
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)
M. Alexa and E. Do (Editors)

Sketch-Based Recognition System for General Articulated
Skeletal Figures

S. Zamora1 and T. Sherwood1

1Department of Computer Science, University of California, Santa Barbara

Abstract
We present a new recognition system for detecting general articulated skeletal figures in sketch-based applications.
We abstract drawing style from recognition by defining figures using two data models: templates and figure targets.
Our system recognizes general skeletal figures consisting of lines and ellipses which may be drawn partially off
the canvas with the system automatically completing the figure. Figures are modeled as graphs and are allowed
to contain cycles. Subgraph matching on a graph built from the stroke input is used to perform recognition. This
paper outlines our system design, key details to its proper implementation, and proposes its application to various
domains of sketch recognition.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition

1. Introduction

Stick figures are a universal staple of sketching that effec-
tively demonstrate the sort of expressiveness that motivates
research into sketch recognition. Each figure conveys a great
deal of information – an entity is represented (such as a hu-
man being) in a given position and orientation on the canvas.
The strokes of a sketched figure outline a structure of bones
and joints in a specific pose with each bone in its own po-
sition and orientation. The resulting composition is an artic-
ulated skeletal structure that we can define using a graph of
connected strokes.

However, stick figures may be drawn in different styles;
some may draw a torso with an ellipse while others may use
a single line. They are also often drawn roughly; lines may
not touch or could cross (undershoot and overshoot), cross
junctions can be expressed using two, three, or four lines,
etc. Figures may even be drawn partially offscreen, as of-
ten the case with human stick figures where only the torso
is important and the rest of the body is ‘off camera’, so to
speak. But even when drawn partially offscreen, these fig-
ures remain recognizable by a human observer. While sketch
recognition systems strive to be robust under noisy input, ro-
bustness to drawing style and abstraction is a different class
of problem.

Figure 1: Two human stick figures sketched and detected by
our skeletal figure recognizer. Because the templates for the
recognized figures identify both as ‘Human’, the two figures
are annotated with labels from the ‘Human’ figure target.

In order to design a stick figure recognizer to handle style
and abstraction, we generalize our approach to the more gen-
eral skeletal figure, a general articulated skeleton of lines and
ellipses. In order to abstract from the application the style by
which a figure is drawn, we separate drawing styles (mod-
eled as templates which outline a general skeletal figure)

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM10/119-126

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

Figure 2: The six graph elaboration strategies – (a) prox-
imity linking, (b) link closure, (c) virtual junction split-
ting, (d) spurious segment jumping, (e) continuity tracing,
and (f) crossed segment co-splitting. Grey/blue lines denote
bonds/links present before the strategy is applied. Green/red
lines denote new bodied/non-bodied links created by the
strategy. In (f), the right structure replaces that on the left.

from the class of figure (such as Human, Cat, Elephant, etc.,
modeled as figure targets) to be recognized. We then extend
previous work in the field that has been shown to be very
effective in recognizing skeletal figures [MF02b]. The con-
tributions in our paper include a new recognition system for
general articulated skeletal figures consisting of lines and el-
lipses, detection of partially drawn figures that extend off the
canvas, and support of skeletal figures that include cycles.

2. Related Work

Hammond and Davis developed LADDER [HD05], a cross-
domain framework for creating recognizers from descrip-
tions written in the LADDER language. While many sketch
applications have been developed using LADDER across a
variety of domains [TH10] [PEW∗08] [TPH09], its lan-
guage is geared for diagrams with spatial (above, left of, etc.)
and angular (acute, vertical, etc.) constraints and is not suited
for general articulated figures that could be drawn irregularly
(e.g. a T junction drawn with two lines versus three). Exam-
ples of stick figures in LADDER can be found using such
constraints [HD03]. LADDER also does not support rota-
tional constraints on ellipses as described in Section 3.

