
In Proceedings of the 4th Annual International Symposium on Code Generation and Optimization (CGO), March 2006.

Profiling over Adaptive Ranges

Shashidhar Mysore Banit Agrawal Timothy Sherwood
Nisheeth Shrivastava Subhash Suri

Department of Computer Science
University of California, Santa Barbara

{shashimc,banit,sherwood,nisheeth,suri}@cs.ucsb.edu

Abstract

Modern computer systems are called on to deal with bil-
lions of events every second, whether they are instructions
executed, memory locations accessed, or packets forwarded.
This presents a serious challenge to those who seek to quan-
tify, analyze, or optimize such systems, because important
trends and behaviors may easily be lost in a sea of data. We
present Range Adaptive Profiling (RAP) as a new and general
purpose profiling method capable of hierarchically classify-
ing streams of data efficiently in hardware. Through the use
of RAP, events in an input stream are dynamically classified
into increasingly precise categories based on the frequency
with which they occur. The more important a class, or range
of events, the more precisely it is quantified.

Despite the dynamic nature of our technique, we build upon
tight theoretic bounds covering both worst-case error as well
as the required memory. In the limit, it is known that error and
the memory bounds can be independent of the stream size,
and grow only linearly with the level of precision desired.
Significantly, we expose the critical constants in these algo-
rithms and through careful engineering, algorithm re-design,
and use of heuristics, we show how a high performance pro-
file system can be implemented for Range Adaptive Profiling.
RAP can be used on various profiles such as PCs, load values,
and memory addresses, and has a broad range of uses, from
hot-region profiling to quantifying cache miss value locality.
We propose two methods of implementation, one in software
and the other with specialized hardware, and we show that
with just 8k bytes of memory range profiles can be gathered
with an average accuracy of 98%.

Keywords: Profiling Hardware, Range Adaptive, Value
Locality.

1 Introduction

Many proposed run-time systems rely on profile informa-
tion to make informed design and optimization decisions.
Procedure and data placement, trace scheduling, value spe-
cialization, network load balancing, dynamic compilation,
and a whole host of power management techniques can all
be guided by an accurate picture of what a program is doing
and how it is interacting with the system. A major problem
in dealing with streams of profile data generated is that we
can only store a small amount of information yet we need to

be able to accurately characterize the behavior of the entire
stream. This is especially problematic if the profile informa-
tion is not completely dominated by a small number of fre-
quently seen, or “hot”, events.

A significant difficulty in gathering run-time profiles is
keeping track of this data in a manner that requires little stor-
age, incurs limited or negligible slowdown, and provides a
consistent, accurate, and useful summary of the data. Pro-
filing a large program for an extended amount of time (min-
utes or even hours), as required in a real system, results in
the generation of huge amounts of data. Dealing with these
large profiles in software requires clever schemes for adap-
tively sampling [21], compressing [43] and compacting [26]
profiles to reduce the impact on memory.

The aim of our research is to explore a new profiling
method capable of summarizing profile data in a streaming
fashion (one-pass) with only a small and bounded amount of
memory. Range Adaptive Profiling (RAP) uses a small set of
counters to track ranges of profile data such as blocks of data
and IP-addresses, segments of code, or ranges of load values.
Every piece of data fed into the system is accounted for in
some range (RAP merges the data rather than sample or fil-
ter), but the ranges which are chosen for profiling are adjusted
dynamically based on observed program behavior. While per-
haps not every type of profile can be merged easily into adap-
tive ranges, hot code regions can be found to guide optimiza-
tion, ranges of values can guide encoding decisions and value
prediction, while ranges of data memory will correspond to
instances of data structures. Other types of profiles, such as
edge profiling, can also be mapped onto adaptive ranges with
simple extensions to the method. In Section 4 we describe
three example uses of RAP in more detail.

In particular our paper makes the following contribu-
tions:

• We present the idea of Range Adaptive Profiling and show
how it can be used to generate online summaries of different
types of profile data including code, load values, memory
content, and narrow-width operands.

• We describe Range Adaptive Profiling Trees and show how
optimizing the branching factor and merging behavior can
provide an implementable solution with guarantees on both
summarization error and bounded memory.

1

• We present a method by which Range Adaptive Profiling
can be efficiently pipelined if specialized hardware support
is added.

• We quantify the Range Adaptive Profiling error and mem-
ory requirements for hot code regions and load value ranges.
With as little as 8k bytes of memory, accuracy of up to 98%
is possible.

The rest of the paper is laid out as follows: In Section 2
we begin by describing our online algorithm, while imple-
mentation details of our design are discussed in Section 3. In
Section 4 we quantify the advantages of our scheme and pro-
vide some qualitative evidence of its usefulness in the form of
range profiles. We describe related prior works in Section 5
and finally conclude in Section 6.

2 Profiling with Adaptive Precision

The first difficulty in building a run-time profiling system is
in gathering the raw data. Several software techniques, such
as binary instrumentation [5, 30, 37, 38] and sampling [2], can
be used to generate and analyze this profile information with
only a moderate amount of overhead [2, 3, 6, 7, 8, 14, 21, 26].
Recently, several researchers have proposed various forms of
architectural support [1, 9, 10, 13, 18, 31, 32, 34, 40, 47]
with the aim of increasing accuracy and further reducing the
overhead of software based techniques. Value profiles can
be exploited to perform code specialization [6], value pre-
diction [28, 45], and value encoding [40, 41]. Operand pro-
files identify the potential to apply power and performance
optimizations [29, 4]. Address profiles have been used for
data layout optimizations [33] and data prefetching mecha-
nisms [8], and code profiling for focusing optimization ef-
forts on the most important regions of a program. Control
flow traces and path profiles [3, 26, 44] can be used to per-
form path sensitive optimizations [17, 42] and path sensitive
predictions [23]. A general purpose framework for dealing
with profile data has even been proposed [43]. While gather-
ing data is a difficult problem, it is not the end of the story.

To explain the concept behind range adaptive profiling let
us start with a simple example. Suppose we would like to
know something about the regions of code that gcc is spend-
ing its time in. The simplest and lowest precision way to
quantify this is to keep one counter which counts all instruc-
tions executed on behalf of gcc. The counter keeps a perfectly
accurate count, and covers the entire program, but of course
the profile has no precision and fails to provide any informa-
tion on which subset of instructions is really the most impor-
tant. If two counters are available, the next logical step might
be to have one count the “top” half of gcc code and to have
the second counter track the “bottom” half of gcc code. In
this example each counter is tracking a range of code in gcc,
although as we discuss in Section 4, this works equally well
for memory addresses, values, and other range based profile
types. This idea of dividing the code into N ranges for N
counters could be easily extended to 4, 8, 16 counters and so
on. Unfortunately, this quickly gets out of hand, and to track

the program at the precision of an instruction we would need
counters for each and every basic block.

Our technique is based upon the realization that not all pro-
file information is equally valuable. The more frequently a set
of events occurs, the more important it is to precisely quantify
and characterize this set of events. Specifically, it may be suf-
ficient to group profile data into ranges - where the most fre-
quently occurring ranges of events are identified and broken
into more precise ranges while the least frequently occurring
events are kept as larger ranges. If the profiling ranges are
properly managed over time, we can strike a balance between
profile resolution and overhead.

