
In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT),

September 2001.

Basic Block Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications

Timothy Sherwood Erez Perelman Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

fsherwood,eperelma,calderg@cs.ucsd.edu

Abstract

Modern architecture research relies heavily on detailed
pipeline simulation. Simulating the full execution of an in-
dustry standard benchmark can take weeks to months to com-
plete. To overcome this problem researchers choose a very
small portion of a program’s execution to evaluate their re-
sults, rather than simulating the entire program.

In this paper we proposeBasic Block Distribution Anal-
ysis as an automated approach for finding these small por-
tions of the program to simulate that are representative of
the entire program’s execution. This approach is based upon
using profiles of a program’s code structure (basic blocks)
to uniquely identify different phases of execution in the pro-
gram. We show that the periodicity of the basic block fre-
quency profile reflects the periodicity of detailed simula-
tion across several different architectural metrics (e.g., IPC,
branch miss rate, cache miss rate, value misprediction, ad-
dress misprediction, and reorder buffer occupancy). Since
basic block frequencies can be collected using very fast pro-
filing tools, our approach provides a practical technique for
finding the periodicity and simulation points in applications.

1 Introduction

In order to evaluate new architecture features, detailed mod-
eling of the pipeline, buses, and queuing delays are needed
along with timing models and power estimation. Detailed
simulation takes a great deal of processing power and time,
and only a small subset of a whole program is often simu-
lated. Many programs have wildly different behavior during
different parts of their execution making the section of the
program’s execution simulated of great importance to the rel-
evance and correctness of the study.

In [10], we found, when looking at architecture features,
that most programs demonstrate cyclic behavior across many
different metrics. These include IPC, branch prediction,
value prediction, address prediction, cache performance, and
reorder buffer occupancy. Cyclic (periodic) behavior of an
application is defined as a repeatable pattern seen for the
metric throughout the program’s execution. For example,
the SPEC95 programwave, shows two main phases to its
cycle. It has an IPC of 3 during the 1st phase, and an IPC of

2 during the 2nd phase, and this repeats throughout its exe-
cution. The period is the length of time it takes to complete
both phases of its cycle.

The main focus of our paper is to develop an automated,
accurate, and efficient approach for determining the starting
points in a program to simulate and the duration of the sim-
ulation. We focus on finding:

i. The end of the initialization part of the program, and
the start of the cyclic part of the program.

ii . The period of the program. The period is the length of
the cyclic nature found during a program’s execution.

iii . The ideal place to simulate given a specific number of
instructions one has time to simulate.

iv. An accurate confidence estimation of the simulation
point.

To create a fast and efficient tool, we focused on an ap-
proach that does not use any knowledge of the architectural
metrics for the program, but is instead highly correlated with
the performance of those metrics.

We propose usingBasic Block Distribution Analysis
(BBDA) to calculate the above enumerated items. When
running a program to completion, it will execute each ba-
sic block a certain number of times. Taking a snapshot of
the number of times each basic block is executed provides
us with a basic block fingerprint. We use basic block finger-
prints gathered for small intervals of the program’s execu-
tion to find representative areas of the program to simulate.
This is done by finding the best match of these smaller basic
block fingerprints to a basic block fingerprint representing
the complete execution of the program.

A potential advantage of BBDA is that it only requires
basic block profiles, which means a relatively fast basic
block profiler is used (as opposed to slow timing simulation).
In addition, many compilers already collect basic block and
edge frequency profiling information for performance tun-
ing, and to guide hot-path and code layout compiler opti-
mizations.

1



The rest of the paper has the following organization. Sec-
tion 2 details an example motivating why cyclic behavior ex-
ists in applications. Section 3 describes Basic Block Distri-
bution Analysis, and how it is used to find the end of ini-
tialization and the period length in applications. Section 4
examines the cyclic behavior of programs in terms of archi-
tectural features and metrics, in order to see how they cor-
relate to the basic block cyclic behavior found using BBDA.
Section 5 presents results using BBDA for finding places in
an application to simulate. It also analyzes the error in using
BBDA for finding the representative part of the program to
simulate across a range of architecture features (IPC, branch
prediction, value prediction, address prediction, cache de-
signs, and reorder buffer occupancy). Section 6 describes
related work, and section 7 summarizes the results and con-
tributions of our work.

2 Cyclic Behavior of Programs

Most programs do not execute in a steady state, even at a
high level. Instead they tend to go through different stages
of execution, starting with a setup phase which is used to
initialize data structures and set up for the rest of execution.
This start-up time can account for a significant amount of
execution. For example, the SPEC95 programwave needs
to execute for almost 7 billion instructions before it reaches
the code that accounts for the bulk of the execution.

Once the initialization stage has been past and we are in
the bulk of the execution, there are still execution phases to
be found. Programs tend to be written in a modular fash-
ion, often as a set of procedures contained in a loop, where
each procedure is then another loop with more procedures.
While this mode of execution is not representative of every
important program written, it is the common case for com-
pute bound applications, the type that we concern ourselves
with when examining new architectural modifications. Ap-
plications, when written in this manner, have a very strong
periodicbehavior, alternating between completely different
sections of code.

If, as computer architects, we are not cognizant of the
fact that programs execute in distinct phases, we may be test-
ing the performance of our machine on a single very unrepre-
sentative section of execution such as the initialization phase,
or at the very least we may be over-representing parts of the
program.

