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Abstract—While recent cryptographic techniques enable cooperative
multi-party client-server computations under mutual distrust, they also
introduce an efficiency tradeoff. Hosting all of the computation from
the different parties involved on one set of servers requires everyone to
agree on which servers are trustworthy. On the other hand, keeping the
computations truly distributed introduces significant delays because of
the inherently latency-sensitive nature of the protocols involved. In this
paper, we explore the architectural impact of a possible middle path
to this problem: resource-poor but physically secure devices interacting
with significant (but not mutually trusted) compute and storage resources.
The idea is that a small and well-protected “Embassy” can serve as a
plot of sovereign soil in an otherwise untrusted environment. Building
on techniques from multiparty computation (MPC) we show how such
an architecture, even when extremely limited in size, can leverage local
network capabilities and asymmetries in cryptographic operations to
perform more efficient interactive secure computations. Even with a
client-side device 5× slower, we show that common MPC applications can
still be accelerated by 3× on average. Moreover, we explore the potential
for architectural changes to further support multi-party evaluation
through the addition of dedicated evaluator hardware further improving
performance 1.52×.

I. INTRODUCTION

Through advanced cryptographic techniques, it is now possible to

perform shared computations without ever fully sharing the data. For

example, a class of cryptographic techniques referred to as multiparty

computation (MPC) establishes secure computation protocols between

multiple non-colluding parties that allow for functions to be iteratively

computed on private inputs without revealing anything beyond the

result to either party. As long as we trust those parties do not share

out-of-band information with one another, these techniques allow

for a mutual computation to be performed (for example a query

to a database) without either side learning what the other is doing

(such as keeping the query secret from the database and visa versa).

Unfortunately, these protocols usually require both parties to be

active participants in the computation to some degree. Because the

computations are typically arranged as long and unbroken chains of

cryptographic operations, involving multiple parties typically means

a lot of waiting around for the other side to finish up their work and

pass it back to you.

One way to deal with this is to host multiple parties on a trusted

third-party platform. Co-locating the computation minimizes the time

wasted transmitting parts of the computation back and forth between

all parties. Of course, if you had a fully trusted third party they

could just do the computation for all parties involved – no need for

cryptography! However, when we “trust a server”, we are trusting

not only the computational and storage resources it hosts but also

the physical and legal environments under which it operates. These

aspects are hard to attest to remotely and only compound when

multiple nation-states are involved. In reality, these cryptographic

approaches are typically the most useful when the data involved is

sensitive enough that we prefer to trust no one with all of the data.

So, what can we do?

That introduces the new problem of where to find computational

resources to host multiple parties that both parties will trust. The last

decade has seen significant advances in making trusting third-party

remote hardware a more reasonable choice. For example, Flickr [44]

introduced a clever scheme for remote attestation built on the Trusted

Platform Module (TPM) architecture which allowed the loaded system

binary to be non-bypassably fingerprinted. More current approaches

build on top of the capabilities of trusted execution environments

(TEE) such as Intel SGX [20] to create similar “bubbles” of trust.

While these and other approaches provide significant protections,

the threat models one can address with ISA-level changes alone are

constrained and the limits of sharing resources with an untrusted host

opens up many potential side-channel attacks.

The question we attempt to answer in this paper is if and when

it is possible to use a small island of physical security located

in an otherwise very untrusted environment, to enable a broader

set of physically secure computation. Moreover, we explore new

architectures and machine organizations that enable such an approach

to operate with higher efficiency and better performance as compared

to remote computation.

Specifically, we propose an asymmetric approach to multi-party

architecture with the co-location of a small physically-hardened

compute element (under the control of one party) with a much

larger and robust server-class system (under the control of the other).

The hardened device can be physically smaller with fewer compute

resources. Due in part to its small size, the small compute element

can be hardened against even incredibly advanced attacks to a high

degree. The small device can even be physically shipped between

the guest, host, and back again as needed for initialization and

decommissioning. At a high level, one can think of this idea as

setting up an “Embassy” that serves as an island of sovereign soil

in a foreign land. Just like traditional embassies, this arrangement

allows for higher bandwidth and lower latency interaction facilitating

joint activities even under mutual distrust. The code that lives on the

device can serve to orchestrate and even participate in trustworthy

computations in the server on behalf of the guest. Physically shipping

the device adds significant setup overhead. However, there are many
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privacy-focused applications where this one-time cost is tolerable. For

instance, in hospitals or research centers, new and sensitive data are

being generated constantly. The more this device is used, the more

amortized the setup cost becomes.

As a first demonstration of the concept, we identify a class of

cryptographic computing approaches that are inherently asymmetric
in their needs. Building on techniques from homomorphic encryption

and multiparty computation, we show how our proposed system can

leverage the high bandwidth and low latency network fabric available

locally to perform more efficient interactive secure computations, even

when the computational abilities of these physically-smaller devices

are severely limited. Specifically, we examine two important privacy-

preserving applications, secure neural network inference based on

Yao’s Garbled Circuit (GC) [70] and private DNA matching based

on Goldreich-Micali-Wigderson (GMW) [27]. In these scenarios, the

Embassy (our proposed device) acts as a trusted (non-colluding)

proxy for the client to perform Multi-Party Computation (MPC) with

a co-located untrusted server. We show that the improvements in

connectivity possible from using only systems connected by local

networks more than compensate for the smaller compute resources

available to this new class of device, and that with some simple

architectural changes this gap can be extended even further. We

summarize our contributions as follows:

• We propose “Hardware Embassies”, a new class of devices that

enable more efficient MPC by providing untrusted server co-

located tamper-proof trusted hardware.

• We show how important cryptographic methods can be mapped

to Hardware Embassies and, for the first time, quantitatively

explore the ways in which we can take advantage of the network

performance and asymmetric compute requirements of these

protocols.

• Building on our experience with the above, we propose and

evaluate a microarchitecture specialized in the cryptographic

operations at the heart of common MPC computations.

• We show experimentally, through a mix of in-datacenter network

experimentation, detailed simulation, and Verilog design, that

the resulting system realizes a 4.56× improvement over more

distributed computation.