When a particular range of events constitutes a significant
portion of the total profile, then that range should be sub-
divided and profiled more precisely. This recursive refine-
ment of profile ranges maps nicely onto a tree, where the root
of the tree represents the entire range of events and each child
of a node represents a refinement of the profiling for a par-
ticular subrange. We formalize this idea as Range Adaptive
Profiling and show how we implement this idea in a special-
ized hardware scheme.

2.1 Profile Trees

To gather profiles where the granularity is changing dy-
namically, we will need a data structure in which we can store
our profiles. The majority of the past work in this area has as-
sumed a flat storage of the profile. Whether the data was gath-
ered through hardware performance counters [1], stratified
sampling [34], or even potentially in fixed ranges [47, 46],
the end result is essentially a list of equivalent items and their
counts. While there exists some specialized software and
hardware systems that attempt to tightly compress particular
types of traces [1, 9, 10, 31, 34, 47], we believe we are the first
to present a general hardware-based methodology for storing
profiles in a hierarchical fashion.

As we mentioned above, the most natural way to store our
hierarchical profiles is with a tree. This tree will keep a con-
stantly up-to-date summary of the data stream, and in this
section we describe the three types of operations on the tree
that we need to support. The first, and by far the most com-
mon, operation is a simple update, where a counter in the tree
is simply incremented to track the incoming data. To refine
the granularity of a sufficiently hot range and to ensure pre-
cision, we have a split operation. Finally, we need merges to
combine together relatively unimportant data which ensures
that the tree is carefully pruned to maintain the least number
of counters necessary to capture all the important informa-
tion. The splits and the merges change the structure of the
tree and hence dynamically re-map profile events to the coun-
ters. While at a high level this simply sounds like a simple
tree, in reality each of these three functions has been specially
designed such that the overall data structure is both imple-
mentable in an online and pipelined way and provides a type
of worst case bound on error (the ε-error discussed in Sec-
tion 2.2). While all three operations are discussed in detail,
we begin with a discussion of the simple update.

2

The profile tree is built of nodes, and each node corre-
sponds to a particular range of events that the profiler might
see. As was mentioned earlier, the root node represents the
entire range of events possible, and each child of a node will
capture a proper sub-range of its parent. When an event en-
ters the profiling system, for example the PC of a cache miss,
this event is matched into the range that covers it. Because
an event often matches several possible ranges, we need to
find the smallest range that includes that event and then in-
crement that node’s counter. This will ensure that profiling
is done with as much precision as possible without modify-
ing the tree. As an example, please refer to Figure 1. This
figure is a snapshot of the tree structure with each node in
the tree tracking a range of values [min range, max range]
and a count to track the number of times an event entering
the profiler mapped to this node as the smallest range cover-
ing the event. (Split and Merge operations referred to on this
figure are explained in the following subsection). If an in-
coming event had a value of 12, in the graph on the left hand
side, it would match the ranges of [0, 255], [0, 63], and [12, 13]
but only the node responsible for profiling [12, 13] (smallest
range) would have its counter updated.

2.2 Growing the Trees

While updates are the most common operation performed
on a tree, updates do not modify the structure of the tree to
adapt to the input stream. The two operations that actually
modify the tree structure are split, which further refines the
profiling of a given range, and merge, which decreases the
granularity with which a range is profiled. The main idea be-
hind a split is that if a range is important enough, its counter
will increase faster than average. Eventually this node will
grow so ripe, that it makes sense to burst the node into a num-
ber of subranges. In this way the tree grows to increase preci-
sion where the profile has more weight. If the counters from
a set of ranges are no longer a sufficient portion of the whole
stream they can be merged together with little impact.1

The key to applying the split and merge operations is know-
ing when they should be applied. This can be done by setting
a SplitThreshhold, and any node that grows larger than this
threshold should sprout children to more accurately profile
each of the sub-ranges. The SplitThreshold is a function of
the number of events processed n, and the maximum possible
height of the tree log(R) where R is the maximum range to
be considered. Specifically we set

SplitThreshold =
ε · n

log(R)

where ε is a user defined constant between 0 and 1. If the
SplitThreshold is set in this way, the maximum amount of
error possible, relative to the entire input stream2, is ε. For ex-

1Counters are never decremented which is why this is not a sampling
scheme, rather merges happen when the rest of the tree has outgrown a par-
ticular set of regions.

2The ε error is defined as a fraction of the total length of the input stream,
while percent error is error relative to the actual count of a range

ample, if the user sets ε to 1%, that means for any given range
the estimate for that range will never be off by more than
1% of the total events processed. Further, it can be shown
that the maximum amount of memory required by a tree built
with this split threshold is O(log(R)/ε) [19]. The exact byte
counts, overheads, and percent errors are described in Sec-
tions 3 and 4.

Split - Calculating when an update needs to be followed
with a split operation is actually a fairly straightforward task.
We simply compare the value of the counter with the split
threshold described above. Any time a node grows over this
limit, we need to add a set of children to this node that cover
and subdivide its range. The original node keeps its counter,
and each of the children have their counts initialized to zero.

Merge - While splitting is crucial to the adaptation of the
granularity, if all we ever did was update or split, it would
be impossible to bound the total amount of memory required.
For example, a region of code may start out “hot” and as such
might have been split into many separate counters to count
every basic block within. Later, however, it may turn out
to be relatively unimportant and we may wish to release all
counters associated with the basic blocks and retain just one
counter for the entire region. A way to un-split a set of regions
is to do a merge operation. Rather than simply throwing away
the range profile information from each of the children nodes,
we incorporate them into the parent node. Because any count
gathered for a child is equally valid to be stored on the parent
range (because it is a super-range), we simply sum together
the count of the child nodes and add them into the parent.

3 Implementation Details
In order to build an effective profiling system around the

algorithm described in Section 2, there are several tasks
that need to be performed at runtime. First off, we need
a mechanism to gather profile data. In a purely software
based approach, these profiles can be generated through ei-
ther binary instrumentation [5, 30, 38, 37] or hardware per-
formance counters [1, 11, 12, 20, 22]. Even in a software
based approach the input data should be buffered to some ex-
tent and duplicate values should be merged together to help
improve performance. In the case of a hardware-assisted
or hardware-only approach, we assume that the profiles are
generated using a pre-existing or proposed profiling struc-
ture [9, 13, 18, 47]. Specifically, we assume a structure simi-
lar to ProfileMe [13] for collecting the input events (load val-
ues, PC, memory addresses, etc.). The buffered events are
processed one after another in the order the load instructions
(for value profiling) or branch instructions (for code profile)
retire. The buffer size and the sampling module will affect
the overall accuracy of a profile, but it has no impact on the
way in which Range Adaptive Profiling summarizes the data
and for this paper we concentrate solely on the accuracy of
the summarization step.

