nm is determined by
0.0018 m2 + 1.0198 m − 25.543 clock cycles, where m is
the number of bits of the ECC. Figure 1 shows the number of
cycles to perform one finite field multiplication for different
key sizes [16].

Four assumed cases are taken into account in order to solve
the ECDLP, each case is performed in a different platform

123



184 J Cryptogr Eng (2012) 2:179–188

such as personal computer (PC), FPGA, cloud computing
using small instances (EC2 small) and Clod Computing using
high performance clusters (EC2 medium).

4.1 PC model to solve ECDLP

The first case is when an attack is carried out using the Intel
Core i7 45 nm, 4 cores, 3.07 GHz. In this case, making the
assumption that a software implementation is performed to
solve the ECDLP and based on [16], in which the authors
describe an efficient software implementation of the finite
field multiplication and present timings for several binary
fields commonly used for ECC. In this case, this work takes
into account that one iteration for solving the ECDLP is per-
formed in 9 finite field multiplications.

Fig. 2 Number of instances that fit into the FPGA in order to perform
the step function

4.2 FPGA model to solve ECDLP

The second case is when several FPGAs are used in order to
solve the ECDLP. In this case, according to [16], this work
uses the Xilinx Spartan-3 XC3S5000-4FG676 FPGA, which
is inexpensive. In order to perform the step function, the
design will use one multiplier, one squarer and one Hamming
weight counter. Making the assumption that one multiplica-
tion can be carried out in m

20 clock cycles, 120 MHz and the
cost of one point addition is 9 multiplications [16], the num-
ber of cycles per iteration would be 9 × m

20 . In addition, we
can make several instances of the step function design into
the FPGA taking into account that the number of instances
is 74,880

40×m , where 74,880 is the number of logic cells into the
FPGA. Figure 2 shows the number of instances that fit into
the FPGA.

4.3 Cloud computing for small instances model
to solve ECDLP

The third case is when an attack is carried out using cloud
computing using one small standard on demand instances,
which provides the equivalent CPU capacity of a 1.0–
1.2 GHz 2007 Opteron or 2007 Xeon processor. In this case,
1 h of use in Linux costs US $0.080.

4.4 Cloud computing for medium instances model
to solve ECDLP

The fourth case is when an attack is carried out using cloud
computing for medium computing instances which provide
high CPU resources and one instance has 33.5 EC2 Compute
Units (2 × Intel Xeon X5570, quad-core Nehalem archi-
tecture), One EC2 Compute Unit provides the equivalent

Table 2 Number of cycles per iteration and the time to solve the ECDLP

m No. of cycles per iteration Time to solve ECDLP using one instance

PC FPGA EC2 small EC2 medium PC FPGA EC2 small EC2 medium

41 180 19 324 243 76.98 ms 207 ms 354 ms 266 ms

53 306 24 459 360 8.38 s 16.76 s 32.14 s 25.22 s

61 396 28 549 450 4.03 months 5.18 months 10.22 months 8.35 months

71 504 32 666 558 1.96 h 3.12 h 6.48 h 5.52 h

79 603 36 765 648 1.56 days 2.39 days 5.08 days 4.3 days

89 720 41 882 765 59.84 days 87.19 days 187.56 days 162.6 days

97 819 44 981 855 2.98 years 4.01 years 9.4 years 7.96 years

103 891 47 1,062 927 25.97 years 35.05 years 79.2 years 69.13 years

113 1,017 51 1,197 1,053 947.94 years 1,216 years 2,849 years 2,512 years

127 1,206 58 1,377 1,233 1.43×105 years 1.76 ×105 years 4.19 ×105 years 3.75 ×105 years

163 1,701 74 1,890 1,710 5.31 ×1010 years 5.91 ×1010 years 1.51 ×1011 years 1.36 ×1011 years
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Table 3 Number of devices needed to solve the ECDLP

