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Abstract

We introduce virtually-pipelined memory, an architec-
tural technique that efficiently supports high-bandwidth,
uniform latency memory accesses, and high-confidence
throughput even under adversarial conditions. We apply this
technique to the network processing domain where memory
hierarchy design is an increasingly challenging problem as
network bandwidth increases. Virtual pipelining provides
a simple to analyze programing model of a deep pipeline
(deterministic latencies) with a completely different physi-
cal implementation (a memory system with banks and prob-
abilistic mapping). This allows designers to effectively de-
couple the analysis of their algorithms and data structures
from the analysis of the memory buses and banks. Unlike
specialized hardware customized for a specific data-plane
algorithm, our system makes no assumption about the mem-
ory access patterns. In the domain of network processors this
will be of growing importance as the size of the routing ta-
bles, the complexity of the packet classification rules, and the
amount of packet buffering required, all continue to grow at
a staggering rate. We present a mathematical argument for
our system’s ability to provably provide bandwidth with high
confidence and demonstrate its functionality and area over-
head through a synthesizable design. We further show that,
even though our scheme is general purpose to support new
applications such as packet reassembly, it outperforms the
state of the art in specialized packet buffering architectures.

1 Introduction
While consumers reap the benefits of ever increasing

network functionality, the technology underlying these ad-
vances require armies of engineers and years of design and
validation time. The demands placed on a high throughput
network device are significantly different than those encoun-
tered in the desktop domain. Network components need
to reliably service traffic even under the worst conditions
[22, 17, 12, 27, 14], yet the underlying memory components
on which they are built are often optimized for common case
performance. The problem is that network processing, at the
highest throughputs, requires massive amounts of memory
bandwidth with worst-case throughput guarantees. A new
packet may arrive every three nanoseconds for OC-3072, and

each packet needs to be buffered, classified into a service
class, looked up in the forwarding table, queued for switch-
ing, rate controlled, and potentially even scanned for content.
Each of these steps may require multiple dependent accesses
to large irregular data structures such as trees, sparse bit-
vectors, or directed graphs, usually from the same memory
hierarchy. To make things worse the size of the data struc-
tures grow significantly with the line rate (40 gbps to 160
gbps). Routing tables have grown from 100K to 360K pre-
fixes and classification rules have grown from 2000 to 5000
rules. Network devices will become increasingly reliant on
high density commodity DRAM to remain competitive in
both pricing and performance.

In this paper, we present virtually pipelined network
memory (VPNM), an idea that shields algorithm and pro-
cessor designers from the complexity inherent to commodity
memory DRAM devices which are optimized for common
case performance. The pipeline provides a programming
model and timing abstraction which greatly eases analysis.
A novel memory controller upholds that abstraction and han-
dles all the complexity of memory system, including bank
conflicts, bus scheduling, and worst case caching. This frees
the programmer from having to worry about any of these is-
sues, and the memory can be treated as a flat deeply pipelined
memory with fully deterministic latency no matter what the
memory access pattern is. Building a memory controller that
can create such an illusion requires that we solve several ma-
jor problems:

• Multiple Conflicting Requests: Two memory requests that
access the same bank in memory will be in conflict, and we
will need to stall at least one request. To hide these con-
flicts, our memory controller uses per-bank queues along
with a randomized mapping to ensure that independent
memory accesses have a statistically bounded number of
bank conflicts. (Section 3.2)

• Reordering of Requests: To resolve bank conflicts requests
need be reordered, but a virtual pipeline requires determin-
istic (in-order) behavior. Since the latencies of all memory
accesses are normalized through novel specialized queues,
distributed reordering of accesses can be done which create
the appearance of fully pipelined memory. (Sections 3.3
and 4.1)



• Redundant Requests: As repeated requests for the same
data cannot be randomized to different banks, normalizing
the latency for these requests could create the need for gi-
gantic queues. Instead we have built a novel form of merg-
ing queues that combines redundant requests and acts as
a cache, but provides data playback at the right times to
maintain the illusion of a pipeline. (Section 3.4)

• Worst Case Analysis: In addition to the architectural chal-
lenges listed above, reasoning about the worst case behav-
ior of our system requires careful mathematical analysis.
We show that it is provably hard for even a perfect adver-
sary to create stalls in our virtual pipeline with greater ef-
fectiveness than random chance. (Sections 5.1 and 5.2)

To quantify the effectiveness of our system, we have per-
formed a rigorous mathematical analysis, executed detailed
simulation, created a synthesizable version, and estimated
hardware overheads. In order to show that our approach will
actually provide both high performance and ease of program-
ming, we have implemented a packet buffering scheme as a
demonstration of performance, and a packet reassembler as a
demonstration of usefulness, both using our memory system.
We show that despite the generality of our approach (it does
not assume the head-read tail-write property) it compares fa-
vorably with several special-purpose packet buffering archi-
tectures in both performance and area (Section 5.4).

2 Related Work
Dealing with timing variance in the memory system has

certainly been addressed in several different ways in the past.
Broadly the related work can be broken up into two groups:
scheduling and bank conflict reduction techniques that work
in the common case, and special purpose techniques that
aim to put bounds on worst case performance on particular
classes of access patterns.

