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1 INTRODUCTION

Computer architecture is evolving into a field asked to evaluate a tremendous space of de-
signs. From small embedded systems to warehouse-scale computing infrastructure and from well-
characterized CMOS technology nodes to emerging devices at the edge of our understanding,
computer architects are expected to be able to speak to the interdependent concerns of energy,
cost, leakage, cooling, complexity, area, power, yield, and of course performance of a set of de-
signs. Even radical approaches such as DNA-based computing and quantum architectures are to
be considered. Although there are a great deal of infrastructures to build around when detailed
cycle-level simulation is required, for engineering questions that span multiple interacting con-
straints or to extreme scales, the best approaches are much less structured.

Careful application of detailed simulation can accurately estimate the potential of a specific
microarchitecture, but exploration across higher-level questions always involves analytic models.
For example, “Given some target cooling budget, how much more performance can I get out of an
ASIC versus an FPGA for this application given my ASIC will be two technology nodes behind
the FPGA?” The explosion of domain-targeted computing solutions means that more and more
people are being asked to answer these questions accurately and with some understanding of
the confidence in those answers. At the same time, when you break these questions down, they
require a combination of a surprisingly complex set of assumptions or models. How do technology
node and performance relate? What is the relationship between energy use and performance?
ASIC and FPGA performance? Dynamic and leakage power? Any result computed from these
relationships will rely on the specific set of relationships chosen, on those relationships being
accurate in the range of evaluation, on a sufficient number of assumptions being made to produce
an answer (either implicitly or explicitly), and finally on these relationships being executable to
the degree necessary to explore a set of options (e.g., for a varying parameter such as total cooling
budget). A thorough understanding of these high-level relationships not only provides insights for
analyzing system tradeoffs but can also guide the search from an initial guess toward improved
designs by efficiently exploring the design space.

Such analysis today is not supported in any structured form. Typically, it exists as a set of equa-
tions in an Excel spreadsheet or perhaps as a set of handwritten functions in a scripting language.
Unfortunately, this comes with some issues. As simple as sets of mathematical relationships be-
tween quantities get, the lack of a common engineering basis for these models has kept them from
being swiftly and correctly constructed, understood, and applied toward guiding new system de-
signs. Some models share a set of common relationships, but they redefine those symbols and
equations with subtle differences that can be misleading; some have implicit constraints on one
or more architectural quantities that may lead to pitfalls if not respected, such as a proper range
of operating voltage. To automate the evaluation, one has to manually convert these mathemati-
cal equations to executable functions and handcraft many-fold for loops and interpretation logic,
which can be tedious, error prone, and inefficient.

More importantly, as the design shifts toward a landscape of less understood ASICs and beyond
Moore technologies, unlike traditional systems such as CPUs where architects have tens of years of
existing designs and experience to draw upon, we usually are faced with a large set of free variables
both at the architecture level (e.g., issue width, buffer sizes) and application level (e.g., neural
network structure, tiling configuration), as well as a broad set of constraints (e.g., thermal limits,
classification accuracy). The sheer number from the combinatorics of these parameters imposes
a significant computational challenge when searching for an optimal design. Sweeping the vast
space, even in closed-form only, incurs high costs in both time and resources.

To address these issues, we design and explore a declarative modeling language, Charm [20],
that serves as a unified layer for the representation, execution, and optimization of closed-form
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high-level architecture models. Charm provides a concise and natural abstraction to clearly ex-
press architectural relationships, automatically check model consistency, and easily declare anal-
ysis goals. Charm can also transparently search the design space for optimal configurations utiliz-
ing state-of-the-art constraint solvers. Building and evaluating closed-form high-level architecture
models using Charm has the following major benefits:

Clarity through Abstraction. Charm encapsulates a set of mutually dependent relationships and
supports flexible function generation. It enables representation of architecture models in a math-
ematically consistent way and modulates high-level architecture models by packing commonly
used equations, constraints, and assumptions in modules. These architectural “rules of thumb”
can then be easily composed, reused, and shared in a variety of modeling scenarios.

Flexibility through Automation. Rather than treating the mathematical relations as functions,
like in traditional programming languages, Charm keeps the abstraction at the mathematical level;
hence, it is able to generate corresponding dataflow graph on-the-fly without requiring the user
to rewrite the model when the same model is used for different high-level studies. To assist de-
sign space exploration, Charm also transparently transforms the system model into a satisfiability
modulo theory (SMT) instance, if it is underdetermined (there are one or more free variables in
the model), and utilizes SMT solvers (i.e., z3 [22] in our implementation) to efficiently explore the
design space through bounding the infinite search space and approximation.

Safety through Type Checking. Charm enables new static and runtime checking capabilities on
high-level architecture models by enforcing a type system. One example is that many architec-
turally meaningful variables have inherent physical bounds that they must satisfy; otherwise, al-
though mathematically viable, the solution is not realistic. With the type system built in, Charm
can dynamically check if all variables are within user-defined bounds to ensure a meaningful mod-
eling result. The type system also helps prune the design space based on the bounds, without which
a declarative analysis might end up wasting a huge amount of computing effort in less meaningful
subspaces. Charm also incorporate physical unit as an optional part of variable definition and will
check and convert physical units dynamically.

Efficiency through Optimization. Charm opens up new opportunities for compiler-level opti-
mization when evaluating architecture models. Although high-level architecture models are usu-
ally several orders of magnitude faster than detailed simulations, as the model gets complicated
or is applied many times to estimate a distribution, it can still take a nontrivial amount of time to
naively evaluate the set of equations in every iteration. By expressing these complicated models
in Charm, we are able to identify common intermediate results to hoist outside of the main design
option iteration and/or apply memoization on functions.

Finally, and perhaps most importantly to the community, Charm promotes collaboration be-
tween application designers, computer architects, and hardware engineers because they can now
share and refine models using the same formal specification and a common set of abstractions. For
example, to reason about the energy consumption of an application on a platform, with his or her
own application model written in Charm, the application developer will not have to implement an
energy model from scratch and can simply plug in an existing one written also in Charm.

We release Charm as an open source tool on GitHub1 to serve as a framework the architecture
community can utilize to define and share analytical models. We also provide a wide collection
of established architecture models from literature for quick use/reference, including the dark sil-
icon model [24], a resource overhead model for implementing magic state distillation on surface

1https://github.com/UCSBarchlab/Charm.git.
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code [11], mechanistic CPU models [12, 26], a TCAM power model [2], the LogCA model for accel-
erators [5], the adder/multiplier models from PyRTL [16], a widely used CNN roofline model [73],
dynamic power and area models for NoC [37], specifications of Xilinx 7-series FPGA [71], and the
extended Hill-Marty model [21].