Figure 1 shows the behavior ofwave as it executes. Plot-
ted on the graph are a variety of architectural metrics such as
IPC and cache miss rates. The graph shows thatwave has
very distinct phases of execution, starting with an initializa-
tion phase that ends around 7 billion instructions. After this,
the program enters into a series of cycles, each made up of
two phases. In one phase an average of over three IPC is
achieved every cycle, while in the other phase the IPC drops
down to under two. Complete details for this graph are dis-

ruu val addr D_L1_64K I_L1_32K branch IPC

wave5

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a

0

1

2

3

4

In
st

 / 
B

ra
nc

h 
/ I

P
C

Figure 1: Time varying behavior for the SPEC95 program
wave. Each unit of the X-axis represents 100 million com-
mitted instructions. Results are shown for IPC, reorder
buffer (RUU) occupancy, value, address, and branch predic-
tion miss rates, instruction and data cache miss rates using
the Y-axis scale each metric is labelled upon.

cussed in Section 4.
The reason for this periodic behavior can be seen in the

call graphs generated forwave shown in Figures 2 and 3.
Figure 2 is the call graph generated for just the partial execu-
tion ofwave during the sections of high IPC, while Figure 3
is the call graph for the sections of low IPC. The nodes on the
graphs are procedures annotated with the number of times
that they were called. The strong periodic behavior ofwave
is due to an outer function, not shown, calling two different
routines in succession,trans andfield. The call graphs
show thattrans andfield do share some low level func-
tions such as F sqrt4 and OtsDivide32, but the bulk
of their execution occurs in different functions.

It is easy to see that if careful decisions are not made
about where in a program’s execution to simulate, we could
easily see differences of a factor 2 in important metrics such
as IPC. This example further demonstrates the fact that dif-
ferent phase behavior can be identified by examining the ex-
ecution behavior of the code. This motivated us to develop a
general automated technique for determining where to sim-
ulate based on the basic blocks of the program.

3 Basic Block Distribution Analysis

In this section we propose Basic Block Distribution Analy-
sis as a generic way of determining the cyclic behavior of
an application and finding preferred simulation points in the
application in order to achieve a representative sample of its
execution.

3.1 Basic Block Vectors

A basic block is a section of code that is executed from start
to finish with one entry and one exit. We use the frequencies

2



parmvr_:74539006

__F_sqrt4:10475776 bcnd_:569

trans_:16802

pdiag_:2525991 getb_:7563068

_OtsRemainder32:11924 ecwr_:2431141 ecrd_:2431141 _OtsDivide32:4607

Figure 2: Call graph generated fromwave for the phase of execution, where an average IPC of 3 is achieved.

field_:16774247

ranf_:45 __powi_e:70 __F_sqrt4:153 _OtsDivide64:15 solv2y_:66

slv2xy_:33207F_sqrt:252 @0x12007cfdc:50

genb_:54 F_cos:5278 fftf_:3537040 vslv1p_:35460262 fftb_:3205232

rfftf1_:2760660

_OtsDivide32:928984radf5_:3887460 radf3_:4763860 radf4_:4144120

rfftb1_:2253600

radb4_:3325312 radb3_:3851152 radb5_:3395424

Figure 3: Call graph generated for the phase fromwave, where there is an average IPC of 2.

with which basic blocks are executed as the metric to com-
pare different sections of the application’s execution. The
intuition behind this is that the behavior of the program at
a given time is directly related to the code it is executing at
that time, and basic blocks provide us with this information.

The program, when run for any interval of time, will ex-
ecute each basic block in the program a certain number of
times. Knowing this information provides us with a basic
block fingerprint for that interval of execution, which tells
where in the code the application is spending its time. The
basic idea is to find a reasonable sized interval of time in the
program’s execution that has a basic block fingerprint simi-
lar to the full execution of the program. If we can find this,
we know that both the full execution of the program and the
interval we choose spends proportionally the same amount
of time in the same code.

For the results in this paper, the basic block fingerprints
are collected in intervals of 100 million instructions through-

out the execution of a program. At the end of each interval,
or sample, the number of times each basic block is entered
during the interval is recorded and a new count for each basic
block begins for the next 100 million interval.

A Basic Block Vector(BBV) is a single dimensional ar-
ray, where there is an element for each static basic block in
the program. Each element in the array is the count of how
many times a given basic block has been entered during an
interval. It is sometimes useful to take Basic Block Vectors
of varying size intervals. We say that a Basic Block Vector,
which was gathered by counting basic block executions over
an interval of Ntimes 100 million instructions, is aBasic
Block Vector of duration N.

Because we are not interested in the actual count of basic
block executions for a given interval, but rather thepropor-
tionsof basic block execution, a BBV is normalized by hav-
ing each element divided by the sum of all the elements in
the vector. This normalization ensures that the sum of all the

3



elements in the BBV is 1, which in turn allows us to compare
vectors of different durations.

The Basic Block Vector that contains the normalized ba-
sic block frequencies for the entire execution of the program
provides what we call thetarget BBV. It is the goal of the
analysis that we present to find a Basic Block Vector, of small
duration, that is very similar to the target BBV. In finding this
we will have found a section of code that is representative of
the whole.

In order to find a Basic Block Vector that is similar to
the target BBV, we must first have some way of comparing
two Basic Block Vectors. The operation we desire takes as
input two Basic Block Vectors, and as output has a number
which tells us how close they are to each other. To compute
this function we take the element-wise subtraction of the two
vectors. We then take the absolute value of each element,
and sum all the elements together into a single number. This
produces a number between 0 and 2, since each BBV sums
to 1. We use this single number to tell us how closely related
the two BBVs are. We call this thedifferencebetween the
two BBVs. Now that we have a way of comparing two Basic
Block Vectors, we can begin to look into how the execution
of a program changes over time.

