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Abstract

Phase analysis has proven to be a useful method of summa-
rizing the time-varying behavior of programs, with uses rang-
ing from reducing simulation time to guiding run-time op-
timizations. Although phase classification techniques based
on basic block vectors have shown impressive accuracies on
SPEC benchmarks, commercial programs remain a signifi-
cant challenge due to their complex behaviors and multiple
threads. Some behaviors, such as L2 cache misses, may have
less correlation with the code and therefore are much harder
to capture with basic block frequency vectors.

Comparing the similarity of two or more intervals requires
a good metric, one that is not only fast enough to analyze
the full execution of the program, but that is also highly cor-
related with important performance degrading events (such
as L2 misses). We examine the use of many different in-
terval similarity metrics and their uses for program phase
analysis across a range of commercial applications and show
that there is still significant room for improvement. To ad-
dress this problem, we introduce a novel wavelet-based phase
classification scheme that captures and compares images of
memory behavior in two or more dimensions. Over a set of
five commercial applications, we show that a wavelet-based
scheme can strictly outperform a broad range of prior met-
rics both in terms of accuracy and overhead.

Categories and Subject Descriptors: C.2 Performance
of Systems: Measurement techniques

General Terms: Measurement, Performance

Keywords: Optimization, Phase Analysis, Phase Classifi-
cation, Phases, Program Behavior, Wavelets

1. INTRODUCTION
Most computer programs, including commercial applica-

tions, exhibit reoccurring behavior over time that can be
broken down into phases. Knowledge of this behavior can
be exploited to improve system performance by activating
specific optimizations in response to changes in the current
phase. Phases have proven useful in directing compiler op-
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timizations [1], reducing the power consumption of proces-
sors [4] [5] [6] [11] [12], reducing the overhead of program
profiling [17] [18], and speeding up architectural simulation
[25] [8].

Due to the increasing impact of memory latency on over-
all system performance, it is especially critical that phase
behavior in the memory hierarchy be captured efficiently
and accurately. One popular phase analysis toolkit, Sim-
Point [10], performs phase classification by analyzing the
number of times each basic block of a computer program
is executed during a fixed window of executed instructions
called an interval. This technique has been shown to work
on a variety of benchmarks and has the significant advantage
that it is not tied to a particular architecture configuration
allowing it to be used in studies where the architectures are
modified.

One of the limitations of current program phase analysis
is that they derive both their descriptional power and com-
putational efficiency from carefully crafted metrics. These
metrics, such as dynamic branch counts [7], working set sig-
natures [5], basic block vectors [22] [23], or any of the other
recently proposed metrics [21] [15] [7] are expected to cap-
ture the essence of a program’s execution. In other words, a
successful metric will reflect any important dynamic change
in program behavior with a resulting change in the metric.
The problem is that in many domains, such a metric may
or may not be known. For SPEC-like programs, the above
listed metrics have been proven to be effective, but they can
be problematic when analyzing memory bus traces, I/O be-
havior, network traffic, or other hardware elements which
are more loosely correlated with program code execution.

For example, although many phase-based optimization
schemes have been proposed and evaluated on SPEC bench-
marks, less attention has been paid to commercial applica-
tions, which exhibit complex, multi-threaded behavior. Web
browsers, image editing software, and word processing appli-
cations typically have large working sets and high utilization
of the L2 cache. In contrast, SPEC programs, except for
mcf, have almost negligible main memory behavior. While
existing phase analysis techniques have been very useful, un-
fortunately there are some hardware metrics that are very
difficult to accurately capture just by analyzing code execu-
tion [?] [14]. For example, the memory bus behavior is not
well described by SimPoint because it is not strongly corre-
lated with the code. Since there is a large variance in the
number of L2 misses among the intervals grouped together
by SimPoint, the metric of basic block vector distance does
not do an adequate job in these cases.



In the ideal case, a metric could be found that would cap-
ture the time varying behavior of the memory bus without
requiring detailed cache simulation, and intervals with sim-
ilar memory bus behavior should be clustered together in
this metric space. In evaluating many different structures
in terms of their ability to correlate with the memory bus
behavior of commercial applications, we discovered a prob-
lem with basic block vectors. Since they are simply a list of
execution frequencies, basic block vectors have no notion of
time within an interval. While some of the other proposed
structures (such as local stride) combine the idea of time
(size of stride) and frequency (number of occurrences of a
stride), they work by exploiting a priori knowledge of com-
mon access patterns. Instead of this approach, in this paper
we present a novel general-purpose method for classifying
program phases that combines both time and frequency in-
formation through the use of wavelets.

