
Estimating and Understanding Architectural Risk
Weilong Cui

University of California, Santa Barbara
cuiwl@cs.ucsb.edu

Timothy Sherwood
University of California, Santa Barbara

sherwood@cs.ucsb.edu

ABSTRACT
Designing a system in an era of rapidly evolving application be-
haviors and significant technology shifts involves taking on risk
that a design will fail to meet its performance goals. While risk
assessment and management are expected in both business and
investment, these aspects are typically treated as independent to
questions of performance and efficiency in architecture analysis.
As hardware and software characteristics become uncertain (i.e.
samples from a distribution), we demonstrate that the resulting
performance distributions quickly grow beyond our ability to rea-
son about with intuition alone. We further show that knowledge of
the performance distribution can be used to significantly improve
both the average case performance and minimize the risk of under-
performance (which we term architectural risk). Our automated
framework can be used to quantify the areas where trade-offs be-
tween expected performance and the “tail” of performance are most
acute and provide new insights supporting architectural decision
making (such as core selection) under uncertainty. Importantly it
can do this even without a priori knowledge of an analytic model
governing that uncertainty.

CCS CONCEPTS
• Computing methodologies → Uncertainty quantification;
Modeling methodologies; • Computer systems organization →
Multicore architectures;

KEYWORDS
Uncertainty, Random Variable, Core Selection, Architecture Mod-
elling

ACM Reference format:
Weilong Cui and Timothy Sherwood. 2017. Estimating and Understand-
ing Architectural Risk. In Proceedings of MICRO-50, Cambridge, MA, USA,
October 14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3124541

1 INTRODUCTION
Computer architecture has always been governed by a combination
of physical laws, human creativity, and economic realities. The
decision to invest the engineering hours, the design and test in-
frastructure, and the initial fabrication costs into a new design is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3124541

never taken lightly. However, the lack of a clear forecast for both
new technologies and new application domains means that this
investment now involves significant new risks. The new focus on
big data and deep learning applications [10, 45], the threat of the
end of Moore’s Law [51], and the emergence of new chip tech-
nologies [27, 40], new memory technologies [24, 30, 48] and new
computing devices and paradigms [3, 11, 41] add up to a computing
landscape wrought with uncertainty.

Dealing quantitatively with this uncertainty, and the risk it cre-
ates, requires both new concepts and new tools. Computer archi-
tects tend to focus on quantifying and optimizing performance
metrics such as IPC, throughput, and power efficiency but gener-
ally fail to consider how exposed to risk a class of designs might be.
As we explore in this paper, even with fairly simple assumptions
these new trade-offs can lead to surprising relationships. The end
goal of this new line of work is to help find designs more robust to
the impacts of uncertainty than performance-only-optimal designs
while still maintaining very strong performance in the common
case.

While the true risks a company takes on when attempting to
bring a new architecture to market vary from complex partnerships,
to infringing intellectual property, to marketing missteps, in this
paper we concentrate on architectural risk. Architectural risk,
intuitively, is the degree to which the performance of a design is
fragile in the face of unknowns. In many industrial settings high
level design decisions are made at the level of spreadsheets and
other high-level analytical models or data points drawn from past
experience. Most do not consider the uncertainty in the assumptions
being made nor the fragility of the decisions with respect to those
uncertainties. Here we concentrate on such analytical models of
architecture; however, a significant confounding factor (for both
academics wishing to study this problem and industry professionals
wishing for good tools to exist) is that data for such models in this
space is very closely guarded.

For a technique to be successful it must be able to extract useful
models of uncertainty from the limited data points available to each
manufacturer. For example, given some example data points relat-
ing the performance of a set of designs to the amount of resources
they consume, one should be able to say something about the im-
pact of the uncertainty underlying those data points without
assuming they are drawn from a very specific distribution. We
describe a technique by which fewer than 50 data points can be
used (even assuming no a priori knowledge) to effectively estimate
a host of established architecturally relevant distributions for the
purpose of quantifying the impact of uncertainty. Building from
this contribution we show how even seemingly straight-forward
questions such as core selection can lead to some surprising new
interactions. Being “risk unaware” can lead you to decisions that
not only have less desirable distribution but can even be strictly
sub-optimal even when only considering expected (i.e. average case)

https://doi.org/10.1145/3123939.3124541
https://doi.org/10.1145/3123939.3124541

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

System
Model

Projection
Uncertainty

Risk
Function

Architectural
Risk

Process
Uncertainty

Design
Uncertainty

Propagated
Uncertainty

Reference
Performance

Figure 1: Relationship between uncertainty and architec-
tural risk.

performance. Our methodology is encapsulated in a new tool, avail-
able on github1, which performs this analysis automatically through
a mix of statistics, symbolic algebra, and simulation.

To provide some background to this new risk-aware analysis,
we begin in Section 2 with more precise definitions of uncertainty
and risk in connection with computer architecture performance
modeling. We also define an example system to which we will
later apply our analysis. In Section 3 we describe how we use a
hybrid analytic and sampling based framework to automatically
propagate uncertainties to calculate architectural risk in high-level
performance models. In Section 4 we then apply our framework to
perform a risk-aware CMP design space exploration and examine a
series of related questions. With this understanding of our analysis
in place, we then discuss the relationship of this work to the other
system modeling and performance evaluation efforts in Section 5.
Finally, in Section 6, we conclude our analysis and discuss future
directions for this new approach.

2 ARCHITECTURAL RISK
Uncertainty and risk are commonly used terms in many fields
including economic and financial analytics, but it is important to
be clear about their meaning here. In general risk is a function of
the impact of uncertainty on the return of the system. In economics,
uncertain events may include hikes in the price for raw materials,
emergence of a serious competitor on the market, the loss of key
personnel, and so on. Each event has some impact on the system (e.g.
loss of sales, failure to recover payment). These impacts are then
typically unified, by some function, to a common metric. Decisions
are thenmadewith an understanding of the risk in conjunctionwith
expected outcome. These trade-offs can lead to the development of
entirely new financial instruments.

In computer architecture our default metric is performance (or
some combination of performance and energy). We typically talk
about the expected performance without discussing the tail of the
distribution of performance. Risk here maps one-to-one with the
economic notion of risk [28]: we have uncertainty in what we know;
those uncertainties manifest as changes in the performance of the
system; the impact of those changes can then be quantified as risk.
Figure 1 captures this idea graphically.

For example, in Amdahl’s Law, the “return” is the speedup over
performance of unit core. The inputs are f , which is the paralleliz-
able portion of the program, and s , which is the speedup over the
parallelizable code. When considering uncertainty in this case, the
“uncertain events” are unexpected values in f and s . The probability

1https://github.com/UCSBarchlab/Archrisk.git.

of these unexpected events can be modeled by some underlying
distribution. The cost in terms of performance variations associated
with the unexpected input values can be depicted as some cost
function (or risk function) C .

Definition. In this work, we define architectural risk in Equa-
tion 1 and 2.

Re = C (Pe , P̂), Pe < P̂ (1)

ArchR =

∑
e ∈E1×E2×...×En Re

∥E1 × E2 × ... × En ∥
(2)

The above equation 1 captures the architectural risk under the
impact of some unexpected event e . P̂ is the reference performance
(or target performance of the design). If the reference performance
is guaranteed to be achieved there is defined to be no risk. Pe is the
real system performance under the impact of event e . C is the cost
function (or risk function) and is usually subjective to the system
designer or project manager. One might be interested in the proba-
bility of any unexpected event happening and thus defining a step
risk function; Another might be interested in some certain events
and their impacts and thus defining a piece-wise risk function; A
third may only be interested in the monetary loss due to perfor-
mance difference (e.g. less performant chips may be binned and sold
at lower prices) and thus defining a mapping between performance
and dollars. Equation 2 aggregates the risk captured by Equation 1
and takes the average across all possible event combinations, where
E1 through En are the sets of unexpected events for each type i of
uncertainty. The performance P in the definition is not limited to
execution time but is a broad term and can be any metric depending
on what the system model is trying to evaluate.

We propose that computer architectures are exposed to three
major sources of uncertainties: projection uncertainty, process un-
certainty, and design uncertainty; most of which can be tracked at
different levels of the system stack.

Projection uncertainty comes from assumptions one has to
make about the future. At the application level, a system design may
target a specific set of applications, but those target applications
may shift or change based on our understanding of the problem or
new optimization techniques. We often implicitly estimate future
workload behavior with measurements of existing workloads. At
the device level, systems may target underlying technologies still
working their way out of the research labs. The performance of
these future technologies is predicted by their physical models
and there is usually some degree of uncertainty on how well they
perform.