II. SUPPORTING MPC

Multi-Party Computation (MPC) is a class of cryptographic

techniques that allow for the evaluation of functions without any

of the participating parties learning about the inputs used in the

computation [40]. The most advanced techniques support any com-

putation expressible as a Boolean circuit, everything from neural

network evaluations to bioinformatics applications, without sharing

the underlying data.

A common form of MPC in practice is two-party computation

(2PC) [30], which can be used as a way to securely outsource private

computations to untrusted cloud machines. Yao’s Garbled Circuit

(GC) and Goldreich-Micali-Wigderson (GMW) are examples of 2PC

protocols which have been used for applications such as privacy-

preserving machine learning [58], secure genomic computations [36],

and secure data search [23]. Recent algorithmic improvements to 2PC

protocols, especially the transition from public-key cryptography to

symmetric cryptography, have reduced the computational overhead

by more than an order of magnitude but communication bottlenecks

are much harder to overcome. For a single inference operation in a

simple MNIST-based neural network, a strict GC approach would

require a network transfer volume of 791MB [59]. While we will

discuss some algorithmic ways others have found to help mitigate

this problem, it remains a serious issue.

Also, the literature on MPC is largely dominated by work that

optimistically assumes direct high speed and low latency connection

between communicating parties. The high communication cost of

GC becomes even more burdensome for the common case where a

client and a server are located in different regions and therefore are

using a WAN connection. There are different possible LAN and WAN

assumptions one might make, but typically settings of WAN have

430× longer latency and 113× smaller bandwidth than the reported

LAN configuration for AWS [46].

We propose the use of a low-resource device under the direct

control of an entity cooperating with the co-located server that takes

advantage of the high-speed LAN performance. This is made possible

by physically co-locating this device with the cooperating agents

while taking advantage of the inherent asymmetry of client and

server computational requirements for most common cryptographic

techniques. For example, as shown in Table I, the evaluation phase in

GC (typically performed at the client-side) has 2× smaller compute

requirements [72] than the garbling phase (typically performed on the

server). This difference in compute load between the client and server

becomes more asymmetric for the hybrid protocols we consider in

this work.

Unfortunately, co-location inherently creates a trade off between

performance and security as one party now has physical access to

both sides of the computation. In situations with mutual trust between

all parties, this does not pose a security challenge, however, under

these assumptions it is often unnecessary to utilize a co-located

device. When the embassy device is under the physical control of

an untrusted entity then that entity could potentially break the non-

collusion assumptions that MPC and other cryptographic protocols

rely on. It becomes necessary to ensure the embassy is secure against

physical attacks.

While physical security is not the focus of this work, NIST provides

a standard for the security of cryptographic hardware in untrusted

environments called FIPS 140. The latest versions, 140-2 [47] and

140-3 [48], categorize hardware into four categories. For FIPS 140-3

levels 1 and 2 have no physical security requirements, and so such

devices would be unfit for an embassy device. Levels 3 and 4 require

strong enclosures with tamper detection that causes either an automatic

zeroisation or a module shutdown. While both level 3 and 4 devices

are sufficient to implement Embassy, these tamper detection techniques

introduce overhead proportional to the original chip area. Also, there

is rarely a single technique that is able to provide catch-all tamper

detection [53]. For instance, silicon light sensors have been used to

detect active optical attacks [52], but cannot detect other attacks. Due

to this, most FIPS 140 level 3 or 4 devices tend to be small, such as

USB drives, security cards, and hardware security modules. While

these devices are too small to support the computation necessary for

an Embassy, the techniques used can be expanded to cover a larger

device.

Using a small computing device for the Embassy gives us the

following advantages: (i) better defence against physical tampering

because of a smaller attack surface; (ii) better protection if the

server gets compromised, given the Embassy has a different hardware

configuration and security guarantees (an attack on the server does not

automatically compromise the Embassy); and (iii) this setup relaxes

the need for the client to be online because it allows precomputations

that can reduce ad-hoc runtime.

In this paper, we study two different applications to demonstrate the

practicality of our solution. The first application is secure NN inference
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Properties Garbled Circuit GMW
XOR Gate free free
AND Gate
- Setup computation
- Setup communication [bits]
- Online computation
- Online communication [bits]

-
-

C: 2×AES; S: 4×AES
C from S: 2×κ

Client/Server: 6×AES
C to S and C from S: 2×κ

negligible
C to S and C from S: 4

wire storage [bits] κ 1

TABLE I: Comparison between Garbled Circuit and GMW. The

security level κ is usually fixed at 128 bits. XOR gates require no

communications for both protocols and can be computed locally.

For each AND gate, the garbled circuit computes more AES on the

server-side (2×) while work is evenly split in GMW. In general,

GMW requires more AES computations while GC consumes a greater

memory footprint. Both protocols have the same communication

overhead.

using a hybrid protocol (HE + GC) [37]. The second application is

secure DNA matching using a private set intersection with the GMW

protocol [23]. While we use these two specific MPC approaches to

evaluate this approach, there is nothing application-specific about the

architecture we propose.

For the two applications considered in this work, we follow the

threat model of [23], [37]. In secure neural network inference, we

assume that the network model is available as plain text in the

server, similar to past work [24], [37], [42]. We assume that the

cryptographic protocols which we make use of in this work are

correct and that the adversary is computationally-bound, i.e. brute-

force attacks are infeasible. We assume that the Embassy is resistant

to physical tampering and that any attempt to pry open the device

results in irretrievably corrupting the data in the device as per FIPS

140-3 level 3 and 4 devices.

III. HARDWARE EMBASSY APPROACH

The general protocol governing the use of an Embassy consists of

three main phases.

I. Key Setup. Unique among other approaches, a client can begin

with direct physical control of the device to be embedded in the co-

located server. The client generates a random symmetric encryption

key which is then stored in the Embassy. This key can be used to

securely communicate back with the client from the co-located server.