Our novel wavelet-based phase classification algorithm is
inspired by the idea of wavelet-based image query. Wavelets
provide a way of efficiently summarizing a matrix of data
with hierarchical precision in both the time and frequency
domains. In image query systems, wavelet signatures can
be used to find images that most closely match a query,
and we apply this technique to program phase analysis by
considering the similarities between snapshots of the mem-
ory behavior. We empirically evaluate the effectiveness of
wavelet-based phase classification and show that for the L2
miss classification problem it is both significantly more ac-
curate and even faster than prior techniques.

The primary contributions of this paper include:

• A comparison of the effectiveness of various phase clas-
sification metrics at capturing memory bus behavior
for a range of commercial applications

• A novel wavelet-based phase classification technique
that accurately classifies memory bus behavior through
wavelet signature clustering

• We show that wavelet-based phase analysis can classify
memory bus behavior 80% more accurately than basic
block vectors and over 50% better than the best prior
techniques.

2. RELATED WORK

2.1 Basic Block Vectors
Computer programs exhibit repeating behavior during their

execution. One well-known method of performing phase
classification identifies these phases by analyzing the exe-
cution history of the program [22] [23] [24]. This history is
summarized in a structure called a basic block vector, which
records the number of times that every basic block in the
program executes during a fixed execution interval. Two
intervals can be compared by computing the Euclidean dis-
tance between their basic block vectors. A statistical tech-
nique called k-means is employed to group the intervals into
clusters of similar behavior. Initially, every interval is as-
signed to a random cluster, and the center of each cluster
is calculated. Next, every interval is assigned to the cluster
whose center is closest to it. This process repeats until a
stable clustering is found.

2.2 Alternative Classification Structures
One of the primary benefits of using basic block vectors

is that they are independent of the underlying architectural
details. Running the same program on two different pro-
cessor configurations will yield the same result, as long as
they share the same ISA. Unfortunately, basic block vectors
do not capture all micro-architectural behaviors successfully,
such as L2 cache misses, which are important for optimizing
the performance of systems. Since basic block vectors are
simply a list of execution frequencies, they have no notion
of time within an interval. This limitation leads us to look
for alternative structures besides basic block vectors. Lau
et al. propose several different ways of performing phase
classification besides traditional basic block vectors, such
as local stride and global stride [15]. Since we will compare
our wavelet-based technique against these structures, we de-
scribe them in detail in Section 4.1. Although these tech-
niques are also independent of the micro-architecture, they
rely on a priori knowledge of common access patterns. We
do not analyze structures that are dependent on the micro-
architecture, such as the instruction mix, branch prediction
accuracy, cache miss rate, and IPC [7].

2.3 Applications of Phase Analysis
Phase classification is useful in dynamic optimization. For

example, Das et al. have developed a dynamic optimiza-
tion technique of dividing a program into regions, perform-
ing phase detection on each region, and combining the re-
sults [3]. Phase detection can also direct compiler optimiza-
tions [1] and reduce the power consumption of processors [4].
Phase classification is also helpful in making program pro-
filing more efficient and accurate. A cycle-accurate trace of
a long-running program requires enormous space and time
resources. Phase analysis can guide the sampling of this
data to produce useful trace files with much lower over-
head [17] [18]. Phase classification can also make architec-
ture simulation more efficient by guiding the selection of a
sample of the execution to simulate [25] [8].

2.4 Prior Wavelet-Based Techniques
We are not the first to apply wavelets to the problem of

phase classification. Shen et al. use wavelets to predict the
locality phases of a program [21]. Their scheme uses single-
level analysis and training runs to identify behavior changes
to accurately determine the best place for phase markers,
but wavelets are never used as a method of comparing sim-
ilarity - only as a time-frequency analysis method. Their
approach is useful for dealing with variable length intervals
and reducing software instrumentation overhead, neither of
which is related to the problem we are solving in this pa-
per. Our approach requires no software analysis or training
(which is good for off-chip analysis) , and we show that the
wavelet coefficients themselves hold significant potential as
a similarity metric in their own right.