Common-case DRAM Optimizations – Memory bank
conflicts not only effect the total throughput available from
a memory system, they can also significantly increase the
latency of any given access. In the traditional processing do-
main, memory latency can often be the most critical factor
in terms of determining performance and several researchers
have proposed hiding this latency with bank-aware mem-
ory layout, prefetching, and other architectural techniques
[11, 21]. While latency is critical, traditional machines are
far more tolerant of non-uniform latencies and reordering
because many other mechanisms are in place to ensure the
proper execution order is preserved. For example, in the
streaming memory controller (SMC) architecture, memory
conflicts are reduced by servicing a set of requests from one
stream before switching to a different stream [16]. A second
example is the memory scheduling algorithm where mem-
ory bandwidth is maximized by reordering various com-
mand requests [25]. In the vector processing domain [10],
a long stream requires conflict free access for larger number
of strides. Rau et al. [24] use randomization to spread the

accesses around the memory system, and through the use of
Galois fields show that it is possible to have a pseudo-random
function that will work as well on any possible stride. While
address mapping such as skewing or linear transformations
can be used for constant stride, out of order accesses can
efficiently handle a larger number of strides [20]. Corbal et
al. [5] present a command vector memory system (CVMS)
where a full vector request is sent to the memory system in-
stead of individual addresses to provide higher performance.

While these optimizations are incredibly useful, industrial
developers working on devices for the core will not adopt
them due to the fact that certain deterministic traffic patterns
could cause performance to sink drastically. Dropping a sin-
gle packet can have a enormous impact on network through-
put (as this causes a cascade of events up the network stack)
and the customer needs to be confident that the device will
uphold its line rate. In this domain it would be ideal if there
was a general purpose way to control banked access such
that conflicts never occur. Sadly this is not possible in the
general case [4]. However, if the memory access patterns
can be carefully constrained, algorithms can be developed
which solve certain special cases.

Removing Bank Conflicts in Special Cases – One of the
most important special cases that has been studied is packet
buffering. Packet buffering is one of the most memory in-
tensive operations that networks need to deal with [17, 12],
and high speed DRAM is the only way to provide both the
density and performance required by modern routers. How-
ever, in recent years researchers have shown special methods
for mapping these queues onto banks of memory in such a
way that conflicts are either unlikely [14, 2, 22, 29] or im-
possible [12, 17]. These techniques rely on the ability to
carefully monitor the number of places in memory where
a read or write may occur without a bank conflict, and to
schedule memory requests around these conflicts in various
ways. For example, in [12], a specialized structure similar
to a reorder buffer is used to schedule accesses to the heads
and tails of the different packet buffer queues. The tech-
nique combines clever algorithms with careful microarchi-
tectural design to ensure worst case bounds on performance
are always met in the case of packet buffering. Randomiza-
tion has also been considered in the packet buffering space
as well. For example, Kumar et. al. present a technique
for buffering large packets by randomly distributing parts
of the packet over many different memory channels [19].
However, this technique can handle neither small packets
nor bank conflicts. Another important special case is data-
plane algorithms which may also suffer from memory bank
conflict concerns. Whether these banks of memory are on or
off chip, supporting multiple non-conflicting banked mem-
ory accesses requires a significant amount of analysis and
planning. For example, a conflict reduced tree-lookup en-
gine was proposed by Baboescu et. al. [1]. A tree is broken
into many sub-trees, each of which are then mapped to parts



of a rotating pipeline. They prove that optimally allocating
the sub-trees is NP-complete and present a heuristic mapping
instead. Similarly in [15], a conflict-free hashing technique
is proposed for longest prefix match (LPM) where conflicts
are taken care of at an algorithmic level. While the above
methods are very powerful, they all require careful layout (by
the programmer or hardware designer) of each data structure
into the particular bank structure of the system and allow nei-
ther changes to the data structures nor sharing of the memory
hierarchy.

While our approach may have one stall on average once
every 1013 cycles (on the order of hours), the benefit is that
no time has to be spent considering the effect of banking on
already complex data structures. As we will describe in Sec-
tion 3, a virtually pipelined network memory system uses
cryptographically strong randomization, several new types
of queues, and careful probabilistic analysis to ensure that
deterministic latency is efficiently provided with provably
strong confidence.

3 Virtually Pipelined Memory
Vendors need to have confidence that their devices will

operate at the advertised line rates regardless of operating
conditions, including when under denial of service attack by
adversaries or in the face of unfortunate traffic patterns. For
this reason, most high-end network ASICs do not use any
DRAM for data-plane processing because the banks make
worst-case analysis difficult or impossible. The major ex-
ception to this rule is packet buffering; even today it requires
an amount of memory that can only be satisfied through
DRAM and a great deal of effort has been expended to
map packet buffering algorithms into banks with worst-case
bounds. Later in Section 5.4.1 we compare our implementa-
tion against several special purpose architectures for packet
buffering.

3.1 DRAM Banks
Modern DRAM designs try to expose the internal bank

structure so accesses can be interleaved and the effective
bandwidth can be increased [6, 13]. The various types of
DRAM differ primarily in their interfaces at the chip and bus
level [8, 7, 23], but the idea of banking is always there. Ex-
perimental evidence [23] indicates that on average PC133
SDRAM works at 60% efficiency and DDR266 SDRAM
works at 37% efficiency, where 80 to 85% of the lost effi-
ciency is due to the bank conflicts. To help address this prob-
lem RDRAMs expose many more banks [23]. For example,
in Samsung Rambus MR18R162GDF0-CM8 each RDRAM
device can contain up to 32 banks and each RIMM module
can contain up to 16 such devices, so the module can have
up to 32 ∗ 16 = 512 independent banks [26].

A bank conflict occurs when two accesses require differ-
ent rows in the same bank. Only one can be serviced at a
time, and hence one will be delayed by L time steps. L
is the ratio of bank access time to data transfer time – in

other words it is the number of accesses that will have to be
skipped before a bank conflict can be resolved. Throughout
this paper we conservatively assume that there is one transfer
per cycle and we select the value of L=20 [26, 30]. If L is
smaller then our approach will be even more efficient.