Process uncertainty comes from the manufacturing process
itself. While semiconductor manufacturing is an incredibly precise
process, when the probability of any fault is integrated over billions
of transistors we are left with a distribution of devices. Some will
work exceedingly well, others will under perform, while still others
will fail to work at all. However, unlike projection uncertainty,
under process uncertainty each chip is a new “roll of the dice”.

Design uncertainty comes from the hardware design process
itself. Components (e.g. cores and accelerators) with unresolved
critical errors or introducing significant security vulnerabilities may
be prevented (through a variety of means) from being accessible
in an initial roll outs of a product. This class of uncertainty is

Estimating and Understanding Architectural Risk MICRO-50, October 14–18, 2017, Cambridge, MA, USA

a growing concern in the more heterogeneous and accelerator-
dominated architectural design regime we are now faced with,
and mechanisms for “partitioning out” features is an increasingly
common practice.

Note that there is a philosophical distinction between the un-
certainties we discussed above (leading to architectural risk) and
the inaccuracy of an analytic model or simulator of a real system.
It is possible to reduce the measurement inaccuracy with better
modelling, more comprehensive workloads, increasingly detailed
simulation, etc. — but in the end measurement inaccuracy could be
eliminated given enough resources. However, even if one had infi-
nite resources, the uncertainties we proposed above will still exist.
It is much harder (or even impossible) to remove such uncertainties
without a fundamentally new understanding of the future2. From a
more practical standpoint, measurement error and the techniques
one may use to reduce it [15, 34, 47], might either be grouped in
with projection error or stand alone as a fourth category. However,
we do not explore that trade-off in this work.

Importantly, it does not take many of the above interacting
forms of uncertainty to make the complexity of such interactions
impossible to intuit. A successful system addressing this issue must
meet the following constraints:

(1) it needs to work well on the types of uncertainty present in
architectural analysis as described above

(2) it needs to require as few as possible assumptions about
the distribution governing the behaviors observed for each
aspect of uncertainty examined

(3) it needs to work with the very sparse amounts of data avail-
able to characterize such distributions; and

(4) it needs to be automated to a degree that architects are not
bogged down with the algebraic management and equation
solving in exploring these design spaces.

2.1 An Example System Under Analysis
While there are many times that architects make analytic estimates
of system performance, one of the most well studied is the hetero-
geneous core selection problem of Hill and Marty [23] as described
succinctly in Table 1. Under this model one chooses the best per-
forming core design to execute the serial code (Equation 6) and
uses the aggregated performance of all cores to execute the par-
allel code (Equation 7). Pollack’s Rule [6] is used to model core
performance as a function of resources consumed (Equation 9).
Designs are bounded by the total area/resource available on chip
(Equation 10). In addition to these classic assumptions, we also
take communication overhead among different cores into account,
denoted as c in Equation 4, which is some fraction of the sequential
workload. The amount of communication overhead is proportional
to the total number of cores on chip (Equation 8). This overhead is
extensively studied in [53] and can be setup/tear down time for the
parallel computation, synchronization during parallel execution, or
any other overhead introduced along with parallelization.

Although real processor design is far more complicated, we show
that even this simple model is significantly confounded by the in-
troduction of uncertainty. Uncertainty in the inputs, even here,
results in surprising outcomes (as detailed more in Section 4) and
2This is the difference between “aleatoric” and “epistemic” uncertainty.

Table 1: Closed form model of performance.

Speedup =
1

Tsequential +Tparallel
(3)

Tsequential =
1 − f + c × Ncore

Pser ial
(4)

Tparallel =
f

Pparallel
(5)

Pser ial = max{Pcorei | Ncorei > 0} (6)

Pparallel =
∑

i ∈core_types
Ncorei × Pcorei (7)

Ncore =
∑

i ∈core_types
Ncorei (8)

Pcorei =
√
Acorei (9)

Atotal =
∑

i ∈core_types
Ncorei ×Acorei (10)

demonstrates the importance of new techniques to support this
reasoning more rigorously. Our framework is by no means limited
to these sets of equations only but can be applied to evaluations of
different architectures including accelerators [2], different optimiza-
tion objectives like power efficiency [52], or linked to more detailed
simulators [9, 38]. As more parameters are added and more com-
plex models are required this should make our proposed approach
strictly more valuable and intuition even less reliable.

2.2 Uncertainties in our Example System
There are a total of five types of uncertainties that might be con-
sidered under the above model of a system. Uncertainties in target
application behavior impact f and c (a future application running
on the system might have a different level of parallelism and/or a
different unit communication overhead than the benchmarks used
to measure the system performance during design). Uncertainties
in process/manufacturing can affect both Pcorei (different core in-
stances may end up with varying performance properties due to
intra-die variation) and Ncorei (due to fabrication defects impacting
yield). Uncertainties in design may also have an effect on Pcorei in
that, upon a design bug or failure, cores of that design might not
work at all.

Each of these uncertainties is a complex thing to understand.
For a technique to be useful it must not be highly sensitive to the
assumptions about the distributions governing these unknowns.
Often times we may have only a few tens of data points from which
we can infer an underlying distribution. Later, in Section 3 we
will describe exactly how this can be done in an automated way
using a reversal of the classic power transform, but to evaluate the
effectiveness of this approach we need hidden reference models to
serve as a ground truth.

Pulling from the extensive literature on variation, yield, and
program behavior, Table 2 summaries the hidden “ground truth”.
Our technique will attempt to capture the important aspects of
these analytically from a few samples and no knowledge of the

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

Table 2: Hidden uncertainty models.

f ∼
Binomial (M,p)

M
(11)

c ∼
Binomial (M,p)

M
(12)

Ncorei ∼ Binomial (M,yieldcorei) (13)
Pcorei ∼ Bernoulli (p) × LoдNormal (µ,σ) (14)

yieldcorei = (1 +
d ×Acorei

α
)−α (15)

equations themselves. For Ncorei , i.e. the number of cores that are
actually working, from its physical definition, we model it by a
binomial distribution ranging [0,N]. N is the designed number of
corei but each with only some probability of functioning properly
taking after chip yield rate [14] (Equation 13, 15). Pcorei is mod-
elled by the product of a LogNormal distribution ranging (0,∞]
and a Bernoulli distribution with probability p of taking value 1
(Equation 14). We model core performance in such a way that it is
exposed to two types of uncertainty: design uncertainty and fab-
rication uncertainty. Although design uncertainties can result in
many consequences from degradation of performance to reduction
of reliability and so on [13], we only consider severe design bugs
that will lead to complete post-silicon failure of the component here.
This type of uncertainty naturally follows a Bernoulli distribution
by its definition, i.e. the component is either working or not. The
probability of failure is set based on reported statistics [18]. Fabri-
cation process uncertainty is modeled by the LogNormal part of
the distribution. When the design works, the actual performance of
each core also varies as a result of the fabrication process, leaving a
Gaussian-like distribution on the positive domain [39, 43, 44]. For
the LogNormal part, the location µ and scale σ is computed such
that the mean performance follows Pollack’s Rule (Equation 9) and
the variance meets our desired level in experiments. For f and c , we
use a normalized binomial distribution to model their uncertainties
(Equation 11, 12). This distribution fits well to the characterizing
data for the PARSEC benchmarks [5]. Their range is bound to be
[0, 1], while p is set to the mean value.M , which is needed to con-
struct the Binomial distribution, is computed to satisfy the level of
variance we desire in simulation.

3 RISK-AWARE ANALYSIS FRAMEWORK
At a high level our technique requires two inputs. First, an ex-
ecutable architecture model under analysis (that relates a set of
mutually dependent parameters capturing constraints and depen-
dent variables to optimize). Second, a set of data points drawn from
the distribution whose uncertainty you wish to consider (e.g. a set
of points relating core resources and performance). If we can pull a
few points from the distributions governing these models and then,
without any knowledge of the model itself (just the values of the
specific samples drawn from it), construct a new model that has
close to the same optimization utility as the ground truth, it gives
us confidence that this will be useful when applied to a specific set

1 Box-Cox Test
Distributional
Description

2
If no:
KDE

To Back-end

3
If yes: Box-Cox
Transformation

Confidence
> .95?