Alvarado and Davis developed SketchREAD [AD04],
a recognition system similar to LADDER that also uses a
template language to define recognition. SketchREAD also
uses relative and angular constraints that make it unsuit-
able for detection of articulated skeletal figures. Both of
these projects require templates to be hand-coded, although a
graphical tool for finding bugs was developed for LADDER
[HD06]. The Electronic Cocktail Napkin project [GD96] al-
lows templates to be generated from sketched examples but
only builds constraints from relative and loose spatial rela-
tions (concentric, contains, overlaps, etc.).

Lee et al. [LBKS07] developed a graph based recog-
nizer that functions similarly to the model and data graph
approach used in our system. Their recognizer uses offline
graph matching with training data to build a template to rec-
ognize, and uses subgraph matching in order to recognize the

stroke input. However, their matching algorithm takes into
account relative angles between primitives, which would not
support articulated figures. Sezgin and Davis [SD05] used
Hidden Markov Models to build a recognizer that takes ad-
vantage of the consistency of an individual’s stroke draw-
ing order. While their examples and user studies involved
recognizing stick figures, recognized lines are identified
specifically as horizontal, vertical, and positively or nega-
tively sloped, making the recognizer sensitive to rotation and
unable to handle articulated figures. The recognizer used
by Yang et al. [YSvdP05] also uses graph based template
matching. Their system does not require figures to be fully
connected and uses a hybrid spatial and structural approach
for matching sketches to templates. However, their system
does not fully discern the structure of the sketched scene and
is not designed for articulated, rotationally-invariant figures.

Our work extends Mahoney and Fromherz’s stick figure
recognition system [MF02a] [MF02b] [MF01] which mod-
els stick figures as graphs that are matched to a graph gen-
erated from the stroke input. However, their implementa-
tion only recognizes a single figure consisting only of lines
and does not have support for ellipses. Their implementa-
tion does not support partially offscreen figures, and does
not explore the extension to generalized skeletal figures that
effectively applies the recognizer to a variety of domains.

To overview the work we are extending, Mahoney first
represents the templated figure to be recognized as the model
graph, where bones of the figure are nodes and joints be-
tween bones are edges. The sketched input data is repre-
sented as the data graph where the bodies of lines are edges
called bonds and their endpoints serve as nodes. Relations
between strokes in the data graph are edges called links. A
process called graph elaboration is used to add the spatial
and visual structure of the sketched scene to the data graph.
This process adds links, alternate line segments, and mutual
exclusion constraints (to prevent a stroke and its alternate
interpretations from participating in a match together) to the
data graph. Figure 2(a–e) outlines the original elaboration
strategies used in Mahoney’s algorithm. These elaboration
strategies also make the recognizer tolerant to noise in the
sketched figure, including line overshoot and undershoot at
junctions. These strategies are discussed in Section 4.1.

Finally, Mahoney’s system performs subgraph matching
to find the best match for the model graph in the data graph.
Considerations of mutual exclusion constraints and compo-
nents marked as optional are applied. The best match that
maximizes the number of matched parts and minimizes an
energy function supplied with the model graph (such as the
one described in Section 5.3) is then returned. A key bene-
fit of this approach is that new strokes only add structure to
the data graph and do not destroy substructures that could
produce matches.

c© The Eurographics Association 2010.

120

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

Figure 3: Overview of our system for abstracting drawing
style from figure class. In (a) we model the type of figure to
recognize (Human, Cat, etc.) as a Figure Target and each
style of drawing the figure target as a Template. When a
templated figure is sketched, as shown in (b), the sketch is
annotated with the skeletal structure of the figure target.

3. System Design

Our key motivation lies in handling the variety of styles used
for sketching skeletal figures. Even though human stick fig-
ures are drawn in a number of styles, with different config-
urations of lines and ellipses for heads, torsos, and limbs,
all are recognizable by an observer as a ‘human’ figure. Our
system mirrors this sort of polymorphism using two models:
templates and figure targets. Figure targets outline a class
of figure the system will match (e.g. Human, Cat, Arrow),
while templates define each style of drawing the given fig-
ure, as illustrated in Figure 3(a). When recognition occurs
in 3(b), the sketched figure that matches a given template is
annotated with data points from the figure target. Our mo-
tivation is satisfied by abstracting from the application the
styles by which the user can draw, for instance, a human
stick figure, and exposing that they have simply drawn a hu-
man.