3.2 Building a Provably Strong Approach

To prove that our approach will deliver throughput with
high confidence, we consider the best possible adversary and
show that adversary will never be able to construct a se-
quence of accesses that perform poorly. First, we map the
data to banks in permutations that are provably as good as
random. Universal hashes [3], an idea that has been ex-
tended by the cryptography community, provides a way to
ensure that an adversary cannot figure out the hash function
without direct observation of conflicts. The virtual pipeline
then prevents an adversary from even seeing those conflicts
through specialized queues. This latency normalization not
only allows us to formally reason about our system, it also
shields the processor from the problem of reordering, and
greatly simplifies data structure analysis. While the latency
of any given memory access will be increased significantly
over the best possible case, the memory bandwidth deliv-
ered by the entire scheme is almost equal to the case where
there are no bank conflicts. While this may make little sense
in the latency-intolerant world of desktop computing, in the
network space this can be a huge benefit.

3.3 Distributed Scheduling around Conflicts

While Universal Hashing provides the means to prevent
our theoretical adversary from constructing sets of conflict-
ing accesses with greater than random probability, even in a
random assignment of data to banks a relatively large number
of bank conflicts can occur due to the Birthday Paradox [18].
In fact if there was no queuing used, then it would take only
O(

√
B) accesses before the first stall would occur if there

are B banks. Clearly we will need to schedule around these
conflicts in order to keep the virtual pipeline timing abstrac-
tion. In our implementation, a controller for each bank is
used, and each bank handles requests in-order, but each bank
is handled independently so the requests to different banks
may be handled out-of-order. Each bank controller is then in
charge of ensuring that for every access at time t, it returns
the result at time t + D for some fixed value of D. As long
as this holds, there is no need for the programmer to worry
about the fact that there is even such a thing as banks.

One major benefit of our design is that the memory
scheduling and reordering can be done in a fully parallel and
independent manner. If each memory bank has its own con-
troller, there is exactly one request per cycle, and each con-
troller ensures that the result of a request is returned exactly
D cycles later, then there is no need to coordinate between
the controllers. When it comes to return the result at time
t + D, a bank controller will know that it is always safe to
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Figure 1: An example of how each bank controller will normalize the latency of memory accesses to a fixed delay
(D = 30). In all three graphs the x-axis is cycles and each memory access is shown as a row. The light white boxes
are the times during which the request is “in the pipeline”, while the dark grey box is the actual time that it takes to
access the bank (L=15). In this way a certain number of bank conflicts can be hidden as long as there are not too many
requests in a short amount of time. The graph on the left shows normal operation, while the middle graph shows what
happens when there are redundant requests for a single bank which therefore don’t require bank access. The graph on
the right shows what happens when there are too many requests to one bank (A-E) in a short period of time thus causing
a stall. Later in the analysis section we will also refer to Q which is the maximum number of overlapping requests that
can be handled, in this case Q is 30/15 = 2.

send the data to the interface because by definition it was the
only one to get a request at time t.

3.4 What Can Go Wrong
If there are B banks in the system then any one bank will

only have a 1 in B chance of getting a new request on any
given cycle. 1 The biggest thing that can go wrong is that
we get so many requests to one bank that one of the queues
fill up and we need to stall. Reducing the probability of this
happening even for the worst cases access pattern requires
careful architectural design and mathematical analysis. In
fact there are two ways in which a bank can end up getting
more than 1/B of the requests.

The first way is that it could be unlucky, and just due to
randomness more than 1/B of the requests go to a single
bank (because we map them randomly). By keeping access
queues, we can ensure that the latency is normalized to D to
handle simultaneously occurring bank conflicts. How large
that number is, and how long it will take to happen in prac-
tice are discussed extensively in Section 5. In practice we
find that normalizing D to 1000 nanoseconds is more than
enough, and is several orders of magnitude less than a typ-
ical router latency of 2 milliseconds. While this a typical
example, the actual value of D is dependent on L and the
size of bank access queue as described in Section 4. While
there is a constant added delay to D due to universal hashing,
the hash function can be fully pipelined and then it will not
be any big impact to the normalized delay D.

The second way we could get many accesses to one bank
is that there could be repeated requests for the same memory

1This is not to say that each bank will be responsible for exactly 1/B
of the requests as in round robin. Round robin will not work here because
requests must be satisfied by one bank that contains their memory. Although
we get to pick the mapping between memory lines and banks, the memory
access pattern will determine which actual memory lines are requested.

line. The invariant that a request at time t is satisfied at time
t + D must hold for this case as well, and in Section 5.2 we
describe how to design a special merging queue to address
this second problem. The idea behind our merging queue is
that redundant memory accesses are combined into a single
access and a single queue entry internally. If an access A
comes at t1 and a redundant access A comes at t2, a reply
still needs to be made at t1 + D and at t2 + D even though
internally only one queue entry for A is maintained. In addi-
tion to handling the repeating pattern “A,A,A,A,...” we need
to handle “A,B,A,B,...” with only two queue entries. In fact
if we need to handle Q bank conflicts without a stall, then
we will need to handle up to Q different sets of redundant
accesses. In Figure 1 we show how the virtually pipelined
network memory works altogether for different type of ac-
cesses.

4 Implementing the Interface
At a high level, the memory controller implementing our

virtual pipeline interface is essentially a collection of decou-
pled memory bank controllers. Each bank controller handles
one memory bank, or one group of banks that act together
as a single logical bank. Figure 2 shows one possible im-
plementation where a memory controller contains all of the
bank controllers on-chip, and they all share one bus. This
would require no modification to the bus or DRAM architec-
ture.