II. Program Select and Compute. After the Embassy is installed

in the co-located server, the client can send a request to the device

consisting of an input and a program for the computation. This is

done through a secure channel using the key that was generated by

the client. To initiate the compute operation, the Embassy sends a

request to an untrusted server in the system. For example, to perform

GC, the untrusted server sends the garbled tables of the program to

the Embassy and performs OT for input wires. Note that the garbled

tables can be precomputed offline for certain programs. The Embassy

can then evaluate the garbled tables and obtain the result of the

computation.

III. Result Retrieval. As results are generated, the Embassy can

send them to the client. Alternatively, the client can batch a request

of computations and query the results stored in the Embassy. Results

are sent back to the client using a secure channel as the data leaves

the co-located server.

A. Embassy Design

In designing an Embassy, we consider a spectrum of specifications

with the highest performance being a server-class machine. Given

the highly-advanced threat model we are considering, it would be

advantageous to use a device that has small enough dimensions to

Fig. 1: Protocol Flow. A trust setup phase is first performed with a

client machine before being sent to the co-located server. The client

machine sends inputs and receives results from the Embassy through

a secure channel. The actual secure computation happens inside the

co-located server between the Embassy and an untrusted server.

be physically protected using the most aggressive tamper-resistant

methods known [35]. At the lowest end that may be a simple

USB-sized package similar to those used for edge neural network

acceleration [9], [12]. However, we are interested in using a standalone

device that does not need a host, for security and performance reasons.

The closest commercial device on the market is Intel’s compute stick

which was first released in 2015 [11]. These devices have USB ports

that can be used to connect to either a USB-based NIC or a switch

that incorporates USB connectivity, however more complicated wire

connectivity and better networking capabilities could be possible.

One of the main challenges in using such small devices as an

Embassy is the lower performance they provide compared to server-

class machines. However, as we will show later, with some creativity

this level of device can still provide sufficient compute for secure

computation due to the fact that most of these protocols have an

inherent compute asymmetry – most of the compute-intensive actions

can be carried out on a powerful but untrusted server.

B. Co-locating with Untrusted Servers

Here we present one possible design for a co-located server that

supports Embassy. We use the concept of a disaggregated co-located
server that allows different computing devices or accelerators to

be separated and individually addressed instead of relying on host

machines [29]. A sample co-located server configuration with Embassy

is shown in Figure 2. This design presents advantages in terms of

cost, performance, and security. An Embassy without a host machine

yields significant cost savings and lower maintenance costs. In terms

of performance, it has fewer network and software layers to traverse

since it does not communicate through a host machine. Using a

compute-stick class device also ensures we are not over-provisioning

for workloads that work on these devices. As for security, the potential

attack surface is reduced since data does not need to pass through

host machines, thus making side-channel attacks harder.

Dedicated and physically-separated machines for clients might be

less cost-efficient than co-located servers. Nevertheless, recent attacks

on virtualized environments [39], [41], [64] have made it clear that it

is sometimes better to use separate machines if security is important

since they can be more easily isolated in physically secure spaces. We

also draw inspiration from the rise of baremetal servers which allow

companies to have physically separate machines in the co-located

server instead of using virtualized environments.

While we have shown that there are advantages in introducing

third-party hardware such as Embassy into co-located servers, an

understandable concern from server operators is if the device itself

is malicious. While this has been an ongoing trend [18], here we

discuss further potential safeguards to protect servers from malicious
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Fig. 2: Model of Embassies with Co-located Servers. Embassies are

host-less network-connected computing devices. Each one can connect

to a server on other racks through Top of Rack (ToR) switches or

through other Embassies.

Embassies. One protection is to add a firewall using a switch exploiting

software-defined networking to provide software-controlled protection

of the broader co-located servers from potentially malicious traffic

produced by errant Embassies. Another safeguard would be for the

provider to release an open-source reference design for the Embassy

with auditing by developers and the potential to perform attestation

using Physical Unclonable Function (PUF) or Zero Knowledge Proof

(ZKP) so that the provider can confirm that the Embassy can be

trusted. The OpenTitan project shows a potential proof of concept in

the related space of providing an open-source silicon root-of trust [43].

IV. APPLICATIONS

While Embassy can be used for a wide range of applications, in

this paper we investigate two representative applications commonly

outsourced to third-party co-located servers that highly demand privacy

guarantees: neural network inference and DNA matching. Below we

describe how we can adapt these applications to leverage Embassy.

A. Embassies in Secure Computation

Embassy for Secure NN Inference: The protocol followed in this

work is broadly similar to the hybrid protocol used in Gazelle [37],

as shown in Figure 3. After securely receiving the input data from the

client, Embassy encrypts the input data sent by the client (e.g., image)

using packed additively HE (PAHE). The linear layers (convolution

and fully-connected) are then processed using PAHE operations. Non-

linear layers such as ReLU and MaxPool are performed using a

garbled circuit. The ReLU circuit that is evaluated is shown in Figure

4, where s x and s y are shares from the server and c x comes from

the Embassy or client, and p is the prime parameter selected in PAHE.

Conversion from PAHE to GC is done using secret sharing (adding

a blinding random number). These steps are repeated in the series

of linear/non-linear layers of the neural network until the final result

(prediction) is obtained which is still in an encrypted form. This is

sent back to the Embassy where it is decrypted and sent back to the

client in a secure channel or stored for a later query by the client

device.

Unlike in Gazelle, we assign the untrusted server as the garbler and

the Embassy as the evaluator. In this way, we are taking advantage

of the workload asymmetry that exists between the evaluator (less

work) and garbler (more work). Note that compared to using pure

GC, this hybrid protocol results in reduced online execution time and

communication cost. This means that for cases where we are interested

in similar runtimes, there is a larger margin for the performance

degradation range of the Embassy.

Embassy for Private Set Intersection: By improving an application

using a generic circuit protocol alone (GMW), we demonstrate that

encrypted input

WAN High Speed LAN

encrypted result

Client
Embassy

Untrusted
Server

Conv/FC using PAHE

ReLU/MaxPool using GC/SS

Conv/FC using PAHE

encrypted result (AHE)

EM
encrypted data (AHE)

ReLU/MaxPool using GC/SS

2PC

2PC

Fig. 3: Hybrid secure neural network inference flow using Embassy.