Figure 4: This figure motivates rotational constraints on el-
lipses. (1a) and (1b) are a control and posed human with a
point as a torso. (2a) and (2b) are a control and posed hu-
man with an ellipse as a torso. As junctions consisting of all
lines collapse to a single point, (shown by a single green cir-
cle in (1a) and (1b)) and junctions involving ellipses do not
(shown by many green circles in (2a) and (2b)), (2b) should
not be recognized as its right leg and arm are swapped.

The system performs the following steps in order to rec-
ognize sketched figures:

• Drawn strokes are classified as lines and ellipses and
added to our data graph. Special care is given to strokes
drawn near the edge of the canvas which can be identified
as extending "offscreen" (Discussed in Section 4).

• After each stroke is drawn, graph elaboration is used to
add connectivity relations and alternate interpretations of
the sketched scene’s structure to the data graph. These al-
ternate interpretations are kept seperate using mutual ex-
clusion constraints so no two interpretations of the same
set of strokes can be used in the same match.

• Each template loaded into the recognizer (each used as a
separate model graph) is checked against the data graph
using subgraph matching. If an instance of the template is
found in the data graph, it is added as a candidate figure.

• A fitness metric for each candidate is used to sort the set
of candidate figures, and the set of best fitting, distinct
candidates (not sharing any line segments or ellipses) are
chosen as the set of recognized figures in the scene.

• The strokes for each recognized figure are annotated with
the set of key points defined by it’s template’s figure tar-
get. Applications that work only with these key points
can then ignore the particular template (i.e. drawing style)
used to recognize the figure.

Figure targets define these key points as anchor points. A
human figure target may have anchor points such as ‘Top of
Head’, ‘Shoulder 1’, ‘Elbow 1’, etc. Each figure targets is a
graph where anchor points serve as nodes. These nodes are
connected in a way that is meaningful to the figure’s skele-
ton – hips connect to knees, knees connect to ankles, etc.
Anchor points may also be flagged as optional, identifying

c© The Eurographics Association 2010.

121

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

Figure 5: Rotational constraints are not imposed within
child groups of an ellipse. The template definition for a skele-
tal figure is given in the top left. In the remaining three fig-
ures we see three valid matches for the given template.

components of a figure that may not present in all drawing
styles, such as a human figure’s hands and feet.

Templates serve as the model graphs used during sub-
graph matching. Templates are mapped to a given figure tar-
get by labeling the template’s nodes with anchor labels from
the figure target. When a sketched figure is matched against
a template, these labels are used to annotate positions on the
line segments and ellipses of the sketched figure. Since all
templates that correspond to a figure target share the same
label set, if an application only works with the set of the la-
bels on detected figures, it will be able to ignore the style by
which a figure has been drawn.

Our algorithm uses both lines and ellipses as primitive el-
ements of the data and model graphs. We support ellipses by
introducing rotational constraints that enforce a rotational
ordering of components along the contour of an ellipse. As
we have modeled ellipses as nodes in the model and data
graph, these rotational constraints are necessitated by the
distinctions between line endpoint and ellipse junctions as il-
lustrated in Figure 4. But since some figures may not require
rotational constraints between all of their components (ex-
emplified in Figure 5) we organize primitives connected to
an ellipse in the model graph into n child groups and impose
rotational constraints between (but not within) these groups.
These constraints are necessary but significantly complicate
the structure of the graphs as well as the matching process.