The performance of our controller is limited by the single
bus to the memory banks. If we have to service one memory
request per cycle, then we need to have one outgoing access
on each cycle to the memory bus and the bus will become
a bottleneck. Hence, to keep up with the incoming address
per cycle and to prevent any accumulation of requests in the
bank controller due to mismatched throughputs, we need to
support slightly more memory bus transaction/second than
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Figure 2: Memory controller block diagram. After an ac-
cess is randomized from universal hash engine (HU ), it is
directed to the corresponding bank controller for further
processing.

allowed on the interface bus. We call the ratio of the re-
quest rate on the interface bus and request rate of memory
bus as bus scaling ratio (R). The value of ’R’ is chosen
slightly higher than 1 to provide slightly higher access rate
on the memory side compared to the interface side. This
mismatch ensures that idle slots in the schedule do not accu-
mulate slowly over time. A round-robin scheduler arbitrates
the bus by granting access to each bus controller every B
cycles, where B is the number of banks. It might happen
that some of the round-robin slots are not used when there is
no access for the particular bank or the memory bank is busy,
although with further analysis or a split-bus architectures this
inefficiency can be eliminated.

Once the determination of which bank a particular mem-
ory request needs to access, the request is handed off to the
appropriate bank controller which takes care of everything
for that bank. Almost all of the latencies in the system are
fully deterministic so there is no need to employ a compli-
cated scheduling mechanism. The only time the latencies are
not fully deterministic is when there are a sufficient number
of memory accesses to a single bank in a sufficiently small
amount of time that cause the latency normalizing technique
to stall. However, as we will show in Section 5, the parame-
ters of the architecture can be chosen such that this happens
extremely infrequently (on the order of once every trillion
requests in the worst case).

Since stalls happen so infrequently and because the stall
time is also very low (in the worst case a full memory access
latency of about 100 nanoseconds), stalls can be handled in
one of two ways. The first way is to simply stall the con-
troller, where the slowdown would not even be a fraction
of a percent, while the other alternative is to simply drop
the packet (which would be noise compared to packet-loss
due to many other factors). In either case, an attacker can-
not leverage information about a stall unless they can a) ob-
serve the exact instant of the stall, b) remember the exact se-
quence of accesses that caused the stall and c) are able to re-
play the stall causing events with minor changes (to look for

more multiple collisions). With randomization due to uni-
versal mapping, and a very high value of Mean-time-to-stall
(around 1013 as described in Sections 5.1 and 5.2), the ability
to do this will be practically impossible. If such attacks are
believed to be a threat, a further (and sightly more costly)
option is to change the universal mapping function and re-
ordering the data on the occurrence of multiple stalls (an ex-
pensive operation, but certainly possible with frequency on
the order of once a day).

4.1 Bank Controller Architecture
Solving the challenges described in the introduction re-

quires a carefully designed bank controller. In particular, it
must be able to queue the bank requests, store the data to a
constant delay, and handle multiple redundant requests.

The architecture block diagram of our bank controller is
shown in Figure 3. From the figure we can see that the bank
controller consists of five main components described with
the text next to each block. The primary tasks of these com-
ponents include queuing input requests, initiating a memory
request, sending data to the interface at a pre-specified time
slot to ensure the deterministic latency and each of these
components is designed to address one or more of challenges
mentioned earlier.

4.2 Controller Operations
At a high level each memory request goes through 4

states: pending, accessing, waiting, and completed. New
requests start out as pending, and when the proper request
is actually sent out to the DRAM, the request is accessing.
When the result returns from DRAM the request is waiting
(until D total cycles have elapsed), and finally the request is
completed and results are returned to the rest of the system.

When a new read request comes in, all the valid addresses
of the address CAM in the delay storage buffer are searched.
On a match (a redundant access), the matched row counter
is incremented and the id of matched row is written to the
circular delay buffer (along with its valid bit). On a mis-
match, a free row is determined using the first zero circuit
and it is updated with the new address and the counter is
initialized to one. The id of the corresponding free row is
written to the circular delay buffer. During this mismatch
case, we also add the row id combined with ’0’ bit (read) to
the bank access queue (where it waits to become accessing).
On an incoming write request, the write address and data is
added to write buffer FIFO. A ’1’ bit (write) is written to
the bank access queue. The row id is unused in this case as
we access the write buffer in FIFO order. It is also searched
in the address CAM and on a match, the address valid flag is
unset. But this row cannot be used for a new read request and
will service previous read requests until the counter reaches
zero since the data until the current cycle is still valid. When
the counter reaches zero, then there are no pending requests
for that row and the row can serve as free row for the new
requests.



v address incr/decr
++

++

++

++

++

++

C bitsA bits

data words

W bits

K
 r

ow
s

fir
st

 z
er

o

Set 1

d/
2 

ro
w

s

0:

Set 0

ou
t p

tr

2:  access[t-3]

4:  access[t]

6: access[t-d+1]

d-1:

1:

3:  access[t-2]

5:  access[t-d]

7:  access[t-d+2]

d:in
 p

tr

r/w row id

log2K bits

Q
 r

ow
s

addr
data

sc
he

du
le

d-
ac

ce
ss

 d
at

a

sc
he

du
le

d-
ac

ce
ss

 a
dd

re
ss

Interface address Interface data

row

Delay Storage Buffer

Write Buffer (FIFO) Circular Delay Buffer

Bank Access Queue

C
o

n
tr

o
l L

o
g

ic

address

A bits

data words

b 
ro

w
s

to memory

W bits log2K bits log2K bits

v address incr/decr
++

++

++

++

++

++

C bitsA bitsA bits

data words

W bits

K
 r

ow
s

fir
st

 z
er

o

Set 1

d/
2 

ro
w

s

0:

Set 0

ou
t p

tr

2:  access[t-3]

4:  access[t]

6: access[t-d+1]

d-1:

1:

3:  access[t-2]

5:  access[t-d]

