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Abstract

An effective method for reducing the effect of load la-
tency in modern processors is data prefetching. One form of
data prefetching, stream buffers, has been shown to be par-
ticularly effective due to its’ ability to detect data streams
and run ahead of them, prefetching as it goes. Unfortu-
nately, in the past, the applicability of streaming was limited
to stride intensive code.

In this paper we proposePredictor-Directed Stream
Buffers (PSB), a scheme in which the stream buffer follows
an address prediction stream instead of a fixed stride. In
addition, we examine using confidence techniques to guide
the allocation and prioritization of stream buffers and their
prefetch requests. Our results show for pointer-based appli-
cations that PSB provides a 30% speedup on average over
no prefetching, and provides an average 10%speedup over
using previously proposed stride-based stream buffers for
pointer-intensive applications.

1 Introduction

A great deal of effort has been invested in reducing the im-
pact of cache misses on program performance. As with
any other latency, cache miss latency can be tolerated us-
ing compile-time techniques such as instruction scheduling,
or run-time techniques including out-of-order issue, decou-
pled execution, or non-blocking loads. It is also possible to
reduce the latency of cache misses using multi-level caches,
victim caches, and prefetching.

Several approaches have been proposed for prefetching
data to reduce or eliminate load latency. These range from
inserting compiler-based prefetches to pure hardware-based
data prefetching. Compiler-based prefetching annotates
load instructions or inserts explicit prefetch instructions to
bring data into the cache before it is needed to hide the load
latency. They use locality analysis to insert prefetch instruc-
tions, showing significant improvements [21]. Hardware-
based prefetching can dynamically predict prefetch address
streams and predict prefetch addresses that may be hard to
find using compiler analysis. Compiler and hardware-based
prefetching can be used together, since the compiler can be
used to prefetch load instructions for which it can accurately
determine locality information, and the hardware prefetcher
can be used for those load address patterns not captured. In

this paper we focus on a new hardware-based prefetcher.

The focus of our research is improving the performance
of data prefetching with stream buffers in the context of a
realistic processor design. Stream buffers were originally
proposed by Jouppi [19] to prefetch a stream of sequen-
tial cache blocks. When a cache miss occurs, the next se-
quential cache block is allocated into a stream buffer. The
stream buffer then prefetches sequential cache blocks from
that address, as bandwidth permits, until the buffer is full.
As prefetches are used, new data is brought in, keeping the
buffer far enough in advance of the data’s use so that it can
potentially hide the entire latency.

Palacharla and Kessler [22] extended stream buffers by
associating a stride with each stream buffer. They examined
providing a stride from a table which was indexed by the
area of memory being accessed. Farkas et. al. [13] further
extended this research by using a PC indexed stride table,
which allows for detection of many strides over the same
region of memory.

In this paper we propose a new form of stream buffer
called the Predictor-Directed Stream Buffer(PSB). Instead
of associating a fixed stride with each buffer, we use a pre-
dictor to generate the next address to prefetch. We simulate
the use of a hybrid Stride Filtered Markov(SFM) predictor
to direct stream buffer prefetching and find it is quite adept
at finding both complex array access and pointer chasing
behavior over a set of pointer intensive benchmarks.

Farkas et. al. [13] show the importance of using alloca-
tion filters to prevent the stream buffers from being allocated
and deallocated too often and for too many streams, an ef-
fect we call stream thrashing. We propose a technique based
on confidence for eliminating stream thrashing as well as
making more effective use of available processor and pre-
dictor resources. This is done by using confidence to guide
stream buffer allocation and prefetch prioritization.

The rest of the paper is organized as follows. Sec-
tion 2 describes past address prediction work as it relates
to PSBs. In section 3, prior hardware prefetching models
are discussed. Section 4 describes our Predictor-Directed
Stream Buffer architecture. Simulation methodology and
benchmark descriptions can be found in Section 5. Section 6
presents results for our architecture, and our conclusions are
summarized in section 7.
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2 Address Prediction

To guide hardware-based prefetching, accurate address pre-
diction is needed. In performing this research, we examined
using stride-based address prediction, Markov/context ad-
dress prediction, and correlated address prediction.

2.1 Stride

A stridepredictor [8, 12] keeps track of not only the last ad-
dress referenced by a load, but also the difference between
the last address of the load and the address before that. This
difference is called the stride. The predictor speculates that
the new address seen by the load will be the sum of the last
value seen and the stride. We chose to use the two-delta
stride predictor [12, 28], which only replaces the predicted
stride with a new stride if that new stride has been seen twice
in a row.

2.2 Context/Markov Predictor

Context[28, 29, 32] and Markov [6, 7, 18] predictors are
fundamentally similar, in that each predictor bases its pre-
diction on the last values seen. An order k context/Markov
predictor uses the k past values to predict the next one. It
can only provide a prediction, if the given pattern has been
seen and the transition is recorded into a prediction table.

A Markov predictor assumes that the address stream
seen in a program can be efficiently modeled by a Markov
model. A Markov model is a set of states and transition fre-
quencies where each state has a probability of transition to
another. Each transition from address A to B is assigned a
weight representing the fraction of As that are followed by
a B. The Markov predictor described in [18] is a first order
context predictor as it uses only the last address to predict
the next one.