There are five node types in our model graph: line, el-
lipse, anchor, reference, and ‘node’. Line and ellipse nodes
represent the line and ellipse primitives the model graph will
match in the sketched scene. The connectivity of the skeletal
figure to be matched is mirrored by the edge connections be-
tween these primitive nodes in the model graph. Ellipses also
define 8 child groups in counter-clockwise order at 45 degree
angles across the ellipse contour. As illustrated in Figure 6,

Figure 6: The placement of leaf anchor nodes in an ellipse’s
set of child groups determines the position of the anchor
point on matched figures.

this allows for anchor labels to be positioned at different lo-
cations on the ellipse using anchor nodes.

Anchor nodes are placed in the model graph at joints be-
tween a set of connected lines and ellipses. Labels applied
to anchor nodes will then position the anchor point on a
matched figure on the joint between the set of corresponding
strokes. Along with anchor nodes, labels may also be applied
to lines. Labels applied to lines will position the anchor point
on a matched stroke’s midpoint. This adds additional flexi-
bility – a human stick figure using a single line to represent
a leg can place a knee anchor point at the line’s midpoint.

All templates use another label not inherited from their
figure target called "Start". The node labeled start defines the
start point on the template where subgraph matching will be-
gin. Our model graph is then modeled as a model graph tree
rooted at the node labeled start. If a line is labeled start its
node will be the root of the model graph tree. If a joint is la-
beled start, then a ‘node’ node is set as the root of the tree in-
dicating that subgraph matching should begin at clusters, as
defined in Section 5. An example template and correspond-
ing model graph tree is illustrated in Figure 7(a) and 7(c).
Note also that as ellipses will always have a parent in the
model graph tree, only 7 of its child groups will be used for
children. Lines at the root of the model graph tree have 2
child groups for both its endpoints.

Reference nodes are used to represent cycles in the model
graph tree. This allows templates and the drawing styles they
capture to include closed shapes. These reference nodes tar-
get an ellipse or line node elsewhere in the model graph tree.
During subgraph matching a candidate figure must be able
to satisfy the cycles denoted by reference nodes in order to
be a valid candidate.

Finally, the arrangement of optional anchor labels may al-
low some components of a matched figure to be omitted. De-
termining which lines and ellipse nodes in the model graph
are optional for a general skeletal figure requires caution as
optional anchor labels can be placed anywhere in the tem-
plate. We identify nodes in three ways - non-optional, par-
tially optional, and pure optional. Non-optional nodes must
be matched, while pure optional nodes may be absent. Par-

c© The Eurographics Association 2010.

122

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

Figure 7: Our editor for creating figure targets and tem-
plates. (a) shows a human figure target. (b) shows a hu-
man template and its matching model graph tree is shown
in (c). (d) shows our skeletal animation previewer, allowing
the user to drag around anchor points and deform the model.

tially optional nodes which are assigned both optional and
non-optional anchor labels are also required to be present
for a match. Using this categorization, a recursive operation
starting at the root node of the model graph tree can be used
to determine the optionality of a templates line and ellipse
components.

4. Generating the Data Graph

Strokes are categorized as lines, arcs, polylines, ellipses (in-
cluding circles), or complex, using shape recognizers de-
scribed by Paulson and Hammond [PH08] and a corner de-
tection scheme described by Sezgin [SD04]. Lines and arcs
are added to the data graph as two line endpoint nodes con-
nected by a bond edge. Ellipses are added as an ellipse node.
Polylines are decomposed and added as line segments. Com-
plex strokes are treated like polylines but adjacent substrokes
are connected with direct links as described in Section 4.1.

Graph elaboration may create bodied links in the data
graph which function like bonds and can be matched dur-
ing recognition. Bodied links are alternate interpretations of
strokes in the sketched scene. For example, two adjacent
collinear strokes are merged as a bodied link. Mutex con-
straints placed between the bodied link and its source com-
ponents ensure that a stroke is not matched multiple times in
a template under different interpretations.

To support partially offscreen figure detection we identify
lines and ellipses that extend offscreen. If a line endpoint is
within a threshold of the canvas edge we identify that end-
point and line as variable extension. If both endpoints of an
arc are near the canvas edge we classify it as a virtual ellipse.