To describe Charm, we begin in Section 2 with a motivating example high-level model to show
the problems with ad hoc modeling in practice. Then we introduce the design of Charm in Sec-
tion 3, followed by two case studies demonstrating the application and benefits of building closed-
form high-level architectural models with Charm in Section 4. Finally, we discuss related work in
Section 5 and conclude in Section 6.

2 CHARM BY EXAMPLE

To understand Charm, it is useful to have a running example. In this section, we present an im-
plementation of the model and analysis from a well-cited study of dark silicon scaling [24]. After
a brief review of the models, we show the complete code in Charm performing the same analy-
sis of symmetric topology with ITRS technology scaling predictions. As we extend this model to
cover more analysis provided in Esmaeilzadeh et al. [24], it leads to a discussion of the potential
issues with less structured approaches and highlights some of the features of the language that
help architects avoid these pitfalls.

2.1 A Brief Review of the Dark Silicon Model

To forecast the degree to which dark silicon will become prevalent on CMPs under process scaling,
Esmaeilzadeh et al. [24] construct three models: a device model (DevM), a core model (CorM), and
a CMP model (CmpM). DevM is the technology scaling model relating tech node to frequency

scaling factor and power scaling factor. It is a composite model combining a scaling prediction with
a simple dynamic power model (P = αCV 2

dd
f ). CorM is the model relating core performance, core

power, and core area. It is empirically deduced by fitting real processor data points.CmpM has two
flavors that are essentially very different models:CmpMU andCmpMR .CmpMU is an extension of
the Hill-Marty CMP model [33], and CmpMR is a mechanistic model [28].

A composition of the three models is then used to drive the design space exploration. The au-
thors combine DevM andCorM to look atCorM for different tech node and combine DevM ,CorM ,
and CmpM to iterate over a collections of different topologies, scaling predictions, and core con-
figurations. They then plot the scaling curves for the dynamic topology/CmpMR with both ITRS
and conservative scaling predictions.

2.2 A Complete Charm Code Example

Listing 1 gives the complete code in Charm DSL to run the design space exploration with ITRS
predictions on the symmetric topology (we later extend the analysis to other topologies and pre-
dictions in Section 4.1). Figure 1 plots two variables explored as an example output of Charm.
At a high level, we can see that the code is split into three major components: type definition
(Lines 3–82), model specification (Lines 11–52), and analysis declaration (Lines 55–61).

Specifically, we first define commonly used domains as Charm types on the architectural quan-
tities that we care about (Lines 3–8). For example, the parallelism parameter in the model has a
physical meaning related to the proportion of the algorithm that can be parallelized, and it nat-
urally falls between [0, 1]. We thus define a type Fraction to encapsulate this domain constraint.
Although this is a simple example, more complex constraints are possible.

2All line numbers in Section 2 refer to Listing 1 unless otherwise specified.
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Listing 1. Dark silicon analysis on symmetric topology with ITRS scaling.

We then formally specify (Lines 11–52) the three models (DevM ,CorM ,CmpM). Taking the Ex-

tendedPollacksRule model (Lines 34–41) as an example, we declare up front all of the architectural
quantities that are involved in the model (e.g., ref_core_area, which is the core size at the reference
technology node), their types (e.g., ref_core_area is a real number on the positive domain), and
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Fig. 1. Upper-bound ITRS scaling with symmetric topology. Each line corresponds to a different type of
application characterized by its parallelizable portion of execution from 0 to 1.

the relationships between the architectural quantities (e.g., area = 0.0152per f 2 + 0.0265per f +
7.4393; the constants come directly from the original dark silicon paper [24]).

Once the models are defined, it is straightforward to declare the analysis in Charm (Lines 55–
61). One simply selects the given models in the study, supplies the inputs, and specifies the target
metrics to explore. For example, in this case, we select ITRS, ExtendedPollacksRule, and Symmetri-

cAmdahl models (Line 55); we then provide values such as the area (Line 56) and power (Line 57)
constraints; and finally we tell Charm what quantities we care to explore, in this case speedup,
dark_silicon_ratio, and core_num (Line 61).

2.3 Pitfalls with Unstructured High-Level Architecture Modeling

Building and executing an architectural model with an unstructured approach (e.g., in a spread-
sheet or some general-purpose scripting language) is clearly possible,3 but the lack of a common
abstraction introduces some issues as one tries to scale the analysis. Each additional interacting
component is a set of new opportunities to make an uncaught mistake.

The degree to which these mistakes end up in the final model (and the amount of effort required
to ensure that it is mistake free) is a function of the degree of clarity, flexibility, safety (both type
and unit in Charm), and automation supported by the tool, along with the complexity of the model
under investigation. It is easiest to see this if we talk specifically again about the code of our
example dark silicon analysis.

We first note that, although clearly defined conceptually, the three models needed are each of a
different form: DevM is essentially a table of different scaling factors, CorM is an empirical set of
points and a regression curve, and CmpM is in the form of mathematical equations relating a set
of high-level architectural quantities. Without a clear, unified representation, it takes nontrivial
effort for one to figure out how to turn these models into executable code, and the clarity of the
resulting code (in a traditional scripting language) is heavily dependent on the practice of good
programming. To be more specific, ad hoc modeling ends up with the following issues.

Composition. It is hard to link the models’ I/Os together or even check if the models can be
connected properly at all. Architectural models are usually connected to each other through some
common system parameters or physical quantities. The chain of data movement and dependencies
among the dark silicon models is not explicitly exposed by the models. This issue of mismatched

3With all of the potential issues, unstructured methods in architectural modeling may not be as correct as one tends to
believe [8, 53].
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form is even more acute when one wishes to switch out the CmpM core model with the CmpMR

core model becauseCmpMR takes a completely different set of inputs. With unstructured methods,
one has to explicitly program these connections typically by function call chains. With Charm, one
simply specifies all variables up front within each model and Charm “wires them up” through these
channeling I/O variables. More importantly, Charm throws an error when the models cannot be
properly linked.