Wavelet transforms of images have been the basis for k-
means clustering for the purpose of text segmentation [9] [20],
and a similar approach has been used for the analysis of
mammograms [2], but fuzzy c-means (FCM) was used rather
than k-means. In order to make k-means work more accu-
rately for time series data, Vlachos et al. perform a k-means
clustering on the coarse wavelet coefficients and then use the
results of this clustering to start a finer clustering [27].



3. FINDING PHASES WITH WAVELETS
Now that we have explained the limitations of current

phase classification techniques, we now turn to a discussion
of wavelets and how they are useful in overcoming these lim-
itations. Wavelets are mathematical functions that are use-
ful in a variety of scientific applications from digital signal
processing to image processing. Unlike the Fourier trans-
form, which captures frequency information only, wavelets
encode both frequency and spatial information. This feature
of wavelets makes them more effective at capturing some
behaviors than basic block vectors, which have no notion
of time within an interval because they are simply a list of
execution frequencies.

We use an idea inspired by wavelet image query to analyze
generic traces of data that could be network traces or I/O
traces. However, for the purposes of exploring and evaluat-
ing our idea, we consider only memory bus accesses because
we can more closely compare with past work in this area. To
find phases with wavelets, we need to first gather the trace
and summarize it in a 2D matrix which is in essence a “pic-
ture” of the trace. An example of this picture can be seen
in the third step of Figure 1, which shows a grayscale plot
of the memory accesses. Next, we divide this large matrix
into a sequence of smaller matrices, one vertical “slice” for
each interval of execution (1M instructions). Each “slice” is
scaled down to an even smaller square matrix so that a Haar
wavelet transform can be applied, resulting in a wavelet sig-
nature. This signature is a matrix of coefficients that is used
by the k-means clustering algorithm to perform the phase
classification, and the number of dimensions is the number
of wavelet coefficients.

Our technique predicts the L2 miss phases by analyzing
wavelet signatures of all L1 accesses (with no knowledge
of which of those accesses will miss in either the L1 or L2
caches). We are not using L2 misses to predict L2 misses.
We have posted the source code of our technique as well
as instructions on compiling and running our code at the
following URL: http://www.cs.ucsb.edu/∼arch/wavelet.

3.1 An Example of Wavelet Phase Detection
We now describe an example of wavelet phase detection as

applied to L2 miss analysis. Our goal is to solve the problem
of predicting main memory access behavior by analyzing the
raw address stream. This allows us to compare directly to
other techniques. We will discuss or algorithm parameters
in Section 3.3. Figure 1 illustrates the steps of our design
flow:

Trace File Generation – We first use the binary in-
strumentation utility Pin [16] to generate trace files for real
commercial applications. A user of Pin writes a program
called a pintool which runs in the same address space as
the instrumented process, making it possible to inspect the
values of every load. Both the application and all shared
libraries needed by the program are instrumented.

Matrix Representation of the Trace – We next gen-
erate a 2D matrix of the memory accesses. The columns
are execution time, and the rows correspond to the address
of the load modulo M , which is the modulo size. Every
twenty columns represent 1M instructions, and addresses
are mapped to the y-axis by a function that we will describe
in Section 3.3.

Dividing the Matrix into Slices – We next divide
the matrix of the trace file into smaller matrices that each

represent 1M instructions. Each of these “slices” is twenty
columns wide.

Resizing the Slices – We next scale each “slice” down to
a small square of size 16×16 because the wavelet transform
we apply in the next step needs the dimensions of the image
to be a square whose sides have length of a power of two. We
found that this size provides the optimal trade-off between
performance and accuracy.

Performing the Wavelet Transform – We next per-
form a 2D wavelet transform on each scaled matrix. We
describe the details of this transform in Section 3.2. The
result is a set of wavelet coefficients that we can use to per-
form k-means clustering. Unlike wavelet image query, we do
not discard any of the coefficients.