4.1. Elaboration Strategies

The graph elaboration strategies we employ are outlined in
Figure 2. With the exception of CSC, these strategies are de-

tailed in [MF02b]. Our system’s utilization of these strate-
gies differs from Mahoney’s work in the following ways:

• We add a new elaboration strategy called crossed segment
co-splitting (CSC). Because our recognizer is designed
for tablet input (as opposed to a scanned document, as
per Mahoney’s approach), CSC is needed to decompose
pairs of crossed strokes into four separate line segments.
Four new line endpoint nodes are added at the intersection
point and the original bonds are replaced with four new
bonds between the new and original line endpoints. Di-
rect links are placed between subsegments of the original
bonds, and regular links are placed to fully connect the
new endpoints. Lines are similarly split when they pass
through ellipses.

• Proximity linking (PL) adds links between free ends, de-
fined as line endpoints not connected to any non-bodied
links. In order to handle cycles induced by sketched
closed structures, we also allow PL to link any line end-
points with distances that lie below a threshold.

• Link closure (LC) does not need to be performed due to
our explicit handling of clusters as defined in Section 5.

• While Mahoney only describes handling instances of vir-
tual junction splitting (VJS) independently, we locate all
endpoints that split a bond B. If n free endpoints are found
that create virtual junctions, n+1 bodied links are created
between the n free endpoints and the two endpoints of
B. A mutex constraint is made between all the generated
bodied links and B.

4.2. Applying the Strategies

Close consideration of graph elaboration finds that caution
must be made in applying these strategies. Improper order-
ing will result in an mis-elaborated graph, which will not
recognize figures that should be recognized. For example, if
PL is applied before VJS, two lines drawn at a T junction
will fail to create a virtual junction and instead connect the
lines at their closest endpoints.

We apply an elaboration step each time a stroke is added
to the scene. This is run once for lines and ellipses and once
for each line segment in polylines and complex strokes (for
complex strokes the direct links are created between the line
segments after all of these elaboration steps. Elaboration is
then run once more without adding any new primitives).

We begin an elaboration step by removing all of the bod-
ied links, non-bodied links, and mutex constraints from the
data graph, with the exception of links created during CSC.
We then perform CSC using the added primitive, checking
if an added line is to be split with other bonds or if an added
ellipse should split existing bonds.

We next combine VJS, spurious segment jumping (SSJ),
and what we call round 1 continuity tracing (R1CT). As VJS
and SSJ can be easily combined into a single pass on a can-
didate line, this pass is augmented with continuity tracing. If

c© The Eurographics Association 2010.

123

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

Figure 8: Generated R1CT bodied links is shown in this
figure. Six bodied links are created by VJS amongst which
all contiguous subsets of lengths [2,5] form R1CT bodied
links. The blue R1CT bodied link is mutexed against all links
within the green box (highlighted in red) and the bond.

B is split into n bodied link segments, then n(n− 1)/2− 1
bodied links should be made to cover all sets of i adjacent
segments, where i = [2,n−1], as illustrated in Figure 8. Mu-
tex constraints (also highlighted in Figure 8) are carefully
placed to enforce all appropriate constraints within the set
of new bodied links and the original bond. We apply this
VJS/SSJ/R1CT process to every bond in the data graph.

We then perform PL, followed by round 2 continuity trac-
ing (R2CT) which functions as described in Section 4.1.
R2CT is applied to all of the bonds and bodied links in the
data graph, including those created during R2CT.

5. Subgraph Matching

After graph elaboration we recognize figures using subgraph
matching. We initialize a candidate match for template T at
appropriate locations based on the root node of T ’s model
graph tree. Matching can begin at free endpoints, ellipses,
and clusters - subgraphs in the data graph of non-bodied
links and line endpoint nodes. For each candidate we walk
through the data graph and assign primitives to nodes in T ’s
model graph tree with regard to mutex constraints. Anchor
points for anchor nodes in the model graph tree are placed
at the centroids of the set of line endpoints and ellipse con-
nection points that participate in the joint. Anchor points for
labels placed on lines are positioned at the midpoint between
the line’s endpoints. We also make sure that primitives as-
signed to reference nodes match the assignment to the tar-
geted model graph node to support cycles.