Truncated Gaussian
Distribution

4
Gaussian

Fitting 5 Bootstrapping

SamplesSamples

Samples
Transformed

Samples

Samples
New

Samples

5
Back

Transformation

Figure 2: Uncertainty modeling.

of trade secret data by a manufacturer3. If the architecture model
can be described as a set of mutually dependent closed-form func-
tions and the uncertainty in distributional representations (e.g. a
large set of samples or sampling functions), our tool can symboli-
cally combine and partially solve the closed-form equations. From
this form, it can then inject and propagate uncertainty through to
the final responsive metrics so that risk can be calculated. First,
however, we need a way to extract (or approximate) such distribu-
tional representations of architecture uncertainty from a few initial
samples.

3.1 Architecture Uncertainty Model Extraction
Such approximation is done by a two-phase method shown in Fig-
ure 2. We first test if the data set can be transformed to normality
through the Box-Cox testing [8] in Step 1 . If it cannot pass the
test (a rare case in practice), we apply Kernel Density Estimation
(KDE) methods [46] directly to the data set. These methods find a
best-fit non-parametric distribution in Step 2 and use its sampling
function to facilitate uncertainty propagation. Otherwise, we trans-
form the data set to normality using Box-Cox transformation in
Step 3 , re-sample (bootstrapping) from the Gaussian distribution
in the transformed domain in Step 4 , and back-transform the sam-
ples to the original domain. Finally we reconstruct the distribution
in original domain in Step 5 to approximate the hidden ground
truth. Although not as accurate as the best-fit non-parametric KDE,
such bootstrapping method enables us to hand tune the desired
uncertainty level in each variable and hence be able to explore
the trend as input uncertainties scale. We use the bootstrapping
method in our experiment to study the scaling behavior and to
examine the accuracy of such approximation, but in practice, a
non-parametric distribution is at most times sufficient to facilitate
accurate uncertainty analysis.

Figure 3 gives an example of the bootstrapping process. Figure 3a
shows the histogram generated from initial samples (the samples
are taken from a log normal distribution). Figure 3b shows the
histogram after transformation and the fitted Gaussian distribution

3Of course with arbitrarily complex “ground truth” such a trick is impossible. In the
most general case this problem reduces to one of function inversion, which we know
from cryptography can be hard, but luckily the distributions that typically govern the
physical and program properties an architect would actually care about are ones that
we find are highly amenable to this technique.

Estimating and Understanding Architectural Risk MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Box-Cox
Transform

a) Initial samples. b) Transformed samples and

fitted gaussian.

c) Bootstrapped

distribution.

Back
Transform

Figure 3: An example bootstrapping process.

System

1
System

Modeling
2

Partial
Symbolic
Solving

3 Lamdification

Note that
uncertain variable
z is not resolved

but y is.

To Back-end

Figure 4: System modeling and symbolic execution.

in the transformed domain. If the initial samples can pass box-cox
test, we are guaranteed to find a Gaussian distribution that fits the
transformed samples. Figure 3c shows the bootstrapped distribution
after back transformation to the original domain laid on top of the
original samples.

The output of this uncertainty modeling phase is a set of un-
certain variables along with their distributional descriptions to
facilitate uncertainty injection and propagation.

3.2 Model Transformation and Execution
In Figure 4, we present an overview with a simple example of how
the front-end modeling and symbolic execution works.

The first step 1 is system modeling which builds mutually de-
pendent equations described in Section 2.1. The framework then
performs the following operations. 2 Each variable including un-
certain ones is then treated as a symbolic entity and the plain string-
formatted equations are passed to symbolic execution [50]. The
result is a set of algebraic equivalent equations with each symbol
sitting on the left-hand side in one equation. We break the solving
into steps and only resolve variables that are not uncertain, and
any uncertain variable on the right-hand side in the equations is

1
Partial

Evaluation

2
Distribution
Generation

Z:

z:
Z: Distribution

Description+

3 Substitution

4
Monte Carlo
Simulation

5
Distribution

Reconstruction

P:

From this point on, Z is no
longer a floating point

number but a distribution.

From
Uncertainty

Modeling

6
Risk

Calculation

C: Risk Function+

Risk Estimation for
Responsive P

From System
Modeling

Figure 5: Back-end uncertainty injection and propagation.

kept unresolved in its original form. This is to support uncertainty
injection and propagation later. 3 The partially solved equations
are then converted into callable lambda functions. We also enforce
a fixed argument ordering in the lamdification process.

At the end of this process we have a set of callable functions that
are provided to the back-end for numerical computation.

3.3 Uncertainty Injection and Propagation
Figure 5 shows the back-end uncertainty injection and propagation
process.

Given the set of functions and uncertain variables, the frame-
work back-end then proceeds with the following steps. 1 Each
uncertain variable gets evaluated first as long as there are no uncer-
tain variables in the right-hand side of their solutions. The values
of certain inputs, like c and x in this case, should be provided by the
system designer. 2 The framework then generates distributions for
all the uncertain variables. Based on their descriptions, the distri-
bution can be generated alone or together with the evaluated value.
In this example, the distribution of Z takes the evaluated value z0
as its mean. 3 All uncertain variables appear in the argument list
of the lambda functions are then replaced by the corresponding
distributions. At the completion of this stage we have injected the

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

desired uncertainties into the solved system model. 4 Each func-
tion containing distributions or random variables in the argument
list is then evaluated by Latin-hypercube Monte Carlo simulation
N times [31]. The result of the Monte Carlo simulation is a set of
values for each responsive variable in the system. 5 We then re-
construct a distribution from the set of values for each responsive
variable. At this point, the uncertainties in the inputs are propa-
gated into the distribution properties of the responsive variables.
There are systematic errors associated with the Monte Carlo simu-
lation but, in our experiments, we keep N sufficiently large (we use
N = 10, 000) to keep the errors negligible. 6 Finally, we calculate
risk based on the distribution of the responsive variable and the
risk function provided.

4 ANALYSIS OF RISK ON CORE SELECTION
Building from the framework and ground truth models discussed
above, we now carry out an analysis on the classic Hill and Marty
core selection design problem and demonstrate how performance
and risk interrelate and can even be co-managed. The design ques-
tion is essentially: what cores and how many of them should we
put on a CMP in the face of uncertainties? We bound the design
space to populate by constraining the total chip size (or resources)
to be 256 units and consider the full spectrum of designs (rather
than just one big-core coupled with many tiny cores). Specifically
we ask the following questions which will be answered by a series
of implications we draw from our experiment results:
• How does uncertainty manifest and interact in the system?
• How sensitive is CMP performance in the face of uncer-
tainty?
• Is the conventional risk-oblivious design optimal in terms
of architectural risk? Furthermore, is it still optimal even in
terms of expected performance?
• When is there a trade-off space between architectural risk
and expected performance? What does the trade-off space
look like?
• What configuration/design is favored when one considers
risk?

After exploring the design space with ground truth distributions,
we show that our approximation method still leads to optimal or
near-optimal designs from only a handful of samples. Such partial
information about the underlying uncertainty distributions is often
the case in early modeling and design cycles. While we primarily
consider architectural risk in the form of performance, we further
demonstrate the use of this analysis in evaluating monetary risk
function using both ground truth distributions and the approxima-
tions.

4.1 Uncertainty Manifestation
Experiment Setup. In order to answer the question of how un-
certainty manifests in the output, we inject a total of five types
of uncertainties into the four input variables of our model. The
uncertainties we inject are application characteristics uncertainties
in f and c , process variation in Pcorei and Ncorei as well as design
uncertainty in Pcorei .

Table 3 describes how much uncertainty we inject. With σ = 0,
the inputs are certain values (f̂ , ĉ , P̂corei and N̂corei), the resulting

Table 3: Injected uncertainties.

Input Certain Value
Uncertain Value

Mean Std

f f̂ f̂ σ · (1 − f̂)

c ĉ ĉ σ · ĉ

Pcorei P̂i P̂i σ · P̂i

Fabric Ncorei ∼ Binomial (N̂corei , yieldcorei)

Design Pcorei ∼ Bernoulli (σ · γ) × Pcorei

performance is the conventional “certain” result without propa-
gated uncertainty. With σ > 0, f is centered on f̂ with a standard
deviation of σ · (1 − f̂), such that the standard deviation of f is
kept small enough that f only varies at the least significant digit
of f̂ and does not completely change the application to another
category (again, we are being conservative here and a larger un-
certainty will make the risk even more important). Similarly, c is
centered on ĉ but with a standard deviation of σ · ĉ as c in itself is
very close to 0. As for core performance Pcorei , the performance
uncertainty is centered around P̂corei and the standard deviation
is set to be σ · P̂corei . There are two special types of uncertainty
that are not centered around the corresponding certain values. The
fabrication uncertainty is added when we consider that each core
has a probability of failure (not functioning properly). We keep
yield rate for each type of core evaluated constant throughout the
computation. Table 4 lists the yield rates computed using Poisson
chip yield model [29]. Note that yield rate is not dependent on σ
but only on core size. Design uncertainty is modeled by a Bernoulli
with probability σ · γ , and we set the intrinsic probability γ based
on an estimation of existing data [18].

