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Abstract

With the increasing number of cores in Multi-
core processors, limitations in memory band-
width are a significant issue. We find that there
exists a high degree of similarity across multi-
ple executions of the same application with mi-
nor variations in input parameter values or in-
put data sets. In this work, we examine two ap-
plications where individual executions on dif-
ferent cores work with different parameters or
input data in practical scenarios, and we show
that a large fraction of the cached data is com-
mon across cores. We propose a Merge-Cache,
which requires minor architectural modifica-
tions to leverage this phenomenon by merg-
ing cache lines owned by different processors,
which contain identical data. By merging
identical cache lines, effective cache capacity
per process increases, leading to a reduction
in off-chip memory accesses. In this paper,
we present initial experimental results for two
benchmarks ammp and twolf from SPEC2000-
CPU suite, and show that our proposed tech-
nique reduces off-chip memory access by a fac-
tor of three on average when eight identical in-
stances of the benchmark executes in parallel
with minor modification in parameter values.

1 Introduction

The increasing gap between memory and pro-
cessor speed has posed a significant challenge
in memory system design. While individual
processor performance is no longer increasing
with Moore’s law, the demand for “More than
Moore” has motivated researchers to explore

innovations in multiprocessor domain. How-
ever, the problem of limited memory band-
width remains unsolved. Past work has tried
to mitigate bandwidth issues through efficient
data partitioning[5], cooperative caching[4],
streaming cache from one processor to another
etc. It will be, however, difficult to sustain
bandwidth demands when number of cores in
a chip scales to tens or even hundreds.

In this paper, we show that most of the ac-
cesses to memory operate on the same data
when the same application is executed in mul-
tiple processors in parallel with different in-
put data. Therefore, multicore processors can
be used more effectively in these scenarios by
merging identical cache lines. We propose
the Merge-Cache architecture to exploit this
phenomenon by providing support for merg-
ing cache lines. There are several practical
scenarios in domains of simulation, visualiza-
tion, security etc. where multiple instances of
same application are executed with minor vari-
ation of parameters or input data e.g. the de-
vice fabrication process requires many Monte
Carlo simulations[8] with minor variations in
device parameters to design variation-tolerant
devices. In the machine learning domain, en-
semble learning[10] techniques use several poor
learners to develop finer models. We expect
our technique to improve the performance of
these applications. We have implemented a
trace-based simulation framework to demon-
strate the strength of our approach. In this
paper, we present results for two applications,
ammp and twolf from SPEC2000 benchmark
suite[1], and show that merging cache lines
with similar data reduces in memory accesses
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by an order of magnitude.

The remainder of the paper is organized as
follows. In section 2, we describe previous ap-
proaches to reduce memory accesses and ex-
plain our technique in section 3. We illus-
trate the experimental methodology in section
4, present results in section 5. We discuss the
results in in section 6 with a perspective on
future work in section 7.

2 Related Work

Several prior proposals use compiler and archi-
tectural support to reduce main memory ac-
cess and in turn speed up execution. In or-
der to reduce memory stalls, Mahlke et al.[5]
propose a profile-guided data partitioning tech-
nique. Thread level speculation[3][12] using
compiler and architectural support speeds up
application execution by spawning speculative
threads. Though, these techniques speed up
execution significantly, with increasing num-
ber of cores in a chip, the demand for memory
bandwidth is also increased.

In order to reduce memory access, several
cache optimization schemes have been pro-
posed. Chang et al. proposed cooperative
caching technique[4] in a multiprocessor to re-
duce off-chip access using a cooperative private
cache either by storing single copy of clean
blocks or providing a victim cache like spill-
over memory for storing evicted cache lines.
An orthogonal study, which has similar motiva-
tion as our work, is the data cache compression
technique as proposed by Almadeen et al [2].
Compressing the L2 data results in reduction
in the cache space required to store data. The
authors reduce the off-chip accesses and thus
save bandwidth.