No. of devices

m Time to solve ECDLP = 1 min Time to solve ECDLP = 1 h

PC FPGA EC2 small EC2 medium PC FPGA EC2 small EC2 medium

41 1 1 1 1 1 1 1 1

53 1 1 1 1 1 1 1 1

61 1 1 6 2 1 1 1 1

71 30 8 200 42 1 1 4 1

79 564 150 3,661 776 10 3 62 13

89 21,546 5,979 1.35 ×105 29,284 360 100 2,251 489

97 3.92 ×105 1.13 ×105 2.40 ×106 5.23 ×105 6,536 1,892 40,055 8,728

103 3.41 ×106 1.02 ×106 2.08 ×107 4.54 ×106 56,881 17,059 3.46 ×105 75,700

113 1.24 ×108 4.00 ×107 7.50 ×108 1.65 ×108 2.07 ×106 6.6105 1.25 ×107 2.75 ×106

127 1.89×1010 6.65 ×109 1.10 ×1011 2.47 ×1010 3.15×108 1.1 ×108 1.84 ×109 4.12 ×108

163 6.99×1015 2.83 ×1015 3,97 ×1016 8,99 ×1015 1.16×1014 4.71 ×1013 6.62 ×1014 1.49 ×1014

Table 4 Funding needed to solve the ECDLP

m Funding needed to break an ECC in 1 min Funding needed to break an ECC in 1 h

US $2,500 US $100 US $0.080 US $1.60 US $2500 US $100 US $0.080 US $1.60

1 PC 1 FPGA 1 EC2 small 1 EC2 medium 1 PC 1 FPGA 1 EC2 small 1 EC2 medium

41 2,500 100 0.080 1.60 2,500 100 0.080 1.60

53 2,500 100 0.080 1.60 2,500 100 0.080 1.60

61 2,500 100 0.480 3.20 2,500 100 0.080 1.60

71 75,500 800 16 67.20 2,500 100 0.32 1.60

79 1.41 ×106 15,000 292.88 1,241.60 25,000 300 4.96 20.8

89 5.38 ×107 5.97 ×105 10,800 46,854 9 ×105 10,000 180.08 782.4

97 9.8 ×108 1.13 ×107 1.92 ×105 8.37 ×105 1.63 ×107 1.89 ×105 3,204.04 13,965

103 8.53 ×109 1.02 ×108 1.66 ×106 7.26 ×106 1.42 ×108 1.7 ×106 28,800 1.21 ×105

113 3.11 ×1011 4.00 ×109 6 ×107 2.64 ×108 5.19 ×109 6.6 ×107 1.00 ×106 4.4 ×106

127 4.73 ×1013 6.65 ×1011 8.8 ×109 3.95 ×1010 7.88×1011 1.1 ×1010 1.47 ×108 years 6.59 ×108

163 1.74 ×109 2.83 ×1017 3.17 ×1015 1.43 ×1016 2.91 ×1017 4.71 ×1015 5.29 ×1013 2.39 ×1014

CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon
processor [19]. In this case, 1 h of use in Linux costs US
$1.60.

Table 2 shows the number of cycles per iteration that
are needed to perform the step function as well as the time
to solve the ECDLP and using different platforms such as
personal computer (PC), FPGA, cloud computing for small
instances (EC2 small) and high performance instances using
clusters (EC2 medium). From Table 4, the time to solve the
ECDLP when m = 71 is for one PC 1.9 h; for an FPGA
is 3.12 h, for cloud computing using one small instance is
6.48 h and for cloud computing using one instance is 5.52 h.
Table 3 shows the number of devices needed to solve the

ECDLP in 1 min and 1 h. In this case, the FPGAs column
uses the lowest amount of devices and the CC small column
shows the biggest amount of instances. Table 4 presents fund-
ing needed to solve the ECDLP in 1 min and 1 h. In this case,
the cloud computing for small instances column shows the
lowest budget to solve the ECDLP. The amount of money that
are needed in order to break an ECC in 1 min and 1 h using
different platforms (PC, FPGA, instances of cloud comput-
ing) for different key sizes is shown in Fig. 3. In this case,
personal computer to solve the ECDLP is an expensive option
instead of cloud computing for small instances which shows
the cheapest option to solve the ECDLP in 1 min and 1 h.
An strong comparison of this work with some cryptanalitic
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Fig. 3 Funding needed to solve
the ECDLP for different
platforms and key sizes

strength of ECC on EC2 presented in [18] would not be fair,
however, the results presented in our work are very closer to
those presented in [18].