3.2 Creating a Basic Block Difference Graph

Before we can begin to understand how to find a representa-
tive interval of the program, we need to understand how the
execution of a program changes over time. For this reason
we create a Basic Block Difference Graph. The Basic Block
Difference Graph is a plot of how well each individual sam-
ple in the program compares to the target Basic Block Vector
created for the entire run to completion.

For each interval of 100 million instructions, we create
a BBV of duration 1 and calculate its difference from the
target BBV. Figure 4 shows the plot of all of the BBV dif-
ferences across the entire execution creating aBasic Block
Difference Graph. The x-axis is the number of instructions
in 100 millions, and the y-axis is our measure of compari-
son between Basic Block Vectors discussed above, the BBV
difference. A difference of 2 means that the two vectors are
completely unrelated, while a deviation of 0 is the result of a
perfect match between a BBV and the target vector.

In the following sections we describe how we use the ba-
sic block difference graph to (1) find the initialization phase
of the program, and (2) find the period for that program.

3.3 Finding the End of Initialization Phase

Execution during the initialization phase of programs is very
different from the steady state behavior of the application. In
a study on value prediction [2], we found thattomcatv saw
a 68% execution speedup using value prediction when simu-
lating the initialization phase of the program, in comparison
to 5.8% speedup after fast forwarding past the initialization

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2
Wave

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2
Hydro

0 50 100 150 200 250 300
0

0.5

1

1.5

2
Tomcat

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2
VPR

0 500 1000 1500
0

0.5

1

1.5

2
Vortex

0 500 1000 1500 2000 2500
1

1.2

1.4

1.6

1.8

2
Bzip

Figure 4: The basic block difference graphs. Each x-axis
unit represents 100 million executed instructions. The graphs
show the Basic Block Vector difference on the y-axis, which
is calculated by comparing the target BBV with the BBV
generated for each 100 million interval of executed instruc-
tions.

4



phase. In contrast,vortex saw an 11% execution speedup
with value prediction in the initial part of the program, but
saw a 27% execution speedup after fast forwarding. These
results show that results generated for only the beginning of
execution can be terribly misleading, and that it is very im-
portant to simulate representative sections of code.

The approach we use to determine the end of the initial-
ization stage can be thought of as sliding a piece of jig-saw
puzzle over the rest of the puzzle. Since the jig-saw piece
will fit best at the spot it is removed from, the comparison at
that point will show the least difference. However, as soon
as it is shifted away from its space, the comparison with the
underlying pieces will show a marked difference.

To find the end of the initialization phase we treat the BB
difference graph as a signal. We take the first quarter of the
BB difference graph (signal), which we call theInitialization
Representative Signal(IRS), and we use this to search for the
end of the initialization. We take the IRS and slide it over the
BB difference signal looking for the first peak where the IRS
differs from the BB difference signal. In this way we treat
the BB difference graph as the puzzle, and the IRS as the
piece of the puzzle we are sliding across.

We chose IRS to be the first quarter of the BB difference
signal to capture the majority if not all of the initialization
stage. This is based on the assumption that the initialization
phase will be shorter than half the length of the entire execu-
tion.

We compare the IRS at every point across the first half
of the original BB difference signal. A signal starting at
each point in the BB difference graph equal in length to the
IRS signal, is compared to the IRS. To compare these two
sub-signals we take the absolute difference of each point of
the two sub-signals, and summarize the resulting differences
into a single number. This number represents how close
these two signals match up. This is done for every point
within the first half of execution in the BB difference graph
resulting in a new graph, which we call theInitialization Dif-
ference Graph. These are shown in Figure 5.

The graphs can be categorized into two observable be-
haviors. A periodic pattern as seen withwave, vortex,
and bzip, is due to the IRS containing the initialization
stage as well as some cyclical behavior from the execution.
This is enough to manifest the cyclical behavior during the
remainder of the comparison past the initialization stage. A
steep incline with a plateau is seen withhydro, tomcat
andvpr. The plateau is explained by the initialization part
of these programs not having any overlap with the rest of the
program after the initialization phase is completed.

From the programs we examined, the initialization stage
is complete at the first peak or corner in the initialization dif-
ference graph. When the initialization representative signal
finally reaches the end of the initialization stage on the BB
difference signal, the difference is maximized since there is
no more of the initialization phase left to compare to.

0 100 200 300 400 500 600 700
0

2000

4000

6000
Wave

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60
Hydro

0 10 20 30 40 50 60 70
0

100

200

300
Tomcat

0 50 100 150 200 250 300
0

2

4

6
VPR

0 50 100 150 200 250 300 350 400
0

20

40

60
Vortex

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000
Bzip

Figure 5: The initialization difference graphs. The x-axis
units are in terms of 100 million instructions. The y-axis for
each x-axis value represents the signal difference between
the IRS and the original basic block difference signalstarting
at that x-axis value.

5



Mathematically, a peak or a corner in a graph represents
the point where the slope is changing the fastest. The second
derivative is a function of the rate of change of the slope, and
is used in our algorithm to determine this point marking the
end of the initialization. The first column in Table 2 shows
the end of initialization points that are automatically found
using the above analysis.

3.4 Finding the Period

To find the period we form aPeriod Representative Sig-
nal (PRS) from the BB difference graph starting at the pre-
computed end of the initialization phase found in the previ-
ous section. The PRS we use is one quarter the length of the
program’s execution. We found that duration to be sufficient
to capture periods of length (duration) comprising up to half
of the program’s execution.