Another technique which motivates our ap-
proach is copy-on-write mechanism used in
virtual machines and operating systems. In
copy-on-write technique data initially shared
by multiple processes become different once
one of them write to it and separated mem-
ory regions never merge again. In our scheme,
cache lines are merged at memory write oper-
ation, and sharing is done at finer granularity
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Figure 1: Proposed cache architecture. An ar-
ray of flags (processor-flags) indicates presence
of a block for different processors. For read
operations, processor flag is also checked corre-
sponding to the requesting processor. At write
operations, lines having same address as the
evicted line are brought to CAM and searched
for identical content.

too in order to support generalized classes of
applications. Sorin et al. proposed Multiver-
sion Memory[11] to increases fault tolerance by
storing versions of the data. We take a differ-
ent approach in this work and propose merging
similar data to reduce main memory access.

3 Architectural Support for

Merging Cachelines

In conventional caching techniques, data
search is guided by its address. Searching for
identical data from different processes, how-
ever, can be extremely expensive unless the
search space is restricted. We notice that
data similarity can be discovered by virtual ad-
dress of the process as data allocated at the
same virtual address usually match across pro-
cesses. Lower level caches are typically indexed
by physical address instead of virtual address.
Therefore, searching for identical data and em-
ploying an efficient organization is a challenge.

In this paper, we propose minor modifica-
tions over conventional cache architecture for
supporting dynamic data merging, as shown in
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Figure 1. We show experimental results only
for L2 cache though our technique can be em-
ployed in all lower level caches.

Every line in the cache is augmented with a
bit vector (processor flags) of length equal to
the number of processors and virtual address
is used for tagging. Virtual address aliasing
problem is addressed using a RTLB. When-
ever a read/write operation is requested by a
processor, the corresponding processor flag is
also checked, and an access is considered a hit
only if the tag matches and the flag correspond-
ing to the requesting processor is set too. A
bitwise-and operation with the requesting pro-
cessor bit chooses the correct cache line. As
the processor flag matching can be performed
in parallel to tag matching, it does not add
delay in critical path. The only added delay
corresponds to two added AND operations as
shown in Figure 1. For a write operation, data
values from lines having identical address as
the referenced line are copied to the associa-
tive buffer (CAM), which is then searched for
the content of the line being written to L2.

As the rate of writing to L2 is less than the
L1 miss rate, this operation does not add sig-
nificant overhead in L2 access. The overhead of
incorporating the additional associative buffer
or CAM, extracted using Cacti 4.2[9], is enu-
merated in Table 1. Note that the overhead of
using a 16 entry CAM is negligible when com-
pared to the entire cache. A typical 4 MB, 16-
way L2 cache, partitioned in 8 banks, consumes
16.39mm

2 of area, 3.74W dynamic read power
and 3.93ms access time in 45nm technology
node (computed using Cacti 4.2). The cache
management logic is also modified for searching
lines containing the same data at write opera-
tions, as shown in Figure 3. Note that, exclu-
sive L2 cache benefits more as communication
between L1 and L2 cache is minimized and to-
tal on-chip cache also is increased.

4 Methodology

In this section, we describe the evaluation
framework and benchmark applications. We
have implemented a trace-based simulation

framework to evaluate the effectiveness of our
scheme. The simulation infrastructure consists
of two components:

1. A Pin-based memory trace generator
which monitors memory references [7],
and

2. A memory-access analyzer which imple-
ments a trace-based multiprocessor cache
simulator.

We implemented the following three cache
architectures for an exclusive L2 cache. (a)
Every processor has a private L2 cache along
with private L1. (b) A large L2 cache is shared
by all the processors and the size of the cache
equals the cumulative amount of L2 cache in
private cache architecture. (c) A shared L2
Merge-cache where cache lines are merged if
cache contents match.

In this work, we perform sensitivity analysis
of cache line merging efficiency on cache size,
associativity and number of processors sharing
a cache. We assume that only a core is allo-
cated only to a single process.

In order to analyze the dependence on cache
size, we simulate a scenario with fixed number
of processes (8) sharing a 8-way set associative
cache while varying cache size from 512 KB to
128 MB. In case of the private L2 cache ar-
chitecture, the cache is physically distributed
among all the processors.

For sensitivity analysis on associativity of
the cache, we simulate 8 processes with 4 MB
cumulative cache size while varying associativ-
ity from 2 to 16. We also vary number of pro-
cesses/processors sharing a cache, in another
set of experiments with a 4 MB, 8-way set as-
sociative cache, to capture the scalability of
Merge-cache architecture. In this set of exper-
iments, we choose a subset of inputs from a
larger set of inputs for scenarios with smaller
number of processes. In all experiments, pa-
rameters are varied randomly around a mean
value with maximum variation of 50%.