7:  access[t-d+2]

d:in
 p

tr

r/w row id

log2K bits

Q
 r

ow
s

addr
data

sc
he

du
le

d-
ac

ce
ss

 d
at

a

sc
he

du
le

d-
ac

ce
ss

 a
dd

re
ss

Interface address Interface data

row

Delay Storage Buffer

Write Buffer (FIFO) Circular Delay Buffer

Bank Access Queue

C
o

n
tr

o
l L

o
g

ic

address

A bits

data words

b 
ro

w
s

address

A bits

data words

b 
ro

w
s

b 
ro

w
s

to memory

W bits log2K bits log2K bits

Delay Storage Buffer -- The delay storage buffer stores the address of each pending and
accessing request, and stores the address and data of waiting requests.  Each non-
redundant request will have an entry allocated for it in the delay buffer for a total of D
cycles. To account for repeated requests to the same address, a counter is associated with 
each address and data. The buffer contains K rows, where each row contains an address of 
A bits, a one-bit address valid flag, a counter of C bits, and data words of W bits. The data 
words are buffered in these rows whenever the read access to memory bank completes, 
and one row is needed for each unique access

Bank Access Queue -- The bank access 
queue keeps track of all pending read and write 
requests that require access to the memory 
bank. It can store up to Q interleaved read or 
write requests in FIFO order. To avoid keeping 
Q copies of the address and data, each entry is 
just the index of a target row in the delay 
storage buffer. 

Write Buffer -- The write buffer is 
organized as FIFO structure, which 
stores the address and data of all 
incoming write requests. Unlike read 
request, we need not need to wait for the 
write requests to complete. We only need 
to buffer the write request until it gets 
scheduled to access the memory bank.

Circular Delay Buffer -- The circular delay buffer stores 
the request identifier of every incoming read request and 
triggers the final result to be written the output interface 
after a deterministic latency (D). This circular delay buffer 
is the only component which is accessed every cycle 
irrespective of the input requests. Note that if we just 
stored the full data here, instead of a pointer to the delay 
storage buffer, then we would need to have a huge 
number of bytes to buffer all the data (2 to 3 orders of 
magnitude more).

Control Logic -- The control logic 
handles the necessary 
communication between 
components (while the interconnect 
inside the bank controller is drawn 
as a bus for simplicity, in fact it is a 
collection of direct point-to-point 
connections). 

Figure 3: Architecture block diagram of the VPNM bank request controller.

During each cycle, the controller scans the bank access
queue and reads from the circular delay buffer. If the bank
controller is granted to schedule a memory bank request,
then the first request in the bank access queue is dequeued
for access. In the case of a read access, the address is read
from the delay storage buffer and put on the memory bank
address bus. While in the case of write access, the address
and the data words are dequeued from the write buffer and
the write command is issued to the memory bank. In the case
of no incoming read requests in the current cycle, the control
logic invalidates the current entry of circular delay buffer.
On every cycle, it also reads the D-cycle delayed request-id
from the circular delay buffer. If it is valid, then the data is
read from the data words present in delay storage buffer and
the data is put on the interface bus. Since we do one read
and one write operation to circular delay buffer every cycle,
it is designed as a 2-set (single-ported) architecture with in
and out pointers to save the power consumption. While there

are some additional aspects of the bank controller design,
we cannot fully describe all of the low level implementation
aspects in this paper due to space limitations.

4.3 Stall Conditions
The aim of the VPNM bus controller architecture is to

provide a provably small stall rate in the system through ran-
domization, but the actual stall rate is a function of the pa-
rameters of the system. There are three different cases which
require a stall to resolve, each of which is influenced by a
different subset of the parameters.

• Delay storage buffer stall - The number of rows (K) in de-
lay storage buffer are limited and a row has to be reserved
for D cycles for one data output. Hence, if there are no free
rows and it cannot reserve a row for a new read request,
then it results in a delay storage buffer stall. This stall is
mainly dependent on the following parameters 1) Number
of rows (K) in delay storage buffer 2) Deterministic delay
(D) 3) Number of banks (B). The deterministic delay is



determined using the access latency (L) and the bank re-
quest queue size (Q), and this stall analysis is presented in
Section 5.1.

• Bank request queue stall - When a new non-repeating
read/write request comes to a bank and the size of the bank
access queue is already Q, then the new request cannot be
accommodated in the queue. This condition results in bank
request queue stall. There are three main parameters which
control this stall - 1) average input rate, which is equal to
1/B, where B is the number of banks. 2) Queue size (Q)
3) the output rate, which is decided by the ratio (R) of fre-
quency on the memory side and frequency on the interface
side. In Section 5.2 we discuss exactly how to perform the
confidence analysis for this stall.

• Write buffer stall - Write buffer (WB) stall happens when
a write request cannot be added in the write buffer. As we
keep the write buffer equal to half of bank request queue
size, the chances of stall rate in write buffer is much less
than the stall rate in bank request queue. The analysis of the
write buffer stall is similar to the analysis of bank request
queue and does not dominate the overall stall, so we will
only discuss about the bank request queue and delay stor-
age buffer stall in our mathematical analysis in Section 5.

5 Analysis of Design
The Virtually Pipelined Network Memory can stall in the

three ways described in Section 4.3. In any of these cases, the
buffer will have to stall, and it will not be able to take a new
request that cycle. Because we randomize the mapping we
can formally analyze the probability of this happening and
because we use the cryptographic idea of universal hashing
we know that there is no deterministic way for an adversary
to generate conflicts with greater than random probability
unless they can directly see them. We ensure that the con-
flicts are not visible through latency normalization (queuing
both before and after a request) unless many many different
combinations are tried. We quantify this number, and the
confidence we place in our throughput, as the Mean Time
to Stall (MTS). It is important to maximize the MTS, a job
we can perform through optimization of the parameters de-
scribed in Section 4 and summarized in Table 1.