To find the period we slide the PRS across half the entire
BB difference graph, starting at the end of the initialization
stage. We perform the same comparisons for each x-axis
value as above for finding the initialization stage, resulting
in Period Difference Graphsshown in Figure 6.

The period graph shows all of the points where the PRS
matched the sub-signals from the original signal (BB differ-
ence graph). After shifting the PRS over the BB difference
graph, the resulting calculations close to zero represent a
match of the PRS to the original sub-signal. The time du-
ration between each match represents the period for the pro-
gram. Therefore, all of the local minimums from shifting the
PRS are used to calculate the period. The period is calcu-
lated by taking these minimum Y-axis points in the period
graph, and calculating the length in instructions (X-axis) be-
tween these minimums. This length is the period of the sig-
nal, and the period of the application. The second column in
Table 2 shows the periods that are automatically found using
the above analysis.

The two programs that do not fit cleanly into our descrip-
tion for finding periodic behavior arevpr andbzip. Vpr
does not have a very visible period, and its behavior is not
very repetitive. However, we still find very good represen-
tative points for simulation forvpr as is shown using the
analysis we present in section 5.

Bzip on the other hand has multiple periods. The first
and largest period has a duration of 1046 as seen in Figure 4,
which consists of 2 cycles over the complete execution of
bzip. In looking at Figure 7, we can see how the behavior
is captured when creating a BB difference graph using differ-
ent BBV durations. Results are shown for using basic block
vectors with duration of 6, 12, and 52 (hundred of million
instructions) to create the BB difference graph. For a vector
duration of 6, we find that the next period to be found has a
duration of 78, and the smallest period is of size 9. These fig-
ures also show that using larger durations of a BBV creates
a BB difference graph that emphasizes the larger periods.

0 500 1000 1500
0

2000

4000

6000
Wave

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

Hydro

0 20 40 60 80 100 120 140
0

2

4

6
x 10

−3 Tomcat

0 100 200 300 400 500 600 700
0

0.005

0.01

0.015

0.02
VPR

0 100 200 300 400 500 600 700 800
0

20

40

60
Vortex

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000
Bzip

Figure 6: The period difference graphs. The x-axis units are
in terms of 100 million instructions. The y-axis for each x-
axis point represents the signal difference between the PRS
and the original basic block difference signalstarting after
the end of the initialization phase.

6



0 500 1000 1500 2000 2500
0.4

0.6

0.8

1

1.2

1.4
Bzip with BB Vector Duration = 6

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Bzip with BB Vector Duration = 12

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Bzip with BB Vector Duration = 52

Figure 7: The basic block difference graphs forbzip vary-
ing duration of the basic block vector when creating the
graphs. The results show that using a larger BB vector cre-
ates a BB difference graph that emphasizes the larger peri-
ods.

3.5 Fourier Analysis

We initially tried to use Fourier analysis to discover the pe-
riod of a signal. We convolved the signal with itself to
smooth out the basic block difference graph, emphasizing
the frequencies with larger amplitude. The convolution ac-
centuates the periodic behavior of the original signal, but this
new signal still had to be analyzed to find the period. For
vortex, the new signal was actually inferior to the origi-
nal, sincevortex has a slightly varying period throughout
its entire execution. The convolution did not work well for
signals that did not have static period lengths.

The Fourier analysis potentially could have benefits
when dealing with certain types of execution. Our period

Instruction Cache 32k 2-way set-associative, 32 byte blocks, 1 cycle latency
Data Cache 64k 4-way set-associative, 32 byte blocks, 2 cycle latency
Unified L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 12 cycle latency
Branch Predictor hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal predictor
Out-of-Order Issue out-of-order issue of up to 8 operations per cycle, 128 entry

re-order buffer
Mechanism load/store queue, loads may execute when all prior store

addresses are known
Architecture Registers 32 integer, 32 floating point
Functional Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer

MULT/DIV, 2-FP MULT/DIV
Virtual Memory 8K byte pages, 30 cycle fixed TLB miss latency after

earlier-issued instructions complete

Table 1: Baseline Simulation Model.

algorithm currently computes a single period for the entire
execution. This is not always the optimal period, because
there could locally be periodic behavior throughout the exe-
cution.Bzip is a prime example of this as described above.
Bzip has two distinct phases, and each phase has its own pe-
riodic behavior but the signal is very noisy. Fourier analysis
could potentially provide information about all the periodic
behavior in a signal, and extracting this to optimize our cur-
rent approach is part of future work.

4 Cyclic Behavior of Architectural Metrics

In this section we examine the time varying behavior of ap-
plications in terms of architectural features and metrics. We
show the correlation between the periodic behavior found via
BBDA and the architectural features and metrics examined
during simulation.

4.1 Methodology

To examine these architecture features and metrics, we
collected information for three of SPEC95 programs
(tomcatv,hydro, andwave) and three of the SPEC 2000
programs (bzip, vortex, vpr) for their reference input
sets. Each program was compiled on a DEC Alpha AXP-
21164 processor using the DEC C, C++, and FORTRAN
compilers. The programs were built under OSF/1 V4.0 oper-
ating system using full compiler optimization (-O4 -ifo).