This flow is adapted from Gazelle [37] which combines Additive HE

and Garbled Circuits to evaluate linear and non-linear parts of the

neural network, respectively

+

-

s_y

s_x

c_x

> -

+ c_y

p p/2 p

p/2

Fig. 4: ReLU Gadget Unit to be evaluated in the GC phase of the

Hybrid Secure Neural Network [37]

Fig. 5: PSI-GMW Flow using Embassy. This is adpated from [50]

that uses GMW to perform pairwise comparison for each bucket of

the hash tables.

similar results can be obtained in the most secure 2PC applications as

GMW can be rapidly adapted to a different program by constructing a

new corresponding circuit. We thus adapt the PSI pairwise-comparison-

circuit using GMW [50] to Embassy. Dessouky et al. proposed a

look-up table circuit protocol [23] that outperforms GMW in PSI, but

since the protocol reduces the communication overhead at the cost

of increased computation, it performs poorly in the LAN network

and is thus not considered. For comparison, we evaluate a dedicated

PSI protocol using Oblivious Transfer [51], one of the fastest PSI

protocols in the literature, on the Embassy. For simplicity, we name

the two protocols PSI-GMW and PSI-OT.

PSI-GMW computes the intersection between two sets by mapping

elements from both parties into hash tables and evaluates a pairwise

comparison circuit between each bucket of the hash tables, as shown

in Figure 5. The complexity of PSI-GMW scales linearly with the

product of the entry bit width and the set size [50]. The process

begins with the client hashing its private data locally (e.g. genomic
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Fig. 6: Embassy GC Evaluator Architecture. All the inputs stored in

the buffers are sent directly from the Garbler except for the Evaluator

input labels which are obtained via oblivious transfer (OT) protocol.

data in a VCF file) and sending that data to the Embassy in the

co-located server. We adopt the same hashing technique in [50] that

maps data to fewer bits, which reduces the one-time communication

overhead over the WAN network and the storage requirement in the

Embassy. The setup phase of GMW is dominated by AES operations

in OT. To balance the computation workload, the server and the client

switch roles in 1-out-of-2 OT after computing multiplication triples

for half of the AND gates [63]. Because of the resource constraints

of the Embassy, we remove this optimization and make Embassy

always play the receiver in OT. Removing role switching also reduces

computation intensity by reducing two base-OT computations to one.

We still keep the two-thread implementation in [50]. Note that it is

possible to improve performance by using more threads in the setup

phase to further take advantage of the fast High-Speed LAN.

The Embassy enables the client to stay online only during the

transfer of the input and output data. The multiplication triples can

be generated as long as the size of the circuit is known. The actual

program (e.g. PSI) does not have to be known in advance. Because

the Embassy can always stay online, the Embassy can precompute

a certain number of multiplication triples (say 230) with the server

when it is idle. After the client makes a request to execute a program,

it needs to query a multiplication triple for each AND gate in the

circuit and uses them directly in the online phase. As a result, the

ad-hoc runtime can be reduced by more than 99% for a set size of

100K. After the set intersection is computed, the intersection results

will be stored in the Embassy in a bitmap format, which can be later

queried by the remote client.

For the PSI-OT flow, the same hashing process is still required.

Instead of evaluating a circuit, both parties perform a random 1-out-

of-N OT for each bucket of the hash tables. As a result, both parties

obtain a randomly generated mask for all of their own table entries.

Then the server sends a randomly permuted set of all of its masks

to the Embassy. The Embassy finally computes the intersection by

comparing the masks, and the results will be stored in the same bitmap

format. The complexity of PSI-OT is independent of the entry bit

width and scales linearly with the set size [51]. However, 1-out-of-N

OT requires more base-OT computations, which can easily become

compute-bound in a fast network.

B. The “Ambassador” Garbled Circuit Evaluator Accelerator

While the algorithmic mappings described above take advantage

of computational asymmetries, if you make the hardware embassy

resource-constrained enough, eventually it begins limiting performance

again. However, after examining the way these devices are exercised

by real code, we observed that much of the work is well-structured

cryptographic operations amenable to hardware acceleration. We

propose that a cryptographic co-processor designed to sit alongside

the main Embassy CPU and perform common MPC operations can

be used to further improve performance or, more usefully, provide

even further computational asymmetry allowing even smaller and

more resource-limited devices to be useful in this context. Figure 6

details the high level architecture of the Ambassador Garbled Circuit

Evaluator module.

The main component of this module is the evaluation unit which

houses 2 AES cores designed to accept one gate per cycle. The garbled

tables, garbler/evaluator input labels, and other necessary data such

as output masks are obtained from the garbler and are stored in their

respective buffer memory. Note that in order to maintain the privacy

of input, the evaluator input labels are obtained from the garbler using

oblivious transfer (OT). Each pair of input labels is processed in the

evaluation unit to obtain the output label which is then sent back to the

label scratchpad memory. It will be used in subsequent gate evaluation

as the evaluator goes through the netlist gates one by one. Each of

the AES core consists of a 10-stage pipeline performing AES-128 on

ECB mode. Therefore it improves throughput but introduces potential

dependency issues when evaluating the gates whose inputs have not

been processed yet. This is the same issue as arises in FASE [32], the

project we extended to evaluate the Ambassador. Note that the main

operations in Evaluation is the opposite of Garbling where the goal

is to use Garbled tables to generate and evaluate a circuit whereas

the goal in Garbling is to produce garbled tables. Because of the

Half-Gates optimization [72] the amount of work needed to be done

by the garbler is 2× more than the evaluator. This explains why our

Evaluator unit only needs 2 AES cores instead of 4 to achieve the

same throughput performance.

V. EVALUATION

With the application mapping and inherent algorithmic asymmetry

described, the most pressing question is how well a compute-restricted

device might actually perform on these MPC applications. Rather

than rely on a simulation of the system, we perform direct system

experimentation with two machines running the full application stack

connected point-to-point. By tuning down the performance of the

compute and network from this base “1:1” system we can explore the

relative impact of network and compute asymmetry on the workload

under evaluation.