Bekerman et. al. [2] propose yet another context-based
predictor. For every load, they combine a series of past base
addresses (they state that 4 is enough for reasonable accu-
racy), to generate a history and store it into a first-level ta-
ble. They use that history as an index into a second level
table that stores a predicted baseaddress. They then add
the load’s static offset (which could be stored in the first-
level table) with the predicted base address. By using base
addresses, a high-level of global correlation is achieved for
multiple load instructions accessing different fields in the
same object.

In this paper, we only provide results for stride and first
order Markov-based prediction. We simulated higher order
Markov predictors and the correlation predictor [2], but saw
little to no improvement in prediction accuracy and cover-
age over first order Markov predictor for the programs we
examined. This is partially due to the fact that correlated
loads lie within the same cache block for the programs we
examined. Therefore, correctly predicting the correlated

load provides less gains in terms of prefetching, since we
perform our predictions and prefetches at the cache block
granularity.

3 Hardware Prefetching Models

We classify the prior hardware prefetching research into
three models – Fetch Stream Prefetching, Demand-Based
Prefetching, and Decoupled Prefetching.

3.1 Fetch Stream Prefetching

The first model follows the branch prediction or fetch
stream, predicting and prefetching addresses [9, 16, 10, 4].

Chen and Baer [9] proposed an approach to provide the
load prediction early by using a Look-Ahead PC, which can
run ahead of the normal instruction fetch engine. The LA-
PC is guided by a branch prediction architecture that runs
ahead of the fetch engine, and is used to index into an ad-
dress prediction table to predict data addresses for cache
prefetching. Since the LA-PC provided the instruction ad-
dress stream ahead of the normal fetch engine, they were
able to initiate data cache prefetches farther in advanced
than if they had used the normal PC, which in turn allowed
more of the data cache miss penalty to be masked. The
amount of load latency that can be hidden is dependent upon
how far the look-ahead PC can get in front of the execution
stream.

Reinman et.al. [23] extended the approach of Chen and
Baer [9] to instruction prefetching. In their approach, they
only have one branch predictor instead of two as in Chen
and Baer. This is accomplished by decoupling the branch
predictor from the instruction cache with a fetch target
queue between them. The queue is used to store fetch block
predictions, which are then fed into the instruction cache
in a later cycle. The fetch addresses in the queue are used
to perform instruction cache prefetching. They recently ex-
tended this approach to perform power-efficient instruction
prefetching by decoupling the tag component of the instruc-
tion cache access from the data component of the cache ac-
cess [24]. The tag component verifies if an address is in the
cache in a separate cycle before the data component access
for the instruction lookup. If the fetch address is not found,
it is prefetched, while the fetch address is queued up to be
consumed by the data component. In this new design, the
data component access consumes significantly less power,
since only one way of the data component is driven, and the
way was determined during the tag access in a prior cycle.
They are currently extending this design to fetch stream data
cache prefetching.

3.2 Demand-Based Prefetching

The second model can be classified as demand-based
prefetching. In this approach an action such as a cache miss
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or the use of a cache block has to occur for a prefetch to be
generated.

An early example of a demand-based prefetching archi-
tecture is Next Line Prefetching(NLP) by Smith [31], where
each cache block was tagged with a bit indicating when the
next block should be prefetched. When a block is prefetched
its tag bit is set to zero. When the block is accessed during
a fetch and the bit is zero, a prefetch of the next sequential
block is triggered and the bit is set to one.

Another demand-based prefetching architecture is
Shadow Directory Prefetching (SDP) by Charney and
Puzak [6]. In SDP, each L2 cache block has a shadow ad-
dress associated with it. The shadow address points to the
cache block accessed right after the corresponding cache
block, providing a simple Markov transition. A hit in the
L2 cache with a useful shadow entry triggers a prefetch
of the shadow address. Alexander and Kedem [1] exam-
ined using a similar Markov table, but distributed over the
DRAM modules, which are used to prefetch cache blocks
from DRAM array into an SRAM buffer.

The last example we will discuss is the Markov
prefetcher used by Joseph and Grunwald [18]. When a
cache miss occurred, the miss address would index into their
Markov prediction table to provide the next set of possible
cache addresses that have followed this miss address before.
After these addresses are prefetched, the prefetcher stays
idle until the next cache miss. They do not use the predicted
addresses to re-index into the table to generate more predic-
tions for prefetching.

In order to minimize the load on the bus, prefetch band-
width is limited by employing accuracy based adaptiv-
ity [18]. In this scheme, two-bit saturation counters are
added to each prediction address. The idea is to remove
prefetches that have exhibited poor behavior in the past.
When a prefetch is discarded from the prefetch buffer with-
out being used, the corresponding counter is incremented.
If the prefetched block is used, then the counter associated
with the entry that made the prediction, is decremented.
When the sign bit of the counter is set, the relevant entry in
the prediction table is disabled. Prefetch requests from dis-
abled entries are tracked so that they can be enabled when
they start making correct predictions.

3.3 Decoupled/Stream Prefetching

In this model the prefetcher is loosely decoupled from the
instruction fetch stream and can potentially prefetch down
multiple predicted streams independent of what the instruc-
tion fetch stream is doing.