The timing simulator used was derived from the Sim-
pleScalar 3.0a tool set [1], a suite of functional and timing
simulation tools for the Alpha AXP ISA. The simulator exe-
cutes only user-level instructions, performing a detailed tim-
ing simulation of an aggressive 8-way dynamically sched-
uled microprocessor with two levels of instruction and data
cache memory. Simulation is execution-driven, including
execution down any speculative path until the detection of
a fault, TLB miss, or branch mis-prediction. The baseline
microarchitecture model is detailed in Table 1. We modified
the 3.0a release of SimpleScalar, so that the memory hierar-
chy buses were pipelined, with a transfer width of 8 bytes
per cycle.

7



4.2 Collecting Time Varying Behavior

To show the time varying behavior of the programs, Sim-
pleScalar was modified to output and clear its statistics after
every 100 millioncommittedinstructions. Only the statistic
counters are cleared between intervals, and the state of the
machine (e.g., cache and branch prediction tables) arenot
cleared between intervals. This eliminates any cold-start er-
ror from being added into the experiment.

Results are then graphed for every 100 million commit-
ted instructions for the programs examined. This should
yield a clear picture of the large scale runtime behavior ex-
hibited by each application as well as indicating which sets
of instructions are more indicative of the execution as a
whole. It is, however, of small enough granularity that it
provides useful information about program start up times and
can be easily simulated on any machine. Each program was
run until completion, but we only graph enough intervals to
show the cyclic nature for each program.

The following summarizes the data graphed:

� Instructions Per Cycle. This is the number of instruc-
tions that are committed in each sample, which is al-
ways 100 million, divided by the number of simulated
cycles that it took to execute those instructions.

� Percent RUU Occupancy. SimpleScalar uses a uni-
fied Register Update Unit (RUU) to model its reorder
buffer and reservation stations [12]. In our simulations
we used a 128 entry RUU, and report results in terms
of the percent of the RUU entries used on average dur-
ing a 100 million instruction sampling period.

� Cache Miss Rate. Cache miss rates are shown for a
32 KB 2-way associative instruction cache, and a 64
KB 4-way associative data cache. Both caches have
32 byte lines.

� Branch Prediction Miss Rate. We used McFarling’s
bi-modal gshare branch predictor [7]. An 8K entry
2-bit chooser table is used to choose between an 8K
entry 2-bit bi-modal branch predictor and an 8K entry
gshare table. A 256 entry 4-way associative branch
target buffer is used to provide the predicted addresses,
and a 32 entry return address stack is used to predict
return instructions. The branch misprediction rate over
all the types of executed branch instructions is shown.

� Address Prediction Miss Rate. Miss rates are shown
for 2-delta stride address prediction for an infinite
sized table (each load gets its own entry) [5, 9]. The
2-delta address predictor will only change it’s predic-
tion if the stride is seen two times in a row. Miss rates
are shown for only applying address prediction to load
instructions.

� Value Prediction Miss Rate. Miss rates are shown
for 2-delta value and address prediction for an infinite
sized table [4, 13]. The 2-delta value predictor will
only change the stride if seen two times in a row. Miss
rates are shown for only applying value prediction to
load instructions.

Note, address and value prediction were not used for ar-
chitectural optimizations in gathering these results, only their
miss rates were gathered. Therefore, they do not affect the
IPC, branch or cache miss rate results being shown.

4.2.1 Cyclic Architecture Results

Figure 8 and Figure 1 show the time varying behavior of the
6 SPEC programs we examined. The legend is at the top of
each figure. For each program, the results for IPC, average
percent RUU occupancy, percent branch miss rate, percent
value miss rate, percent address miss rate, and percent in-
struction and data cache miss rates are shown on the same
graph. Since all of these different results are shown on the
same graph, each graph has two Y-axis.

For each graph, the left and right Y-axis are labeled with
the metrics that use that axis. For most of the graphs, percent
RUU occupancy, and value and address miss rates use the
left Y-axis. Similarly, I-Cache miss rate, branch miss rate,
and IPC usually use the right Y-axis. The D-Cache miss rate
is shown on either axis depending upon the program and axis
scale in order to allow interesting trends to be seen.

The X-axis is in terms of 100 millioncommittedinstruc-
tions. We ran all of the programs to completion, and found
them to either (1) converge to a constant behavior until the
last few 100 million instructions, or (2) have a repeatable
cyclic behavior until the end of their execution. Because of
this, and to save space, we only show enough of the program
to demonstrate the cycles we found. Forhydro, tomcat,
andbzip, 5 billion instructions is enough to clearly demon-
strate the cyclic nature of the programs.Vortex has cycles
of a much larger scale, on the order of 150 billion instruc-
tions, andwave has cycles on the order of 7 billion instruc-
tions.Vpr has mild cyclic tendencies, but the pattern is not
as concrete as for other programs.

5 Choosing Where to Simulate and Error Analysis

SimpleScalar [1], one of the fastest simulators, executes on
the order of 1000 times slower than hardware. SimpleScalar
emulates the execution of a program and allows the simu-
lation to execute down speculative paths of execution. This
is critical for accurately modeling speculative execution and
recovery techniques for many of the latest architecture fea-
tures being studied in the field. Most researchers use a cy-
cle level simulator similar to SimpleScalar, executing only

8



ruu val addr D_L1_64K I_L1_32K branch IPC

hydro2d

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a

0

1

2

3

In
st

 / 
B

ra
nc

h 
/ I

P
C

tomcatv

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a

0

1

2

3

In
st

 / 
B

ra
nc

h 
/ I

P
C

bzip

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a 

0

1

2

3

4

5

6

In
st

 / 
IP

C
/ B

ra
nc

h

vortex

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

R
uu

 / 
V

al
 / 

A
dd

r 

0

0.5

1

1.5

2

2.5

3

3.5

4

B
ra

nc
h 

/ D
at

a 
/ 

In
st

 / 
IP

C

vpr

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

R
uu

 / 
V

al
 / 

A
dd

r 
/ B

ra
nc

h

0

0.5

1

1.5

2

2.5

3

3.5

4

D
at

a 
/ I

ns
t /

 IP
C

Figure 8: Time varying behavior for the programs
hydro2d,tomcatv,bzip, vortex, andvpr. Each unit
of the X-axis represents 100 million committed instructions.

a small fraction of the program. A few hundred million in-
structions may be typically executed, starting from a prede-
termined point.