Table 4: Yield rates.

core size 8 16 32 64 128

yield 98% 96% 92% 85% 75%

We hand-tune the injected uncertainty level σ from 0 to 1 for four
different categories of applications and three different architecture
designs. The four applications are characterized by different values
of parallelizable portion f̂ and unit communication overhead ĉ . We
call f̂ = 0.999 high parallelism (HP) and f̂ = 0.9 low parallelism
(LP). We refer to ĉ = 0.001 as low communication cost (LC) and
ĉ = 0.01 as high communication cost (HC). To see the impact we
consider three example designs which are symmetric (32x8) and
asymmetric (1x128 + 16x8) designs from Hill and Marty’s setting
as well as an extended full heterogeneous architecture in which 5
types of cores are present.

Results and Discussion. In Figure 6, we show examples on the
resulting performance distribution. The mean of the performance
distribution should be the expected performance under uncertain-
ties and its standard deviation (or variance) measures how much

Estimating and Understanding Architectural Risk MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Sym Cores + HPLC Asym Cores + LPLC Hetero Cores + LPHC

Normalized Performance Normalized Performance Normalized Performance
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

Figure 6: Performance distribution under uncertainties.
“Sym Cores” stands for a configuration of 32x8 (32 small
cores of size 8), “Asym Cores” stands for a configuration of
1x128 + 16x8 (one large core of size 128 and 16 small cores of
size 8), and “Hetero Cores” stands for a full heterogeneous
configuration of 2x8 + 1x16 + 1x32 + 1x64 + 1x128.

each chip differs from one another in terms of performance. The
shape of the distribution also matters in that it relates to how much
architectural risk a design is exposed to. Based on our architectural
risk definition in Section 2, given a reference performance (or per-
formance goal), risk is essentially a weighted area under the curve
to the left of the performance goal. Looking at the figure, an impor-
tant observation is that the resulting performance distribution is
very irregular even with our simple and regular input distributions.

In Figure 7, we present how the expected performance under the
impact of input uncertainties behaves as σ increases. In most cases,
input uncertainties lead to worse expected performance compared
to its “certain” version, while in some cases, a strong uncertainty,
especially on f and c , can lead to better expected performance
because of the asymmetric impact f and c have on performance.
For example, in the asymmetric architecture with an application of
f̂ = 0.9 and ĉ = 0.001, an f = 0.9 + 0.1 will raise the performance
from 36.38 to 37.93 (an 1.55 increase) while an f = 0.9 − 0.1 lowers
performance to 34.96 (an 1.42 decrease). In another word, given the
same deviation from f̂ , the impact of a higher f is greater than the
impact of a lower f , resulting in a better expected performance.
From an architectural point of view, this asymmetric impact results
from the fact that asymmetric design often fits applications with
more inherent parallelism better.

If we compare the performance across different applications for
the symmetric design, we can see that when f gets smaller (uncer-
tainty on f gets larger) and c unchanged, the impact of uncertainty
on f becomes dominant (compare the first and third figure on the
first row), while when c gets larger (uncertainty on c grows) and
f unchanged, the impact of uncertainty on c becomes dominant
(compare the third and fourth figure on the first row). This obser-
vation holds for all three designs and meets our expectation that
the uncertainty on the dominating characteristic of the application
has a greater impact on the output.

If we instead pick an application and compare across all three
designs, we can tell that the performance “boost” brought by the
asymmetry on f and c diminishes as the chip becomes more hetero-
geneous. The same example math of f = 0.9+ 0.1 and f = 0.9− 0.1
suffices to show that the asymmetry is barely observable in the very
heterogeneous design. In another word, the more heterogeneous
the chip is, the less sensitive to application uncertainty it is.

Another observation begins to surface in this comparison study.
The overall impact of uncertainty on core performance Pcorei be-
haves differently for chips of different heterogeneity and hetero-
geneous chips are generally more sensitive to architectural uncer-
tainties. In the symmetric case, all cores are of the same size and
the uncertainty in the performance of each core cancels out one
another, leaving the result performance unchanged. While in the
asymmetric case, the collection of the small cores still behave in
such a way, but when the big core has a degraded performance,
it has a much larger impact on performance that cannot be offset
by the other smaller cores. In the very heterogeneous design, how-
ever, the collective behavior of the cores contributes to a better
expected performance. This explains why the impact of architec-
ture uncertainty grows when the architecture design becomes more
heterogeneous.

Figure 8 gives three examples of the uncertainty in the output of
the model as the input uncertainties vary. In general, uncertainty
in performance grows as the input σ increases. This follows our
intuition that the more uncertain the input is, the more uncertain
the output should be. Most of the input uncertainties propagate
through the model sub-linearly, indicating some tolerance for un-
certainty the model exhibits. We also compare across the designs
for the same application, and find out that the more heterogeneous
the chip is, the more uncertainty-tolerant it is.

A counter-intuitive fact is that the composite uncertainty in
the output is not simply an accumulation of all the input uncer-
tainties. In fact, the uncertainties are not even additive. To better
demonstrate this behavior, we conduct a series of experiments by
removing one type of uncertainty at a time. In Figure 9, we use
the asymmetric design as an example to show that the output un-
certainty sometimes rises when there is less uncertainty in some
of the inputs. This happens because uncertainty has two possible
effects on the output performance: it may contribute to a better
performance or it may lead to a worse performance. And different
components of the system (different inputs) respond to uncertainty
with different magnitudes, as well as directions (better or worse).
When combined, different uncertain inputs may enhance each other,
leaving performance shifted more from the expected value, while
in other situations they may attenuate each other reducing shifts
in performance.

In summary, regarding how uncertainties propagate and how
sensitive CMPs to these input uncertainties, we have the following
implications.

Implication 1. Uncertainties propagate through the model with
non-intuitive interaction, the resulting performance distribution
is beyond what a simple “back-of-the-envelope” estimation can
reveal.

Implication 2. The more heterogeneous the chip is, the less
sensitive its expected performance to application uncertainty, but
the more sensitive its expected performance to architecture uncer-
tainty.

Implication 3. The more heterogeneous the chip is, the more
tolerant/robust its performance is to input uncertainties.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

HPLC HPHC

Sym

Cores

Asym

Cores

Hetero

Cores

LPLC LPHC

design onlyf only c only perf only fab only all

Input Input
0.0 0.2 0.4 0.6 0.8 1.0

Input
0.0 0.2 0.4 0.6 0.8 1.0

Input
0.0 0.2 0.4 0.6 0.8 1.0

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce
N

o
rm

al
iz

ed
 P

er
fo

rm
an

ce 1.3

1.2

1.1

1.0

0.9

0.8

0.7

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce 1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.0 0.2 0.4 0.6 0.8 1.0

1.3

1.2

1.1

1.0

0.9

0.8

0.7

Figure 7: Uncertainty manifestation on output performance. Legend indicates which type of uncertainty is under considera-
tion, and expected performance is normalized to risk-unaware performance.

Sym Cores + HPLC Asym Cores + HPHC

Symmetric Cores

Hetero Cores + LPHC

design onlyf only c only perf only fab only all

Input

0.0 0.2 0.4 0.6 0.8 1.0

Input

0.0 0.2 0.4 0.6 0.8 1.0

Input

0.0 0.2 0.4 0.6 0.8 1.0

O
u

tp
u

t

2.0

1.5

1.0

0.5

0.0

Figure 8: Example uncertainty manifestation on output un-
certainty. Legend indicates which type of uncertainty is un-
der consideration and standard deviation is normalized to
risk-unaware performance.

4.2 Impact on Design
Given the complexity of propagated uncertainties in the three de-
signs above, we now expand our search space and explore how
uncertainty and risk may impact design decisions in the uncer-
tainty wrought design space.