3.3.1 Decoupled Models

An access decoupled architecture partitions programs into a
prefetching instruction stream and an execution instruction

stream [15, 3, 17]. As long as the prefetch stream can run
ahead of the execution stream, the memory latency can be
masked. Roth et. al. [25, 26] has examined both a soft-
ware and hardware approach for prefetching recursive data
structures using a decoupled model. Yang and Lebeck [33]
examined an architecture which uses the compiler to create
small prefetch kernels of instructions, which are executed in
parallel with the original application in a separate prefetch
engine.

3.3.2 Stream Buffers

Jouppi introduced stream buffersto improve direct mapped
cache performance [19]. The stream buffers follow multi-
ple streams prefetching them in parallel and these streams
can be completely decoupled from the instruction stream
of the processor. They are designed as FIFO buffers that
prefetch consecutive cache blocks, starting with the one that
missed in the L1 cache. On subsequent misses, the head of
the stream buffer is probed. If the reference hits, that block
is transferred to the L1 cache.

Palacharla and Kessler [22] suggested two techniques to
enhance the effectiveness of stream buffers : allocation fil-
ters and a non-unit stridedetection mechanism. The filter
prevents a stream buffer from being allocated until two con-
secutive misses occur for the same stream. Also presented
by Palacharla and Kessler is a minimum deltanon-unit de-
tection scheme. With this scheme, the dynamic stride is
determined by the minimum signed difference between the
miss address and the past N miss addresses. If this minimum
delta is smaller then the L1 block size, then the stride is set
to the cache block size with the sign of the minimum delta.
Otherwise, the stride is set to the minimum delta.

To implement the non-unit stride detection an address
indexed stride table is used. To find the striding behavior
the memory is divided up into chunks, and associated with
each chunk is a stride. While this approach is quite effective
at finding strides, we found that it was uniformly outper-
formed by the per-load stride detector of Farkas et. al. [13].
Therefore, we only present comparison results of our ap-
proach with the PC-based stride prediction stream buffers.

Farkas et. al. [13] made an important contribution by
extending this model to use a PC-basedstride predictor
to provide the stride on stream buffer allocation. The PC-
stride predictor determines the stride for a load instruction
by using the PC to index into a stride address prediction
table. This differs from the minimum-delta scheme, since
the minimum-delta uses the global history to calculate the
stride for a given load. PC-stride predictor uses an asso-
ciative buffer to record the last miss address for N load in-
structions, along with their program counter values. Thus,
the stride prediction for a stream buffer is based only on
the past memory behavior of the load for which the stream
buffer was allocated.
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Farkas et. al. [14] further enhanced the stream buffer
design of Palacharla and Kessler by enforcing the streams
being followed by multiple stream buffers to be non-
overlapping. This prevented duplication and saved bus
bandwidth. Furthermore, instead of the FIFO structure
which had been originally proposed by Jouppi, they pro-
posed the use of a fully-associative stream buffer lookup,
which we model.

4 Predictor-Directed Stream Buffers

We will now describe our Predictor-directed Stream Buffer
(PSB) architecture. The PSB architecture resides on chip
and prefetches data from the L2 cache and main memory
into the stream buffers. If a prefetch request is not found in
the L2, it will service the request from main memory. We
concentrate on stream buffers instead of the many other ar-
chitectures described in the previous section because of their
simple yet effective design, their ability to follow a prefetch
stream independent of the fetch stream, and the design fits
nicely with an on-chip prefetcher to try to hide L2 and main
memory latency.

We present an approach that extends the PC indexed
stream buffer design of Farkas et. al. [13]. As described in
Section 3, the PC index scheme uses a stream buffer which
is guided by a static stride, provided at allocation time by
a per-PC stride table as shown in Figure 1. This approach
can work well for stride-based applications, but the stream
buffers do not follow the correct stream for non-stride based
load patterns, such as during the traversal of a recursive data
structure.

To address this problem, we propose Predictor-Directed
Stream Buffers (PSB) as shown in Figure 2. The general
idea of a PSB is to use a predictor to generate an address
stream for prefetching. The predictor takes as input some
prediction information, such as the last address accessed
and history information, and then generates a prediction for
a given stream buffer. This prediction is then stored back
into the stream buffer, and the prediction information in the
stream buffer is updated. In this way we can generate pre-
diction n from prediction n � 1. The base of the recursion
is a cache miss which causes a stream buffer allocation.

There are two major parts to PSBs, a per-stream his-
tory which is stored with each stream buffer, and a stateless
address predictor which is shared between stream buffers.
The per-stream history is used to keep data about a particu-
lar stream buffer and may be used for a variety of purposes,
such as indexing into the address predictor, confidence in-
formation, and local stride. The primary service of the per-
stream history is to store a current or speculative state which
can be fed to the predictor. The prediction from the address
prediction table is then used to update the state information
in the stream buffer so that a new speculative prediction can
be made. It is a key point that the address prediction table is

tag  cache block comparator
•••

Predicted
Stride

Last
Address

tag  cache block comparator

from/to next lower level of memory

to data cache, register file, and MSHRs

8 buffe
rs

store predicted
stride in 
streaming buffer 
on allocation

Figure 1: Stride-based Stream Buffer Architecture. Eight
stream buffers are shown (overlapping each other). Each
stream buffer can hold N cache blocks. When a stream
buffer is allocated, it is assigned a predicted stride to use
to generate all of its prefetch addresses.

to data cache, register file, and MSHRs

Load PC
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Confidence
Last Address
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•••
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Figure 2: A Predictor-Directed Stream Buffer. We modify
the stream buffer so it accesses a separate address predic-
tion table to get its next prefetch address.

notupdated when the stream buffer makes a prediction, this
step is done separately in the write-back stage when a load
has a data cache miss.