In Table 2 we see the baseline behavior of the six pro-
grams for the architectural metrics discussed in section 4 for
the complete run of the application. In addition to this we
have included the initialization phase and the period duration
(in 100 of millions of instructions) as determined by using
the BBDA analysis discussed in section 3. We have found
that to get the most representative sample of a program, at
least one full period must be simulated.

5.1 Simulation Points

To evaluate the accuracy of the period length found using
BBDA, we now compare the behavior of simulating for a
single period to that of simulating the program’s complete
execution. We choose a preferred period as the simulation
starting point by building a BB difference graph for each pro-
gram with a BBV duration equal to the period length shown
in Table 2. We then take the minimum point in this new BB
difference graph as the the preferred period to simulate.

Table 3 compares the performance of several different
metrics for the preferred period simulated and compares this
with the baseline metrics shown in Table 2. The column la-
beled start is where the simulation was started from, and the
simulation was ran for one complete period with the length
shown in Table 2. For each of these experiments, cold start
effects were eliminated by warming up the simulator with
the full execution of the program to that point. The metrics
examined are the same as examined in Section 4. In addition
to this, associated with each metric is an error. The error is
the percent difference between the metric measured over the
preferred period we simulated versus the complete execution
of the program.

The IPC values for the periods match very closely with
the execution of the program as a whole. For all the programs
there was less than a 5% difference between the IPC of the
preferred simulation period and the full program execution.
Most of the other metrics match up very closely as well. We
show ’–’ for instruction cache error results for most of the
programs, since the instruction cache miss rates were too low
(below 0.05%) to represent any meaningful error.

The results forvpr show that we were able to capture its
IPC within 4.3% when simulating 200 million instructions
(one period) starting 74.6 billion instructions into the pro-
gram. Even though there are different basic blocks executing
in different proportions across the run of the application, the
chosen sample is still very close to the execution as a whole.

5.2 Limited Simulation

Due to time constraints a researcher cannot typically simu-
late the whole program, but instead can simulate only for a
few hundred million instructions, which is usually smaller

9



name init period bpred ruu IPC d miss i miss val miss addr miss

bzip 2 9 4.2% 75.8% 2.681 1.7% 0.000% 25.1% 13.3%
hydro 5 17 0.4% 68.7% 0.793 14.6% 0.022% 8.3% 0.6%
tomcat 13 5 0.8% 59.6% 0.955 9.7% 0.043% 46.2% 1.0%
vortex 40 144 0.6% 43.4% 2.726 0.9% 0.979% 15.2% 16.4%
vpr 4 2 9.3% 49.8% 1.143 3.0% 0.001% 16.6% 14.2%
wave 68 70 0.6% 62.2% 2.596 7.4% 0.000% 38.1% 7.9%

Table 2: The first two columns show the length of the initialization phase and the size of the period in hundreds of millions
of instructions. The average branch misprediction rate, ruu occupancy, instructions per cycle, data cache miss rate, instruction
cache miss rate, value misprediction rate, and address miss prediction rate are also shown for the full run to completion.

than the period. To determine where to simulate given this
constraint, we build a BB difference graph for each program
with a BB vector duration of N, where N is the number of
instructions in 100 of millions the user is willing to simulate.
We then take the minimum point of that graph to represent
the ideal simulation point.

Table 4 shows the effect of using only a limited amount
of simulation time. Here we limit the amount of simulation
time to only 300 million committed instructions, starting at
the instruction, in 100 of millions, shown in the first col-
umn of Table 4. We can see that the error rate has gone up
over that in Table 3. However, due to the fact that we have
carefully selected our starting point with the algorithms pre-
sented in Section 3, the results we get are within acceptable
bounds. The worst case IPC difference is 6%

The one program that does not do well with the smaller
run size isbzip. For bzip the address miss rate and the
value miss rate are off by around 80%. As our periodic re-
sults show, 900 million simulated instructions are needed to
capture the small period inbzip, and simulating for 300
million instructions was simply too small to capture the be-
havior of the loop.

We now examine the performance of choosing our sim-
ulation point by picking it to be just after the initialization
phase. Table 5 shows the same metrics as presented in Ta-
ble 4 for a section of execution past the initialization stage
by one period. The start of simulation is chosen to be the
initialization time plus the time for one period. The intu-
ition behind this is to simulate the soonest time past initial-
ization, while still allowing for a full period of simulation to
”warm up” the architectural structures such as the cache and
branch predictor. In looking at Table 5, we see that using this
scheme provides higher errors for important metrics such as
IPC, branch prediction and data cache miss rates over using
BBDA to find a preferred starting point as shown in Table 4.

6 Related Work

In this section we describe work related to finding simulation
points, techniques for using sampling for simulation, and sta-
tistical simulation.