Experiment Setup. The injected uncertainties are identical to
the setups in Section 4.1.We exhaustively enumerate all valid design
options. Each valid design option is a configuration taking up 256
on-chip resource units (a total size of 256) with a combination
of different cores, each of which having a size of power of two

HPLC LPHC

no designno f no c no perf no fab all

Input

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

Input

0.0 0.2 0.4 0.6 0.8 1.0

O
u
tp

u
t

Figure 9: Non-accumulative output uncertainty for asym-
metric architecture. Legend indicates which type of uncer-
tainty is excluded and all means all types of uncertainty are
considered.

ranging from 8 to 256 (e.g. a valid design can be 32 cores of size 8,
1 core of size 256 or 16 cores of size 8 plus 1 core of size 128). Some
combination does not consume all the on-chip resources, and in
those cases, we group all resource left into one additional core (e.g.
8 cores of size 8 plus one core of size 192 is also valid). We also use
a quadratic risk function in this exploration. In other words risk is
the sum square of the performance loss below some reference due

Estimating and Understanding Architectural Risk MICRO-50, October 14–18, 2017, Cambridge, MA, USA

HPHC

Opt Perf_Opt

Sub_Opt + Trade-off

Sub_Opt

Opt Perf_Opt

Sub_Opt

Sub_Opt + Trade-off

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

LPHC

HPLC

Opt Perf_Opt

Sub_Opt + Trade-off

Opt

Sub_Opt + Trade-off

Perf_Opt

Sub_Opt

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

LPLC

1.0

0.8

0.6

0.4

0.2

0.0

Figure 10: Impact on design of application uncertainties
and architecture uncertainties. σ_app is the uncertainties
in f and c and σ_arch is the uncertainties in Pcorei and
Ncorei . “Opt” means conventional design is optimal in both
expected performance and risk. “Perf Opt Only” means con-
ventional design is only optimal in terms of expected per-
formance. “Sub-opt” means conventional design is strictly
sub-optimal in both expected performance and risk. “Sub-
opt + Tradeoff” means not only conventional design is sub-
optimal, there is also a trade-off space betweenperformance-
optimal design and risk-optimal design.

to uncertainty for all eventualities. The idea is that performance
well below expectation is much worse than performance just below
expectation (similar to minimizing sum square error).

Results and Discussion.We present results considering both
architecture uncertainties (process uncertainty and design uncer-
tainty) and application uncertainties (uncertainty in f and c) in
Figure 10. The conventional performance-optimizing uncertainty-
oblivious design is at most times not the optimal choice not only
in terms of risk but also, very counter-intuitively, even in terms of
expected performance. If we take a look at the architecture uncer-
tainties (σ_arch on the y-axis) and application uncertainties (σ_app
on the x-axis) respectively, we can tell that architecture uncertain-
ties usually impose a larger impact on design decisions. In all four
types of applications, the optimal design shifting along the y-axis
occurs even when there is only 20% uncertainty or less. Meanwhile,
the application uncertainties shift the best design at a slower pace. If
we consider application uncertainty alone (with a fixed architecture
uncertainty), we can see that the application uncertainties shift the
risk-optimal design easily but the performance optimality shifts
only when application uncertainty is abundant. In one case where
parallelism is high and communication overhead is low, application
uncertainty does not shift the performance optimal design at all
even at a level of 100% of the mean.

An example trade-off space with LPHC application between
performance-optimal design and risk-optimal design is shown in
Figure 11. To help readability and understanding, we do not include

all curves at every input uncertainty level in Figure 11a, but the
trends of other curves are very similar to the examples we show in
the figure. We can tell that the amount of input uncertainties shifts
the possible outcomes of all designs in the performance-risk space
and determines how the trade-off space look like. In most cases,
there exists a trade-off space between the performance-optimal
design and the risk-optimal design. Taking the curve marked in
Figure 11a as an example, one can mitigate almost 60% of risk at
the cost of less than 3% performance. Figure 11b zooms in on the
example curve and shows both the Pareto-optimal designs as well
as the non-optimal designs with relatively strong expected perfor-
mance (within 89% of the best expected performance) in the space.
Figure 11c further zooms in on the two representative designs on
the Pareto curve. We can see that having a more “concentrated”
distribution around the performance goal helps bring down the
architectural risk of the lower design, while the upper design has a
wider distribution leaving a larger risk but better expected perfor-
mance.

In summary, regarding how conventional design performs in the
uncertainty wrought design space, we have the following implica-
tions.

Implication 4. Conventional architectural risk-oblivious design
is at most times not the architectural risk optimal design when
there’s even moderate amount of input uncertainties. Conventional
design is also oftentimes not even optimal in terms of expected
performance, i.e. there is another core-configuration that yields
better expected performance in the face of uncertainty.

Implication 5. Architecture uncertainties usually have a larger
impact on design optimality while application uncertainties have a
relatively smaller impact.

Implication 6. At most times there exists a trade-off space be-
tween performance-optimal design and risk-optimal design, and
one can mitigate a good amount of risk at the cost of a relatively
small performance degradation.

Next we explore what exactly the optimal core configurations
are and what configurations are generally preferred in terms of
both expected performance and architectural risk using results with
LPHC as an example. Figure 12a gives the performance-optimal
core configuration distributions in our search space. If we consider
application uncertainty σ_app alone, when it gets larger, the his-
tograms tend to grow towards the left edge and concentrate on a
few selections. This “concentrating” trend means that more asym-
metric configurations are generally favored when there is more
application uncertainty. This trend results from the asymmetric
impact we discussed in Section 4.1. A large core is needed to com-
pensate the performance loss due to a lower f or higher c while
the herd of small cores are better performing than a distribution of
heterogeneous cores for parallel execution. However, when σ_arch
gets larger, i.e. there are more architecture uncertainties involved,
we can see that the histograms tend to spread out across different
core sizes. This “spreading” trend indicates that less asymmetric
configurations are preferred when there is more architecture un-
certainty. This is due to the fact that mid-sized cores are chosen
because the performances of cores have variations and a mid-sized
core can step in during serial execution to compensate the perfor-
mance loss due to a less performant large core. Another reason is
that multiple cores of each type are chosen to fight the intra-die

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

a) Pareto curves at eifferent uncertainty level. b) Zoom-in Pareto curve and non-Pareto points. c) Zoom-in performance distribution.

Normalized Performance

Normalized Performance0.8 0.9 1.0 1.1 1.2

1.0

0.8

0.6

0.4

0.2

0.0

Normalized Performance

N
o
rm

al
iz

ed
 R

is
k

Normalized Performance Normalized Performance

0.0 1.0 2.0 3.0 4.0

0.89 0.90 0.91

C
o
u
n
t

C
o
u
n
t

N
o
rm

al
iz

ed
 R

is
k

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.0 1.0 2.0 3.0 4.0

Figure 11: Example trade-off space between performance-optimal design and risk-optimal design. Each point in the space is
a performance distribution of a certain design (core-selection) at some input uncertainty level (denoted as a tuple of (σ_app,
σ_arch)) with the LPHC application. Performance is normalized to that of the conventional case (risk-oblivious performance-
optimal design). Risk is normalized to that of the performance-optimal design at each input uncertainty level.

process variation, leading to fewer core types on chip because of
total area/resource constraint. These two counter-directional trends
are the main reasons that the design space is very irregular and
complicated.

Similarly in Figure 12b, we show the optimal core configuration
for architectural risk optimal designs. Comparing with Figure 12a,
we can tell that in most cases a “spread-out” or more symmetric
configuration is needed tominimize architectural risk. However, the
general trend when uncertainty grows is a blend of such “spreading”
and those in Figure 12a and is very irregular and extremely hard, if
not impossible, to intuit.

To sum up, regarding what configuration/design is in general
more favorable, we have the following implications.

Implication 7. More symmetric configurations tend to mini-
mize architectural risk while more asymmetric configurations tend
to maximize expected performance in the face of uncertainties.

Implication 8. As application uncertainty gets larger, more
asymmetric configurations are preferred, while as architecture un-
certainty gets larger, more symmetric configurations are favored.

4.3 Approximating Uncertainty and Risk
In this section, we explore, when there is no a prior knowledge of
the hidden ground truth distributions of the input uncertainties but
merely a few samples drawn from them, how our approximation
method performs.