Once the model graph tree has been satisfied, we have
found a match. Our implementation finds all possible
matches in the scene, sorts them by fitness, and returns the
best distinct figures (that do not share strokes).

5.1. Enumerating All Possible Matches

At each step during the matching process, there exists a set
S of all lines and ellipses that can be used from our current

Figure 9: Template and sketched figure exemplifying a fac-
torial expansion of the search space. 28,304,640 possible
matches exist between the sketch and the template.

position in the data graph. All permutations and combina-
tions of S that can satisfy the next group of primitives to be
matched (with respect to rotational ordering along ellipses,
mutex constraints, etc.) must be explored in order to find all
possible matches. As shown in Figure 9, exploring all valid
subsets of S can result in factorial growth of the search space,
but must be done to locate the user’s intended figure.

5.2. Partially Offscreen Figures / Optional Components

If variable extension lines are matched or optional compo-
nents are not matched, the subtree of the template rooted at
that element is ignored and effected anchor point locations
are extrapolated using relative angles and edge distances in
the figure target and the scaling factor of the drawn figure
(as defined in Section 5.3). If a virtual ellipse is matched, we
observe that any of the virtual ellipse’s children in the model
graph tree may be matched to an imaginary primitive on the
contour of the virtual ellipse, requiring additional consider-
ation to properly enumerate all possible assignments.

Note that because matching begins at the root of the tem-
plate’s model graph tree, the joint or line labeled start must
be present in the canvas for an offscreen figure to be de-
tected. This should be kept in mind when determining what
element should be labeled start on a template.

5.3. Determining Fitness

We define fitness using the least squares error of each prim-
itive’s scale in the drawn figure against its matching ele-
ment in the template. To support scale invariance, we use
the matches scaling factor. Given n elements that make up
the template, ti gives the size of the element i in the template
(defined as the length of a line and diameter of the circle rep-
resenting an ellipse), and d j gives the size of the primitive j
in the scene (the distance between endpoints for lines and
twice the average distance of points along the stroke from
the stroke centroid for ellipses), our error is computed as:

scaling factor =
1
n

n

∑
i=1

ti
di

error =
n

∑
i=1

(ti − scaling factor ∗di)
2

c© The Eurographics Association 2010.

124

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

Figure 10: Nine symbols from various domains modeled, identified, and annotated by our recognizer. The template for the
symbol is given at the top, and below are 3 successful recognitions (the third being partially offscreen) and 1 failure case. These
failures occur for different reasons, such as wrong primitives being matched (1,8), mis-elaboration (2), template mismatching
(3,4,5,7), and illogically articulated yet positive results (6,9). Computation times are given for the combined elaboration and
recognition step after the final stroke added to each figure. All 9 templates were loaded in the system during the matching phase
for each trial. These times are only given for reference - our implementation is non-optimal.

If i is not present in the match due to being completely
offscreen, di is set to ti. If i is a variable extension line then
di is set to max(di, ti). If i is a virtual ellipse then di is set
to the diameter of the circle found using the two endpoints
and center point of the stroke of the virtual ellipse. A fit-
ness score is determined using this error, the percentage of
matched non-optional components, and the percentage of
matched optional components.

6. Implementation

We implemented our skeletal figure recognizer in Java 1.6.
Matched figures are annotated with anchor points, as seen
in Figure 1. Our application also uses the anchor points to
pose a skeletal mesh built on our figure targets using tra-
ditional skeletal animation methods. Java3D was used for
texture mapping our posed skeletons.