Processing the gathered events and maintaining the RAP
tree based counter structure can be time consuming if imple-
mented naively. In this section we discuss ways of speeding

3

� ��� �������	�

� ���
�����
 �
�
�� ���������

����������������
 ����
�� �������

��������� ���������

� ��
������������	� ������
�� ���������

� ��� �������	�

� ���
�����
 �
�
�� �	�������

���	��� ��������� ����
�� ������� � ��
�� ���	�	� � ���	�������	�������

� ��
�� ��������� �����!
�� ���	�	���

����������� ���������	

"�#�$ % &

% '�&�(�)*% +�)
,-(�)�.�(

$ (�/�0
,1(�)�.�(

)�(�"�2�$ &�+�0�"�#�$ % &

)3(�"�2�$ &�+�0
,1(�)�.�(�"

46587�9)�(�(;:�(�0�+�)�(�<=(�)�.�(?>A@�B�$ (?C3"�#�$ % &�&*D�)3(�"�D�+�$ E�F6G�H I 46587�9)�(�(-/�0 &�(�)J<=(�)�.�(K/�'�E-&*D�(�'1L8#�$ % &

Figure 1: A range adaptive profiling tree (in this example, each node has 2 out edges). The diagram on the left is the state of the tree just before
a merge cycle begins. During a merge cycle, the tree is walked and any set of nodes that have insufficient weight to warrant separate profiles are
merged (in this example the cutoff is a cumulative weight of 13). Following this merge, an access to item 12 might occur, which will push the node
that captures the range [12,13] to go over the split threshold. This would cause the node to be split into two different nodes, and subsequent accesses
to item 12 or 13 will be recorded on an item by item basis.

up these tasks and describe the software implementation of
RAP and also a hardware based approach that operates with
little or no support from software.

3.1 Algorithm and Architecture Design Issues

To enable efficient storage and searches on the profile tree,
a suitable branching factor (b) must be used. The branching
factor is the number of children that will be generated in a
split operation. If b is too small, the ranges marked for pro-
filing will take longer to converge on the best set. For exam-
ple, if one particular value in a range is accounting for 100%
of the profile data seen, it will take exactly log

b
(R) splits to

finally start profiling this item individually which in turn ef-
fects the error in the profile. On the other hand, if b is too
large, the amount of memory required to store the tree will
grow. The higher the branching factor, the more extraneous
children will be kept around. To seek a balance between these
two constraints, we analyzed the effect of branching factor on
the worst case number of nodes that can appear in the tree.
Figure 2 shows this tradeoff. On the x-axis we have a variety
of different branching factors, and on the y-axis is the worst
case number of nodes that could be generated for a branching
factor of b and an ε of 1%. We found that a branching factor
of 4 provides a good tradeoff between the required amount of
memory and the effect on performance and error. Note that
the figure shows worst case number of nodes and as will be
shown in Section 4, in the common case the number of nodes
is a factor of 1000 less.

Another problem that shows up in an implementation is
when to perform the merges. Finding a node that needs to
be split is easy, a counter is updated and then we check if

the counter is over the threshold. Finding the places where
a merge must be performed is much more difficult, as they,
by definition, happen away from where the updates are oc-
curring. How does one detect when a merge is needed? One
approach is to build a secondary merge heap, which stores a
list of those nodes that are most in need of merging. While
this approach is suitable from a theoretical standpoint, updat-
ing the merge heap requires many extra tree operations and
a full additional tree. Furthermore, one merge can result in a
new node which in turn needs to be merged into its parent and
so on. Rather than detecting and handling merges at the soon-
est possible time, we propose batching the merges together.

By performing merges periodically, instead of in a contin-
uous manner, we avoid the problem of having to continuously
search the tree for valid sets of nodes to be merged. In order
to grow, the tree must split, and in order to split, the counts of
the nodes must grow past the split threshold. The key point
to see is that as the number of events processed grows, the
relative rate at which the tree can split must slow down. In
fact, an un-merged tree can grow at a rate which is at most
logarithmic with the number of events processed. Instead of
having a fixed period for updates, we can have updates with
an exponentially increasing period and the worst case bounds
will still hold. This idea can be seen most clearly in Figure 3.

In Figure 3, the x-axis shows the number of events pro-
cessed (instructions executed, values profiled, etc.). The y-
axis is the worst case bound on the number of nodes required
to profile with an ε of 1%. At the beginning, and after every
merge, the worst case number of nodes is bounded to 384k.
After a merge, the worst case size of the tree grows slowly,
inching up at a logarithmic rate. If we wait for some num-

4

� � � � � ���
�

�����������

�	���������

�����������

�����������

��
�������� �����
���� �	�������
�
��!� �"�������	��#%$&��'��!� (�$)� ��� $&� (�
	* #+� ,&�

- .
/0 1
21
3 21
4 56
78
3 7
9 5:

Figure 2: The two independent graphs plotted show the memory size
requirement for different branching factors b (lower graph) and merge-
interval ratios q (upper graph). We choose b = 4 as it is a better tradeoff
between memory consumed and the height of the tree. With q = 2 we see
that the memory size is the least.

;�<%= > ?�@%> ACBC<%= D�<E FGAG= <%HC<%FJI K%LMBC<%= D�<N O P
Q R S
R
T S
R
U VW
XY Z
X[O\
T X] V^

_a`�HcbJ<%=%?Gde;�?%> FJI f g�AMK%F�FG<�@ih > FcHj> L L > ?%FGfMk

lMm�m�m�m�m

n�m�m�m�m�m
n�o�p�m�m�m
q�m�m�m�m�m

r%m�m�msm�mq�tGr%m�m�m

uMvxwyzuM{{ yzw)|xu}wx~

Figure 3: If merges are performed continuously, the tightest bound on the
number of nodes required can be maintained but at the cost of continu-
ously searching for merge opportunities every single cycle. Instead, we
can still have bounded worst case memory requirements if we batch the
merges together with an exponentially decreasing frequency.

ber of events e to pass before doing a merge operation, the
next time around we can wait a total of 2e events before the
worst case number of nodes grows to the same point. In other
words, if it took e events to force a split in the first period, in
the second period the tree will be twice as big and it will re-
quire twice as many events in order for a split to be necessary.
While in this example, we double the interval between con-
secutive merges, in general, we could increase the interval by
a factor of q. In figure 2 we show that doubling the intervals
is the most cost effecting setting for q.

3.2 Software Range Profiling

Using the results from the previous sections, we have
developed a software implementation of RAP that can
be called from software-only systems. The C++ imple-
mentation has an API with three methods rap init(),
rap add points(), and rap finalize() which can
either be called from online analysis or to post process trace
files. rap init initializes the RAP tree with an initial
set of counters and appropriate range values. rap init
also initializes data structures to enable profiling multiple
events simultaneously. The RAP tree is a dynamically allo-
cated tree and rap add points looks up the appropriate
counter, updates the counter, and when needed calls the inter-
nal functions rap split() and rap merge(). The post
processing phase of deriving statistical inferences about the
stream can be done through rap finalize, it also dumps
the resulting RAP tree in ascii format for further processing
such as identifying hot-spots, range coverage, phase iden-
tification, and so on. Our software version is available at:
http://www.cs.ucsb.edu/˜arch/rap

3.3 Hardware Support for Range Profiling

While a software based approach has many applications,
we are interested in using this technique at high speed in
run-time systems. For example, we could use this method
to analyze a front side bus trace to see what memory is be-
ing accessed when a program runs for minutes or hours. We
have purposefully designed the algorithms to allow for an effi-
cient and high speed hardware implementation which can tap

into any streaming source of profile information. This source
can be from a bus or debug port [16] off-chip, or plugged
into the back end of any number of proposed on-chip profil-
ing schemes. We are currently developing an FPGA proto-
type that can be interfaced through a high speed network or
PCI-X. In this Section we describe a hardware design, and in
Section 3.4 we quantify the design in terms of performance,
power, and area.