This model allows the stream buffer to follow the ad-
dress prediction stream of any address predictor, whose pre-
dictions are more accurate than those of a fixed-stride pre-
dictor.

4.1 Predictor-Directed Stream Buffer Implemen-
tation

Figure 2 shows the general model of our predictor-directed
stream buffer architecture. Each stream buffer holds (1) the
PC of the load that caused the stream buffer to be allocated,
(2) the last predicted address for the load, and (3) any ad-
ditional prediction information (e.g., history state or confi-
dence) needed to perform the next address prediction. The
stream buffer is on-chip next to the address predictor, which
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in our case is a stride-filtered Markov predictor.
There are several stages of execution a stream buffer will

go through over the course of a program, starting with the
allocation of a stream and ending with it’s reallocation. We
now show the initialization, steady state operation of, and
termination of a stream in a stream buffer.

Allocation A stream buffer is allocated, subject to allo-
cation filters (see section 4.3), when a load executes and it
misses both in the data cache and the stream buffer. When
a load is given a stream buffer, it copies its PC, current
address, and any additional prediction information to the
stream buffer from the address predictor. This initialization
stage is only done once per allocation, and is directed only
from predictor to stream buffer, the state of the address pre-
dictor is not modified. This copied state will later be used
for indexing into the prediction table.

Prediction Each cycle, one stream buffer is chosen to
make a prediction using the address predictor, according to
priority heuristics described in section 4.4. The information
stored in the stream buffer is used to index into the address
predictor, returning the next predicted address, and poten-
tially updating the stream buffer’s history information. We
properly model allowing only a single prediction per cycle
to be generated from the predictor. Due to the fact that only
one request (miss or prefetch) can be processed by the bus
from the L1 to the L2 cache at a time, the predictor was not a
bottleneck even with the one prediction per cycle limitation.

Once a stream buffer has been allocated, the stream
buffer’s history information is updated after each prediction.
The address prediction table, as was mentioned earlier, re-
mains unchanged while generating a prediction for a stream
buffer. For example, a design such as a context predictor
which uses a history of the last N addresses to index into the
address predictor would store the history of its last N pre-
dictions in the stream buffer, and use this as an index into
the address predictor each cycle. The history of the last N
addresses stored in the stream buffer is updated after a pre-
diction, not the state in the address prediction table. There-
fore, the stream buffer maintains its own prediction history
information.

Before inserting the prediction into the stream buffer,
the stream buffers are searched in parallel for the cache
block of the predicted address. This was used by Farkas et.
al., [13] to prevent stream buffers from prefetching down
overlapping paths. If the prediction is found to be already
resident in a buffer entry then the prediction is ignored, no
useful prediction is made that cycle, and the stream buffer
prediction history information is updated. If prediction is
not found in the stream buffer, the prediction is stored in the
stream buffer’s least recently used entry, and that entry is
marked as ready for prefetching. Once all entries have been
predicted for a stream buffer, no further entries will be pre-
dicted until (1) an entry is cleared during a lookup (it is a

hit), or (2) the stream buffer is reallocated.

Prefetching Once an entry has a valid prediction associ-
ated with it, it is ready to be prefetched. We only allow
prefetches to occur if the L1-L2 bus is free at the start of any
given cycle. When the bus is free, a stream buffer with an
entry containing a valid un-prefetched prediction is chosen
using the priority scheduling algorithms described in sec-
tion 4.4. The prefetch is then sent to the lower levels of
memory and the entry is marked as prefetched and waiting.

Lookup When a load performs a lookup in the L1 data
cache, it searches all of the stream buffer entries in parallel
for a hit. For our results, we assume the data cache lookup
latency is the same as the stream buffer lookup latency. If
there is a hit in the stream buffer, and the data is not yet
ready in the data cache, the cache block stored in the stream
buffer is moved into the data cache. If there is a tag hit in the
stream buffer, but the block is not ready in the stream buffer,
the tag is moved into a data cache MSHR, and the data cache
handles the block when it comes back from memory. For a
stream buffer hit, the corresponding stream buffer entry is
freed for a new prediction and prefetch.

We will now describe our design using a Stride-Filtered
Markov (SFM) address predictor, although any address pre-
dictor [2, 18, 28, 29, 32] can be used to guide the predictor-
directed stream buffer. We examined several types of pre-
dictors (including stride with correlated [2]), but only pro-
vide results for a SFM table, as it performed uniformly bet-
ter.

4.2 Stride-Filtered Markov Predictor

Charney and Reeves [7] and also Joseph and Grunwald [18]
introduced Markov prefetching, and provided results for a
“stride and Markov in series” predictor. We use this predic-
tor to guide our predictor-directed stream buffer, and make
a few minor improvements which are described below.