Exploration. The analysis procedure is often coupled with the model definition. A common prac-
tice for computer architects is to explore the design space by iterating over a set of design options
or different values for some system configuration knobs. With high-level models, architects usu-
ally write imperative instructions to iterate over specific variables, and when the iterative variable
changes to another, it quickly becomes tedious and error prone to break and reconstruct the many-
fold nested for loops. Charm decouples the model specification (Lines 11–52) from the analysis
procedure declaration (Lines 55–61). Such iterations over input values are declarative and trans-
parent (as opposed to writing for loops, often many-fold, imperatively) by simply providing a list
of values (Lines 58–60) in Charm.

Second, typical high-level architectural models are not “functions” but rather a set of mathemat-
ical relationships. The distinction is quite important. Traditional lvalue/rvalue style assignments
(common to both functions and spreadsheets) create the following issue.

Restructuring and Reorientation. The models cannot be evaluated in a flexible way. Even
though the model is a relation between quantities, in spreadsheets or scripting languages, one
has to implement the evaluation as functions with fixed arguments. In this example, one typically
codes up to evaluate the speedup for a given value of core performance. If the control quantity
changes to another, say core area, one has to fix the code. An even worse and probably more in-
teresting case is when the control becomes the one under investigation (i.e., the input/output of
the functions are reversed). In our example here, that happens when one wishes to explore the
core count constraint given a target dark silicon ratio. There is no easy way for ad hoc methods
to deal with this kind of flexibility but to completely reprogram. However, in Charm, models are

interpreted as a set of mutually dependent relationships without a fixed direction, and Charm run-
time will generate the corresponding dataflow graph and needed functions based on the provided
controls and quantities to explore.

Third, many complicated models do not have a full specification at early design cycles, and
specifications of certain parameters, configurations, and design knobs are not deterministic by
nature. Using traditional methods, the following issues come up.

Automatic Design Space Searching. Rather than having a fully specified system, architects usu-
ally are given a set of constraints (e.g., a target IPC, or TDP) and are expected to search the entire
space, consisting of a large number of free variables, to find a viable configuration (for all architec-
tural knobs) for further evaluation when designing complex or unconventional systems. Charm
uses z3 [22] to transparently support such effort by transforming an underspecified model into an
SMT instance. With any (or all) of the assumptions (Lines 56–60) taken away, Charm automatically
detects the free variables, transforms the relationships into bounded SMT instances, and calls out
to z3 to search for a viable configuration (if there exists a satisfiable solution). Furthermore, Charm
can also iteratively optimize the design by tightening constraints in the SMT instance (e.g., lower
bound on performance, upper bound on power) on-the-fly.

Reasoning under Uncertainty. Architectural models usually involve some uncertainties [21],
such as how technology may scale over the next 10 to 15 years. It is natural for computer architects
to first evaluate the model with some concrete values (e.g., the scaling factors in Lines 26 and 27)
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and then model the uncertain quantity as some distribution (e.g., Gaussian distribution), as in
our case studies in Section 4. It requires nontrivial programming efforts with spreadsheets and
scripting languages to support uncertain random variables. Charm supports different forms of
input values such as scalars, vectors, and distributions by design to greatly ease modeling and
exploring with uncertainties in mind.

Fourth, computer architectural quantities often have certain physical meanings. For example,
core performance typically cannot be negative. A potential issue with unstructured methods is
that these boundaries are usually only programmed ad hoc in spreadsheets or scripting languages.
A negative core performance may be mathematically valid, but it will lead to meaningless and
misleading results if not captured in the unstructured implementation. This issue is even more
likely to occur in the following two cases.

Implicit Domain Constraints. Architectural models typically have a range of operation. Aside
from the physical constraints, implicit domain constraints also come from how the model is built in
the first place. In the dark silicon example, the normalized performance of the real data points that
the authors used to generate the CorM is in the range of (0, 50). Even though one can argue that
a core with normalized performance of 100 generally follows that regression, the result derived
from that is much less accurate and trusted. These type of constraints are at most times only
implicitly conveyed through the model building process, where it leads to a potential pitfall when
the model is reused, especially when one only tries to interpret and reimplement the model from
natural language descriptions (e.g., in a published paper). To address this issue, Charm encourages
model specification to include these implicit constraints explicitly as constraints built in the model
specifications (e.g., Line 37), then automatically checks if these constraints are violated during
evaluation.

Unbounded Distributions. Many architectural quantities, such as core frequency, follow normal
distribution due to process variability [46, 54, 56]. However, the use of these types of unbounded
distributions sometimes violates the physical constraints of the quantity (e.g., frequency must be
positive). In unstructured modeling, this check is completely up to the user and, if overlooked, will
lead to incorrect results. With Charm, this issue is automatically handled by the type checker, as
long as one specifies a correct type for the quantity (e.g., frequency : R+).

Last but not least, the design space to cover is typically huge with high-level models. In the
dark silicon model, the authors explore a hundred-core configuration for each combination of a
scaling trend in DevM , and a CMP model from CmpMU or a workload with CmpMR . The mod-
els are often to be evaluated hundreds of thousands, if not millions, of times, which will take a
nontrivial amount of time. It only becomes worse when one tries to evaluate models with uncer-
tainties [21]. Without a structured system, a quick spreadsheet or naive prototyping will end up
with unacceptable performance when the problem is scaled up and the burden of optimization
falls on the model builders and others who wish to use existing models through reimplementa-
tion. As we show in Section 4, for both fully determined systems (with the invariant hoisting and
memoization techniques) and underdetermined ones (through SMT), Charm greatly speeds up the
exploration without additional effort from the model builders.

Although the preceding code example is for a mature general-purpose chip-multiprocessor
model, Charm is definitely not limited by the type of technology that the model represents. As
long as the models can be expressed in closed form, Charm can be applied to encode analysis with
such models. Another simple snippet to showcase Charm’s expressiveness is given in Listing 2.
We also actively use Charm to manage many different analytical models including data-center
performance models (similar to Kaanellou et al. [38]) and cost models for emerging race-logic
architecture for decision trees [66].
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Listing 2. Code snippet to encode equation from Section 7.2 in Kim et al. [39].

3 CHARM DESIGN

Charm provides a simple, domain-specific modeling language to express both closed-form models
and the design space exploration logic. In terms of mathematical expressiveness, Charm supports
all common closed-form algebra that computer architects often resort to, including linear algebra,
like polynomials, and simple nonlinear algebra, like exponentiation. Basic non-closed-form func-
tions like summation and product are also supported. To extend the design space exploration to
uncertain domains, Charm also supports distributional values to be set and propagated through
the models transparently. If the system is fully determined, the interpreter is able to transform the
mathematical relationships into a series of dataflow graphs for fast evaluation; otherwise, an SMT
instance is created by transforming the relations in the model into proper domains (bit vectors and
floating points in our implementation). A type system is applied to ensure that all architecturally
meaningful quantities operate in the correct domain and provide type conversion guidance when
transforming into the SMT domain. Charm also optimizes the design space exploration procedure
using compiler techniques to eliminate redundant computation.