6.1 Time Varying Behavior of Programs

We presented in [10] a first attempt at showing the periodic
patterns and how these vary over time for cache behavior,
branch prediction, value prediction, address prediction, IPC
and RUU occupancy. Skadron et. al [11] also examined
creating similar time varying graphs for branch miss rates.
They then used these graphs to manually choose where to
fast-forward to pick out the simulation periods, similar as to
what we proposed in [10].

6.2 Automatically Finding Where to Simulate

Concurrent to the work presented in this paper, Lafage and
Seznec proposed an automated approach for choosing repre-
sentative slices of a program’s execution [6].

They propose a technique similar to [10] to gather statis-
tics over the execution of the program to completion. There
are two major differences. First, they propose to use metrics
that are architecture independent to characterize the behavior
of the program. They evaluate two such metrics, one which
captures spatial locality and one which captures temporal lo-
cality. They further propose to create specialized metrics
such as instruction mix, control transfer, instruction charac-
terization, and distribution of data dependency distances to
further quantify the behavior of the both the program’s full
execution and the execution of samples. The second point
they propose is to use clustering and choosing algorithms to
find a set of samples which captures the full execution of the
program.

Our approach is cooperative in that the metrics and anal-
ysis we propose, and the clustering and choosing algorithms
developed in [6] could be easily used together, and this is an
area of future research.

6.3 Statistical Sampling

Our basic block distribution analysis accurately finds rep-
resentive periods for simulation, but some of these periods
are still too long for conducting detailed simulation studies.
Therefore, in section 5 we examine choosing a few hundred
million instructions to simulate from these long periods, and

10



name start bpred err ruu err IPC err data err inst err val err addr err

bzip 150 4.2% 1% 75.4% 0.5% 2.8 5.1% 1.3% 25.8% 0.0% – 25.4% 1.1% 15.7% 17.9%
hydro 6 0.3% 16% 69.8% 1.7% 0.8 2.5% 14.8% 1.5% 0.0% – 8.2% 1.8% 0.6% 9.1%
tomcat 12 0.8% 3% 60.5% 1.5% 0.9 1.5% 9.8% 1.1% 0.0% – 41.1% 12.4% 0.9% 17.1%
vortex 382 0.6% 2% 43.7% 0.8% 2.8 1.9% 0.9% 1.2% 1.0% 2.8% 15.2% 0.1% 16.3% 0.7%
vpr 746 9.0% 3% 49.7% 0.3% 1.2 4.3% 3.1% 6.4% 0.0% – 16.6% 0.0% 14.4% 1.3%
wave 127 0.6% 9% 60.7% 2.5% 2.5 3.3% 7.7% 4.4% 0.0% – 40.4% 6.1% 8.5% 7.8%

Table 3: Results for simulating one complete period through the application. The first column shows the starting instruction
of the period simulated (in 100s of millions of instructions). The branch missprediction rate, ruu occupancy, instructions per
cycle, data cache miss rate, instruction cache miss rate, value misprediction rate, and address miss prediction rate are shown for
one complete cycle of the program’s execution. Next to each of these columns is the percent difference between that metric for
the period and the same metric for the full program execution.

name start bpred err ruu err IPC err data err inst err val err addr err

bzip 1733 4.0% 6% 63.8% 18.8% 2.5 5.9% 1.8% 8.0% 0.0% – 14.2% 77.2% 7.3% 82.0%
hydro 36 0.3% 12% 69.2% 0.9% 0.8 3.9% 14.8% 1.4% 0.0% – 8.4% 0.4% 0.6% 9.3%
tomcat 144 0.8% 1% 60.9% 2.2% 1.0 1.9% 9.5% 2.0% 0.1% – 39.8% 16.2% 1.1% 13.7%
vortex 330 0.6% 3% 41.9% 3.6% 2.8 3.4% 0.7% 16.3% 1.0% 4.0% 15.7% 3.8% 17.7% 7.7%
vpr 746 9.0% 3% 49.7% 0.3% 1.2 4.3% 3.1% 6.4% 0.0% – 16.6% 0.0% 14.4% 1.3%
wave 1036 0.3% 84% 61.5% 1.2% 2.8 6.0% 7.9% 6.7% 0.0% – 37.0% 2.8% 6.5% 20.8%

Table 4: The same metrics as presented in Table 3, but for an automatically chosen 300 million instruction simulation point.
The error from comparing the sampled metric to the full execution of the program is listed next to each metric.

name start bpred err ruu err IPC err data err inst err val err addr err

bzip 11 4.9% 17% 74.3% 2.0% 2.2 23.2% 2.8% 68.9% 0.0% – 22.7% 10.8% 8.5% 55.4%
hydro 22 0.3% 12% 69.6% 1.4% 0.8 2.4% 14.8% 1.7% 0.0% – 8.5% 1.8% 0.6% 8.6%
tomcat 18 0.6% 28% 61.0% 2.4% 0.9 4.6% 10.1% 5.1% 0.0% – 44.0% 6.1% 0.3% 237%
vortex 184 0.4% 42% 46.4% 6.9% 3.2 17.6% 0.9% 6.1% 0.7% 36% 14.8% 2.3% 16.2% 1.6%
vpr 6 1.1% 740% 58.1% 16.6% 3.0 162% 0.4% 621% 0.0% – 16.6% 0.2% 13.8% 2.6%
wave 138 0.9% 55% 60.5% 2.8% 2.4 9.1% 7.3% 1.1% 0.0% – 40.1% 5.5% 7.7% 2.3%

Table 5: The same metrics as presented in Table 3 for a section of 300 million simulated instructions chosen one period after
the end of the initialization phase. Next to each of these columns is the percent difference between that metric for the chosen
simulation and the same metric for the full program execution.

we showed how close this approach comes to the overall ex-
ecution of the applications we examined. Another approach
is to use sampling simulation inside of a representative pe-
riod found using BDDA in order to maintain accuracy while
reducing simulation time.