Experiment Setup. We take only k samples from each of the
distributional input uncertainties listed in Table 2. We then apply
our bootstrapping method discussed in Section 3.1 on these samples
to acquire approximations to the true uncertainty distributions. We
then again conduct an exhaustive search through the design space
using settings in Section 4.2 with the approximate uncertainties.

Results and Discussion. Figure 13 presents the approximation
quality. Aside from some numerical fluctuations, the general trend
is clearly showing that we can bound the error in terms of both
expected performance and risk within 5% with 50 samples or even
fewer. When the sample size exceeds 100, the quality of approxima-
tion is very stable and the approximation is very close to the hidden
ground truth. We will further show the approximation quality with
a concrete example in Section 4.4.

4.4 From Architectural Risk to Financial Risk
Now that we understand the impact of uncertainty and risk on core
selection, we take a step back and re-examine the meaning of our
risk function. The quadratic risk function used in above experiments
may seem a little abstract when it comes to interpreting themeaning
of its absolute value. One may ask the question of: what is the cost
in dollars if a sub-optimal design is chosen in the face of uncertainty?

To answer this type of question, a different risk function which
ties performance to a concrete dollar value in the market is needed.
Here we show an example using a simple monetary mapping for
normalized chip performance. Table 5 lists the relationship of nor-
malized performance and dollars estimated from a publicly available
CPU price list [25].

Table 5: Correlation betweenNormalized Chip Performance
and Market Value.

Perf < 0.6 [0.6, 0.8) [0.8, 0.9) [0.9, 1.0) ≥ 1.0

$ 100 200 300 600 1000

The risk function is defined in Equation 16 to reveal risk in terms
of dollar cost due to performance uncertainty. We consider all input

Estimating and Understanding Architectural Risk MICRO-50, October 14–18, 2017, Cambridge, MA, USA

a) Expected performance optimal designs b) Architectural risk optimal designs

Figure 12: Core configurations of optimal designs for LPHC. Each design is represented in a histogram of core distribution.
Each bar in the histogram corresponds to the count for each type of core of which the size ranging 8, 16, 32, 64, 128, and 256
from left to right . σ_app and σ_arch both range from 0 to 1. Note that all designs are bounded by the same area constraint and
the y-axis of each histogram is not normalized to better show the ratio between different types of cores.

HPLC HPHC LPLC LPHC

0.60.2 0.4 0.8 1.0X X

P
er

fo
rm

a
n
ce

 D
e
v
ia

ti
o
n
 (

%
)

R
is

k
 D

ev
ia

ti
o

n
 (

%
)

Sample Size k

20 50 100 1000 10000

0.20

0.15

0.10

0.05

0.00

Sample Size k

20 50 100 1000 10000

Sample Size k

20 50 100 1000 10000

Sample Size k

20 50 100 1000 10000

0.20

0.15

0.10

0.05

0.00

P
er

fo
rm

an
ce

D
ev

ia
ti

o
n
 (

%
)

Figure 13: Quality of approximation. Different curves are av-
erages taken for input uncertainties (both σ_app and σ_arch)
less than a given threshold marked by corresponding leg-
end.

uncertainties at σ = 0.2 with LPHC as an example and derive the
performance distribution of a risk-unaware optimal design, a risk-
aware optimal design with hidden ground truth, and an approximate
risk-aware optimal design with sample size k = 50 in Figure 14.
Based on our definition in Section 2, the architectural risk of the
conventional design is $348.53 which means $348.53 per chip on
average lost (compared to the price of a chip at performance 1.0)
due to uncertainty with an average case performance of 0.95. For
risk-aware optimal design with hidden ground truth, the architec-
ture risk is $293.64 with an average performance of 1.00. For the
approximated risk-aware optimal design, the architectural risk is
$301.38 with an expected performance of 0.99. At this point, for
this specific setting, we can answer that $47.15 per chip can be saved
with even better expected chip performance using an approximate
uncertainty analysis.

C (Pe , P̂) = $(P̂) − $(Pe) (16)

5 RELATEDWORKS
5.1 Modeling and Design Space Exploration
As discussed earlier Hill and Marty extends Amdahl’s Law to multi-
core scenarios [23]. Altaf and Wood apply a similar analytical mod-
eling to estimate performance of system with accelerators [2]. Es-
maeilzadeh et. al. explore the power limit on mutli-core scaling
using an extension of Hill and Marty’s model [16]. This line of
analytical research has led to many works [12, 21, 49, 52] focusing
on different aspects of the system with different assumptions.

In addition to analytical models built purely from a high-level
inspection of the system, there is also a class of research using
empirical modeling which exploits statistical and machine learning
techniques to examine uncertainty for the purpose of inferring
a better system model [4, 9, 15, 22, 26, 32–38, 42]. Many of these
techniques begin with parametrized models and then statistically
fit the parameters. Alameldeen and Wood in particular examine
the variability in multi-threaded workloads [1] and, by injecting
random errors into the detailed simulator, develop a method to
account for this type of uncertainty in simulation. Most of the these
works address the problem of discovering good models and/or focus
on minimizing statistical errors from those models. Rather than
proposing a new model, or reducing errors introduced by existing
ones, we instead argue for a design and modeling approach that
embraces extrinsic uncertainties and provides tools for making good
decisions in the face of the associated risks. Although we examine
primarily an extension to the Hill and Marty model, our analysis
and framework can also be used with more detailed or complicated

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

Risk-oblivious

(Avg. Perf: 0.95, ArchR: 348.53)

Risk-aware

(Avg. Perf: 1.00, ArchR: 293.64)

$100

$
2

0
0

$
3

0
0

$
6

0
0 $1000

$100

$
2

0
0

$
3
0
0

$
6
0
0 $1000

Approximate Risk-aware

(Avg. Perf: 0.99, ArchR: 301.38)

$100

$
2

0
0

$
3
0
0

$
6
0
0 $1000

Normalized Performance

0.0 0.6 0.8 1.0 2.0

Normalized Performance Normalized Performance

0.0 0.6 0.8 1.0 2.0 0.0 0.6 0.8 1.0 2.0

Figure 14: Binning of design results under uncertainties. A price binning based on Table 5 is laid on top of the performance
distribution derived from each design with LPHC application at an input uncertainty of σ_app = σ_arch = 0.2. These designs
correspond to the point in Figure 10 LPHC at coordinate (0.2, 0.2).

models as long as they can be expressed in, or approximated by, an
interacting set of closed form equations.

5.2 Economical Thinking and Computer
Architecture

This paper is certainly not the first to be inspired by economic think-
ing as applied to Computer Architecture. Bornholt et. al. deal with
application-visible uncertain data at the programming language
and runtime level [7]. Guevara et. al. combine market mechanism
and resource allocation techniques to explore datacenter architec-
tures [19]. Zahedi and Lee use game theory to study how to better
allocate hardware resource in a cloud environment [54]. Fan et. al.
also use game theory to handle power management in datacen-
ters [17]. Guevara et. al. tackle the problem of runtime variation in
datacenters and propose strategies to mitigate the risk of not meet-
ing performance target [20]. These and other papers concentrate on
the application of economic reasoning to better allocate resources
in the face of competing interests, rather than examining the cost
of extrinsic uncertainty on the high level design. Combining these
lines of work would be an interesting area for future exploration.

6 CONCLUSION
We are living in interesting times for computer architecture — both
from above by the applications, and below by the technology, we
find ourselves pressed between many new uncertainties. While
developing new computer system has always involved a risk of
failing to meet performance goals, the new magnitude of these
uncertainties may now lead to either overly conservative design
practices on one hand, or “fragile” designs on the other. The degree
to which uncertainty actually changes the expected performance
of a design (and thus the nature of what an “optimal” design re-
ally is) is not something that has been discussed much in prior
work. In this work we show that it is possible to define, model,
and quantify architectural risk. Luckily the ideas of risk and risk-
management are well understood in economics and by drawing

upon this expertise, we are able to describe a new analytic frame-
work for high-level risk-aware architectural analysis. We embody
this framework in a symbolic/statistical analysis system that eases
the exploration of these surprisingly complex design spaces. We
show that ignoring the degree to which parameters are unknown,
even under fairly simple and conservative performance model-
ing assumptions, can lead to designs with radically different risk
profiles. While there is always a design that maximizes expected
performance, we show (even absent the confounding factors of cost,
energy, thermal constraints, etc.) the “optimal” design may only be
a point in the risk-performance trade-off space.

7 ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grants No. 1239567, 1162187, and 1563935.