Performing K-Means Clustering – We next perform
k-means clustering on the wavelet coefficients. Since the size
of the transform is 16×16, our data have 256 dimensions.
The number of points to be clustered is the number of in-
tervals in the program. The distance between two points
is the Euclidean distance between their wavelet coefficients,
but we first apply tuning weights to the coefficients using
a scheme similar to [13] because the importance of a coeffi-
cient is affected by its 2D position. The result of k-means is
that every interval in the program has been assigned to one
of ten clusters.

3.2 Haar Wavelets
We now describe some background on how wavelets work.

Stollnitz et al. provide a much more thorough primer on
wavelets and their application to the field of computer graph-
ics [26].

Reasons for Using Haar Wavelets – Many different
types of wavelets exist, each with strengths and weaknesses
for different applications. The most simple type of wavelet is
a square wavelet known as a Haar wavelet [26]. We selected
Haar wavelets for our technique because they are simple,
fast, and memory-efficient. Haar wavelets have proven ef-
fective in determining how similar two images are. We wish
to exploit this property for phase classification by determin-
ing how similar two intervals are. Two intervals with similar
behavior will “look” similar, and Haar wavelets should be
able to detect the similarity between the “pictures” of their
behavior. The primary disadvantage of Haar wavelets is
that they are not continuous. The heart of the Haar wavelet
transform is averaging and differencing. Since averaging and
differencing works on pairs of array elements, it may miss
some high frequency changes that occur between even and
odd elements.

1D Haar Transform – The 1D Haar wavelet transform
is computed by performing an operation called averaging
and differencing O(log N) times on an array of size N . For
example, suppose we have an array of integers [8 6 2 4].
We compute the average of the first two elements 8 and 6,
which is 7. Then, we compute the average of the second two
elements 2 and 4, which is 3. After computing the averages,
the next step is to compute the differences, which are known
as the detail coefficients. Since 8 is one more than 7 and since
6 is one less than 7, 1 is the first detail coefficient. Similarly,
since 2 is one less than 3 and since 4 is one greater than 3,
−1 is the second detail coefficient. We store the averages in
the first part of the array, followed by the detail coefficients.
At this point the array is [7 3 1 − 1]. The next step is
to compute the average of 7 and 3, which is 5. The final
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Figure 1: This figure shows the technique of using wavelets for phase classification. First, a trace of memory accesses is
generated by instrumenting a real-world application such as Firefox. Next, a matrix of the trace file is generated in which
the columns are execution time, and the rows are the addresses of each memory access modulo an integer M , which is the
modulo size. This matrix can then be divided into a sequence of smaller matrices, one vertical “slice” for each interval of
execution (1M instructions). Each “slice” is then scaled down to a smaller square matrix so that a Haar wavelet transform
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Figure 2: Phase classification of the cache behavior of Firefox using the wavelet technique. The x-axis is time, and each
vertical slice represents 1M instructions. The image at the top has three horizontal bands. The top band shows L1 cache hits,
the middle band shows L1 misses, and the bottom band shows L2 misses. The y-axis of each band is the address of the memory
access modulo an integer M , which is the modulo size. The index above each slice corresponds to the phase. Note that our
technique predicts the L2 miss phases by analyzing wavelet signatures of all L1 accesses (with no knowledge of which of those
accesses will miss in either the L1 or L2 cache). We are not using L2 misses to predict L2 misses.



step is to compute the detail coefficient, which is 2 since 7
is two more than 5 and since 3 is two less than 5. The final
transformed array is [5 2 1 − 1]. The first element, 5, is the
overall average of the entire array. The second element, 2,
is a coarser detail coefficient, and 1 and −1 are finer detail
coefficients. The inverse process yields the original array.

2D Haar Transform – The 2D Haar transform can be
applied to images. An image is a 2D array of intensity val-
ues. The 1D transform is applied to every row of the image
and then to every column of the result of the row trans-
forms. The upper leftmost element of the resulting matrix
contains the overall intensity of the image. If the original
image is not square, it is necessary to either scale the image
to a square image or to pad the image with blank pixels
prior to applying the 2D transform.