To provide address prediction for the stream buffers we
use a Stride-Filtered Markov(SFM) predictor. The predic-
tor has a two-delta stride table in front of a Markov predic-
tion table, as shown in Figure 3. In the write-back stage,
the load instruction is checked to see if it hit or missed in
the L1 data cache. The prediction table is only updated on
a miss (i.e. we are predicting the miss stream). In addition,
our implementation does not store loads that receive their
value forwarded from stores in the prediction table, since
we found little benefit from prefetching these loads.

In the write-back stage, the load-PC (for a missed load)
is used to index into the stride table. The stride table stores
(1) the last address for the load, (2) the last stride for the
load, (3) the 2-delta stride, and (4) some confidence infor-
mation. If the stride calculated by (current miss address -
last address) does not match the last stride or 2-delta stride,
then the Markov table is updated noting the transition from
last address to current address. The last address is stored as
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Figure 3: Stride-Filtered Markov Predictor-Directed
Stream Buffer Architecture. When a stream buffer is allo-
cated it is assigned a fixed stride from the stride-pc table.
To generate the next prefetch address the last address is (1)
looked up in the Markov table, and (2) used to calculate
a next stride address. If the Markov table hits, then the
Markov address is used, otherwise the next stride address
is used for the prefetch.

the tag, and the current address as the data entry. Accord-
ingly, when that same last address is seen again, it will get a
hit in the Markov table, predicting the next miss address not
captured by the stride predictor.

For the SFM predictor examined in this paper, we do not
use any history to index into the Markov part of the table,
in other words we present results from a first order Markov
predictor. We examined using higher order Markov predic-
tors as in [18], but found that it provided little improvement,
confirming their results. The only additional information we
copy into the stream buffer from the predictor is some con-
fidence information, to guide priority scheduling described
below.

In order to reduce the size of the Markov predictor ta-
ble we store into the table only the difference between con-
secutive cache miss addresses, rather than the absolute ad-
dress as is done in prior work. Of course this number can be
further reduced by storing this difference as the number of
cache blocks rather than at a byte granularity. To calculate
the address to prefetch, a stream buffer adds its last missing
address to the signed offset contained in the table. The table
is still indexed by the last miss as in the standard Markov ta-
ble. Figure 4 shows how many bits are needed to represent
the address difference for all of the miss transitions found
in the Markov table. The results show that having 16 bits
captures almost all of the transitions. This number could
perhaps be further reduced by smart heap memory alloca-
tion which could place objects with high temporal locality
close to one another. In this paper we use a Markov table
with 2K entries, which uses a total of 4Kbytes for the data
storage. In addition, the tag size can also be reduced by
storing only partial address tags.
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Figure 4: The number of bits to accurately predict cache
misses using the Markov Difference Predictor. The y-axis
shows the percent of L1 cache misses that could be correctly
predicted given the number of bits used for each entry of the
markov table shown on the x-axis. The cache miss address
is predicted by adding together the address used to index the
Markov table with the value stored in the Markov table.

4.3 Allocation Filtering

Stream buffer allocation is one of the most important parts
of a stream buffer architecture. Since there are only a small
number of stream buffers, there is high contention, as every
data cache miss could potentially allocate a stream buffer.

Farkas et. al. [13] showed that using two miss stride fil-
tering provided good results for a PC-based stream buffer.
Two miss filtering only allocates a stream buffer for a load
when it misses 2 times in a row, and the last two strides are
identical. For our predictor-directed stream buffers we ex-
amine two methods for filtering allocation – a general form
of two miss filtering, and using our new prediction confi-
dence to guide allocation.

When updating the SFM predictor for a load that misses
in the cache, both the PC-based stride table and the address
based Markov table are indexed, and potentially updated.
Our two-miss allocation filter allows a load to allocate a
stream buffer when the load has two cache misses in a row,
and both times the load would have been correctly predicted
using the stride predictor or the Markov predictor. If this oc-
curs, then it allocates a stream buffer. This modified scheme
is our two-miss allocation filter.

The second heuristic we examine uses address predic-
tion confidence to guide stream buffer allocation. Each en-
try in the PC-based table stores an accuracy counter, which
is incremented every time the load’s update address matches
the prediction of the stride or Markov table, and decre-
mented when it does not match. The saturating counter re-
flects the ability of the predictor being able to predict the
load’s misses. By separating the confidence counters from
the stream buffer we can gauge how well a particular load is
performing before we allocate a stream buffer to it. In this
way we can avoid stream thrashing. When a stream buffer
is allocated it copies the accuracy confidence counter into a
priority counterin the stream buffer. Maintaining the prior-
ity counter is described in more detail in the next section.

On a cache miss, the accuracy confidence counter in the
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prediction table is used to guide stream buffer allocation. If
the address prediction confidence level of the load is above
an allocation threshold, it is allowed to contend for a stream
buffer. Our results suggest that a threshold value of 1 is
appropriate for our benchmark suite. In addition, a load is
only allocated a stream buffer if there is at least one stream
buffer whose priority confidence counter is less or equal to
the accuracyconfidence counter of the load. If the load’s
accuracy confidence is lower than all of the stream buffers
priority confidence, then a stream buffer will not be allo-
cated for it.