We’d like to thank Gabriel Loh for his constructive feedback
and critiques; Changwei Xu for being our statistics consultant; Yan
Tang for discussion on data transformation and comments on the
manuscript; and the anonymous reviewers, for their invaluable
feedback.

Estimating and Understanding Architectural Risk MICRO-50, October 14–18, 2017, Cambridge, MA, USA

REFERENCES
[1] A. R. Alameldeen and D. A. Wood. 2003. Variability in architectural simulations

of multi-threaded workloads. In The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings. 7–18. https:
//doi.org/10.1109/HPCA.2003.1183520

[2] Muhammad Shoaib Bin Altaf and David A. Wood. 2017. LogCA: A High-Level
Performance Model for Hardware Accelerators. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA ’17). ACM, New York,
NY, USA, 375–388. https://doi.org/10.1145/3079856.3080216

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April
2010), 50–58. https://doi.org/10.1145/1721654.1721672

[4] Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay J. Patel, and Mark Horowitz.
2010. Energy-performance Tradeoffs in Processor Architecture and Circuit
Design: A Marginal Cost Analysis. In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA ’10). ACM, New York, NY, USA, 26–36.
https://doi.org/10.1145/1815961.1815967

[5] M. Bhadauria, V. M. Weaver, and S. A. McKee. 2009. Understanding PARSEC
performance on contemporary CMPs. In 2009 IEEE International Symposium on
Workload Characterization (IISWC). 98–107. https://doi.org/10.1109/IISWC.2009.
5306793

[6] Shekhar Borkar. 2007. Thousand Core Chips: A Technology Perspective. In
Proceedings of the 44th Annual Design Automation Conference (DAC ’07). ACM,
New York, NY, USA, 746–749. https://doi.org/10.1145/1278480.1278667

[7] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. 2014. Uncertain<T>:
A First-order Type for Uncertain Data. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 51–66. https://doi.org/10.1145/
2541940.2541958

[8] G. E. P. Box and D. R. Cox. 1964. An Analysis of Transformations. Journal
of the Royal Statistical Society. Series B (Methodological) 26, 2 (1964), 211–252.
http://www.jstor.org/stable/2984418

[9] David Brooks, Vivek Tiwari, andMargaretMartonosi. 2000. Wattch: A Framework
for Architectural-level Power Analysis and Optimizations. In Proceedings of the
27th Annual International Symposium on Computer Architecture (ISCA ’00). ACM,
New York, NY, USA, 83–94. https://doi.org/10.1145/339647.339657

[10] C.L. Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications,
challenges, techniques and technologies: A survey on Big Data. Information
Sciences 275 (2014), 314 – 347. https://doi.org/10.1016/j.ins.2014.01.015

[11] Kwang-Ting Tim Cheng and Dmitri B. Strukov. 2012. 3D CMOS-memristor
Hybrid Circuits: Devices, Integration, Architecture, and Applications. In Pro-
ceedings of the 2012 ACM International Symposium on International Sympo-
sium on Physical Design (ISPD ’12). ACM, New York, NY, USA, 33–40. https:
//doi.org/10.1145/2160916.2160925

[12] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. 2010. Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic, FPGAs, and
GPGPUs?. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’43). IEEE Computer Society, Washington, DC,
USA, 225–236. https://doi.org/10.1109/MICRO.2010.36

[13] K. Constantinides, O.Mutlu, and T. Austin. 2008. Online design bug detection: RTL
analysis, flexible mechanisms, and evaluation. In 2008 41st IEEE/ACM International
Symposium on Microarchitecture. 282–293. https://doi.org/10.1109/MICRO.2008.
4771798

[14] J. A. Cunningham. 1990. The use and evaluation of yield models in integrated
circuit manufacturing. IEEE Transactions on Semiconductor Manufacturing 3, 2
(May 1990), 60–71. https://doi.org/10.1109/66.53188

[15] Christophe Dubach, Timothy Jones, and Michael O’Boyle. 2007. Microarchi-
tectural Design Space Exploration Using an Architecture-Centric Approach. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 40). IEEE Computer Society, Washington, DC, USA, 262–271.
https://doi.org/10.1109/MICRO.2007.26

[16] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In
Proceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA ’11). ACM, New York, NY, USA, 365–376. https://doi.org/10.1145/2000064.
2000108

[17] Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee. 2016. The Computa-
tional Sprinting Game. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS ’16). ACM, New York, NY, USA, 561–575. https://doi.org/10.1145/2872362.
2872383

[18] H. D. Foster. 2015. Trends in functional verification: A 2014 industry study. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1145/2744769.2744921

[19] M. Guevara, B. Lubin, and B. C. Lee. 2013. Navigating heterogeneous processors
with market mechanisms. In 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA). 95–106. https://doi.org/10.1109/
HPCA.2013.6522310

[20] M. Guevara, B. Lubin, and B. C. Lee. 2014. Strategies for anticipating risk in
heterogeneous system design. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). 154–164. https://doi.org/10.1109/
HPCA.2014.6835926

[21] John L. Gustafson. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5 (May
1988), 532–533. https://doi.org/10.1145/42411.42415

[22] A. Hartstein and Thomas R. Puzak. 2002. The Optimum Pipeline Depth for a
Microprocessor. In Proceedings of the 29th Annual International Symposium on
Computer Architecture (ISCA ’02). IEEE Computer Society, Washington, DC, USA,
7–13. http://dl.acm.org/citation.cfm?id=545215.545217

[23] M. D. Hill and M. R. Marty. 2008. Amdahl’s Law in the Multicore Era. Computer
41, 7 (July 2008), 33–38. https://doi.org/10.1109/MC.2008.209

[24] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada,
M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. 2005. A novel
nonvolatile memory with spin torque transfer magnetization switching: spin-
ram. In IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.
459–462. https://doi.org/10.1109/IEDM.2005.1609379

[25] Intel. 2017. Intel Processor Pricing. https://www.intc.com/investor-relations/
investor-education-and-news/cpu-price-list. (2017). Accessed: 2017-04-03.

[26] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin
Schulz. 2006. Efficiently Exploring Architectural Design Spaces via Predictive
Modeling. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XII). ACM,
New York, NY, USA, 195–206. https://doi.org/10.1145/1168857.1168882

[27] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh. 2014. NoC Architectures for Silicon
Interposer Systems: Why Pay for moreWires when you Can Get them (from your
interposer) for Free?. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture. 458–470. https://doi.org/10.1109/MICRO.2014.61

[28] Stanley Kaplan and B. John Garrick. 1981. On The Quantitative Definition of
Risk. Risk Analysis 1, 1 (1981), 11–27. https://doi.org/10.1111/j.1539-6924.1981.
tb01350.x

[29] I. Koren and Z. Koren. 1998. Defect tolerance in VLSI circuits: techniques and yield
analysis. Proc. IEEE 86, 9 (Sep 1998), 1819–1838. https://doi.org/10.1109/5.705525

[30] C. Lam. 2008. Cell Design Considerations for Phase Change Memory as a Uni-
versal Memory. In 2008 International Symposium on VLSI Technology, Systems and
Applications (VLSI-TSA). 132–133. https://doi.org/10.1109/VTSA.2008.4530832

[31] Abraham Lee. 2014. Real-time latin-hypercube-sampling-based Monte Carlo Error
Propagation. https://github.com/tisimst/mcerp

[32] B Lee and David Brooks. 2006. Statistically rigorous regression modeling for the
microprocessor design space. In ISCA-33: Workshop on Modeling, Benchmarking,
and Simulation.

[33] Benjamin C. Lee and David Brooks. 2008. Efficiency Trends and Limits from
Comprehensive Microarchitectural Adaptivity. In Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XIII). ACM, New York, NY, USA, 36–47. https:
//doi.org/10.1145/1346281.1346288

[34] Benjamin C. Lee and David M. Brooks. 2006. Accurate and Efficient Regres-
sion Modeling for Microarchitectural Performance and Power Prediction. In
Proceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XII). ACM, New York, NY,
USA, 185–194. https://doi.org/10.1145/1168857.1168881

[35] B. C. Lee and D. M. Brooks. 2007. Illustrative Design Space Studies with Mi-
croarchitectural Regression Models. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture. 340–351. https://doi.org/10.1109/
HPCA.2007.346211

[36] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan
Singh, and Sally A. McKee. 2007. Methods of Inference and Learning for Perfor-
manceModeling of Parallel Applications. In Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’07). ACM,
New York, NY, USA, 249–258. https://doi.org/10.1145/1229428.1229479

[37] Benjamin C. Lee, Jamison Collins, Hong Wang, and David Brooks. 2008. CPR:
Composable Performance Regression for Scalable Multiprocessor Models. In
Proceedings of the 41st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 41). IEEE Computer Society, Washington, DC, USA, 270–281.
https://doi.org/10.1109/MICRO.2008.4771797

[38] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009.
McPAT: An integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 469–480.