Since the importance of a coefficient depends on its po-
sition, we apply a set of tuning weights to the coefficients.
We restrict ourselves to the Y channel (intensity channel),
and we use the tuning weights for “painted” rather than
“scanned” query images, which are described in detail in
[13]:

wy[0] = 4.04
wy[1] = 0.78
wy[2] = 0.46
wy[3] = 0.42
wy[4] = 0.41
wy[5] = 0.32

A pixel located at position (row,col) is weighted by
wy[bin(row,col)], where:

bin(i,j) = min(max(level(i),level(j)),5)
level(i) = b(log2(i+1))c

3.3 Parameter Choices
We now explain the design choices we encountered when

developing our wavelet-based phase classification technique,
and we discuss how the parameters we selected satisfy our
design goals. The two most important parameters are the
scaled matrix size and the modulo size, and we discuss our
quantitative analysis of the interaction of these two param-
eters in Section 5.3.

Matrix Representation of Trace File – We are in-
terested in the behavior of programs as they execute over
time, so it makes sense to have time in terms of instructions
executed as the x-axis (the columns of the matrix). We use
the y-axis (the rows of the matrix) for the memory accesses.
An address is mapped to one of the 400 pixels in the y-axis
of the large matrix by the function specified in Equation 1:

f(address) = ((address%M) ∗ (400/M)) (1)

This function basically makes the matrix a picture of the
memory behavior modulo the M , which we will call the mod-
ulo size. To ensure that the matrix is neither too dense nor
too sparse to capture the memory bus behavior, we used 20
columns per million instructions in the x-axis (every 1/20
of the one million instructions is mapped to a column), and
the y-axis has 400 rows. However, this dimension parame-
ter is not of primary importance because the large matrix is
scaled to a smaller matrix before any analysis is performed.

Modulo Size – The choice of modulo size (M) is impor-
tant because this parameter affects the appearance of the

plots of the memory behavior, which in turn affects our al-
gorithm’s ability to capture phase behavior. We chose M
to be 16Kb, which is the L1 cache size. The reason for set-
ting M to the L1 cache size is that memory accesses will
eventually make it to the cache, and taking the modulo lets
us see interesting striding behavior. Since the address of
each memory access is mapped to the y-axis by the function
((address%M) ∗ (400/M)), where M is the modulo size, a
different value of this parameter will change the position
along the y-axis to which a given memory access is mapped.

Interval Size – The number of instructions per interval
is another design parameter. If we choose too large a granu-
larity, we will not be able to capture behavior that reoccurs
at a smaller time scale. However, if we choose too small a
granularity, we will have too many intervals to process ef-
ficiently. The interaction between interval size and phases
has been studied before, and we chose an interval size of one
million instructions because it is a good granularity for cap-
turing memory behavior and has been used by many prior
works.

Scaled Matrix Size – The choice of size for the smaller
matrix is important. If it is too large then the similar-
ity is more a function of the small details (noise) in the
trace, but if it is too small then there is no way to re-
ally even determine temporal similarity. We chose a small
16x16 matrix because it provides the optimal tradeoff be-
tween performance and accuracy, as we describe in Section
5.3. We used the default resolution translation algorithm
provided by the Java 2 Platform Standard Edition (J2SE
5.0) for scaling the matrix down to a smaller size. Specif-
ically, we used the method getScaledInstance() from class
java.awt.Image with SCALE DEFAULT as an argument.
However, the scaling algorithm is not an important param-
eter because the choice of resolution translation algorithm
has much less impact when scaling a large image down to a
smaller size than when scaling a small image up to a larger
size. We believe that either bicubic or bilinear interpolation
is accurate enough for this purpose, but not nearest neighbor
interpolation.

Wavelet Type – We chose the Haar wavelet transform
because it is both fast and it worked, so we did not see a
need to move to a more complex scheme at this point. We
described the 1D and 2D Haar transforms in Section 3.2.

Clustering Algorithm – We selected k-means because
it has proven to be very effective for phase classification in
prior works. The purpose of clustering is to group intervals
with similar behavior together. Initially, every interval is
assigned to a random cluster. Each iteration of the algo-
rithm determines the center of the cluster and assigns every
point to the nearest cluster center. The algorithm iterates
until a stable clustering is found. Since some randomness
is involved, each execution of the algorithm may result in
a different clustering. For this reason, some implementa-
tions such as SimPoint take the average of multiple runs of
the algorithm. During each run, SimPoint makes a decision
about when to stop iterating the clustering algorithm based
on how stable the clustering is. Unlike SimPoint, our tech-
nique simply executes a fixed number of iterations of the
clustering algorithm, rather than using a stopping condition
since we do not yet know of a stopping condition for our
technique. We chose a maximum number of phases of K=10
because it captures memory phases well and has been used
by many prior works.