In this section, we first describe the abstractions that Charm provides and formalize the syntax
and semantics of Charm DSL. We then articulate the internal design of the interpreter and how
type checking, transformation, evaluation, and optimization are done in Charm.

3.1 Language Abstractions

To address all of the issues described in Section 2.3, Charm provides a common layer with the
following three key abstractions: types, models, and analysis.

Charm language is strongly typed. To express the type of a variable, the keyword typedef must
be used. The model abstraction enforces explicit type declaration to ensure that no implicit as-
sumptions about data types and domains across models exist. Each type is essentially a base type
with constraints (e.g., R+ is defined as a positive number of base type real in Listing 1 Lines 3
and 4). There are only two base types, Real and Integer, standing for real and integer numbers,
respectively. Internally, real numbers are represented by float and integers by int.

To construct a model, the keyword that must be used is define. More specifically, a model speci-
fication in Charm encapsulates the following two pieces in a high-level architecture model:

• A Set of Variables. Each variable has a universally unique and consistent full name. Each
variable also has a local short name (optional), as well as an explicitly declared type and
physical unit (optional, e.g., chip_area : R+ in μm2). For instance, in Listing 1 line 31, the
short name is “perf”; the type is “R+”, which means positive real number; and the long name
is “ref_core_performance.” Short names live only within the definition of a model, whereas
full names are exported to other models, as well as to the analysis logic.

• A Set of Relations. In Charm, both equations and inequalities are considered relations.
Relations define mathematical relationships between variables using either their full or
short names (e.g., Listing 1 Lines 34–35 and 50–52). Both linear and nonlinear systems are
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present in architectural models that we care about. The general problem of determining
the definability of and solving such systems is theoretically hard and beyond the scope
of this work. Given the limitations and solving capabilities of existing backend solvers,
some very complicated nonlinear equations cannot be symbolically solved (e.g., Charm will
throw an error if one tries to solve for x in y = (a1/x )2x

). Fortunately, however, we find
that most models computer architects care about are well within the limit. Equations can
also bind variables to constant quantities as assumptions defined in the model specifica-
tion (e.g., kBoltzmann = 8.6173303 × 10−5). Relations can be value generative, if values of
all but one variable are given. A relation can also be nonvalue generative, which includes
all inequalities and equations that have all of their variables assigned a value.

Charm abstracts the common structure of an analysis with three keywords: given, assume, and
explore.

Before computation starts, given statement selects the model(s) to be used in the analysis. If
multiple models are selected, they are linked together automatically by the interpreter using the
full names of their variables.

In general, many algebra systems can be solved without additional assumptions. However, it
is also common for computer architecture models to have some control quantities (e.g., design
options, like core size , and system configurations, like cache associativity) given by system de-
signers. The keyword assume serves such purpose by differentiating assignment equal signs from
the mathematical equal signs found inside the model specification. For instance, assume statements
are assignments much like in other programming languages, whereas equations in model speci-
fication are merely mathematical relationships that do not imply a direction of data movement.
Charm also constrains assume statements to be assignment with constants. For example, they can
only be used to express external inputs to the model rather than defining additional relations out-
side of the model specification.

Moreover, Charm supports both scalar and vector value assignments, as well as values derived
from commonly used distributions, such as Gaussian distribution. More specifically, iterations
can be expressed either in a Pythonic list-like syntax or with functions that generate a list, such
as linspace, and they are assigned to some input variable just like a normal assume statement
(e.g., Listing 1 Line 60). Charm handles iteration naturally by selecting combinations of all itera-
tive input values nonrepeatedly from their Cartesian space in a Gray code fashion. Two special
cases are (a) if two or more input variables are dependent, they can be expressed like a Python
tuple assignment (e.g. assume (tech_node, f req_scalinд_f actor ) = [(45, 1.), (32, 1.09)]), and (b) if
a variable is indexed, it can be expressed using the special “list” notation after its variable name
(e.g., assume L[] = [1, 2], which means L[0] = 1 and L[1] = 2).

Finally, to complete the analysis specification, the variables that we would like to solve for
should be provided. For that purpose, the keyword explore must be used. Given this information,
Charm transforms the undirected dependency graph (representing the way the selected models
are connected) into a directed acyclic function graph, and then it starts the evaluation process
by propagating the given values (via assume statements or assumptions in model specification)
through the DAG.

Figure 2 gives the abstract syntax of Charm, and Figure 3 formalizes the semantics.

3.2 Language Internals

To evaluate the models and optimize the evaluation logic, Charm internally uses two graph struc-
tures to represent and transform the computation. Figure 4 graphically shows the interpretation
process. In this section, we first define the core graph data structures and then describe how we
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Fig. 2. Abstract syntax of charm. A program is a sequence of type definitions, rule definitions, analysis
statements, and a list of variables to explore. Relations are atomic with respect to the semantics; they use
the syntax and semantics of the backend solver. They use the standard arithmetic and comparison operators,
and allow lists, tuples, and real numbers as possible values.

can perform type checking, function generation, evaluation, and optimization with these graph
structures.

Dependency Graph. A dependency graph is a bipartite graph G = 〈Vvar ,Vr el ,E〉, where

• Vvar is the variable node set in which every variable in the selected models is a vertex.
• Vr el is the relation node set andVr el = Veq ∪Vcon , whereVeq is the set of vertices in which

every equation in the selected models is a vertex; Vcon is the set of vertices in which every
constraint in the selected models is a vertex.

• E is the set of edges and there exists an edge between vertices in Vvar and Vr el if and only
if the variable name appears in the relation.

Function Graph. A function graph is a directed acyclic dataflow graph D for a determined system,
in which

• Every node in Vvar has at most one incoming edge (i.e., its in-degree being 0 or 1).
• Every node in Veq has at most one outgoing edge (i.e., its out-degree being 0 or 1).
• Every node in Vcon has no outgoing edge (i.e., its out-degree being 0).