A. Methodology

1) Hardware and Software Setup: To simulate the server-Embassy

connection, we use two Equinix c3.small [8] bare metal nodes

connected with a 10 Gbps LAN. Both machines have an Intel Core E-

2278G 3.4 GHz (8C/16T) with 32 GB of memory and a top frequency

of 5 GHz. Both are running Ubuntu 18.04.

We emulate a slower machine for the Embassy by scaling down

from the maximum operating frequency of the client machine. We

achieve this by setting the appropriate max perf pct Intel p-state

parameter that corresponds to the percentage of maximum processor

frequency. The particular machine we used for evaluation can be

tuned from 800 MHz to 5 GHz (6.25× tuning range). Throughout

the evaluation, we make use of 1 GHz (5× slowdown) as our

representative Embassy performance. This roughly corresponds to the

single-core benchmark performance gap between a typical server-class

processor and processor (Intel Celeron N4100) from a commercially-

available compute-stick [3].

89

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 23,2023 at 01:18:51 UTC from IEEE Xplore.  Restrictions apply. 



Network Description

SNN-MNIST NetC 1-Conv, 2-FC, ReLU activation [59]

SNN-MNIST NetD 2-Conv, 2-FC, ReLU and MaxPool [42]

SNN-CIFAR10 7-Conv, 1-FC, ReLU and MeanPool [42]

TABLE II: Neural Network Architectures for SNN Workloads

Fig. 7: Communication volume versus total application runtime. The

color-coding indicates the change in input size for each application.

To accurately simulate a wide sweep of network transfer parameters

between Embassy and the server over the LAN connection, we use

the Linux tc tool. With this tool, we can add artificial delays to

simulate latency and throttle bandwidth. We measure the effective

network bandwidth and latency using iperf3 and ping, respectively. The

default network setting between Embassy and server has an average

bandwidth of 9.42 Gbps and an average round trip latency (RTT) of

0.6 ms. We use the available secure neural network implementation

from Gazelle [4] and the private set intersection implementations in

ABY [6] and PSI [7] frameworks. Both applications are written in

C++ and were adapted for our Embassy evaluation.

2) Parameter Selection: We consider two network settings: WAN and

High-Speed LAN representing the baseline operation and the Embassy

operation, respectively. We set the bandwidth/latency configuration

for WAN as 200 Mbps/40 ms [15], [74] and High-Speed LAN as 10

Gbps/0.6 ms, which is typical in datacenters. Note that we refrain

from selecting extreme network speeds to achieve overly optimistic

results although modern datacenters have far more improved network

infrastructure reaching bandwidths of 100 Gbps and 400 Gbps [2].

For both applications, we fix the security parameter κ to 128 bits. For

secure neural network inference, we evaluate the performance overhead

of two groups of neural networks designed for MNIST and CIFAR10,

respectively. The network architectures are described in Table II. For

PSI, we use a 32-bit entry size and fix the number of entries to 100

thousand elements for both client and server, which is a moderate size

in DNA matching applications [38]. We include all one-time transfer,

offline phase, and online phase costs in our timing measurements.

Timing results were averaged over 10 execution iterations.

B. Baseline Embassy Results

Application Communication Cost: Figure 7 shows communication

volume in MB as a function of the runtime for different applications

with various input parameters. We can see that all applications show

larger communication costs as the input size increases but they show

different characteristics indicated by the slopes of their trend lines.

PSI-OT shows little communication and scales well to large input

sizes compared to PSI-GMW and SNN. The slope of PSI-OT is

also steeper than PSI-GMW indicating that it is less sensitive to

communication network improvement. PSI-GMW and SNN have

Fig. 8: Bandwidth limit analysis. Runtime is normalized to the smallest

runtime of all applications. Latency is fixed at 0.6 ms (High Speed

LAN). The red marker in each line indicates saturation in runtime,

where the change in runtime starts to fall below 2% as bandwidth

improves.

comparable communication that is at least two orders of magnitude

more than PSI-OT, while SNN has the highest runtime. PSI-GMW

and SNN scale poorly in communication and runtime as input size

increases and are thus ideal for Embassy.

Network Bandwidth Limit: Applications can be characterized by

their communication-to-computation ratio which is determined by

their underlying algorithm and protocol. This property can determine

how much performance improvement the application can achieve by

improving network bandwidth, i.e., the larger this ratio the larger

the potential speedup. Figure 8 shows the normalized runtime of the

applications for various bandwidth configurations at a High Speed

LAN latency of 0.6 ms. PSI-GMW is more sensitive to changes

in bandwidth compared to SNN applications below 2 Gbps. Since

SNN applications have slightly greater communication-to-computation

ratios, they saturate at higher bandwidths (indicated by the red markers

in the figure) compared to PSI applications. A key observation is

that most applications do not utilize the full bandwidth improvement

and become compute-bound before reaching the High-Speed LAN

bandwidth. There is no further speedup for SNN-CIFAR10 and SNN-

MNIST NetD after 4000 Mbps. The runtime of PSI-GMW stops

decreasing as early as 2000 Mbps. As we will show later in the

multithreaded experiments, the reason for relatively low saturation is

due to the unoptimized use of threads in the applications. PSI-OT is

more dominanted by public-key cryptography computations in base OT

and thus shows the least benefit from bandwidth improvement. Note

that bandwidth can also be better utilized when we have contention

with multiple Embassies in the system.

Network Latency Sweep: Figure 9 shows the normalized runtime of

the applications for various latency configurations at a High Speed

LAN bandwidth of 10 Gbps. Compared to PSI, SNN applications

are more sensitive to changes in latency, which are characterized by

their greater slopes. This is intuitive because despite Garbled Circuit

being a constant-round protocol, a large number of ReLU layers in

SNN stacks up communication rounds, while data transfers in PSI

can be efficiently batched. The runtimes of all 5 applications scale

linearly with latency and show improvement throughout the entire

latency range.