The main features of our design can be seen in Figure 4.
The profiling engine is divided into 5 main stages. In stages 0
and 1, the input events are first buffered, and then all match-
ing ranges are found. In stage 2 the smallest matching range
is determined, which then causes the appropriate counters to
be updated. Splits and merges are special cases and require
pipeline stalls. With the exception of the actual counter incre-
ment, each update to the profile tree is independent from the
previous. Splits and merges require more work, because they
create inter-event dependencies that must be satisfied before
more events may be processed. However, compared to up-
dates, splits and merges are very small in number, hence they
have little impact on the performance and the total number of
stalls is small and bounded.

Stage 0: The small buffer shown at stage 0 in Figure 4
stores incoming points. When the need to perform a
merge occurs (periodically and at exponentially decreasing
frequency), the pipeline is stalled while the counters are
searched for potential merge sets. During this time events will
stack up for ten to a hundred cycles, and we will need to keep
them in a temporary storage so they can be processed later.
In the case of a split, the pipeline will need to be flushed and
reset to the point directly before where the split should have
occurred. In this case the buffer will re-enter those events
into the pipeline. It is quite possible to make this buffer pre-
process the points by combining identical events. We have
observed that a 1k buffer can reduce the throughput require-
ments on RAP by a factor of 10 for code profiling.

Stage 1: For every point fetched from the buffer, we need
to find the set of ranges that include that point. This operation
is very similar to the Longest Prefix Match and can be carried

5

�������
����	
����

���������
������������������ �

 !����"#���$�

��%���"&

'((
')((('((((
'()((

'(((((('))((
'()((((
'(((((('))((((

')((((((

�+�����
��,-.��/����0

�##�$12$3

�4����� -.��/�5���67 �8�����
�.������,�/����	69

��!%�������"�$

:;< ;=>< ?=> @A BC

;< ;=>< ?=> @A BC

;< ;=>< ?=> @A BC

D
E FGH II
J KLM
J NGO

;< ;=>< ?=> @A BC PQRSTQU VWQPX

Y��%�%��Z

�[�����
��,\]��^�,_�

`ab cd eaf
g hd eijf

hj
akg d

l mn o KpH I LK

Figure 4: Architecture for the Pipelined RAP Engine. Stage0 - Shows the Event Buffer which buffers incoming events and the number of times it is
seen since it was previously processed by the RAP engine . Stage1 - A TCAM range matching provides indices to all TCAM cells which match the
incoming event identifier (IP address, PC, value, etc). Stage2 - A priority Arbiter chooses the longest match by giving it the highest priority. Stage3

- A set of counters are maintained, each corresponding to an entry in the TCAM array; priority arbiter chooses the counter to be incremented for
the incoming event. Stage4 - For every counter incremented in Stage3, a comparator checks the counter value against the current value of the
split threshold and if necessary initiates a node split to adapt the precision of the profile maintained.

out in constant time with a Ternary CAM as shown in Fig-
ure 4. The TCAM sets the appropriate match line high, for all
ranges that match. In order to figure out the smallest range
which is also the longest prefix, the TCAM entries have to be
partially sorted by prefix length. There can never be matches
from two different entries of the same range width. Hence,
this stage can be further pipelined by looking at nibble or byte
for each comparison [27].

Stage 2: After the potential matches are identified, we need
to find the longest prefix match, which should correspond to
the last matching entry. Given N match lines in order, sorted
by prefix length, finding the longest match is simply a mat-
ter of giving highest priority to longest matches and allowing
only one match to proceed. This is exactly the function of a
fixed priority N ×1 arbiter. The output of the highest priority
line will trigger the word line of the matching counter. Note
that while in this paper we assume a TCAM based approach,
with a branching factor of b, the tree is really a multibit trie
and there are a variety of techniques that can be used to build
high speed implementations from network algorithms [36].

Stage 3: Once the smallest range match has been found, we
simply need to update the appropriate counter. To handle a
continuous stream of data to the array, one read port and one
write port is needed.

Stage 4: The final stage compares the result of the updated
counter with the split threshold. If the counter is above the
split threshold then the node is expanded to have four chil-
dren (for branching factor(b) = 4), each initialized to a zero
count. The split and merge thresholds are stored in separate
registers and recomputed whenever the number of events (n)
change. This computation can be done in parallel with other
operations as it depends only on n and some predefined val-
ues. In our implementation, the split and merge thresholds

can be the same, hence just one computation and one register
is sufficient. If a split is encountered, the pipeline may need
to be flushed to properly account for these new nodes.

In our implementation a split requires making new entries
in the TCAM and SRAM data array. Four new children nodes
are created and inserted in the TCAM with the ranges set
appropriately, covering a quarter of the parent range. Cor-
responding entries in the memory are inserted storing the
counter and other information of the newly created nodes. A
split node could be either a leaf node or a parent. If the node is
a leaf then the split operation involves just setting of a pointer
from the parent to the newly created children. If the node is
already a parent, but its children do not cover the entire range
of the parent (This could be the case after an internal merge
as described in Section 2.2), then the split also involves an
extra operation of identifying the new parent of the existing
children and setting the children pointers. In terms of perfor-
mance, these splits are not a large problem as there can be at
most 6400 of them in a given interval, in our implementation.

A merge operation is even more expensive compared to
other operations, but by batching them together we reduce
the overhead significantly. Batch merges are initiated peri-
odically and in every batch of merges entries in the TCAM
are scanned bottom-up to find candidate nodes to be merged.
Corresponding SRAM data array entries are then deleted.
This recursive operation prunes the RAP tree to provide com-
pacted profile information. If there are 4 billion (232) events
to be profiled, and we assume that there will be at least a
thousand (210) events before we do our first merge, then there
will only need to be 32−10 = 22 different batches of merges.
Similarly, to profile 264 events, requires 64−10 = 54 batches
of merges. If we wish to profile large amounts of data, any
cost of doing a merge is quickly amortized.

6

3.4 Analysis of Required Hardware

In this subsection, we estimate the power consumption,
area and delay of various hardware components. We ex-
tracted and modified the power models from Cacti-3.2 [35]
and Orion [39] tools to model the major components in our
hardware design such as Ternary Content Addressable Mem-
ories (TCAMs), SRAM data array, comparator, priority ar-
biter, and registers. We then validated our results against
published results from high speed circuit design conferences.
We assume a very conservative 0.18µm technology and we
change the voltage supply and various other device param-
eters accordingly. In particular, we present the worst-case
maximum delay and energy consumption by modeling the
maximal switching for any particular operation.

Using 4096 x 36 TCAM and 16KB SRAM data array con-
figurations and summing up the area of all hardware compo-
nents we find that our Pipelined RAP Engine requires 24.73
mm2 of area. The clock frequency is determined by the max-
imum delay in any pipeline stage and we find that it is gov-
erned by TCAM look up stage. The critical path delay in
TCAM lookup stage is 7 ns. We can aggressively pipeline
the TCAM stage by doing byte/nibble comparison at each
pipeline stage [27] and effectively we can shift the critical
path to the SRAM stage, which takes 1.26 ns time. We also
add up the maximum energy components of all the hardware
components and we find that a total of 1.272 nJ energy is
consumed. It is also true that an implementation of RAP that
can handle 4k different ranges is very aggressive and would
most likely be applicable for off-chip profiling, but that for a
400-node version the area and power would be more than a
factor of 10 times less. On an average, RAP requires 4 cycles
to process an event, and requires 2 cycles each for TCAM and
SRAM accesses per event.