Dependency Graph Building and Static Type Checking. To build the dependency graph
from the models, Charm performs a single scan over all relations in the models. It assigns a
variable node to every variable with a unique full name and an equation/constraint node to ev-
ery equation/constraint. When creating relation node, Charm creates an edge between the equa-
tion/constraint node and a variable node if the variable appears in the equation/constraint. Finally,
Charm scans the analysis statements and marks variable nodes being assigned as input nodes.

Physical unit check and conversion is performed as part of the type checking process. Charm
uses Pint [1] as a backend engine to check type consistency and modify the relations when parsing
based on the necessary unit conversion rate (e.g., mm to μm). Charm will throw an error if the units
in one relation cannot be converted into a single base unit.

Charm performs simple type checking both statically when building the dependency graph after
parsing and dynamically when checking constraints at runtime. Static type checking is done by
tracking the variable names and types when building the dependency graph. Each variable must
be declared with an explicitly defined type. If a variable name is used by two or more relations,
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Fig. 3. Operational semantics of Charm. Relations are here taken as atoms; they use the semantics of the
backend solver engine. An overhead arrow indicates a sequence of one or more elements. C[x/y] indicates
to substitute all instances of y in C with x . vars returns the names of all variables used in the relation set,
whereass Ext returns all extensions of a variable (portion of the name appearing after a dot when multi-
instanced). isConsistent ensures that the relation set is consistent. isFullyDetermined ensures that the
relation set is fully determined with respect to −−→var . SOLVE is an instance of the backend solver; it returns a
mapping of all specified variables to values (real numbers, lists, and tuples). typedef takes a type definition
and returns a tuple with type name and relation set. ruledef takes a rule definition and the type environment
and returns a tuple with rule name and relation set. rd-var takes a type rule declaration and the type
environment and returns a relation set, where relations on the indicated type now apply to the indicated
variable. rd-rel takes a relation rule declaration and returns the same relation in a set. given takes a given

analyze statement and the rule definitions and returns the relation set of the indicated rule. assume takes
an assume analyze statement and returns a relation set of all declared equalities. multi-instance takes a
relation and returns a set of relations, where the original relation is duplicated once for each extension
possessed by its variables, with the names of the variables replaced by their extended version (as discussed
in Section 3.2). program takes a program and returns a map for the list of exploration variables, mapping
each to real numbers, lists, and tuples determined by the backend solver.

Charm checks that their defined types are identical (both base type and constraints associated).
For inconsistent types, Charm aborts execution and issues an error message.

Relation Multi-Instancing. When building a dependency graph, different variables some-
times follow the same mathematical relationships. An example is core_per f ormance .biд and
core_per f ormance .small defined in Listing 3 Lines 5 and 6. Both of them follow the equation
shown in Listing 1 Line 23 when plugged in for evaluation. We discuss their physical meanings
later in Section 4.1, but they are essentially two variables following the same mathematical re-
lationship. We refer to this behavior as “relation multi-instancing” and use the dot notation (a
variable name and a name extension concatenated by dot, e.g., core_area.big) to invoke multi-
instancing. Charm internally creates variable nodes and relation nodes for multiple instances with
different name extensions. Figure 5 shows how these nodes in the dependency graph are created.
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Fig. 4. Overview of the Charm interpreter. The parser takes Charm source code and breaks it into a set
of types, a set of model definitions, and a set of analysis statements. Charm then links types, models, and
assignments in a dependency graph after they go through the type checker. The graph then is fed to a
function generator and a symbolic solver to convert it into a function graph. If the conversion is successful,
it then gets evaluated after optimization and checked against model constraints. If the conversion from
dependency graph to function graph is unsuccessful, Charm then transparently generates an SMT instance
based on the variables and relations in the model specification and calls out to the SMT solver to find a
possible solution.
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Fig. 5. Relation multi-instancing when generating a dependency graph. (a) The initial graph has extended
names (b .1, b .2). (b) Charm finds and splits the corresponding base name node (b). (c) Charm propagates
the multi-instancing. For instance, all nodes along the path to the base name node (b) are also split to create
different “instances” of relationships for different quantities that follow the same relationship definition (in
this case, Eq1 and Eq3). Then Charm merges names with same extension together. (d) The multi-instancing
ends with checking input nodes for identical name extensions and removing edges between nonconsistent
name extensions. In this case, it ends when the split process reaches d and e ; successfully finds d .1 and d .2,
which are extended names with consistent name extension set ({.1, .2} in this example); and removes the
edges between (d .1, Eq3.2) and (d .2, Eq3.1).

The model is ill defined if Charm fails to find extended input variables with consistent name exten-
sions or discovers inconsistent name extension sets for different variables while trying to invoke
multi-instancing.

Function Graph Building and Function Generation. After building the dependency graph G,
we try to convert G into a function graph F . If this conversion is successful, by the definition of
function graph, the system is fully- or overdetermined and Charm uses Sympy [62] as the backend
solver to convert all equations and constraints (all inequalities and equation nodes with an out-
degree of 0 are considered as constraints at this point) into callable functions with inputs being the
variables directly pointing to the relation and output being the variable pointed at by the equation
node (inequalities do not generate values). Otherwise, the system is underdetermined and Charm
generates an SMT instance (after unit check and conversion) from the specification of the models
and feeds it to the SMT solver. As part of the dynamic type checking, each variable is also associated
with the bounds from its type while being evaluated.

The conversion from G to F takes three steps:

• The first step builds an intermediate graph R = G −Vinput − Einput . For instance, we take
out all variable nodes that are treated as inputs to the system (values provided in assume

statements by the user) and edges associated with them.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 9. Pub. date: October 2019.



Language Support for Navigating Architecture Design in Closed Form 9:15

Fig. 6. Scalability of the conversion from dependency graph to function graph. The x-axis is the number of
(equations, variables) in the system model. We use random dense graphs (with a density around 0.4) and
sparse graphs (with a density around 0.2) to evaluate the time overhead of the graph transformation. In
dense graphs, each equation can connect up to all of the variables, whereas in sparse graphs, each equation
can connect up to half of the variables, and hence fewer dependencies.

• In the second step, we try to convert R to a function graph F . The space of all possible la-
beling of edges is 2 |ER | , where ER is the edge set of R. Fortunately, given the constraints
from the definition of function graph, the conversion problem here maps to the problem
of finding a maximum matching of R and checking that it has a matching number equal to
|Vvar | of R. Finding such a maximum matching in a bipartite graph is a classic problem in
graph theory and has a polynomial-time heuristic algorithm [35]. In our implementation,
we use networkx [29] to find the maximum matching. Figure 6 shows the scalability of this
conversion compared to a DFS-based algorithm we initially implemented on randomly gen-
erated dependency graphs [20]. As we can tell, the conversion cost using the new matching
algorithm scales linearly as the graph gets larger, whereas the searching algorithm we had
before has an exponentially growing cost. This difference matches the expectation from
the theoretic complexity of the two algorithms (O ( |E |) for matching vs. 2 |E | for searching,
where E is the set of edges in the dependency graph). Hence, in our case studies in Section 4,
we see a huge reduction in terms of the execution time of interpretation (i.e., the time cost
of performing analysis with Charm).