3.4 Visualizing the Clustering
Figure 2 shows the result of performing wavelet-based

phase classification on a trace file of the memory accesses of
Firefox, which was instrumented as it loaded a web page in
902M instructions. The index above each slice corresponds
to the phase. There are three bands in the image. The
top band corresponds to cache hits, the middle band cor-
responds to L1 misses, and the lower band corresponds to
L2 misses. L1 misses have a lower density than hits, and
L2 misses have a lower density than L1 misses. We are con-
cerned with how well the L2 misses are classified. An ideal
phase classification will group together those intervals with
similar memory bus behavior. Our cache simulator has the
following parameters: The L1 cache is a 16K, 2-way associa-
tive cache with a block size of 32 bytes. The L2 cache is a
1MB, 4-way associative cache with a block size of 64 bytes.

In order to improve our clustering algorithm, it is very
useful to be able to see a picture of the clustering chosen
by our algorithm. This would be trivial if we were only
working with two or three dimensions, but our data have
many more dimensions. Therefore, we project the multidi-
mensional data onto two dimensions. Figure 3 shows the
clustering in the form of a 2D plot that is a random pro-
jection of the wavelet coefficients of each interval. This plot
is generated by multiplying an array containing the wavelet
coefficients of dimension #Intervals×#Coefficients by a
random matrix of dimension #Coefficients×2 resulting in
a matrix of dimension #Intervals×2. Each row of this ma-
trix is a 2D point. The intensity of each point corresponds
to the phase of the interval, and the size of a point corre-
sponds to the number of L2 misses in that interval. The
phase numbers are shown for clarity.

4. COMPARISON OF STRUCTURES
In this section we describe the different phase classifica-

tion structures that we evaluated besides our wavelet-based
technique. We also describe the metric we used to compare
how well a particular metric captures memory bus behavior.
Finally, we describe our visualization utility for understand-
ing memory phases.

4.1 Alternatives to Basic Block Vectors
We would like to see how well our wavelet-based phase

classification technique performs in comparison to other pre-
viously proposed phase classification techniques. The meth-
ods of performing phase classification that we consider in
this paper are:

• Basic Block Vector – This is traditional phase clas-
sification using a basic block frequency vector. We
describe this technique in detail in Section 2.

• Local Stride – The frequency vector holds informa-
tion about the strides of the memory accesses. The
stride is the absolute value of the difference between
the memory address accessed by a PC and the address
previously accessed by the same PC. The k-th element
of the frequency vector stores the frequency of accesses
with a stride of k. We used vector sizes of 100 and
10,000. In the version that uses a vector size of 100,
all strides that are greater than 100 are ignored. In
the version that uses a vector size of 10,000, all strides
greater than 10,000 are ignored.
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Figure 3: A 2D random projection of the wavelet coefficients
for Firefox. There is one point for each interval in the trace
file. The size of the point corresponds to the number of L2
misses in that interval, and the intensity of the point cor-
responds to the phase. The phase numbers are shown for
clarity. The wavelet technique successfully clusters intervals
with many L2 misses together. The points in the upper left
correspond to intervals with the lowest density of cache hits,
and the points in the lower right correspond to intervals with
the highest density of cache hits.

• Local Stride with PC Hash – The local stride is
XOR-ed with the PC. We used a vector size of 10,000
in this experiment.

• Global Stride – The stride is calculated as the abso-
lute value of the difference between adjacent memory
accesses. We used a vector size of 10,000.

• Global Stride with PC Hash – The global stride is
XOR-ed with the PC. We used a vector size of 10,000.

• Working Set (frequency) – The working set [5] is
the set of all memory addresses accessed by the pro-
gram during an interval. The frequency vector holds
the frequency of accesses to each element of the work-
ing set during an interval. To minimize the size of this
vector, a hash function is used to determine the index
of the vector to increment.

• Working Set (bits) – Another version of the work-
ing set experiment uses a bit vector, and any nonzero
frequency is assigned a value of one.