To evaluate the effect of these parameters on MTS, we
performed three types of analysis: Simulation (for function-
ality), Mathematical (for MTS), and Design (to quantify the
hardware overhead). To get an understanding of the execu-
tion behavior of our design, and to verify our mathematical
models, we have built functional models in both C and Ver-
ilog and we have synthesized our design using synopsys de-
sign compiler. However, in this paper we concentrate on the
mathematical analysis of delay storage buffer stall and bank
access queue stall, the calculation of the mean time to stall
(MTS) for both these cases, and a high level analysis of the
hardware required.

Table 1: Parameters for the analysis of our controller

Q — number of entries in the bank access queue
K — number of rows in the delay storage buffer
B — number of banks in the system
L — latency of accessing one bank
D — delay to which all memory accesses are normalized
R — frequency scaling ratio

5.1 Delay Storage Buffer Stall
A delay buffer entry is needed to store the data associated

with an access for the duration of D. A buffer will over-
flow if there are more requests assigned to it over a period
of D cycles than there are places to store those requests. To
calculate the Mean Time to Stall (MTS) we need to deter-
mine the expected amount of time we will have to wait un-
til one of the B banks gets K or more requests over D cy-
cles. The mapping of requests to banks is random so we can
treat the bank assignments as a random sequence of integers
(a1, a2, . . . , aT ), where each ai is drawn from the uniform
distribution on {1, 2, . . . , B}.

If we want to know the probability of stall after T cycles,
then for any i ≤ T − D + 1, we can detect a stall happen-
ing when at least K − 1 of the symbols ai+1, . . . , ai+D−1

are equal to ai; the probability of this is
(

D−1
K−1

) · ( 1
B )K−1,

so the probability of not having a delay buffer overfill over
the given interval is 1 − (

D−1
K−1

) · ( 1
B )K−1. Since we are

only concerned with the probability that at least one stall oc-
curs and not how many, we can conservatively estimate the
probability of no stall occurring over the entire sequence as
(1 − (

D−1
K−1

) · ( 1
B )K−1)T−D+1. This method assumes that

stalls are independent, when in fact they are positively corre-
lated, and it actually counts some stalls multiple times. Solv-
ing for a probability of 50% that a stall can happen, the Mean
Time to Stall is:

MTS =
log(1

2 )

log(1 − (
(

D−1
K−1

) · 1
B )K−1))

+ D

Figure 4 shows the impact of number of entries in storage
delay buffer (K) on this stall. We take the value of R = 1.3
in this case. Since B and Q are interrelated for this analysis,
we select the optimal combination of B and Q. We set the
higher limit of the MTS value to 1016 in all of our analysis 2.
Figure 4 shows that for B = 32, the curve rises sharply with
K and we can get a MTS of 1012 for K = 32. The curve
for B = 64 follows very closely to the curve for B = 32.
Hence, having B = 32 is optimal in our case. For lower
number of banks (B < 32), we need much higher values of
K to even reach a MTS value of 108.

5.2 Bank Access Queue Stall
Performing an analysis similar to that presented in Sec-

tion 5.1 will not work for the bank access queue because

2An MTS of 1012 is around one stall every 15 minutes with a very ag-
gressive bus transaction speed of 1 GHz
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Figure 4: MTS variation with number of entries in delay
storage buffer (K) for memory controller with R = 1.3

there is no fixed window of time over which we can analyze
the system combinatorially. There is state involved because
the queue may cause a stall or not depending on the amount
of work left to be done by the memory bank. To analyze the
stall rate of the bank access queue we determined that the
queue essentially acts as a probabilistic state machine.

To do the analysis, we need to combine this abstract state
machine with the probabilities that any transition will occur.
Each cycle a new request will come to a given bank con-
troller with probability 1

B and the probability that there will
be no new request is 1 − 1

B . The probabilistic state machine
that we are left with, is a Markov Model. In Figure 5 we can
see the probabilistic model stored both as a directed graph,
and in adjacency matrix form labeled M .

The adjacency matrix form has a very nice property:
given an initial starting state at cycle zero, stored as the vec-
tor I , to calculate the probability of landing in any state at
cycle one, we simply multiply I by M . In the example given,
there is probability P of being in state 2, 1-P of still being in
the idle state. This process can then be repeated, and to get
the distribution of states after t time steps we simply multiply
I by M t times, which is of course IM t. Note that the stall
state is an absorbing state, so the probability of being in that
state should tell us the probability of there ever being a bank
overflow on any of the t cycles. To calculate that probability,
we simply need to calculate M t.

We use this analysis to figure out the impact of bank re-
quest queue size (Q) on MTS. The effect of normalized delay
D can also be directly seen as D is directly proportional to
Q. If we decrease/increase the value of D, then we have to
decrease/increase the value of Q accordingly. For our mem-
ory controller with a value of R = 1.3, the MTS graph is
shown in Figure 6. We find that for B = 32 and B = 64, the
curve for MTS is almost the same. We can clearly see from
the figure that a lower number of banks (B < 32) can only
provide a maximum MTS value of 102 for even larger values
of Q. Hence, an SDRAM with its small number of banks
cannot achieve a reasonable MTS. However, for B = 32
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and B = 64, we see an exponential increase in MTS with
the increasing value of Q. We can get an MTS of 1014 for
Q = 64 using 32 or 64 banks. If any application that does
not demand a high value of MTS, but requires a lower value
of normalized delay, then we can use the system with a lower
value of Q and with 32/64 banks. We did not calculate the
MTS values for B >= 128 because the large matrix size
makes our analysis very difficult (the matrix requires more
than 2 GB of main memory).