Figure 7 shows our GUI-based editor for generating fig-
ure targets and templates. Figure targets are built by defin-
ing each anchor point and noting if they are optional. Anchor
points are then dragged into place in the canvas and edges are
made between them. When the graph is connected the figure
target is marked as ready. To support skeletal animation and
texture mapping, a paint brush is given to draw a caricature
of the figure on the canvas. Vertices of the mesh are added to
the canvas and manually triangulated by the user. An anchor
point is chosen as the ‘root’ of the figure target’s skeleton

and a hierarchy of bones is generated. Vertices can be as-
signed to two bones with a weighting factor. A previewer,
seen in Figure 7(d), allows the user to drag anchor points
and preview how their skeleton deforms.

Building templates involves adding lines and ellipses to a
canvas. Two nodes are created on the endpoints of each line,
and eight nodes are created along the contour of each ellipse.
Lines and ellipses are connected by being drawn so that their
nodes merge. The figure target the user intends the template
to reference is chosen from a drop-down list of ready figure
targets. Choosing a figure target presents a list of its anchor
labels. Once the user assigns each label to nodes and line
midpoints, and if the graph of components is connected, the
template is marked as ready. The optionality of primitives
is automatically inferred based on the distribution of the an-
chor labels. All ready templates are then used in the main
application’s recognition step.

7. Conclusions

Our recognizer works as intended and has a good recogni-
tion rate of sketched symbols. Although the system is de-
signed to recognize articulated figures, the generality of our
approach and its support for templates that contain closed
shapes allows the recognizer to accept a wide variety of sym-
bols, including those which are not articulated. Any symbol
that is connected and consists of lines and ellipses can be

c© The Eurographics Association 2010.

125

S. Zamora & T. Sherwood / Sketch-Based Recognition System for General Articulated Skeletal Figures

found by our recognizer. Figure 10 shows our system rec-
ognizing a variety of symbols, from humans and animals to
geometric shapes, houses, cars and arrows. Although rigidly
defined symbols could be recognized by our system as in-
appropriately articulated, our system is easily extended with
high level sanity checking to cull these matches.

Although our system can be used for a variety of gen-
eral recognition tasks, its focus on articulated figures can be
valuable to many domains with more specified needs. For
example, artists who resort to motion capture or keyfram-
ing to create animations for characters could instead draw
a series of stick figures from which an animation could be
inferred (such as in [DAC∗03]). In a storyboarding appli-
cation, figures can be added and posed into storyboard cells
quickly and naturally. The support for partially offscreen fig-
ures would allow artists to explore shot composition.

As for its limitations, our recognizer will not work on
unconnected symbols (e.g. analog circuit symbols such as
capacitors and batteries). Due to the rotational constraints
placed on ellipses, mirroring across ellipses cannot be han-
dled without making a second, mirrored template. Without
sanity checking, inappropriate matches with superior fitness
metrics may be favored by the recognizer. These can re-
sult from matching unintended primitives, wrong templates,
mirroring (e.g. stick figures with left and right limbs may
be detected as reversed), etc. Unless the elaboration steps
are properly tuned with the right parameters, the data graph
may be improperly elaborated such that that a valid sketch
may not be recognized. Finally, our recognizer is a proof
of concept and uses many brute force solvers that recom-
pute large amounts of data each time a stroke is added. We
present some failure cases and computation times in Fig-
ure 10 which could be improved upon by an optimal imple-
mentation, tuned parameters and fitness metrics, and sanity
checking.

For further work, developing an implementation of our
recognizer with an acceptable time performance is critical.
Better heuristics for exploring the search space, determin-
ing optimal thresholds and parameters for our elaboration
strategies, and holding a user study to assess our recog-
nizer’s effectiveness are important for preparing our recog-
nizer for real world scenarios. We would also like to explore
additional elaboration strategies such as offscreen junctions,
where pairs of variable extension lines or virtual ellipses are
extrapolated and checked for intersection points that lie off-
screen. Finally, we would like to integrate the sorts of spatial
constraints found in other recognition frameworks, with care
taken to uphold our generality and focus on articulation.