• Last, F must be acyclic to evaluate. However, when there are codependent equations, they
form cycles after the conversion. In case of a cycle, all equation nodes in the cycle must be
converted to functions altogether. We pass the equations in a cycle to the backend solver at
once and then replace the cycle with pairs consisting of a function node and a variable node;
each pair is a mapping between all inputs to the cycle (a dummy input node is created if
there are no inputs from other parts of the graph to the cycle) and one of the variable nodes
in the cycle. Each function node generated by the cycle elimination has one unique variable
in the cycle as its output. All functions generated by this step are from the same set of
equations, only with different variables as inputs/outputs. Figure 7 shows an example of
cycle elimination in F .

Computational Constraints. A special computational constraint is applied when building a
function graph: some mathematical operators are not reversible or have infinite solutions, such as
∑

and
∏

. In addition, some are computationally hard for the solver, like solving x in y = (a1/x )2x

.
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Fig. 7. Cycle elimination when generating a function graph. Equations in a cycle are solved at once and are
replaced with three functions, each of which generates a different variable value.

For the nonreversible equation, its direction is fixed. For instance, its edges have fixed direction
and are not subject to the function converter.

Evaluation and Constraint Checking. Once we have a viable function graph F , a feasible solu-
tion is to derive from all input nodes and propagate the given values by traversing F . Each following
function/constraint node is transformed using higher-order functions to “remember” propagated
partial values before all inputs are ready and it can be evaluated.

Performance Optimization. Oftentimes, architects explore the relationship between two vari-
ables by iterating over different input values. One simple yet effective performance optimization
is invariant hoisting. With the function graph structure, it is straightforward to optimize for in-
variant hoisting in Charm. From each iterative variable node, Charm simply traverses the graph
from that node. All nodes that cannot be reached from the iterative input nodes are invariant to
iteration over that input. In the simple illustrative example in Figure 4, c is iterative and a, b, Fn1

are invariant because there are no paths from c to them.
Each function node also caches a mapping table between inputs and its output. Such memoiza-

tion optimizes away costly recomputation over the same set of input values.

Transforming an Underdetermined System into an SMT Problem. If the conversion from
dependency graph to function graph fails (i.e., the algorithm does not find a matching with a size
equal to the number of variables in R), Charm aggregates all relations and exports a quantifier-
free SMT instance to z3. It is well known that some of the SMT theories are undecidable, but,
fortunately, the theory of bit vectors and floating points is bounded and decidable. We approximate
each real variable in the model into a floating point (fp) using the IEEE 754 encoding since most of
time we do not need infinite precision (e.g., we typically do not need an IPC to the 10th decimal),
and each integer variable is approximated by a bit vector (bv). The transformation also bounds
the search space by the number of bits we use. We set 32 bits as the default length because it
achieves good balance between the applicable range (most design configurations fit within the
range) and synthesis speed. The computation is done in the fp domain, and we dynamically cast
bv to/from fp values by rounding to the nearest even number. We find in our experiments that this
approximation works well for a wide variety of architecture models.

Optimizing Underdetermined Systems. In a complex system design space, sometimes a manual
search (even from a synthesized configuration) is not favorable because it can quickly become
tedious and inefficient if each iteration requires a combination of hundreds of parameters. With
the SMT solver, the optimization can be automatized by iteratively tightening/loosing bounds of
the system constraints (e.g., iteratively asking the question “Is there a configuration that has better

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 9. Pub. date: October 2019.



Language Support for Navigating Architecture Design in Closed Form 9:17

Listing 3. Asymmetric model and the changes in code.

performance?” or “Is there a configuration that consumes less power/energy?”). To quantify how
much better each iteration should be targeting, Charm allows users to specify a step coefficient
(e.g., speedup@0.1) to control the granularity of the search.

4 CASE STUDIES

In this section, we demonstrate the application of Charm using two case studies. In the first case
study, we show the benefits of Charm by extending the dark silicon analysis with a different topol-
ogy and a distribution of technology scaling. We also compare execution times with and without
optimization. The second case study demonstrates how Charm deals with underspecified system
models and assists design space exploration with the use of SMT solvers. We use a well-cited ana-
lytic model for convolutional neural networks (CNNs) [74] along with the roofline models of a set
of FPGA platforms to explore tiling configurations for different CNN architectures.

4.1 Dark Silicon and Beyond

Listing 3 highlights all of the changes we need to implement in Charm to model and switch the
exploration from symmetric topology to asymmetric. Note that in the asymmetric model, “relation
multi-instancing” comes in handy when expressing two coexisting types of a core. To switch the
analysis, all we need to do is to change the models that are given (Listing 3 Line 22) and provide
values for two types of cores instead of one (Listing 3 Lines 23 and 24). We also write a new
constraint (Listing 3 Line 20) to specify the fact that the big core should have better performance
than the small core.

It is even simpler to switch from ITRS scaling predictions to conservative predictions [10]. List-
ing 4 shows all of the changes needed. Figure 8 plots the resulting scaling trends for the asymmetric
topology.

One interesting question one may ask is “What if the actual technology scaling is somewhere
in between the two predictions?” In that case, we can explore the design space with a distribution
of scaling factors. We use a Gaussian distribution for the scaling factor, the mean of which is
set to the average value of the two predictions and the standard deviation set to the difference
between the mean and the predictions. Listing 5 shows the necessary changes in Charm code. It
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Fig. 8. Upper-bound scaling with asymmetric topology with a tech node on the x-axis. Note that the last
figure of optimal core count has a linear-scale y-axis to better demonstrate the variance. For clarity, we only
plot two regions in the uncertain scaling results, but the trends for other f values are similar.

Listing 4. Conservative scaling and the changes in code. This definition would replace ITRS in Listing 3.