4 Evaluating Range Adaptive Profiles

In the sections leading up to this, we have presented the
algorithms and designs necessary to perform range adaptive
profiling. In this section we analyze the results of our effort
by quantifying the memory requirements and errors involved
across several SPEC benchmarks, and describe several exam-
ple use scenarios.

4.1 Profiling with RAP

In trying to examine ranges in the code, values, addresses,
or other parameters of a running program, RAP should focus
in on the hot ranges. A range is considered hot if and only if
the total count for that range and all its non-hot sub-ranges is
above a certain threshold. Note that our definition excludes
the possibility that a range is considered hot simply because
it has one or more hot children. This is very useful because
with a small fixed number of hot ranges we can accurately
paint a picture of the distribution of events across the entire
range of possible events. For example, when running RAP on
a trace of basic blocks, our technique will automatically focus
in on the most important regions of code, yet it will provide a
balanced overview of the code as a whole. For gcc we iden-

tify seven distinct regions of the program where each region
accounted for more than 10% of the instructions executed.

In addition to code profiles, we also wanted to truly demon-
strate the abilities of our scheme by profiling a set of events
that has significantly less locality than code profiles. While
it has been shown that a single value may account for the top
20% to 40% of all load values, there is a large tail to this
distribution which will stress our range profiling system. By
building a RAP tree over the set of all values loaded by a
program, we can calculate the ranges of values which would
cover 50%, 80%, or even 95% of all loads. Figure 5 shows
exactly this information for gzip and identifies all ranges of
load values which are more than 10% hot. In this figure, the
hot ranges of load value are shown (with min and max), and
they are annotated with their relative weight.

From this figure one can easily see that for gzip, load val-
ues in the range of [0,e] account for 13.6% of all loads, while
the range [0,fe] excluding [0,e] accounts for 16.7%. Thus the
entire range [0,fe] (including the hot sub-range) accounts for
13.6% + 16.7% = 30.3% of loads executed. These summaries
are computed completely online and in hardware and could be
used to guide optimizations such as value range specialization
or to assist in value prediction.

For any profiling system to be feasible, the theoretical
and empirical error and memory overheads need to be low.
A theoretical analysis of RAP’s memory use and error was
overviewed in Section 2, and in Sections 4.2 and 4.3 we
reevaluate these in the context of code and value profiling. We
run our system on a set of programs from the SPEC bench-
marks to completion, for reference inputs. The choice of
these two types of profiles was governed by factors which
can stress-test the RAP system. The locality present in code
profiles will stress the upper bounds on memory required for
RAP. The heavy tailed distribution of value profiles exercises
the range adaptation aspects of RAP. In the rest of this sec-
tion, we present an analysis of RAP with respect to memory
required and error, and illustrate advanced profiling applica-
tions of RAP.

4.2 Memory Analysis

As explained previously, range adaptive profiling stores
profiles hierarchically in a tree structure (RAP tree). The
number of nodes in the RAP tree will tell us the memory re-
quirement of this scheme. This section gives some practical
estimates for various benchmark programs with each node re-
quiring about 128 bits of memory.

Figure 7 shows different benchmarks on the x-axis and the
maximum and average number of nodes required by RAP in
evaluating these benchmarks is shown on the y-axis. The left
hand two graphs show the maximum and average memory re-
quired for various benchmarks in identifying hot regions of a
code for ε = 10% (top) and ε = 1% (bottom). As the tree
grows between merge intervals and shrinks after a merge, the
maximum memory is the largest of the tree sizes just before
the merge operations during the entire run of a benchmark
and the average number of nodes indicates the common-case

7

[0, ffffffffffffffff] 0.9%

[0, 3ffffffffffffffe] 12.4%

[0, 3fffe] 22.8% [11ffffffd, 12000fffb] 10.0% [12000fffc, 12001fffa] 12.2%

[0, 3ffe] 11.3%

[0, fe] 16.7%

[0, e] 13.6%

Figure 5: Hot ranges among the load values in gzip as identified by
RAP with ε = 1%. We see that there are 7 hot ranges which were en-
countered for more than 10% of the entire load value stream. Note that
this tree is a subset of the RAP tree, showing only the hot nodes

0 20 40 60 80 100
Number of Points (in billions) - gcc

0
100
200
300
400
500

N
u

m
b

er
 o

f
N

o
d

es

Figure 6: Number of nodes required to track the basic blocks of gcc
with ε = 10%. While the number of nodes is far less than the worst
case bounds that we estimated, the pattern of growth (due to splits) and
rapid reduction (due to batched merging at points marked by dashed
lines) can be clearly seen.

memory requirement. The two graphs on the right present
similar parameters for value profiles. We see that a maxi-
mum of 500 nodes is sufficient to evaluate code profiles with
ε = 10% for the set of benchmarks. In Section 4.3 we show
that with this many nodes we can guarantee 98% accurate in-
formation. We can also observe that gcc, which has the high-
est number of distinct basic blocks, requires a maximum of
453 nodes in the RAP tree for code profiling. The graphs on
the right of Figure 7, show similar trends for value profiling.
parser which has the largest number of load values requires
a maximum of 733 nodes and an average of 203 nodes in
the RAP tree (Figure 7 for ε=10%). Similarly, the RAP tree
requires an average 300 nodes to provide 99% accurate infor-
mation on load profiles.

An important observation to make is that RAP judiciously
allocates counters only if it is sure it is worth allocating them.
For example, since the locality among values is less, value
profiling with RAP uses less memory (average 300 nodes)
compared to code profiling (average 450 nodes) which has
more locality. This advantage of being able to provide such
accurate information using a small amount of memory, is at-
tributed to the splits and merges we do on the RAP tree (as
described in Section 2).

Back in Figure 3 we described the bounds on memory re-
quirements as they change over time. To test what happens

in a real implementation, we generated Figure 6 which shows
the variations of tree size for one such run of gcc. The x-
axis represents the number of basic block vectors seen and
the y-axis is the number of nodes in the RAP tree. We see
a similar pattern to the theoretical expectation, which is the
slow building of memory marked by periodic merges which
maintain the overall bounds on resource consumption.

4.3 Error Evaluation

While the theoretical bounds on error are very useful, if
our device is to be used to characterize dynamic program be-
havior in a real operating environment, the average and worst
case percent errors3 are extremely important.

Due to the way the algorithm is designed, the counts for a
range in the tree is always a lower bound on the actual count.
Hence, if RAP identifies a node as hot, then that node is guar-
anteed to be hot. A hot node means that a set of individual
events in that range is hot. In cases where the range is a sin-
gle event, we have identified a hot range with most precision4.

The split threshold is set in such a way that as soon as a
node counts events more than a proportion of the total events
seen, the node splits into sub-ranges. A merge, similarly,
never merges ranges which are hot enough to warrant pre-
cise profiling. This ensures that RAP always profiles with the
smallest ranges possible. Hence, for a given ε, we can guaran-
tee that RAP always identifies all hot ranges with the greatest
precision possible.