In the remainder of this section, we describe
the benchmarks and the parameters that we
vary in our experiments. We have selected two
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Figure 2: Modifications to cache management technique and cache architecture are indicated
as shaded blocks. When a line is evicted from L1 cache, it is merged with pre-existing cache
line in L2 if their contents match. We implement exclusive L2 cache as it increases total on-chip
memory.

Rows Area (mm
2) Access time (ns) Power (nW )

2 0.0132 0.507 0.0048
4 0.0140 0.513 0.0055
8 0.0156 0.525 0.0071
16 0.0190 0.549 0.0102

Table 1: Overhead of 256-bit wide CAM obtained using Cacti 4.2 for 45nm technology node.
Required number of rows in the CAM equals the associativity of Merge-cache.

applications, ammp from SPEC CFP2000 and
twolf from SPEC CINT2000 to show that data
similarity is observed in both classes of appli-
cations.

4.1 ammp

ammp, which belongs to SPEC CFP2000
benchmark suite[1], solves a problem in com-
putational chemistry using molecular dynam-
ics where energy of the final configuration of a
set of atoms in water and protein is computed.
We have chosen the following parameters which

could be varied by researchers in practical ex-
periments.

• mmbox controls fast multipole algorithm
(FMM) for long-range non-bond energy
calculation, and when set to a non-zero
functions as a factor to compromise be-
tween accuracy and speed.

• bbox is the bounding box dimension used
for computing potential energy.

• mxdq works as a threshold to update
the full non-bonded list when atomic dis-
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placement is greater than the value in
angstroms.

• temp specifies the simulation temperature.
Simulation can be performed with differ-
ent values to measure sensitivity to tem-
perature.

• numstep specifies the number of steps used
in the line minimizer.

The ref inputs distributed with SPEC
benchmark suite are very large for detailed
simulations whereas Minnespec[6] inputs are
small for simulating large cache behavior due
to warm-up time. Therefore, we have mod-
ified the input set of ammp following the
Minnespec[6] guidelines such that the average
virtual memory and resident memory size are
15.71 MB and 14.38 MB respectively, and the
number of references simulated are around 2.21
billion.

4.2 Twolf

The TimberWolfSC placement and global rout-
ing package is used in the process of creating
the lithography artwork needed for the produc-
tion of microchips in practice. TimberWolfSC
program uses simulated annealing as a heuris-
tic to find good solutions for row-based stan-
dard cell design style. The global router re-
quires to add extra cells known as feedthrus
to complete the route if not enough space is
present between two adjacent standard cells.
A valid placement is one in which all of the
cells are placed within the specified rows with-
out any overlap between cells. We vary the
following parameters to find optimal routing.
In practice, many simulations need to be run
in order to discover the “magic numbers” for
optimal routing.

• rowSep is the gap between two rows.

• feedthruwidth is width of extra cell used to
assist in routing completion.

The inputs to this benchmark are modified
so that the average virtual memory and resi-
dent memory size for twolf are 2.67 MB and

1.35 MB respectively when number of refer-
ences simulated are approximately 4.13 Billion.

5 Results

In this section, we present our observations on
data similarity between executions of the same
application with different input conditions, and
show the reduction in memory access by using
cache line merging technique.

Figure 3: Similarity of cache contents between
two instances of ammp running with different
sets of parameters. The simulations were per-
formed with 1MB direct-mapped cache for first
500 Million references in each execution, which
show very high similarity across the diagonal.
As we observe regions with high similarity in
close vicinity of the diagonal, it can be inferred
that the executions own quite similar working
sets even if they are not perfectly synchronized.

In Figure 3, we show the similarity of the
cache contents while simulating ammp on the
same input data, but with variations up to
50% in parameter values. Cache snapshots
are taken every 10M accesses, and we present
the result for the first 500 Million accesses
only here, but the same behavior is observed
throughout the execution. We observe that
similarity across executions can be exploited in
ammp if the executions start at the same time
and are synchronized with each other. Note
that the resident memory size of ammp is larger
than 1 MB though the cache contents are very
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(c) Scalability of Merge-cache

Figure 4: ammp:L2 miss rate per memory reference with various numbers of executions, cache
size and associativity. In case of private L2 cache, the total cache is partitioned equally among n

threads individually. Data merging technique decreases L2 miss rate by an order of magnitude
from traditional shared and private cache. Note that logarithmic scale has been used in vertical
axis for all these results.

similar. We leverage this similarity using our
cache line merging technique and present re-
sults in the rest of this section.