Embassy Performance: We illustrate application speedup using
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Fig. 9: Latency sweep analysis. Runtime is normalized based on the

smallest runtime of all applications. Bandwidth is fixed at 10 Gbps

(High Speed LAN).

Embassy in Figure 10 as a function of the performance of the

Embassy scaled relative to the server. As discussed in Section V-A ,

we use core frequency as our performance scaling metric. A speedup

of 1 (no speedup) indicates that the Embassy and the server have

similar performance and that the speedup is gained from the network

improvement from using an intra-system network. This speedup is

gradually reduced as the Embassy is slowed down because any benefits

from the network are lost from the slower computation. The dotted

line represents the slowdown margin as this is the point where the

speedup from network improvement is exhausted (speedup = 1) from

continued Embassy performance slowdown. Note that since in our

setup we can only test for a slowdown of 6.25×, we are unable to

check the actual slowdown margin for some of the applications.

The slowdown margin of SNN applications is generally higher

compared to PSI applications owing to the larger asymmetry in

computations (more of the compute-intensive portions of the protocol

happen in the untrusted server). For example, for an Embassy that has

a slowdown of 5× we can get a speedup of as much as 2.33× in SNN-

MNIST NetD as opposed to 1.97× in PSI-GMW. Shallower networks

for MNIST have greater speedup at the same slowdown rate. Within

SNN applications, the gap between slowdown margins of the different

network architectures comes from the communication composition of

the workload. Since SNN-MNIST NetC uses a significantly shallower

neural network compared to SNN-MNIST NetD and SNN-CIFAR10,

communication takes a larger chunk of the overall runtime hence we

can get a greater speedup. Note that for PSI-OT there is no speedup

at 5× because it has the least communication-to-computation ratio

among all applications, meaning that Embassy can barely have any

improvement in terms of runtime performance for relatively more

compute-bound applications.

Multithreading to Improve Bandwidth Utilization: The previous

results show the default unoptimized configuration for the applications

with limited thread usage. Since our setup largely alleviates the

communication overhead, most applications become compute-bound,

as shown in the bandwidth limit evaluation. In Figure 11, we illustrate

that thread-level parallelism that takes advantage of the available to

compute resources can improve the bandwidth utilization for those

applications and in turn the performance of Embassy, which is not

possible in the traditional WAN setting [51] with its limited bandwidth.

The underlying GMW protocol can be parallelized evenly by dividing

the multiplication triple generation in the setup phase to each individual

thread [51]. At 5× device slowdown, the speedup grows by 1.96×
by increasing from 2 threads to only 4 threads. As the number of

threads increases from 2 to 8, the speedup increases by 3.42× from

1.97 to 6.73. Note that reducing the significant overhead of server-side

homomorphic encryption in SNN algorithms can achieve a similar

effect in the Embassy setting.

Energy Evaluation: One of the key advantages of using Embassy is

the energy savings from performing secure multi-party computation

locally within a co-located server, because that keeps communication

within the co-located server instead of across a WAN. Figure 12 shows

the estimated energy savings from using Embassy (client-Embassy-

server) instead of baseline direct WAN (client-server) computation.

Energy consumption is computed as a sum of the total network transfer

energy and total computation energy. The network transfer energy

gap is conservatively assumed to be 5× [5]. The computation energy

is computed from a client and server TDP of 95W. Typical energy

savings is around 15×. This is mostly due to the use of lower-energy

local data movement compared to WANs. Note that Embassy still

needs WAN transfers for the client communication but the High-Speed

LAN communication still dominates the transfers. For the PSI-OT

application, it is less affected by Embassy but 8× savings is still

beneficial compared to the WAN setting.

As shown, the power reduction from adding Embassies far out-

weighs the power increase of the Embassies themselves, because

those are more efficient than general-purpose untrusted servers. This

is intuitive since the power consumption is 8× per virtual machine

(VM) in modern datacenters which span from tens of Watts to

hundreds of Watts [60]. Therefore, the additional 6W for an Embassy

is comfortably outweighed by less expensive data movement and

computation reduction on general-purpose servers.

C. Ambassador Evaluator Results

An Embassy implemented only as a compute stick-class processor

is likely to see a significant performance slowdown as compared

to the co-located servers it is connecting to. However, much of the

cryptographic calculation that is performed in the MPC setting is

amenable to hardware acceleration and so we propose to include

such hardware accelerators as part of the Embassy in order to

boost both performance and energy efficiency. Here, we investigate

the performance improvement available for Embassy if we use

dedicated hardware-accelerated implementation of the GC evaluator

module to improve GC operations. Our Verilog implementation of the

Ambassador evaluator is based on the garbler accelerator provided

as part of FASE [32]. We show a comparison of the GC evaluation

performance of the Ambassador Evaluator accelerator compared to a

system without such an accelerator. Since we are interested in using

Embassy for SNN workloads, we focus our evaluation on workloads

with non-linear SNN operations like ReLU.

Table III shows the Ambassador Evaluator’s estimated evaluation

time and speedup compared to the CPU implementation. We imple-

mented the ReLU circuit shown in Fig. 4 in Verilog and obtained

the optimized gate count (shown in Table III) from synthesis using

Synopsys Design Compiler using the TinyGarble Circuit Synthesis

Library [1]. From this gate count, we make use of the similarity

in architecture between our evaluator accelerator and the garbler

accelerator provided by FASE [32] in order to estimate the expected

performance of our evaluator accelerator. We conservatively estimate a

range for a processing rate of 2-5.5 cycles/gate based on the simulation

results of various circuits reported with the FASE garbler accelerator.

We use this cycles/gate to estimate the range of evaluation time and
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performance slowdown relative to a server-class machine. The dotted line shows the slowdown margin for Embassy where the speedup from
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Fig. 12: Energy savings estimation comparing Embassy to direct WAN

computation. TDP is assumed to be 95W for a server and 6W for

Embassy. For conventional computation, both client’s and server’s

TDP are the same. The average number of hops is assumed to be 16

end-to-end for WAN while local co-located server hops are assumed

to be 5 as for a typical fat tree. Energy consumption is computed as

a sum of the network transfer energy and computation energy.

the speedup compared to the software Gazelle implementation of the

evaluator. At the FPGA’s 100MHz clock frequency, we calculate

a performance improvement ranging from 1.57x to 4.31x. Note

that even though we demonstrate the advantage of the Ambassador

Evaluator accelerator as implemented on FPGA in this study, an ASIC

implementation could certainly be used and would result in further

improved performance and energy efficiency.