Listing 5. Uncertain scaling and the changes in code.

is important to note that although the Gaussian distribution is not bounded, the scaling factors
have a bounded domain. The type checking in Charm ensures that the scaling factors a and b
operate only in their defined domains (see Listing 1 Lines 20 and 21) and the provided Gaussian
distribution is converted to a truncated Gaussian distribution with the same mean and standard
deviation within Charm. From Figure 8, we can see that with technology scaling, the more parallel
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workload (with an f close to 1) shows higher sensitivity toward technology uncertainties, whereas
the more serial workload is less sensitive to changes in core performance and power. Another
probably even more interesting observation is that the optimal core count of the most performant
configuration becomes very uncertain once we hit 11 nm and beyond. The uncertainty grows
sharply from 16 nm to 11 nm mainly because below 11 nm, the CMP is mainly area bounded, and
since the area scaling is certain (Listing 1 Line 25), it limits the amount of uncertainty that gets
propagated to the optimal core count. Meanwhile, when the technology node scales to 11 nm and
beyond, the CMP becomes power bounded and is extremely sensitive to the power uncertainties
propagated from the uncertainty of the power scaling factor.

In terms of execution performance, we compare Charm execution to an unoptimized baseline
in which all computation is redone per iteration (similar to a straightforward implementation
with other scripting languages without additional programmer effort, i.e., no invariant hoisting
nor memoization). For ITRS or conservative scaling with an asymmetric topology (a design space
of 150K design points), full-blown Charm finishes on average within 120.5 seconds, whereas the
unoptimized implementation uses 159.5 seconds (1.3x speedup). For the uncertain scaling with a
MC sample size of 200 (1̃ million design points), optimized Charm uses 1,562.5 seconds, whereas
it takes 5,703.1 seconds for the baseline implementation (3.6x speedup) on a single Intel i7 core at
3.3 GHz to finish. We expect the speedup to only grow dramatically as the design space gets larger
because the redundant computation will scale exponentially with the number of parameters.

4.2 Exploration of CNN Tiling on FPGAs

In this case study, we explore an underdetermined system with Charm. To evaluate CNN tiling on
a set of Xilinx FPGA boards analytically, we take the analytical model from previous work [74] and
use it to demonstrate the SAT-based searching capabilities of Charm. We let Charm automatically
explore the configuration space for tiling and discover several new findings in this parameter
space. We first describe the model for CNNs and the FPGA boards we are targeting. Then we
ask this question: What is the optimal tiling configuration of a CNN architecture to maximize
performance on a specific FPGA board?

4.2.1 CNN and FPGA Models. The roofline model is an intuitive tool used to visualize a de-
sign’s performance under the constraints of the platform’s peak performance and maximum band-
width [69]. To enable simultaneous multiplatform exploration, we allow an overlapping of a vari-
ety of “rooflines.” Moreover, besides the compute and bandwidth ceilings defined by the platform’s
specifications, Charm allows the user to set “floors”: the lowest acceptable performance and the
computation-to-communication ratio, which is directly related to the energy cost per operation.

For CNNs, the convolution layers take up most of the computation time [18]. Many methods for
efficient implementations of these networks on hardware have been proposed, building FPGA ac-
celerators being one of them. Zhang et al. [74] build a roofline model based on memory bandwidth
and logic resources with tiling:

computational roof =
total # of operations

# of execution cycles

≈ 2 × R ×C ×M × N × K × K⌈
M

Tm

⌉
×
⌈

N
TN

⌉
× R ×C × K × K

(1)

CTC ratio =
total # of operations

total external data access

=
2 × R ×C ×M × N × K × K

αin × Bin + αwдht + αout × Bout
, (2)
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Listing 6. Hardware constraints from an FPGA board.

where

Bin = Tn (STr + K − S ) (STc + K − S ) (3)

Bwдht = TmTnK
2 (4)

Bout = TmTrTc (5)

0 < Bin + Bwдht + Bout < BRAMcapacity (6)

αin = αweiдht =
M

Tm
× N

Tn
× R

Tr
× C

Tc
(7)

αout =
M

Tm
× R

Tr
× C

Tc
. (8)

Here, the tiling design space consists of tile dimensions Tr ,Tc ,Tm , and Tn . These parame-
ters are bounded by the corresponding dimensions of the NN structure. αin ,αout ,αwдht and
Bin ,Bout ,Bwдht denote the trip counts and buffer sizes for accesses to the input feature maps,
output feature maps, and the weights, respectively.

With the help of this analytic model, we can now explore the tiling configuration space given
any platform in the roofline space. An example FPGA board (xilinx_xc7vh870t_3) in Charm is
presented in Listing 6. The full Charm code for the CNN model is shown in Listing 7.

4.2.2 Optimizing Design under Constraints. Here, we try to find an optimal configuration, in
terms of (a) performance, (b) bandwidth requirement, and (c) both performance and bandwidth
requirement, by generating constraints on-the-fly while exploring the design space.

We use the CNN model of AlexNet [40]. AlexNet consists of five convolution and three fully
connected layers. For this experiment, we consider only the convolution part of this model. We look
for the optimal (Tm ,Tn ,Tr ,Tc ) configuration for the second layer of the CNN model by dynamically
adding lower-bound performance and/or upper-bound bandwidth constraints to make the SMT
solver find a better configuration iteratively.

Figure 9 presents the search result. We can tell that the lower-/upper-bound constraints quickly
guide the search to a more interesting area. By utilizing a state-of-the-art SMT solver, without
additional effort from the model builder, Charm greatly reduces the time spent on sweeping the
design parameters. In the preceding evaluation, a brute force search over the space (〈Tm ×Tn ×
Tr ×Tc 〉, Lines 38–45 in Listing 7) takes more than 5 hours to finish, whereas automatic exploration
finds optimality in roughly 30 minutes, achieving more than 10x speedup. We expect this speedup
to only grow as the model gets more complicated with more than four parameters to search for.
Figure 10 transforms the roofline space into a performance-bandwidth space.
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Listing 7. CNN roofline model.

There are a few interesting observations from these two viewpoints of the space:

• From Figure 10, we can tell that performance does not have a clear linear correlation with
bandwidth. For instance, to achieve better performance, a balance between processing re-
source and communication is more important rather than simply dumping logic transistors
or using wide communication channels.

• The preceding said balance can be seen from the most performant few configurations. All of
these configurations are “asymmetric” and retain some ratio betweenTm andTn (a possible
interpretation maps to the on-chip processing resource and the communication channel
width). As this ratio deviates from the “balance,” performance degrades as we can tell from
the configuration of “BW only” and “Perf + BW.”