4.4 Stream Buffer Priority

The predictor and bus create a resource constraint, since
there are potentially several stream buffers which have
empty entries, or have predicted addresses waiting to be
prefetched. We examine two approaches for determining
which stream buffer should get access to the predictor and
L1-L2 bus each cycle.

The first heuristic is Round-Robingiving each buffer
an equal chance at performing a prediction or prefetch. A
pointer is kept to the last stream buffer to perform a predic-
tion and another pointer for the last entry to issue a prefetch.
The stream buffers are then sequentially examined in round-
robin order, looking for a buffer with an entry in need of
prediction or a predicted entry ready to be prefetched.

The second heuristic uses Priority Counters to guide
which stream buffer gets to perform the next prediction or
prefetch. Every time there is a lookup and the stream buffer
gets a hit, the priority counter is incremented by a constant
value (2 in our implementation). To enable the reuse of
stream buffers that had high confidence but outlived their
usefulness, after several allocation requests (i.e. data cache
misses that also miss in stream buffers) we decrement each
stream buffer’s priority counter by a value of 1. We found
using 10 L1 data cache misses as our aging period provided
decent results. When determining which stream buffer gets
to use the predictor or perform a prefetch, the stream buffers
are examined in the order from highest priority to lowest. If
there are several stream buffers that are at the same confi-
dence level, we use an LRU policy to choose the winner. As
described in section 4.3 when a stream buffer is allocated,
the accuracy confidence is copied into the stream buffer’s
priority counter. This cuts down the contention time of load
that has proven to be predictable.

In addition, as also described in the prior section, the
priority counter is used to guide stream buffer allocation
when using accuracy confidence to guide allocation. A
stream buffer will only be re-allocated for a data cache miss
if the load’s prediction accuracy confidence is greater than
or equal to a stream buffer’s priority counter. Therefore,
stream buffers that are performing useful prefetches will
stay allocated and have a longer lifetime.

Program Description

health A hierarchical health-care system simulator taken from
the Olden Benchmark suite (input: 3 500).

burg A program that generates a fast tree parser using BURS
technology. It is commonly used to construct optimal in-
struction selectors for use in compiler code generation.
The input used was a grammar that scribes the VAX in-
struction architecture.

deltablue A constraint solution system which is implemented in
C++, with an abundance of short lived heap objects.

gs Ghostscript is an implementation of Adobe Systems’
PostScript (tm) language. The input run converts a
PostScript file into a jpeg.

sis Synthesis of synchronous and asynchronous circuits (in-
put: simplify). It includes a number of capabilities such
as state minimization and optimization. The program has
approximately 172,000 lines of source code and a good
deal of pointer arithmetic.

turb3d Simulates isotropic, homogeneous turbulence in a cube
with periodic boundary conditions in x,y,z coordinate di-
rections (input: ref).

Table 1: Description of benchmarks used.

4.5 TLB Translation and Prefetching

As we store the virtual effective address of a load in our pre-
dictor, we need to translate this to a physical address before
we access memory. On a prefetch, we access the data TLB
for the translation and perform a replacement if necessary.
In essence, this amounts to TLB prefetching [27]. How-
ever, we did not observe any benefits or performance losses
caused by this approach, as the benchmarks we have used
had only a small number TLB misses. The TLB translations
could potentially be stored with each stream buffer when the
stream buffer is allocated. Then a TLB lookup would only
need to be performed when the next virtual prefetch address
goes outside the current page boundary.

5 Methodology

The simulator used in this study was derived from the Sim-
pleScalar/Alpha 3.0 tool set [5], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The tim-
ing simulator executes only user-level instructions, perform-
ing a detailed timing simulation of an aggressive 8-way dy-
namically scheduled microprocessor with two levels of in-
struction and data cache memory. Simulation is execution-
driven, including execution down any speculative path until
the detection of a fault, TLB miss, or branch mis-prediction.

To perform our evaluation, we collected results for
the programs shown in Table 1. The programs were
compiled on a DEC Alpha AXP-21164 processor using
the DEC FORTRAN, C and C++ compilers under OSF/1
V4.0 operating system using full compiler optimization
(-O4 -ifo). Table 2 shows the number of instructions
simulated, L1 data cache miss rate, percent of executed in-
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program #inst %L1 %lds %sts IPC L1-L2 L2-M
(Mill) MR %bus %bus

health 33 26.5 36.0 14.2 0.62 38.5 0.5
burg 300 6.5 19.1 18.7 1.91 19.5 4.8
deltablue 96 16.7 28.9 9.9 1.22 39.3 4.1
gs 300 2.0 19.2 6.8 3.5 6.8 0.9
sis 300 3.7 28.7 12.8 1.94 12.2 0.9
turb3d 300 6.5 23.3 16.2 2.54 26.2 13.7

Table 2: Baseline results showing the number of instruc-
tions simulated, L1 data cache miss rate, percent of exe-
cuted instructions that were loads and stores, the IPC for
each program, and the percent of cycles the bus was busy
from the L1 to L2, and the bus from the L2 to main memory
were busy.

structions that were loads and stores, the IPC for each pro-
gram, and the percent of cycles the bus from the L1 to L2,
and the bus from the L2 to main memory were busy (oc-
cupied). Turb3d was fast forwarded 1.3 billion instruc-
tions [30] before gathering statistics.