#XOR #Non-XOR #Total Eval Time Speedup

ReLU
Unit

564 189 753
1506 - 4141 (cc)
15.06 - 41.41 (us)

1.57x -4.31x

TABLE III: Ambassador Evaluator Performance compared to Gazelle

Evaluate function on CPU [37] for the ReLU unit in Fig. 4.

Resource Overhead: Our Ambassador Evaluator resource estimation

exploits the FPGA infrastructure provided by the FASE Garbler

implementation [32]. The FASE Garbler was implemented on a

Xilinx Virtex UltraScale VCU108 FPGA while our Evaluator is

implemented on a Xilinx Zynq ZCU104 FPGA with lesser system

resources. Table IV shows the estimated resource utilization with a

clock frequency of 100MHz. As expected, our Ambassador Evaluator

accelerator consumes fewer resources than the FASE garbler as it

only needs two AES cores compared to the garbler’s four.

Total %Util

LUT 42472 18.43

Registers 11886 2.58

BRAM 37.5 12.02

TABLE IV: Resource Utilization

Overall SNN Workload Speedup: In order to estimate the overall

improvement of introducing a dedicated evaluator accelerator into

the Embassy, we profile the SNN applications for the percentage of

execution time spent on non-linear layers versus the total runtime.

Figure 13 shows the percentage of runtime spent on non-linear layers.

It shows that the amount of time spent on the total runtime increases

when the network becomes deeper and when the network increases

in the number of non-linear layers such as ReLU and MaxPool.

We use this profiled non-linear execution time and the improvement

we obtained from the individual ReLU unit running on the Ambassador

Evaluator accelerator to calculate the overall speedup for running the

whole network which we observed to range from 1.19× to 1.52× in a

larger network like CIFAR10. The speedup available is dependent on

the type of network and this setup favors deeper networks with more

and wider non-linear layers like CIFAR10 as compared to MNIST

networks. Note that although it is tempting to think of further speeding
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Fig. 13: Percentage of Non-Linear Layers in SNN Workloads

up the operation by adding support to Embassy for homomorphic

encryption in the linear layers, in the design of Hybrid SNNs, the

HE evaluation is done in the server and not in the client/Embassy,

thus server support, rather than Embassy support, would be required.

VI. RELATED WORK

In considering the viability of our approach in a co-located

server setting, we look for inspiration from two trends in co-located

server infrastructure design. The first is disaggregated datacenter

networks [26], which increase the efficiency and lower the total cost

of ownership (TCO) of datacenters using network-attached host-less

accelerators. For example, Facebook recently rolled out their F16 [14]

datacenter fabric design. The second trend is the adoption of bare

metal cloud services [71], where providers allocate dedicated servers

for customers. Unlike typical virtual machine-based cloud providers

like AWS and Google, doing away with layers of virtualization and

dedicating the use of hardware resources results in performance

improvements. Further, because clients do not have to share the same

physical machines (single tenant), there are fewer potential security

risks from recent cross-VM side-channel attacks [39], [41], [64], [69].

Embassies are host-less network-connected computing devices that are

exclusively used by clients to perform MPC with co-located untrusted

servers.

A. Trusted Hardware

Trusted hardware such as Intel SGX has been used to support

privacy-preserving machine learning [28], [34], [49], [68]. SGX

creates enclaves for isolated execution environments and supports

remote attestation. However, SGX is fundamentally limited because the

trusted execution environment and an untrusted CPU share the same

computing resources resulting in a switching overhead. Furthermore,

it has limited memory resources (90MB), leading to paging overheads

for larger applications [20]. These make these solutions not feasible

for evaluating much larger networks, not to mention recent side-

channel attacks in SGX [69]. To meet demands for larger workloads,

Intel recently released a PCIe interface-based SGX Card with three

SGX-equipped CPUs [19]. This hardware with its discrete processors

would incur significantly more power than our specialized solution

and is a band-aid solution with the same fundamental performance

and security flaws of SGX.

Trusted hardware has also been used to support secure multiparty

computation. Bahmani et al. [16] make use of code running in the

SGX as a trusted third-party and parties which are represented as

SGX enclaves perform function evaluation during the online phase.

Sartakov et al. [61] extend this by adding support for fast inter-

enclave communication. For both works, because of SGX limitations,

evaluated applications are very simple such as summations, unlike the

applications we consider. Demmler et al. [22] used a trusted secure

card in a mobile phone to speed up the generation of multiplication

triples in the offline phase of GMW. Our trusted Embassy is a much

more capable device that participates in the online phase of the

computation. Embassy also physically decouples the computation and

does not share any resources with the host. This reduces the number

of avenues for side-channel attacks, but does require physical security

mechanisms for the Embassy device. Additionally the Embassy device

can be flexible in the amount of compute resources it has, allowing

the device to be designed to fit the workload.

Bugiel et al. [17] proposed a Twin Clouds model which represents

the closest work to our protocol but has many significant differences.

First, they make a strong assumption of non-collusion between the two

cloud machines. This is not the case for our work since the Embassy

is considered a trusted proxy of the client. Second, Twin Clouds’ high

bandwidth channel is not aimed to improve the network overhead

of secure communication but instead, it is used for quick bulk file

transfers. Third, they don’t describe potential hardware implementation

and evaluations.

Eguro et al. [25] proposed FPGA-based secure computation

hardware aimed at emulating homomorphic encryption. Our solution,

on the other hand, involves no host for the trusted device and can be

used to make MPC more efficient.

More recently, Telekine [31] was proposed to mitigate side-channel

attacks when clients use cloud-deployed GPUs with TEEs. HETEE

[73] was designed to manage all compute units in a server rack by

using the PCIe switch fabric to securely allocate accelerators. Unlike

Telekine and HETEE, Embassy only considers the security of one

single type of portable device.