• Wavelet Coefficients – This technique is described
in detail in Section 3.

4.2 Metric: Weighted Standard Deviation
In order to compare the different phase classification tech-

niques, we need a metric of how well a given technique
captures memory bus behavior. Computer architects have
adopted the Coefficient of Variation (CoV) of CPI as a met-
ric for evaluating different phase classification techniques



[15] [14]. The formula for computing CoV is shown in Equa-
tion 2:

CoV =

phases
X

i=1

σi

averagei

intervalsi

total intervals
(2)

However, since computing the coefficient of variation in-
volves dividing by the average, there will be a problem if a
very long phase has almost no L2 misses. This occurs be-
cause the average could be less than one, and dividing by
a number N, where 0 < N < 1 may result in a large num-
ber. For example, in OpenOffice, there is a phase consisting
of 218 intervals, but there is only one L2 miss during this
phase. Therefore, the average number of misses per interval
for this phase is 1 divided by 218, which is 0.0045872. Divid-
ing the standard deviation for this phase, which is 0.067573,
by the average yields an (unweighted) Coefficient of Vari-
ation of 14.7308 for this phase, which is an unrealistically
large value for a phase with only one L2 miss. For this rea-
son, the metric that we will use is the weighted standard
deviation of the L2 misses, which is calculated using the
formula in Equation 3:

σweighted =

phases
X

i=1

σiintervalsi

total intervals
(3)

5. EVALUATION

5.1 Weighted Standard Deviation
Figure 4 shows the weighted standard deviation in the

L2 misses for a variety of commercial applications. The
wavelet technique is the most effective on average, followed
by local stride, local hash, global stride, global hash, basic
block vector, and working set. For local stride, a smaller
vector size (100) is more effective than a larger vector size
(10K). Combining local stride with PC hash is not beneficial
on average. Global stride is less effective than local stride,
and combining global stride with PC hash is not beneficial.
The working set frequency vector is more effective on average
than the working set bit vector, which demonstrates that
there is a cost for the reduced space requirements of the
bit vector. Basic block vectors outperform both versions of
working set on average.

Bounding the Weighted Standard Deviation – We
have also included in this graph the result of applying the
wavelet technique to the L2 miss stream. Although this
takes the data we are trying to estimate as input, it serves
as a soft bound on how well any scheme would perform. It
is unlikely that any technique that analyzes the L1 access
stream could possibly have a lower weighted standard de-
viation than a technique that is allowed to cluster the L2
misses. Our results show that on average, the accuracy of
our technique is within 55% of the optimal.

5.2 Execution Time
Figure 5 shows the execution time per instruction. This

was calculated by measuring the time to perform the phase
classification and dividing this value by the total number
of instructions in the trace file. We performed the timing
experiments on a 2.2GHz Intel Celeron processor with 1Gb
of RAM running Linux 2.6.9. On average, global hash has
the worst performance, and our wavelet-based technique has

the best performance (9ns per instruction on average). Since
we implemented our technique in Java, it is likely that its
performance would be faster if it were implemented in C.
Note that SimPoint’s implementation could also be more
efficient because it processes the input multiple times.

5.3 Parameter Analysis
Since the scaled matrix size and the modulo size are the

two most important parameters, we analyzed a matrix of
combinations of the two parameters. Figure 6 shows a con-
tour plot of the average weighted standard deviation of all
the benchmarks, and Figure 7 shows the average execution
time of all the benchmarks. Since Figure 7 is a perfect gra-
dient from left to right, the execution time is dependent on
the scaled matrix size, but the modulo size has no impact
on the performance. However, Figure 6 shows that both pa-
rameters impact the accuracy of the phase classification, as
measured by the weighted standard deviation. These con-
tour plots show that the optimal combination of parameters
is a scaled matrix size of 16x16 and a modulo size of 64Kb.
A smaller modulo size will not provide any additional accu-
racy, and a larger scaled matrix size will have worse accuracy
and greater cost. Our choices of a scaled matrix size of 16x16
and a modulo size of 32KB are very close to optimal. If we
had chosen a modulo size of 64KB, our results would likely
be slightly better.