5.1 Baseline Architecture

Our baseline simulation configuration models a next gener-
ation out-of-order processor microarchitecture. We’ve se-
lected the parameters to capture underlying trends in mi-
croarchitecture design. The processor has a large window
of execution; it can fetch up to 8 instructions per cycle. It
has a 128 entry re-order buffer with a 64 entry load/store
buffer. To compensate for the added complexity of disam-
biguating loads and stores in a large execution window, we
increased the store forward latency to 2 cycles.

To make sure that the prefetching speedups we report
are from actual prefetching benefit and not from compen-
sating for a conservative memory disambiguation policy, we
implemented perfect store sets [11]. Perfect store sets cause
loads to only be dependent on stores which write to the same
memory, i.e when they are actually dependent instructions.
In this way loads will not be held up by false dependencies
making the prefetcher look better. The performance differ-
ence between the two schemes is explored in section 6.

In the baseline architecture, there is an 8 cycle mini-
mum branch mis-prediction penalty. The processor has 8
integer ALU units, 4-load/store units, 2-FP adders, 2-integer
MULT/DIV, and 2-FP MULT/DIV. The latencies are: ALU
1 cycle, MULT 3 cycles, Integer DIV 12 cycles, FP Adder 2
cycles, FP Mult 4 cycles, and FP DIV 12 cycles. All func-
tional units, except the divide units, are fully pipelined al-
lowing a new instruction to initiate execution each cycle.
We use a McFarling gshare predictor [20] to drive our fetch
unit. Two predictions can be made per cycle with up to 8
instructions fetched.

We rewrote the memory hierarchy in SimpleScalar to

better model bus occupancy, bandwidth, and pipelining of
the second level cache and main memory. For the majority
of our results, the L1 instruction cache is a 32K 2-way as-
sociative cache with 32-byte lines. The baseline results are
run with a 32k 4-way associative data cache with 32-byte
lines. A 1 Megabyte unified L2 cache is simulated with 64-
byte lines. The L2 cache has a latency of 12 cycles, and is
pipelined three accesses deep. The main memory has an ac-
cess time of 120 cycles. The L1 to L2 bus can support up to
8 bytes per processor cycle whereas the L2 to memory bus
can support 4 bytes per cycle.

6 Prefetching Performance

This section compares predictor-directed stream buffers to
the best performing prior stream buffer approach. This is
the pc-based stride stream buffers of Farkas et. al. [13],
which was described in section 3. We call their approach
PC-Stride, where data cache missed loads are kept track
of in a 256 entry 4-way associative stride address predic-
tion table. On a miss, the predicted stride is copied into the
stream buffer to guide the predictions. We examined using
PC stride tables larger than 256 entry, but they provided lit-
tle to no improvement.

For our PSB architecture, we also use a 256 entry 4-way
stride address prediction table to filter stride predictions out
of a 2K entry Markov table. We use a differential Markov
table as described in section 4.2, where each entry in the
Markov table is only 16-bits (total table size of 4Kbytes).
The advantage of PSB over PC-Stride is that we can ac-
curately follow non-stride based miss patterns. Results are
shown for PSB for all four combinations of the allocation
filter and priority scheduler. These are (1) two miss allo-
cation filter with round-robing scheduling (2Miss-RR), (2)
two miss allocation filter with priority confidence schedul-
ing (2Miss-Priority), (3) confidence allocation with round-
robin scheduling (ConfAlloc-RR), and (4) confidence allo-
cation with priority scheduling (ConfAlloc-Priority). For
the accuracy confidence counter stored in our stride table,
we used a saturating value of 7, and for the priority con-
fidence counter in the stream buffers we used a saturating
confidence value of 12. See Section 4 for the other values
used for the accuracy and priority counters.

For both the PC-Stride and the PSB architectures we
used 8 stream buffers, each with 4 entries. All stream
buffers are checked in parallel on a lookup. In addition,
when a stream buffer generates a prediction, all stream
buffers are checked to guarantee that the stream buffers do
not follow overlapping streams.

For the address predictors we use, we predict the vir-
tual address stream instead of the physical address stream,
and we perform TLB translations on those addresses when
performing the prefetch. Since we only insert loads into
the stride PC-table on a cache miss, we only require a small
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256 entry stride PC-table to capture all the critical loads that
miss. Finally, we only store and use cache block addresses
not the full address for both the stride and Markov tables.

Figure 5 shows the speedup over the baseline architec-
ture IPC shown in Table 2 for PC-Stride and our predictor-
directed stream buffer configurations. Results are shown for
five pointer-based applications, and one stride-based FOR-
TRAN program. We ran several FORTRAN programs, and
they all had similar performance to the results shown for
turb3d. Since these programs are mostly stride-based, our
PSB architectures achieves basically the same performance
as the PC-stride architecture, getting benefit only from the
addition of confidence and scheduling. For pointer based
applications, our results show that predictor-directed stream
buffers can achieve significant speedups (17% speedup for
deltablue and 18% speedup for burg) over using PC-
stride guided stream buffers.