Not only is it important to identify the most frequently ob-
served ranges in a profile stream, but it is equally important to
measure how accurately these ranges are quantified. For ev-
ery hot region identified by RAP, the estimated counts of the
events that contributed to the hot regions were used to com-
pute the percent error. The numbers presented in Figure 8 are
a comparison of the estimates that RAP made online, with
the actual count that was gathered by making multiple passes
through the program’s execution, tracking one hot range at
a time (as a perfect offline profiler would). Figure 8 shows
the percent error in estimating the counts on the hot ranges
for each of the different benchmarks. Maximum 10 and
Maximum 1 is the maximum of the percent errors among all
the hot regions for a benchmark, identified in a RAP tree with
ε = 10% and ε = 1% respectively. Similarly Average 10
(Average 1) is the average of the percent errors for all the
identified hot ranges within a benchmark with ε = 10%
(ε = 1%). The y-axis in Figure 8 shows percent error for
various benchmarks. The graph on the left is a measure of ac-
curacy when identifying hot regions of the code and the graph
on the right shows different errors for load value analysis.

In the graph on the left in Figure 8, the benchmark gcc
shows the highest maximum percent error of 13.5% with ε =

3Percent error is error relative to the actual count of an event, whereas ε

is the error with respect to size of the entire stream.
4By precision we mean the ability to zoom into profile ranges as narrow

as possible, and by accuracy we refer to error in the quantitative profile infor-
mation estimated by RAP with respect to a perfect profiler. A perfect profiler
is one which can gather event counts with 100% accuracy

8

�

� ���

�����

�����

�����

� ���

� 	

� �

�
�
� �
� �
�

�����
������� �����

�

�����

�����

�����

�����

� 	

� �

�
�
� �
� �
�

�����
������� �����

�

� �����

�������

�������

�������

� 	

� �

�
�
� �
� �
�

�����
������� �����

�

� �����

�������

�������

�������

� 	

� �

�
�
� �
� �
�

�����
������� �����

gcc mcf vpr gzip parser vortex

gcc mcf vpr gzip parser vortex

gcc mcf vpr gzip parser vortexbzip2

gcc mcf vpr gzip parser vortexbzip2

Figure 7: The number of nodes in the RAP tree which is an indication of the memory required by our profiler is plotted on the y-axis. The left hand
two graphs show the maximum and average memory required for various benchmarks in identifying hot regions of a code for ε = 10% (top) and
ε = 1% (bottom). And the two graphs on the right present similar parameters for value profiles.

gcc gzip mcf parser vortex vpr
0

5

10

P
er

ce
n

t
E

rr
o

r

Maximum_10
Maximum_1
Average_10
Average_1

gcc gzip mcf parser vortex vpr0

5

10

15

20
P

er
ce

n
t

E
rr

o
r

Maximum_10
Maximum_1
Average_10
Average_1

Figure 8: Percent Error for the hot events identified by RAP for various benchmarks is shown in this figure (for ε = 1% and 10%). The graph on
the left is a measure of accuracy when identifying hot regions of the code. The graph on the right shows similar values for load value analysis.

10%. This error of 13.5% was from a hot-range of the code,
which was quite narrow and deep in the RAP tree, however,
excluding this hot-range, the second maximum percent error
in gcc is just 3.1%. An important point to draw from this
graph is that with ε = 10%, the average percent error is still
just about 2%.

Load value analysis, however, was more complex than
code profiling because of the wide range of values within
which incoming load events could be. With load value anal-
ysis (graph on the right in Figure 8), we see that vortex has
the maximum percent error of around 20% which was due to
the hot-value 0 (note, however, that this is still less than 10%
error with respect to the entire stream). We also see a negli-
gible percent error with ε = 1%; and with ε = 10% an av-
erage of just 3.4% over all benchmarks. As can be observed,
on an average RAP can provide 98% accurate information
about code profiles and is 96.6% accurate on value profiles.
Trends about program behavior, hot regions, value distribu-
tion, memory access patterns are some of the characteristics
which can be easily and accurately detected with RAP.

To build a useful and feasible profiler, the error and mem-
ory requirements should be bounded absolutely, without ref-
erence to the stream length and the type of profile being ana-
lyzed. As we have just seen in this subsection, RAP not only
precisely identifies range information on a stream of profile
events efficiently, but also provides very accurate informa-
tion.

4.4 Additional Applications of RAP

Thus far we have discussed how RAP can be used to track
code and value profiles, and use these to stress-test and eval-
uate our system. Here we describe several different scenar-
ios where the capabilities of RAP would be useful including:
cache-miss value profiling, narrow-width operand profiling,
zero-load memory ranges.

Cache-Miss Value Profiling – While we have shown how
RAP can be used to profile value locality in a more general
sense than simply quantifying “hot values”, architects typi-
cally need to target cache misses, rather than simply all loads.
Some have hypothesized that while value locality might be
present, it may be greatly diminished when only the cache
misses are examined. By simply building a RAP tree over the

9

16 32 640 10 20 30 40 50 60

log(range-width)

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e

dl1_misses
dl2_misses
all_loads

Figure 9: This figure shows how RAP can be used to extract insightful
information about value localities. The x-axis shows the number of bits
required to represent the hot ranges of values and y-axis represents the
percentage of values profiled

11f000000 − 11fcfffff

���
���
���
���

���
���
���
���

2 120000000−12fffffff

1 0 − ffffffffffffffff

��

��

{

4

3

{

11f000000 − 11fffffff

11fd00000 − 11ff7ffff

11fec0000 − 11fefffff

16.9%

0

54.6%

{

11ff000000 ffffffffffffff11fffffff

13.7%

Figure 10: Memory-value profile characterized by RAP for gcc which
identifies from which regions of the memory most zeros are being loaded.
The horizontal axis represents the entire memory space. The hot nodes
are labeled 1 through 4 and hot regions are shown as pattern-filled boxes

set of all load values which were subject to a cache miss we
can quickly quantify this effect. Figure 9 shows the results of
performing this analysis averaged over a set of benchmarks.
The x-axis shows log(range width) of the different hot re-
gions captured by RAP. The y-axis shows the coverage of all
events, either loads, DL1 Cache misses, or DL2 Cache misses
(depending on the curve). Take for example, DL1 misses.
Hot-ranges (those ranges accounting for 10% or more of all
DL1 misses) with a size of 216 or less account for about 56%
of all DL1 misses. Looking at this figure, it is clear that in
fact the value locality of cache misses is more than the value
locality of all loads.

Narrow Operand Profiling – Another application of RAP
would be finding regions of code with narrow operands. Find-

ing these regions might benefit operand width prediction
and/or bit-width optimized compilation methods. We could
build a RAP tree over the set of all instruction PCs which have
a narrow operand (for example less than 16 bits). We pro-
filed gcc and observed that the narrow-width operations were
concentrated in very specific code regions, such as the file
flow.c which accounted for 38.7% of all narrow-width op-
erations. Within this file, the procedurepropagate block
accounted for 31%, and a small block in this procedure which
processed the live registers accounted for 6.4%.

Zero-load Memory Ranges – A different but related type
of profile is to find out which regions of the data memory are
responsible for load of a particular value, for example zero.
This memory-value profiling could be used to guide bus com-
pression schemes or track potentially inefficient data struc-
tures. Figure 10 shows a RAP tree for gcc built over the set
of all memory addresses from which a zero was loaded. If
the optimizers goal was to reduce the number of zero-loads,
these memory ranges would be the best place to target. The
horizontal axis represents the entire range of data memory (0-
ffffffffffffffff). We focus on the hot nodes identified by RAP
(labeled 1-4) . We have zoomed in to show how RAP pre-
cisely identified distinct ranges which accounted for 16.9%
(Node 2), 54.6% (Node 3) and 13.7% (Node 4) of the zero
loads. For example, the address ranging from 11fd00000-
11ff7ffff (Node 3) accounts for a total of 13.7% + 54.6% =
68.3% of all zero loads in gcc. In fact, it was also observed
that any load to this region has about 38% percent chance of
being a zero.