5.3 Hardware Estimation

The structures presented in Section 4 ensure that only
probabilistically well formed modes of failure are possible
and that exponential improvements in MTS can be achieved
for linear increases in resources. While the analysis above
allows us to formally analyze the stall rate of our system,
without a careful estimate of the area and power overhead it
is hard to understand the tradeoffs fully. To explore this de-
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Figure 7: MTS with area overhead for our memory con-
troller for different frequency ratios (R)

sign space, we developed a hardware overhead analysis tool
for our bank controller architecture that takes these design
parameters (B,L,K,Q,R,tech) as inputs and provides area
and energy consumption for the set of all bank controllers.
We use a validated version of the Cacti 3.0 tool [28] and
our synthesizable Verilog model to design our overhead tool
and use 0.13µm CMOS technology to evaluate the hardware
overhead.

5.3.1 Optimal Parameters

Since area overhead is one of the most critical concerns
as it directly affects the cost of the system, we take the total
area overhead of all the bank controllers as our key design
parameter to decide the value of MTS. As a point of refer-
ence, one bank controller (which then needs to be replicated
per bank) with L = 20, K = 24, and Q = 12, occupies
0.15 mm2. We run the hardware overhead tool for several
thousand configurations with varying architectural parame-
ters and consider the Pareto optimal design points in terms
of area, MTS, and bandwidth utilization (R). We also set
some baseline required values of MTS, which are 1 second
(109), 1 hour (3.6 × 1012), and 1 day (8.64 × 1013) for an
aggressive 1 GHz clock frequency. While this is not small,
our example parameter set describes a design that targets a
very aggressive bandwidth system and compares favorably
with past special purpose designs (see Section 5.4)

The Pareto-optimal curve for our memory controller is
shown in Figure 7. This figure shows an interesting tradeoff
between the MTS and the utilization of effective bandwidth
on the memory bus side. If we increase the value of R, then
we get better values of MTS with effective lower utilization
of memory bus. For R = 1.3, we need 23% extra memory
bus bandwidth, but with a much better stall rate compared to
R = 1.2 (16% extra bandwidth). We find that we can choose
either R = 1.3 (one second MTS=109 for about 30 mm2) or
R = 1.4 (one hour MTS=3.6 × 1012 for about 30 mm2) to
get the best values of MTS without compromising much of
the memory bus speed utilization.

Table 2: Optimal design parameters for best MTS and
area overhead combination

Frequency Area MTS Optimal
Scaling overhead in design Energy

ratio (R) in mm2 cycles parameters in nJ

1.3 13.6 5.12e+05 B=32, Q=24, K=48 11.09
1.3 19.4 2.34e+07 B=32, Q=32, K=64 13.26
1.3 34.1 4.57e+10 B=32, Q=48, K=96 17.05
1.3 53.2 6.50e+13 B=32, Q=64, K=8 21.51
1.4 13.6 1.14e+07 B=32, Q=24, K=48 10.79
1.4 19.3 1.69e+09 B=32, Q=32, K=64 12.83
1.4 34.0 3.62e+13 B=32, Q=48, K=96 16.38
1.4 53.0 9.75e+13 B=32, Q=64, K=128 20.54

We calculate the optimal parameters from Figure 7 and
we find the energy consumption for these optimal param-
eters. The optimal parameters along with all design con-
straints are shown in Table 2. The table shows that for R=1.3
and R=1.4, we need around 32 banks, 32 to 48 bank access
queue entries, and 64 to 96 storage delay buffer entries with
10 to 20 nJ energy consumption.

5.4 Applications Mapping
To demonstrate the usefulness and generality of our ap-

proach, in this section we show how our Virtually Pipelined
Network Memory can be easily used to implement two dif-
ferent high-speed memory intensive data-plane algorithms.
By implementing Packet Buffering on top of VPNM we can
directly compare against special purpose hardware designs
in terms of performance. While our approach hides the com-
plexity of banking from the programmer, it can match and
even exceed the performance of past work that requires spe-
cialized bank-aware algorithms. To further show the useful-
ness of our system, we have also mapped a Packet Reassem-
bler (used in content inspection) to our design, a memory
bound problem for which there is no current bank-safe algo-
rithm known.

5.4.1 Packet Buffering
Packets need to be temporarily buffered from the trans-

mission line until the scheduler issues a request to forward
the packet to the output port. According to current indus-
try practice, the amount of buffering required is 2RT [17],
where R is the line rate and T is the round trip time over
the Internet. For 160 gbps line rate and a typical round trip
time of 0.2 second [12], the buffer size will be 4 GB. The
main challenge in packet buffering is to deal with constantly
increasing line rate (10 gbps to 40 gbps and from 40 gbps to
160 gbps) and the number of interfaces (order of hundreds to
order of thousands).

Using DRAM as intermediate memory for buffering does
not provide full efficiency due to DRAM bank conflicts
[22, 12]. In [22], an out-of-order technique has been pro-
posed to reduce the bank conflict to provide packet buffer-
ing requirement for 10 gbps. Iyer et al. [17] have used a
combination of SRAM and DRAM, where SRAMs are used
for storing some head and tail packets for each queue. This
combination allow them to buffer packets at 40 gbps using



some clever memory management algorithms (for example:
earliest critical queue first (ECQF)). But they do not con-
sider the effect of bank conflicts. Garcia et al. [12] take their
approach further by providing a DRAM subsystem (CFDS)
that can handle bank conflicts (through a long reorder buffer
like structure) and schedule a request to DRAM every b cy-
cles, where b can be less than the random access time of
DRAM. A comparison of their approach and RADS [17] re-
veals that CFDS requires less head and tail SRAM and it can
provide packet buffering at 160 gbps. The data granularity
for DRAM used in [12] is b cells, where the size of one cell
is 64 bytes.