Several different techniques have been proposed for sam-
pling to estimate the behavior of the program as a whole.
These techniques take a number of contiguous execution
samples, referred to as clusters in [3], across the whole exe-
cution of the program. These clusters are spread out through-
out the execution of the program in an attempt to provide a
representative section of the application being simulated.

To use sampling one has to address the issue of how to
deal with the state of the machine when switching from one
cluster to starting the simulation of another cluster. One op-
tion for providing meaningful results is to first sample a large

number sequential instructions in order to provide results due
to the time it takes to warm up the architecture structures
(.e.g, caches) as well as taking a large number of samples to
be sure to capture the large scale behavior of the program.
Conte et.al. [3] proposed another option for the reconcilia-
tion of such disjoint sample points, whereby the structures
holding state are not reset between clusters. For example,
the cache would not be flushed and the BTB would not be
reset when switching simulation from one cluster to the next.
The hope is that the state of the machine from the end of one
cluster is similar to the start of another disjoint cluster.

6.4 Statistical Simulation

Another technique to improve simulation time is to use sta-
tistical simulation such as that presented by Oskin et al. [8].
Using statistical simulation, the application is run once and a

11



synthetic trace is generated that attempts to capture the whole
program behavior. The trace captures such characteristics
as basic block size, typical register dependencies and cache
misses. This trace is then run for sometimes as little as 50-
100,000 cycles on a much faster simulator. This technique
could also benefit from Basic Block Distribution Analysis.
First, by using BBDA there may not be a need to execute
the programs to completion in the first place, a very time
consuming step. Second, separate traces could be gathered
for different phases, rather than trying to get one phase that
represents the average behavior of application as a whole.

7 Summary

It is increasingly common for computer architects and com-
piler designers to use a small section of a benchmark to rep-
resent the whole program during the design and evaluation
of a system. This leads to the problem of finding sections
of the program’s execution that will accurately represent the
behavior of the full program.

In this paper, we present Basic Block Distribution Anal-
ysis as an automated approach for finding where to simulate
in order to achieve an accurate estimate of the complete pro-
gram. The basic block distribution of the program’s entire
execution can be gathered quickly and efficiently using a ba-
sic block or edge profiler, with no need for cycle accurate
simulation. The basic block distribution we form from this
profile acts as a fingerprint for the whole program’s behav-
ior. This fingerprint is then used to automatically find the
end of the initialization phase and the period duration for
the programs we examine. We then quantify and show that
basic block distribution analysis is highly correlated with ar-
chitectural metrics including IPC, branch miss rate, cache
miss rates, value misprediction, address misprediction, and
reorder buffer occupancy.

Our results show that if we simulate the application for
one complete period that the IPC error rates are 5% or less
for the programs we examine. We further show that if we
are constrained to only 300 million instructions of simulation
time that the most representative instructions are not neces-
sarily found right after the initialization phase, but rather typ-
ically straddle the transition from one phase to the next. Us-
ing basic block distribution analysis, we show that it is possi-
ble to find these small representative sections of the program,
which result in an error in IPC of 6% or less.

Acknowledgments

We would like to thank the anonymous reviewers for provid-
ing useful comments on this paper. This work was funded in
part by DARPA/ITO under contract number DABT63-98-C-
0045, and a grant from Compaq Computer Corporation.

References

[1] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[2] B. Calder and G. Reinman. A comparative survey of load speculation
architectures.Journal of Instruction Level Parallelism, May 2000.

[3] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. InProceedings
of the 1996 International Conference on Computer Design (ICCD),
October 1996.

[4] F. Gabbay and A. Mendelson. Speculative execution based on value
prediction. EE Department TR 1080, Technion - Israel Institue of
Technology, November 1996.

[5] J. Gonzalez and A. Gonzalez. Memory address prediction for data
speculation. Technical report, Universitat Politecnica de Catalunya,
1996.

[6] T. Lafage and A. Seznec. Choosing representative slices of program
execution for microarchitecture simulations: A preliminary applica-
tion to the data stream. InWorkload Characterization of Emerging
Applications, Kluwer Academic Publishers, September 2000.

[7] S. McFarling and J. Hennessy. Reducing the cost of branches. In13th
Annual International Symposium of Computer Architecture, pages
396–403. Association for Computing Machinery, 1986.

[8] M. Oskin, F. T. Chong, and M. Farrens. Hls: Combining statistical and
symbolic simulation to guide microprocessor designs. In27th Annual
International Symposium on Computer Architecture, June 2000.

[9] G. Reinman and B. Calder. Predictive techniques for aggressive load
speculation. In31st International Symposium on Microarchitecture,
1998.

[10] T. Sherwood and B. Calder. Time varying behavior of programs. Tech-
nical Report UCSD-CS99-630, UC San Diego, August 1999.

[11] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Branch predic-
tion, instruction-window size, and cache size: Performance trade-
offs and simulation techniques.IEEE Transactions on Computers,
48(11):1260–81, November 1999.

[12] G.S. Sohi. Instruction issue logic for high-performance, interruptable,
multiple functional unit, pipelined computers.IEEE Transactions on
Computers, 39(3):349–359, March 1990.

[13] K. Wang and M. Franklin. Highly accurate data value prediction us-
ing hybrid predictors. In30th Annual International Symposium on
Microarchitecture, December 1997.

12