In Figure 4 and Figure 5, we show that the
L2 cache miss rate is reduced significantly by
merging cache lines. It can be observed from
Figure 4(a) and Figure 5(a) that merging cache
line results in a reduction of main memory ac-
cess by an order of magnitude if the cache
is not able to retain the whole memory foot-
print. When the cache is large enough to store
the entire working set, all the cache architec-
tures perform equally well. One interesting be-
havior that we can note from these graphs is
that same cache performance is achieved with
a smaller sized Merge-cache. With scaling of
number of cores in a processor, per core effec-
tive cache size decreases magnifying cache miss
rate, which can be improved using a Merge-
cache architecture. Note that the results are
shown on a logarithmic scale.

As depicted in Figure 5(b) and 4(b), a shared
cache with low associativity shows worse cache
behavior than a private cache with equal asso-
ciativity. In a shared cache, the number of sets
in the cache increase, but associativity stays
same, leading to degradation in cache perfor-
mance. Note that a cache employing merging

scheme shows better cache performance due to
increased cache capacity due to line merging.

Finally, we present our results on scalability
aspect of cache line merging technique. Due
to constraints in resources, we simulate up
to 32 simultaneously executing processes and
present the results. As the number of cores in
a processor scale, effective per core cache ca-
pacity decreases leading to an increase in cache
miss rate, which can be observed clearly in Fig-
ure 4(c) and Figure 5(c). Merging identical
cache lines increases per core effective cache
capacity, and thereby, enhances cache perfor-
mance. With scaling in number of cores, this
effect is more pronounced as the technique of
merging cache lines reduces cache miss rate by
orders of magnitude and accesses to off-chip
memory in turn. Specifically, for 8 simultane-
ously executing instances of ammp, we observe
reduction in cache miss rate by 3×. With scal-
ing of number of cores per chip, we expect to
observe more benefit of employing line merging
technique in cache for similar executions.

6 Conclusion

In this paper, we have shown that a large
amount of data is identical between individual
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(c) Scalability of Merge-cache

Figure 5: twolf :L2 miss rate per memory reference with various numbers of executions, cache
size and associativity. In case of private L2 cache, the total cache is partitioned into n parts and
used by n threads individually. Data-merging technique decreases L2 miss rate by an order of
magnitude if associativity is not very low, as having shared L2 results in increased conflicts. We
address this issue in section 6. It can be observed that same cache performance is achievable
using a smaller Merge-cache.

executions of the same application though they
work with different parameters. Executing
multiple instances of an application with simi-
lar data sets or parameters is observed in many
practical scenarios. We present our prelimi-
nary study on two benchmarks ammp and twolf
from SPEC2000 benchmark suite. We pro-
pose Merge-cache architecture which requires
minor modifications in conventional cache sys-
tems to leverage the similarity in cache con-
tents of these applications by merging identi-
cal cache lines. Merge cache increases per core
effective cache capacity by compacting cached
data, which in turn reduces main memory ac-
cess by an order of magnitude.

7 Future Work

Initial results on two SPEC2000 applications,
ammp and twolf, demonstrate the potential of
this approach. In shared L2 cache setting,
all processors use the same function for map-
ping addresses to cache sets, which leads to
increased conflicts due to dissimilarity in some
cache lines. In traditional L2 cache, this issue
is addressed by using a different mapping func-

tion for every processor, which makes search-
ing for mergeable data difficult. For cases with
high similarity in execution, this problem is
avoided because of the tremendous amount of
merging of data, but we plan to address it by
using a split cache which we have left as future
work.

In this paper we have explored only the data
similarity across many executions of an appli-
cation. The benefit, however, could be larger
due to instruction cache similarity too, which
we aim to evaluate in future. Our approach
has shown encouraging results for applications
from several other domains such as visualiza-
tion, machine learning too. We plan to explore
these applications as part of our future work.
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