• From Figure 10, we can tell that this FPGA board is clearly bounded by its computation
resources rather than communication bandwidth as designs within less than 99% of the
computation roof consume less than half of the available bandwidth.
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Fig. 9. Finding the optimal tile configuration for the second convolution layer of AlexNet under the roofline
constraint when targeting xc7vh870t. “Perf-only” is the exploration trajectory when we only optimize for
performance, whereas “Perf + BW” shows the trajectory when we simultaneously optimize for both perfor-
mance and the computation to communication overhead. In the first case, the SMT instance is iteratively
bounded toward the upper part of the graph (i.e., the subspace with higher performance), whereas the sec-
ond case pushes the search to the upper-right corner where designs have both better performance and a
lower requirement on bandwidth.

Fig. 10. Projecting the search results into the performance-bandwidth space.

5 RELATED WORK

5.1 Closed-Form Architecture Models

Many of the recently developed high-level analytical models are conceptually inherent from
Amdahl’s law [7], which is often expressed as a closed-form performance model of parallel
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programs. The most well studied derivative is the multicore performance model by Hill and
Marty [33]. A long line of research work using extensions of their closed-form model focuses
on different aspects of the system, including application [61], communication and synchroniza-
tion [25, 72], energy and power consumption [24, 70], heterogeneity [5, 15], chip reliability [59],
architectural risk [21], and so on. Our language consumes these models and provides a systematic
way to establish new high-level models either by constructing new equations and constraints or
reusing those from the preceding models.

Another set of analytical performance models are built directly from the mechanisms of the
specific system [12–14, 26, 27, 34, 51, 58]. These models usually rely on simulations or hardware
counters to collect the necessary inputs to their core closed-form equations. Our language can
also express and manage these equations. Moreover, empirical modeling [9, 36, 41–44] is used to
discover correlation between two or more architectural quantities. These correlations can usually
be expressed as parameterized equations in closed form. The resulting models of such empirical
methods can also be managed by and benefit from Charm.

5.2 Systems and Languages Supporting Analytical Modeling

There exist systems and languages that support structured analytical modeling. Modelica [23]
supports multidomain analytical modeling with an emphasis on object-oriented model composi-
tion, but the connection of models needs to be explicitly dictated and the design space exploration
requires user intervention. However, Charm is more restricted, and thus it is able to automati-
cally link models and generate exploration loops. Aspen [60] provides a DSL to express applica-
tions along with an abstract machine organization to model performance. Palm [64] utilizes source
code annotation to build analytical models for target applications. LSE [68] is a fully concurrent-
structural modeling framework designed to maximize reusability of components. There are also
many other works in the field of HPC for automatically performing performance modeling [3,
4, 67]. Most of these languages and systems serve a different purpose of expressing the map-
ping between performance/power models and specific detailed application/architecture and are
not well suited for high-level analytical design space exploration. In contrast, Charm is tailored
for structured yet flexible exploration of the interactions between architectural variables and their
ramifications at a high level. There are also a few systems exploiting the power of symbolic execu-
tion for modeling [8, 21], but Charm provides more capabilities around formalizing, checking, and
evaluating the models. There also exists a tool [65] of the same name, CHARM (Chip-Architecture
Planning Tool), which uses a knowledge-based scheme to ease high-level synthesis.

The internals of Charm resemble some of the dataflow-centered programming languages in the
field of incremental/reactive programming [30, 31, 45, 48, 63] but differ in that Charm is highly
restrictive. This restrictiveness means that Charm is more of a modeling language than a pro-
gramming language. For instance, Charm does not support general-purpose structures like loops
and function calls but supports a malleability useful for exploration (e.g., reversing input/output
dependencies).

5.3 Exploring Design Space with Constraint Solving

Mohanty et al. [50] use constraint solving as a first step to prune the entire design space of embed-
ded SoCs at a coarse granularity for later evaluation. CoBaSA [49] compiles the component-based
software development design space and system constraints into a pseudo-Boolean satisfiability
problem to find feasible solutions with a large number of constraints. Haubelt et al. [32] encode
the system synthesis problem into an SAT instance to find a feasible binding between processes
and resources. Regarding the use of SMT solvers [47, 52, 55, 57], a plethora of research work has
explored task scheduling and resource management using an SMT solver including methods with

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 9. Pub. date: October 2019.



9:24 W. Cui et al.

high-level language or custom DSL as the frontend [52, 57]. In Charm, we use the SMT solver to ex-
plore the design space formed by analytic architecture models. We utilize the theories of bit vectors
and floating-point numbers to bound the infinite design space and approximate the architectural
quantities.

6 CONCLUSION

Computer architecture is a rapidly evolving field. Complex and intricately interacting constraints
around energy, temperature, performance, cost, and fabrication create a web of relationships. As
we move toward more heterogeneous and accelerator-heavy techniques, our understanding of
these relationships is more critical for guiding the processes of design and evaluation than ever
before. Already today we are seeing machine learning [19], cryptography [6], and other fields
attempting to pull architectural analysis into their own work—sometimes introducing serious bugs
along the way. Architecture is now a field that is expected to make scientific statements connecting
nanoscale device details to the largest warehouse scale computers and everything in between.
Spanning these 11 orders of magnitude will require more complex analytic approaches to be used
in tandem with traditional simulation and prototyping tools that computer architects have long
relied on.

Charm provides domain-specific language support for architecture modeling in a way that leads
to more flexible, scalable, shareable, and correct analytic models. Although our language already
supports symbolic restructuring, memoization, hoisting (and several other optimizations), consis-
tency checks, and the capability of automatic exploration, Charm is merely the first step toward a
more powerful and useful modeling language for computer architects. It is easy to imagine other
useful additions in the future, such as checks on the consistency of physical types (e.g., nJ vs. pJ
errors) or backends connecting models to nonlinear optimizers. Most importantly though, by giv-
ing the sets of mutually dependent architectural relationships a common language, Charm, along
with the collection of established models, has the potential to enable more complete and precise
specification, easier composition, more through checking, and (most importantly) broader reuse
and sharing of complex analytic models. Looking ahead, we see that tools such as this hold signifi-
cant promise in enabling more collaborative and community-driven efforts that can make our best
thinking on the future of architecture more readily and easily accessible to all who are interested.
Furthermore, although Charm focuses on facilitating models analysis, we believe that by combin-
ing Charm with other hardware design toolsets (e.g., PyRTL [17]), we can automate the process of
developing actual hardware designs directly from performance studies (e.g., via templates).
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