References

[AD04] ALVARADO C., DAVIS R.: Sketchread: a multi-domain
sketch recognition engine. In UIST ’04: Proceedings of the 17th
annual ACM symposium on User Interface Software and Tech-
nology (2004), pp. 23–32. 2

[DAC∗03] DAVIS J., AGRAWALA M., CHUANG E., POPOVIĆ
Z., SALESIN D.: A sketching interface for articulated figure an-
imation. In Eurographics/SIGGRAPH Symposium on Computer
Animation, SCA (2003). 8

[GD96] GROSS M., DO E.: Demonstrating the electronic cock-
tail napkin: a paper-like interface for early design. In CHI ’96:
Conference companion on Human factors in computing systems
(1996), pp. 5–6. 2

[HD03] HAMMOND T., DAVIS R.: Ladder: a language to describe
drawing, display, and editing in sketch recognition. In IJCAI’03:
Proceedings of the 18th international joint conference on Artifi-
cial intelligence (2003), pp. 461–467. 2

[HD05] HAMMOND T., DAVIS R.: Ladder, a sketching language
for user interface developers. Computers & Graphics 29, 4
(2005), 518–532. 2

[HD06] HAMMOND T., DAVIS R.: Interactive learning of struc-
tural shape descriptions from automatically generated near-miss
examples. In IUI ’06: Proceedings of the 11th international con-
ference on Intelligent user interfaces (2006), pp. 210–217. 2

[LBKS07] LEE W., BURAK KARA L., STAHOVICH T. F.: An
efficient graph-based recognizer for hand-drawn symbols. Com-
puters & Graphics 31, 4 (2007), 554–567. 2

[MF01] MAHONEY J. V., FROMHERZ M. P. J.: Handling am-
biguity in constraint-based recognition of stick figure sketches.
In Document Recognition and Retrieval IX (2001), vol. 4670,
pp. 89–100. 2

[MF02a] MAHONEY J. V., FROMHERZ M. P. J.: Interpreting
sloppy stick figures by graph rectification and constraint-based
matching. In GREC ’01: Selected Papers from the Fourth In-
ternational Workshop on Graphics Recognition Algorithms and
Applications (2002), pp. 222–235. 2

[MF02b] MAHONEY J. V., FROMHERZ M. P. J.: Three main
concerns in sketch recognition and an approach to addressing
them. In Sketch Understanding, Papers from the 2002 AAAI
Spring Symposium (2002), 105–112. 2, 5

[PEW∗08] PAULSON B., EOFF B., WOLIN A., JOHNSTON J.,
HAMMOND T.: Sketch-based educational games: "drawing" kids
away from traditional interfaces. In IDC ’08: Proceedings of the
7th international conference on Interaction design and children
(2008), pp. 133–136. 2

[PH08] PAULSON B., HAMMOND T.: Paleosketch: accurate
primitive sketch recognition and beautification. In IUI ’08: Pro-
ceedings of the 13th international conference on Intelligent user
interfaces (2008), pp. 1–10. 5

[SD04] SEZGIN T., DAVIS R.: Scale-space based feature point
detection for digital ink. In Making Pen-Based Interaction Intel-
ligent and Natural, AAAI Spring Symposium (2004). 5

[SD05] SEZGIN T., DAVIS R.: Hmm-based efficient sketch
recognition. In IUI ’05: Proceedings of the 10th international
conference on Intelligent user interfaces (2005), pp. 281–283. 2

[TH10] TAELE P., HAMMOND T.: Lamps: A sketch recognition-
based teaching tool for mandarin phonetic symbols i. Journal of
Visual Languages & Computing 21, 2 (2010), 109–120. 2

[TPH09] TAELE P., PESCHEL J., HAMMOND T.: A sketch inter-
active approach to computer-assisted biology instruction. In IUI
’09 Workshop on Sketch Recognition (2009). 2

[YSvdP05] YANG C., SHARON D., VAN DE PANNE M.: Sketch-
based modeling of parameterized objects. In SBIM (2005),
pp. 63–72. 2

c© The Eurographics Association 2010.

126