Since our architecture can handle any arbitrary access pat-
terns (they don’t have to be structured requests directed by
a queue management algorithm), the packet buffering will
just be a special case of our system to provide one write ac-
cess and one read access. Instead of keeping large head and
tail SRAMs to store packets, we just need to store the head
and tail pointers of each queue in SRAM. On a read from
a particular queue, the head pointer will be incremented by
the packet size, whereas a write to a particular queue will
increment the tail pointer by the packet size. Our univer-
sal hash hardware unit randomizes the address from these
pointers uniformly across different banks. In our approach,
a request can be issued per cycle, whereas in [12] a request
can be issued every b cycle. Their architecture is very diffi-
cult to design for b = 1 as they have also said in their paper
”The implementation of RR scheduling logic for OC-3072
and b = 1 is certainly of difficult viability.”

As we just need to store the head and tail pointers for each
queue (rather than actual entries in the queue), we can pro-
vide support for a large number of queues (up to 4096 with
an SRAM size of 32KB – which can be further increased to
support even more queues). We use the same data granular-
ity used in [12] and compare our results with [22], RADS
[17], and CFDS [12] by taking into account the throughput,
area overhead, normalized delay and maximum number of
supported interfaces. The comparison results are provided
in Table 3 for 0.13 µm technology. Table 3 shows that our
scheme and CFDS scheme [12] can provide data throughput
of 160 gbps because memory requests can be scheduled ev-
ery cycle in our case and every b cycles in CFDS scheme.
But our scheme requires about 35% less area, introduces ten
times less latency, and can support about five times the num-
ber of interfaces compared to the CFDS scheme.

5.4.2 Packet Reassembly

In an intrusion detection/prevention processing node, the
content inspection techniques scan each incoming packet for
any malicious content. Since most of these technique ex-
amine each packet irrespective of the ordering/sequence of
packets, they are less effective for intrusion detection be-
cause a clever attacker can craft out-of-sequence TCP pack-
ets such that the worm/virus signature is intentionally di-

Table 3: Comparison of packet buffering schemes with
our generalized architecture

Packet Max. SRAM Area Total No. of

buffering line rate size in delay supported

scheme (gbps) (bytes) mm2 in ns interfaces

Aristides
et al. [22] 10 520 KB 27.4 - 64000

RADS [17] 40 64 KB 10 53 130
CFDS [12] 160 - 60 10000 850

Our
approach 160 320 KB 41.9 960 4096

vided on the boundary of two reordered packets. By doing
TCP packet reassembly as a preprocessing step, we can en-
sure that packets are always scanned in-order. In essence
packet reassembly provides a strong front end to effective
content inspection.

While Dharmapurikar et al. [9] have proposed a packet
reassembly mechanism which is robust even in the presence
of adversaries, unlike the state of the art in packet buffering
techniques, their algorithm does not consider the presence
of memory banks (and thus the bounds on performance are
not tight). Of course algorithms designers would rather deal
with network problems than mapping their data structures
to banks by hand. VPNM provides exactly that ability and
we have mapped their technique [9] to a virtually pipelined
memory system. Using the same data granularity for DRAM
as in [12] and processing 64 bytes or less each cycle, we
find the need to perform one DRAM read access for access-
ing connection record, one DRAM access for accessing the
corresponding hole-buffer data structure, one DRAM access
to update this data structure, one DRAM access to write the
packet, and one DRAM access to finally read the packet in
future. Hence, for each 64-byte packet chunk, five DRAM
accesses are required. Since our memory system can process
requests every cycle, with a 400MHz RDRAM [23] we can
get an effective throughput of (400 MHz/5)*64 bytes/sec =
40 Gbps, which is more than enough to feed current gen-
eration of content inspection engines. We do require some
amount of extra storage space compared to [9] as we need to
store each packet in FIFO for the duration of three DRAM
accesses (3 ∗ D), which requires 72 Kbytes of SRAM.

6 Conclusion
Network systems are increasingly asked to perform a vari-

ety of memory intensive tasks at very high throughput. In or-
der to reliably service traffic with guarantees on throughput,
even under worst case conditions, specialized techniques are
required to handle the variations in latency caused by mem-
ory banking. Certain algorithms can be carefully mapped
to memory banks in a way that ensures worst case perfor-
mance goals are met, but this is not always possible and re-
quires careful planning at the algorithm, system, and hard-
ware levels. Instead we present a general purpose tech-
nique for separating these two concerns, virtually pipelined



network memory, and show that with provably high confi-
dence it can simultaneously solve the issues of bank con-
flicts and bus scheduling for throughput oriented applica-
tions. To achieve this deep virtual pipeline, we had to solve
the challenges of multiple conflicting requests, reordering of
requests, repeated request, and timing analysis of the system.
We have performed rigorous mathematical analysis to show
that there is on order of one stall in every 1013 memory ac-
cesses. Furthermore, we have provided a detailed simulation,
created a synthesizable version to validate implementability
and estimated hardware overheads to better understand the
tradeoffs. To demonstrate the performance and generality
of our virtually pipelined network memory we have consid-
ered the problem of packet buffering and packet reassembly.
For packet buffering application, we find that our scheme
requires about 35% less area, about ten times less latency
and can support about five times more number of interfaces
compared to the best existing scheme for OC-3072 line rate.
While we have presented the packet buffering and reassem-
bly implementation using our architecture, in the future we
will explore the potential of mapping other data plane al-
gorithms into DRAM including packet classification, packet
inspection, application-oriented networking and potentially
even a broader class of irregular streaming applications.
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