B. Privacy-Preserving NN Inference

CryptoNets [24] is the first work on privacy-preserving neural

network inference we are aware of. It is used as a leveled homomorphic

encryption scheme for evaluating all layer which resulted in significant

performance overhead and lower accuracy from using square activation

functions. DeepSecure [59] used an all garbled circuit approach which

improved the computation efficiency of CryptoNets but in turn had

worse communication overhead. For example, to perform an MNIST-

based inference operation, DeepSecure needs to transfer 791MB per

single inference compared to CryptoNets’s 595MB for a batch size

of 8129. To address this problem, Gazelle [37] proposed a hybrid

protocol composed of HE and MPC for NN inference. In this scheme,

HE is used for linear operations (e.g., matrix-vector multiplication

in convolutional layers) while MPC is used for non-linear operations

(ReLU and max pooling functions). This improved the overall compute

and communication overheads since HE performs better than GC

when the computation has small multiplicative depth (linear function

Boolean circuit) and GC is better suited for non-linear functions

which can be represented as simple linear-size circuits. However,

it still suffers from significant communication overhead because of

non-linear layers making it difficult to scale to much larger networks.

Our work uses this hybrid protocol for neural network inference but

improves on the communication overhead using the Embassy protocol.

XONN [56] proposed the use binarized neural network (BNN)

with garbled circuits to speedup linear layers. BNNs use XNOR for

multiplication which is considered free when using GC (FreeXOR).

This allowed them to make evaluate much larger networks such as

VGG. However, as they still use GC for the non-linear layers, there

is still significant communication overhead. Furthermore, despite

being more efficient computationally, BNNs show significantly lower

accuracy. Chameleon [57] proposed the use of a trusted third party

to generate multiplication triples during the offline phase. They

adopt a seed expansion technique for multiplication triples to save

communication at the expense of more computation in random number
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generation. However, our solution allows the efficient use of the

original beaver triple generation with less communication overhead.

There have been proposals to combine GC with other secure

computation primitives, such as secret sharing using two untrusted

servers, which can be housed by the same cloud and connected in

a high bandwidth and low latency channel [21], [36], [62]. These

solutions, however, make a strong assumption that two untrusted

servers are non-colluding.

HEAX [55] proposed the first hardware accelerator implementation

for CKKS HE on FPGAs. Cheetah [54] significantly accelerates HE

in Gazelle for deeper neural networks by optimizing HE parameters

tuning and operator scheduling, while proposing a custom hardware

accelerator for server-side HE. The results of HEAX and Cheetah are

orthogonal to the contribution of this paper since our solution tackles

the communication bottleneck in MPC.

DELPHI [45] improved upon Gazelle by moving expensive cryp-

tographic operations over LHE cipher-texts to the offline phase and

proposed to use quadratic polynomials to approximate ReLU, which

reduces communication cost. However, DELPHI had to settle with a

hybrid approach because of severe accuracy degradation from quadratic

approximations.

C. Tamper-Resistant Hardware

With the rise of mobile and IoT devices, there is greater risk for

more sophisticated physical tampering and side-channel attacks. To

address this, Google released a tamper-resistant security module [10]

used starting from Pixel 2 phones while ARM released Cortex-M35P

processor [13] for embedded IoT applications. These solutions can

protect against physical penetration and most side-channel attacks

(power, timing, electromagnetic).

Two examples of tamper-resistant USB device available in the

market are IronKey and Kanguru. IronKey is a FIPS 140-2 Level

3-certified device which zeroizes data or makes the device unusable

by applying a wear level current on the device memory after a

configurable number of break-in attempts. Kanguru, on the other

hand, has a casing that is protected with an epoxy compound, which

when removed, destroys the flash chip making the device unusable.

Recently, Immler et al. [35] presented tamper-resistant secure

physical enclosure for PCBs. This work allowed for a more practical

battery-less physical tampering solution and also proposed the use

of PUFs for determining the structural integrity of the device. This

tamper resistance mechanism is particularly useful for Embassy.

D. Hardware Support for MPC

There have been a few works related to hardware support for secure

multi-party computation. Songhori et al. proposed TinyGarble [66] to

convert big combinational circuits to smaller sequential circuits which

is run on multiple clock cycles. The compact circuit results in smaller

memory footprint which can fit in the processor cache. As a result,

cache misses are minimized during garbling while accessing wire

tokens improving garbling performance. This smaller footprint makes

it more useful for embedded devices which have limited compute and

memory resources.

Implementation and acceleration of the garbling operation have been

shown in various hardware platforms [33], [65], [67]. Since they only

tackle the issue of GC computation (garbling), overall performance of

the protocol is not significantly improved since the bottleneck of the

protocol is communication (network transfer) especially with larger

applications. This is in contrast to our work which focuses on the

communication overhead of secure computation.

VII. CONCLUSION

In this paper we explore supporting collections of small but

physically secure devices embedded closely with more traditional

compute and storage resources. The use of co-located trusted hardware

helps resolve the inefficiency of conventional two-party secure

computation protocols with surprisingly little compute. We evaluate

the ability of such devices to participate in trustworthy computations

physically among co-located servers on behalf of a remote client.

This general approach could be useful in many different scenarios,

but we evaluate one of the most integrated ways one might think

to apply such trusted elements: as an active party in a multiparty

computation. We show how this Hardware Embassy can leverage

a local high bandwidth and low latency network connection to

enable more efficient and robust interactive secure computations.

We further show that two important privacy-preserving applications,

secure neural network inference, and private DNA matching based on

Yao’s Garbled Circuit (GC) and Goldreich-Micali-Wigderson (GMW),

are both amenable to this heterogeneous architecture even without

any application specialization. Our experiments indicate that even

when the Embassy is 5× slower than external compute resources

available, the total system performance is higher due to this increased

connectivity. This advantage can be further pressed with addition of

specialized hardware, bringing the total performance improvement up

to over 4.5×.
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