In a separate experiment, we varied the L1 cache size and
calculated the total number of misses in each interval for
all the benchmarks. While keeping the size of the L2 cache
constant at 1MB, we varied the L1 size at power of two
intervals from 1K to 64K. We found that the impact of the
L1 cache size on L2 misses is negligible.

5.4 Storage Requirements
Implementing our phase classification technique in hard-

ware rather than in software will result in much better per-
formance, as will optimizations to the phase classification
algorithm. While we have characterized the performance
impact of our scheme, we have not directly measured the
memory requirements. However, each interval requires the
storage of a 16x16 matrix instead of a Basic Block Vector
or a Stride Array, so the storage should be comparable to
other techniques. A hardware widget capable of performing
online phase classification would not be difficult to design.
It would consist of a buffer of memory of size 8K, which is
the number of pixels (20 by 400) in one “slice.” For each
interval, this slice is scaled down to 256 bytes (16 by 16),
and the 2D transform is performed in place on this memory
region. The 2D transform is extremely fast in hardware.

6. VISUALIZING MEMORY PHASES
We have developed an interactive visualization tool to

help us understand intuitively the complex phase behaviors
of commercial applications. Figure 8 shows our visualiza-
tion tool. First, the user scrolls to the desired location of
the image representing the trace file. Clicking on an interval
highlights that interval, and the source code corresponding
to that interval appears in the source code window, with
the relevant line highlighted. Of course, viewing the source
code is not always possible for shared libraries or closed-
source commercial software. A pull-down menu allows the
user to select from the lines of source code that result in the
most misses during the interval. A histogram of the PCs
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that have the greatest number of L2 misses is shown in the
lower left in decreasing order. We can also show histograms
for other statistics, such as the distribution of local stride.
Another version of this utility shows the intervals that most
closely match the selected interval using the wavelet tech-
nique.

This tool is useful for understanding memory phases be-
cause it allows a user to see the relationship between a
specific phase and statistics about that phase. System de-
signers can use this utility to gain insights into the mem-
ory phases in order to make hardware and software work
together more efficiently. Software developers can identify
problematic lines of code that result in many cache misses.
Since application performance is heavily impacted by the
shared libraries, programmers can identify problematic mod-
ules with our utility and take corrective action.

We are not the first to develop a utility for viewing pro-
gram phases. Reiss et al. propose a visualization tool called
JIVE that dynamically identifies and displays the phases of
a Java program as it executes [19]. JIVE instruments the
program, slowing it down by a factor of two. JIVE displays
what classes are executing, the number of allocations of each
class, and the state of each thread. Since our utility is geared
towards understanding the memory phase behavior of com-
mercial applications, it presents a different set of statistics
and visual information than JIVE.

7. CONCLUSIONS
Understanding the memory behavior of commercial ap-

plications is challenging because of their complex behavior.
We have attacked this challenge by devising a new technique
for performing phase classification that is based on wavelets.
Our technique can accurately capture the memory bus be-
havior of real web browsers, productivity programs, and
image editing software. We have compared our technique
against several other well-known phase classification struc-

Figure 8: A memory phase visualization utility. This java
applet allows the user to scroll around the trace file and select
an interesting interval. Clicking on an interval highlights it
and displays a histogram of the L2 misses in the selected
interval in the lower left. A pull-down menu contains the
lines of source code that result in the most L2 misses in
the selected interval. Selecting one of these lines displays
the source code in the lower right, and the selected line is
highlighted.

tures using the metric of weighted standard deviation in the
number of L2 misses as the basis for comparison. We found
that our technique captures the memory bus behavior signif-
icantly more accurately than prior techniques, and with less
overhead. We have shown that our method is within 55%
of optimal on average. We have also presented a visualiza-
tion utility that makes it easier to understand the memory
behavior of commercial applications, facilitating the design
of more efficient systems.



Since traditional phase classification uses basic block vec-
tors, it is necessary to have an executing program with a
program counter on a von Neumann style architecture. This
makes it unsuitable for unconventional computer architec-
tures, FPGAs, and embedded systems. Since our wavelet-
based technique does not have this limitation, we have opened
up the possibility of studying the phase behavior of systems
for which this has not been possible before. For example,
we would like to use our wavelet-based phase classification
technique to identify phases in the switching behavior of a
circuit in order to perform accurate power analysis.
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