[39] X. Liang and D. Brooks. 2006. Mitigating the Impact of Process Variations on
Processor Register Files and Execution Units. In 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06). 504–514. https://doi.
org/10.1109/MICRO.2006.37

[40] G. H. Loh, Y. Xie, and B. Black. 2007. Processor Design in 3D Die-Stacking
Technologies. IEEE Micro 27, 3 (May 2007), 31–48. https://doi.org/10.1109/MM.

https://doi.org/10.1109/HPCA.2003.1183520
https://doi.org/10.1109/HPCA.2003.1183520
https://doi.org/10.1145/3079856.3080216
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1815961.1815967
https://doi.org/10.1109/IISWC.2009.5306793
https://doi.org/10.1109/IISWC.2009.5306793
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1145/2541940.2541958
https://doi.org/10.1145/2541940.2541958
http://www.jstor.org/stable/2984418
https://doi.org/10.1145/339647.339657
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1145/2160916.2160925
https://doi.org/10.1145/2160916.2160925
https://doi.org/10.1109/MICRO.2010.36
https://doi.org/10.1109/MICRO.2008.4771798
https://doi.org/10.1109/MICRO.2008.4771798
https://doi.org/10.1109/66.53188
https://doi.org/10.1109/MICRO.2007.26
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2872362.2872383
https://doi.org/10.1145/2872362.2872383
https://doi.org/10.1145/2744769.2744921
https://doi.org/10.1145/2744769.2744921
https://doi.org/10.1109/HPCA.2013.6522310
https://doi.org/10.1109/HPCA.2013.6522310
https://doi.org/10.1109/HPCA.2014.6835926
https://doi.org/10.1109/HPCA.2014.6835926
https://doi.org/10.1145/42411.42415
http://dl.acm.org/citation.cfm?id=545215.545217
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/IEDM.2005.1609379
https://www.intc.com/investor-relations/investor-education-and-news/cpu-price-list
https://www.intc.com/investor-relations/investor-education-and-news/cpu-price-list
https://doi.org/10.1145/1168857.1168882
https://doi.org/10.1109/MICRO.2014.61
https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
https://doi.org/10.1109/5.705525
https://doi.org/10.1109/VTSA.2008.4530832
https://github.com/tisimst/mcerp
https://doi.org/10.1145/1346281.1346288
https://doi.org/10.1145/1346281.1346288
https://doi.org/10.1145/1168857.1168881
https://doi.org/10.1109/HPCA.2007.346211
https://doi.org/10.1109/HPCA.2007.346211
https://doi.org/10.1145/1229428.1229479
https://doi.org/10.1109/MICRO.2008.4771797
https://doi.org/10.1109/MICRO.2006.37
https://doi.org/10.1109/MICRO.2006.37
https://doi.org/10.1109/MM.2007.59
https://doi.org/10.1109/MM.2007.59

MICRO-50, October 14–18, 2017, Cambridge, MA, USA W. Cui et al.

2007.59
[41] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. 2014. Race Logic: A

Hardware Acceleration for Dynamic Programming Algorithms. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture (ISCA ’14).
IEEE Press, Piscataway, NJ, USA, 517–528. http://dl.acm.org/citation.cfm?id=
2665671.2665747

[42] Mark Oskin, Frederic T. Chong, and Matthew Farrens. 2000. HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor Designs. In Proceed-
ings of the 27th Annual International Symposium on Computer Architecture (ISCA
’00). ACM, New York, NY, USA, 71–82. https://doi.org/10.1145/339647.339656

[43] A. Rahimi, L. Benini, and R. K. Gupta. 2016. Variability Mitigation in Nanometer
CMOS Integrated Systems: A Survey of Techniques From Circuits to Software.
Proc. IEEE 104, 7 (July 2016), 1410–1448. https://doi.org/10.1109/JPROC.2016.
2518864

[44] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.
2008. VARIUS: A Model of Process Variation and Resulting Timing Errors for
Microarchitects. IEEE Transactions on Semiconductor Manufacturing 21, 1 (Feb
2008), 3–13. https://doi.org/10.1109/TSM.2007.913186

[45] JÃĳrgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural Networks 61 (2015), 85 – 117. https://doi.org/10.1016/j.neunet.2014.09.003

[46] David W. Scott. 2008. Kernel Density Estimators. John Wiley Sons, Inc., 125–193.
https://doi.org/10.1002/9780470316849.ch6

[47] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. 2003. Discovering
and exploiting program phases. IEEE Micro 23, 6 (Nov 2003), 84–93. https:
//doi.org/10.1109/MM.2003.1261391

[48] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. S. Williams.
2008. The missing memristor found. Nature 453, 7191 (May 01 2008), 80–3.
https://search.proquest.com/docview/204473846?accountid=14522 Copyright
- Copyright Nature Publishing Group May 1, 2008; Last updated - 2014-03-19;
CODEN - NATUAS.

[49] Xian-He Sun and Yong Chen. 2010. Reevaluating Amdahl’s law in the multicore
era. J. Parallel and Distrib. Comput. 70, 2 (2010), 183 – 188. https://doi.org/10.
1016/j.jpdc.2009.05.002

[50] SymPy Development Team. 2016. SymPy: Python library for symbolic mathematics.
http://www.sympy.org

[51] M Mitchell Waldrop. 2016. The chips are down for Moore’s law. Nature 530, 7589
(2016), 144–147.

[52] D. H. Woo, D. H. Woo, D. H. Woo, D. H. Woo, H. H. S. Lee, H. H. S. Lee, H. H. S.
Lee, and H. H. S. Lee. 2008. Extending Amdahl’s Law for Energy-Efficient
Computing in the Many-Core Era. Computer 41, 12 (Dec 2008), 24–31. https:
//doi.org/10.1109/MC.2008.494

[53] L. Yavits, A. Morad, and R. Ginosar. 2014. The effect of communication and
synchronization on Amdahl’s law in multicore systems. Parallel Comput. 40, 1
(2014), 1 – 16. https://doi.org/10.1016/j.parco.2013.11.001

[54] Seyed Majid Zahedi and Benjamin C. Lee. 2014. REF: Resource Elasticity
Fairness with Sharing Incentives for Multiprocessors. In Proceedings of the
19th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 145–160.
https://doi.org/10.1145/2541940.2541962

https://doi.org/10.1109/MM.2007.59
http://dl.acm.org/citation.cfm?id=2665671.2665747
http://dl.acm.org/citation.cfm?id=2665671.2665747
https://doi.org/10.1145/339647.339656
https://doi.org/10.1109/JPROC.2016.2518864
https://doi.org/10.1109/JPROC.2016.2518864
https://doi.org/10.1109/TSM.2007.913186
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1002/9780470316849.ch6
https://doi.org/10.1109/MM.2003.1261391
https://doi.org/10.1109/MM.2003.1261391
https://search.proquest.com/docview/204473846?accountid=14522
https://doi.org/10.1016/j.jpdc.2009.05.002
https://doi.org/10.1016/j.jpdc.2009.05.002
http://www.sympy.org
https://doi.org/10.1109/MC.2008.494
https://doi.org/10.1109/MC.2008.494
https://doi.org/10.1016/j.parco.2013.11.001
https://doi.org/10.1145/2541940.2541962

	Abstract
	1 Introduction
	2 Architectural Risk
	2.1 An Example System Under Analysis
	2.2 Uncertainties in our Example System

	3 Risk-Aware Analysis Framework
	3.1 Architecture Uncertainty Model Extraction
	3.2 Model Transformation and Execution
	3.3 Uncertainty Injection and Propagation

	4 Analysis of Risk on Core Selection
	4.1 Uncertainty Manifestation
	4.2 Impact on Design
	4.3 Approximating Uncertainty and Risk
	4.4 From Architectural Risk to Financial Risk

	5 Related Works
	5.1 Modeling and Design Space Exploration
	5.2 Economical Thinking and Computer Architecture

	6 Conclusion
	7 acknowledgments
	References