5 Place and Route results for hardware
implementations over small elliptic curves

In this section, we present place and route results of our
elliptic curves hardware implementations over small fields.
In this case, the processors were synthesized on the FPGA
EP3SE50F780C2 using Quartus II. In this case, the FPGA
resources are: ALUTs 38000, Registers 38000 and memory
bits 5455872. Table 5 shows the place and route results for
elliptic curves over polynomial basis. Table 6 shows place
and route results for elliptic curves using GNB. From Tables 5
and 6, it is possible to note that the performance for the
designed processors present slight differences. In this case,
for the next figures and tables, this paper will use the data
from Table 5. The budget needed to solve the ECDLP in one
minute using different platforms against the time-area prod-
uct of ECC processors implemented on FPGA is shown in

Fig. 4. In this case, the time-area of an ECC is linear while
the budget needed to solve the ECDLP is growing in an expo-
nential way.

Figure 5 shows the number of machines and the bud-
get needed to solve the ECDLP using different platforms,
PC, FPGA, and Cloud computing with small and cluster
instances. In this case the Cloud computing using small
instances needs more instances but uses less amount of fund-
ing.

6 Conclusions

This work presents hardware implementations of small ellip-
tic curves using Gaussian normal and polynomial bases. We
have synthesized the processors on the FPGA EP3SE50F7
80C2 and using the Quartus II software. The ECDLP for
small elliptic curves was analyzed using Pollards Rho method
and an approximation of the expected time is given as well
as the amount of resources needed to solve the ECDLP.
In addition, four different platforms are assumed to solve
the ECDLP. Attack models taking advantage of special pur-

Table 5 Place and Route results
for elliptic curves over
polynomial basis

m ALUTS REG MEM Tclock (ns) No. of cycles kP [Texec (s)]

41 2,049 1,704 820 5.78 5, 576 32.2

53 2,551 2,093 1, 060 6.20 9, 116 56.5

61 2,808 2,363 1, 220 6.60 11, 956 78.9

71 3,158 2,696 1, 420 6.80 16, 046 109.1

79 3,440 2,958 1, 580 7.46 19, 750 147.3

89 3,958 3,289 1, 780 8.68 24, 920 216.3

97 4,227 3,547 1, 940 8.78 29, 488 258.9

103 4,405 3,750 2, 060 9.06 33, 166 300.4

113 4,766 4,081 2, 260 9.20 39, 776 365.9

127 5,226 4,555 2, 540 9.50 50, 038 475.3

163 6,536 5,725 3, 260 10.40 80, 685 839.1
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Table 6 Place and route results
for elliptic curves over gaussian
normal basis

m ALUTS REG MEM Tclock (ns) No. of cycles kP [Texec (s)]

41 2,153 1,551 820 5.64 5,699 32.14

53 2,451 1,902 1,060 5.84 9,328 54.47

79 3,129 2,239 1,580 6.75 20,224 136.51

89 4,258 2,952 1,780 7.26 25,365 184.14

97 4,705 3,183 1,940 7.57 29,876 226.16

113 5,277 3,650 2,260 7.67 40,341 309.42

163 8,203 5,107 3,260 9.66 81,826 790.40

Fig. 4 Funding needed to solve the ECDLP against time-area product
of ECC processors for different key sizes

Fig. 5 Budget and number of machines needed to solve the ECDLP
for different platforms

pose hardware using FPGAs have been considered as well
as software using personal computers and cloud comput-
ing. In this case, the cheapest model in terms of money to

solve the ECDLP is based on cloud computing using small
instances but using several instances. Instead, the cheapest
model attack in terms of amount of resources is the FPGA
model. We believe the results of our study will be useful for
designers to select the appropriate curve for each application
and the device, based on the perceived threat models that
device is operating and the performance requirements of the
elliptic curve protocol, such as ECDH, ECDH, or ECIES, in
the given environment and application.
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