In general, any event (cache misses, 0-loads, exceptions,
...) can be mapped using RAP, to the code that caused them,
the memory address that was referred to, or the value on
which an instruction operated. While the above profiling sce-
narios are not complete optimizations, they provide evidence
that RAP has the potential to be both general purpose across
many different types of profiles, and powerful enough to en-
courage new types of profiling.

5 Related Work
Range Adaptive Profiling is a novel method to provide hi-

erarchical summary information on a stream of events. While
we present a hardware based framework for dealing with vast
amounts of profiling data, our technique builds on the profil-
ing work of many other researchers. In this section we briefly
summarize some of this work and relate it to our own con-
tributions. We classify our related work into two broad cate-
gories:

Software Based Profiling - Software systems can be ei-
ther statically instrumented with instrumentation tools such
as ATOM [38] or dynamically through just-in-time compil-
ers [24]. In software profiling, most of the effort has been
spent on reducing the performance overhead of instrumenta-
tion such as through sampling [2] or bursty tracing [21]. Dy-
namic hot-path prediction techniques are described in [14].
Value profiles are another important form of profiles [6],
which identify value invariance and proposes optimizations

10

through Convergent Profiling. There is software work on
sampling more intelligently and even on compressing trace
information to reduce the overheads involved. Larus [26]
provides a technique to capture, in a compressed form, a
program’s dynamic control flow. The idea of using soft-
ware to extract a hierarchy of information using grammars,
has been used to implement efficient data prefetching mecha-
nisms [7, 8]. A general purpose software framework for deal-
ing with compressed profile data is proposed in [43]. While
these are powerful software mechanisms, they are not directly
applicable to the problem of managing a very small number of
hardware counters to enable high-throughput hardware-only
profiling.

Hardware Assisted Profiling - The current industrial prac-
tice in hardware performance monitoring is performance
counters, and several modern machines now support this
idea [11, 12, 22]. These simple counter based schemes, while
useful, suffer from a lack of flexibility and require signifi-
cant software management in order to extract useful informa-
tion [1]. Many researchers have examined the next steps that
hardware assisted profiling should take. Proposed schemes
range from those which use existing hardware on the pro-
cessor to gather information which is later processed by a
software program [1, 10, 32], to programmable profiling co-
processors [47]. [9] uses profile buffers to collect and analyze
information. Sastry et. al. in [34] provide a framework for de-
signing a variety of stream compressors and propose the strat-
ified sampling scheme. An extension of the stratified sam-
pling scheme is proposed by [31] which aims at reducing the
cost of delivering gathered profile and proposes multi-hash
and interval based profiling. Though these schemes provide
efficient ways to process data they are not flexible enough to
accommodate general queries. ProfileMe [13] and Relational
Profiling Architecture are flexible and versatile schemes for
gathering profile information. Zilles and Sohi [47] in their
co-processor approach, design hardware to analyze the stream
and compress it to provide concise and distilled profile infor-
mation to the main processor. It has the ability to consider
only a subset of the instructions for profiling and refocus re-
sources after an instruction has been sufficiently character-
ized.

Our approach is orthogonal to most of the above ap-
proaches because RAP concentrates on building a useful on-
line summary of the data, no matter what method is used to
gather the data. RAP can be completely implemented in hard-
ware and has the ability to efficiently identify the most im-
portant ranges of the profile and provide accurate information
on the entire profile with very low overheads. We believe
that there are important similarities between profiling a pro-
gram executing billions of instructions per second and trying
to monitor and analyze high speed networks [19, 15, 25] and
that there is potential for further research along these lines.
Indeed, RAP has been designed to be adaptable to a variety
of different data streams that need to be processed at very high
speed, and may even be applied in analyzing network traffic.

6 Conclusions
Amdahl’s law shows us that the common case is most im-

portant to performance so it makes sense to bias allocated re-
sources towards the common case. The problem is that the
common case changes as the program executes and we end
up with a chicken-and-egg type of problem. In this paper
we present Range Adaptive Profiling - a novel scheme to ef-
ficiently, adaptively and intelligently summarize high band-
width streams of profile data. It allows users to specify a pa-
rameter (ε) which bounds the error with respect to the size of
the input stream and also provides guarantees on worst case
memory bounds independent of the size of the input stream in
a fully streaming fashion (with only one-pass). This method
can be applied to software profiling, and with the use of a spe-
cialized pipelined architecture, can be accelerated with hard-
ware.

While it is not yet clear whether Range Adaptive Profiling
will be general purpose enough to cover all profile types of
interest, we have shown that it can make sense for summariz-
ing at least three profile types: load values of cache misses,
instruction PCs of narrow width operands, and memory ad-
dresses of zero-loads. The applicability of RAP can be fur-
ther extended with multi-dimensional profiling which allows
adaptive ranges over two or more variables. With this exten-
sion it is possible to handle edge profiles, data-code correla-
tion studies, and general tuple space profiles, the details of
which are beyond the scope of this paper. It may further be
possible to unify our proposed techniques with existing sam-
pling based schemes to create a single general purpose pro-
filing system. While this future work may prove fruitful, to
guide our initial algorithm and hardware design we have used
load values and code profiling to measure the overheads of
RAP and also to show the versatility of the scheme.

While some have shown the frequency of the top 50 indi-
vidual loaded values in a program which might cover 40%
of the program, our technique can automatically generate
range summaries which include every value loaded in an en-
tire SPEC benchmark, and we believe this type of analysis
to be the first of it’s kind. This information could be used
to drive many run-time optimizations including code special-
ization, value prediction, and bus encoding. While RAP has
good worst case bounds, in the common case it is even better.
For a set of benchmark programs from SPEC, we can provide
98% accurate information about hot code regions with only
8k bytes of memory and 99.73% accurate information with
64k bytes of memory. The RAP method is suitable for intelli-
gent processing of the many different profile streams that may
be generated from either a processor or computer network,
and our future work will extend this technique to handle new
forms of profiling in the processor.

Acknowledgments
The authors would like to thank Cliff Young and the anony-

mous reviewers for their helpful feedback. This research was
funded in part by National Science Foundation Grant CCF-
0514738 and NSF Career Grant CCF-0448654.

11

References
[1] J. Anderson, W. Weihl, L. Berc, J. Dean, S. Ghemawat, M. Henziger,

S. Leung, R. Sites, M. Vandevoorde, and C. Waldspurger. Continuous
Profiling: Where Have All the Cycles Gone? ACM Transactions on
Computer Systems (TOCS), 15(4):357–390, November 1997.

[2] M. Arnold and B. Ryder. A Framework for Reducing the Cost of In-
strumented Code. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 168–179, June 2001.

[3] T. Ball and J. R. Larus. Efficient Path Profiling. In International Sym-
posium on Microarchitecture, pages 46–57, Dec 1996.