It can be seen in Figure 5 that confidence allocation is
very important for burg and sis. The reason why per-
formance degrades for sis when using 2Miss filter allo-
cation for our approach is due to stream thrashing. Using
the confidence counters to guide allocation, allows stream
buffer allocation to concentrate on highly predictable loads,
and avoids replacing stream buffers that are receiving a lot
of hits. Stream thrashing is a serious problem for pro-
grams with large amounts of missing loads as is the case in
both large programs and tight inner loops which are highly
software pipelined. Performing loop unrolling and soft-
ware pipelining increases the number of load instructions in
the program, which can degrade the performance of stream
buffers. If an architecture has stream buffers, a loop with
a hardware predictable reference stream may achieve better
performance performing no loop unrolling, and instead use
the stream buffers to hide the load latency.

Figure 6 shows the prefetching accuracy for the different
configurations examined, where prefetching accuracy is the
percentage of all prefetches that were used by the processor.
Allowing the stream buffer to follow non-stride predictions
can increase the prefetching accuracy by almost a factor of
2 for deltablue when using confidence allocation.

Figure 7 shows the cache miss rates for the baseline and
prefetching architectures. We define a cache miss as an ac-
cess to a cache block which is not currently resident in the
cache, i.e. accesses to in-flight data count as cache misses.
We have found this tracking of cache misses to be more rep-
resentative of the system behavior than simply checking the
cache tags and MSHRs for a hit.

The total impact of the system can be seen in fig-
ure 8 which shows the average load latency for the differ-
ent benchmarks and techniques. For deltablue, we re-
move 4 full cycles from the average latency, and 3 cycles
for burg. Even a moderate reduction in average latency
can produce a significant performance impact and this is re-
flected in the speedups obtained.

Figure 9 shows the percent of bus utilization for both
the bus from the L1 to L2, and the bus from the L2 to main
memory. This reveals an interesting characteristic of sis.
When confidence is not employed, the prefetcher spends the
majority of its time issuing useless prefetch requests to the
L2 cache due to stream buffer thrashing. The bus utilization
rises by a factor of four and the accuracy drops significantly.

By far the largest consumers of L1 to L2 bandwidth are
deltablue, and health, and it is for these programs
which stream buffer prioritization scheduling performed the
best. The scheduling of prefetches allows the stream buffers
that are most likely to hit to use the bandwidth first, al-
lowing these high confidence prefetches to cover more la-
tency. Stream buffer priority scheduling provided an addi-
tional speedup of 11% for deltablue when confidence
was used in conjunction.

The speedup that we are achieving is due to the hid-
ing of latency associated with capacity problems in the L1
cache. This is shown by figure 10, where we look at the
performance for 16K 4-way, 32K 2-way, and 32K 4-way
cache. The results show the speedup obtained for the dif-
ferent prefetching techniques over a baseline architecture
with the same cache configuration. It can be seen that the
speedup obtained is independent of cache size over a rea-
sonable set of configurations.

6.1 Perfect Disambiguation Results

As mentioned earlier, we simulated the effects of perfect
load-store disambiguation. The IPC results with and with-
out perfect memory disambiguation for the baseline archi-
tecture and our proposed scheme are presented in Figure 11.
For no disambiguation (NoDis), a load waits to issue un-
til all prior stores have issued. Perfect store sets [11] pro-
vides a decent speedup for the baseline architecture for
deltablue and sis. However it yields little improve-
ment in conjunction with prefetching for all programs, ex-
cept for sis.

7 Summary

We chose to focus on stream buffers because of their abil-
ity to follow address streams independent of what the fetch
stream is doing. Prior stream buffer architectures were lim-
ited to following down a stream using a fixed stride [13],
which limits their benefit for commercial pointer-based
applications. To go beyond this limit we presented a
new stream buffer architecture (Predictor-Directed Stream
Buffer) to follow non-stride streams. In addition, we pre-
sented a new stream buffer allocation and priority schedul-
ing technique based on confidence.

It should be noted that any address predictor can be used
to guide the predicted prefetch stream for our predictor-
directed stream buffer. Due to space constraints, we only
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Figure 5: Percent speedup over base using prior PC-stride prefetching and our Predictor-Directed Stream Buffers.
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Figure 6: Prefetch accuracy. This is the number of prefetches used divided by the number of prefetches made.
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Figure 7: Data cache miss rates (where in-flight cache blocks count as a miss).
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Figure 8: Averagelatency of a load in cycles for the different architectures.
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presented results for using a stride-filtered Markov address
predictor to guide stream buffer prefetching. The Markov
predictor was a differential Markov predictor whose data
size was only 4Kbytes. We found this predictor to perform
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better than other recently proposed context [28] and corre-
lated predictors [2] for data prefetching.

For stride-based applications (e.g., FORTRAN pro-
grams), predictor-directed stream buffers provided simi-
lar performance to stride-based stream buffers. For the 5
pointer-based applications we examined, predictor-directed
stream buffers provide a 30% speedup on average over no
prefetching, and 10% average speedup over using the best
performing prior stream buffer architecture.
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