[4] D. Brooks and M. Martonosi. Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance. In Proceed-
ings of the The Fifth International Symposium on High Performance
Computer Architecture, page 13, Washington, DC, USA, January 1999.
IEEE Computer Society.

[5] B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching.
The International Journal of High Performance Computing Applica-
tions, 14(4):317–329, 2000.

[6] B. Calder, P. Feller, and A. Eustace. Value Profiling. In International
Symposium on Microarchitecture, pages 259–269, December 1997.

[7] T. Chlimibi. Efficient Representations and Abstractions for Quantify-
ing and Exploiting Data Reference Locality. In Conference on Pro-
gramming Languages Design and Implementation, June 2001.

[8] T. Chlimibi and M. Hirzel. Dynamic Hot Data Stream Prefetching
for General-Purpose Programs. In Conference on Programming Lan-
guages Design and Implementation, June 2002.

[9] T. M. Conte, K. N. Menezes, and M. A. Hirsch. Accurate and Practical
Profile-driven Compilation Using the Profile Buffer. In International
Symposium on Microarchitecture, pages 36–45, December 1996.

[10] T. M. Conte, B. A. Patel, and J. S. Cox. Using Branch Handling Hard-
ware to Support Profile-driven Optimization. In International sympo-
sium on Microarchitecture, pages 12–21, November 1994.

[11] Digital Equipment Corporation. Alpha 21164 Microprocessor Hard-
ware Reference Manual. 1995.

[12] Intel Corporation. Pentium(r) Pro Processor Developer’s Manual. In
McGraw-Hill, June 1997.

[13] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos. Pro-
fileMe: Hardware Support for Instruction-Level Profiling on Out-of-
Order Processors. In International Symposium on Microarchitecture,
pages 292–302, December 1997.

[14] E. Duesterwald and V. Bala. Software Profiling for Hot Path Prediction:
Less is More. In Architectural support for programming languages and
operating systems, pages 202–211, October 2000.

[15] C. Estan, S. Savage, and G. Varghese. Automatically Inferring Patterns
of Resource Consumption in Network Traffic. In SIGCOMM ’03: Pro-
ceedings of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, Karlsruhe, Ger-
many, August 2003.

[16] First Silicon Solutions. Home page. http://www.fs2.com.
[17] R. Gupta, D. Berson, and J.Z. Fang. Path profile guided partialredun-

dancy elimination using speculation. In IEEE International Conference
on Computer Languages (ICCL), pages 230–239, May 1998.

[18] T. Heil and J. E. Smith. Relational Profiling: Enabling Thread-level
Parallelism in Virtual Machines. In International symposium on Mi-
croarchitecture, pages 281–290, 2000.

[19] J. Hershberger, N. Shrivastava, S. Suri, and C. Toth. Adaptive Spa-
tial Partitioning for Multidimensional Data Streams. In International
Symposium on Algorithms and Computation (ISAAC), 2004.

[20] Hewlett-Packard. PA-RISC 1.1 Architecture and Instruciton Set Refer-
ence Manual. 1994.

[21] M. Hirzel and T. Chilimbi. Bursty Tracing: A Framework for Low-
overhead Temporal Profiling. In 4th ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-4), December 2001.

[22] MIPS Technologies Inc. Mips R10000 Microprocessor User’s Manual.
1995.

[23] Q. Jacobson, E. Rotenberg, and J.E. Smith. Path-based next trace pre-
diction. In 30th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), December 1997.

[24] A. Krall. Efficient JavaVM Just-in-Time Compilation. In Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, pages 205–212, 1998.

[25] C. Kruegel, F. Valeur, G. Vigna, and R.A. Kemmerer. Stateful Intrusion
Detection for High-Speed Networks. In IEEE Symposium on Security
and Privacy, pages 285–293, 2002.

[26] J. Larus. Whole program paths. In Conference on Programming Lan-
guages Design and Implementation (PLDI), pages 259–269, May 1999.

[27] X. Li, Z. Liu, W. Li, and B. Liu. SCP-TCAM: A Power-Efficient Search
Engine for fast IP Lookup. In ISBN Proceedings, 2004.

[28] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value
prediction. In 29th IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 226–237, December 1996.

[29] G. H. Loh. Exploiting data-width locality to increase superscalar ex-
ecution bandwidth. In MICRO 35: Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pages 395–
405, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[30] C. Luk and et. al. Pin: Building customized program analysis tools with
dynamic instrumentation. In Conference on Programming Languages
Design and Implementation (PLDI), 2005.

[31] S. Narayanasamy, T. Sherwood, S. Sair, B. Calder, and G. Vargh-
ese. Catching Accurate Profiles in Hardware. In Int. Symp. on High-
Performance Computer Architecture, pages 269–280, February 2003.

[32] R. V. Peri, S. Jinturkar, and L. Fajardo. A Novel Technique for Profil-
ing Programs in Embedded Systems. In ACM Workshop on Feedback-
Directed and Dynamic Optimization, 1999.

[33] S. Rubin, R. Bodik, and T. Chilimbi. An efficient profile-analysis
framework for data layout optimizations. In The 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages(POPL), Jan 2002.

[34] S. Sastry, R. Bodı́k, and J. Smith. Rapid Profiling via Stratified Sam-
pling. In Annual International Symposium on Computer Architecture,
pages 278–289, July 2001.

[35] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An Integrated Cache Tim-
ing, Power and Area Model, 2001/2.

[36] V. Srinivasan and G. Varghese. Fast Address Lookups Using Controlled
Prefix Expansion. ACM Transactions on Computer Systems, 7(1):1–40,
February 1999.

[37] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation
in a distributed environment. technical report msr-tr-2001-50, microsoft
research. April 2001.

[38] A. Srivastava and A. Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. In Conference on Programming Lan-
guages Design and Implementation, pages 196–205, 1994.

[39] H. Wang, X. Zhu, L. Peh, and S. Malik. Orion: A Power-Performance
Simulator for Interconnection Networks. In Proceedings of the
35th International Symposium on Microarchitecture, Istanbul, Turkey,
November 2002.

[40] J. Yang and R. Gupta. Frequent Value Locality and its Applications. In
ACM Transactions on Embedded Computing Systems, 2002.

[41] J. Yang, Y. Zhang, and R. Gupta. Frequent value compression in data
caches. In International Symposium on Microarchitecture, pages 258–
265, 2000.

[42] C. Young and M.D. Smith. Better global scheduling using path
profiles. In IEEE/ACM International Symposium on Microarchitec-
ture(MICRO), pages 115–123, 1998.

[43] X. Zhang and R. Gupta. Whole execution traces. In Proceedings of the
37th International Symposium on Microarchitecture, pages 105–116,
Washington, DC, USA, 2004. IEEE Computer Society.

[44] Y. Zhang and R. Gupta. Timestamped whole program path represen-
tation and its applications. In Conference on Programming Languages
Design and Implementation (PLDI), pages 180–190, June 2001.

[45] H. Zhou, J. Flanagan, and T. M. Conte. Detecting global stride local-
ity in value streams. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, pages 324–335, New York, NY,
USA, 2003. ACM Press.

[46] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Effi-
cient Architectural Support for Software Debugging. In Proceedings
of the 31st annual International Symposium on Computer Architecture
(ISCA’04), June 2004.

[47] C. Zilles and G. Sohi. A Programmable Co-Processor for Profiling. In
The Seventh International Symposium on High Performance Computer
Architecture, January 2001.

12

