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Abstract—Information flow tracking is an effective tool in
computer security for detecting unintended information flows.
However, software based information flow tracking implemen-
tations have drawbacks in preciseness and performance. As a
result, researchers have begun to explore tracking information
flow in hardware, and more specifically, understanding the
interference of individual bits of information through logical
functions. Such gate level information flow tracking (GLIFT) can
track information flow in a system at the granularity of individual
bits. However, the theoretical basis for GLIFT, which is essential
to its adoption in real applications, has never been thoroughly
studied. This paper provides fundamental analysis of GLIFT by
introducing definitions, properties, and the imprecision problem
with a commonly used shadow logic generation method. This
paper also presents a solution to this imprecision problem and
provides results that show this impreciseness can be tolerated for
the benefit of lower area and delay.

Index Terms—Gate level information flow tracking, hardware,
information flow tracking, security.

I. Introduction

H IGH assurance systems such as flight control networks
and financial, military and medical systems, require

strict guarantees on correct operation or face catastrophic
consequences. Two common policies that need to be upheld in
these systems are non-interference [1] and the Bell LaPadula
confidentiality policy [2]. The non-interference policy enforces
that an untrusted subsystem should never influence a trusted
one, e.g., data from passenger network shall never affect the
flight control network on an airplane. The Bell LaPadula con-
fidentiality policy requires that information from a classified
subsystems does not leak to an unclassified one, e.g., medical
care records should not be observed from an open network.
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There are many different ways to enforce non-interference
and confidentiality, such as physical isolation, access control,
and information flow tracking (IFT). IFT is a frequently used
technique due to its efficiency in detecting software attacks
and preventing unexpected information flows.

Plenty of work has been done in IFT in programming lan-
guages. A survey paper by Sabelfield and Myers [3] discusses
a large number of current language-based IFT methods. Other
software IFT approaches focus on OS level security policies
and tracks information flow with processes [4], [5]. However,
software based IFT typically has drawbacks in design com-
plexity, performance and precision since these methods are
lack of understanding of the underlying hardware. As a result,
recently IFT has been implemented in hardware to take a more
bottom-up approach to security. Many of these hardware IFT
designs target the instruction set architectures (ISA) [6], [18].
We observe that these ISA level hardware-based approaches
tend to be overly conservative, in that they indicate that there
were unintended information flows in the system when there
was in fact none because they usually use coarse granularity
labels and propagation policies.

To track information flow more precisely, we proposed
gate level information flow tracking (GLIFT) [7]. GLIFT
propagates information at a very fine granularity by tracking
each bit in a system. To obtain this level of precise information
flow, the original logic circuit under test is combined with
tracking or shadow logic. This extra logic can be fabricated
and used at runtime or instantiated in the design phase to verify
whether the hardware design enforces the desired information
flow policies. The method we used in [7] constructively creates
shadow logic for each gate in a system. It implements shadow
logic for each gate in the system discretely. However, for
certain logic functions, this shadow logic generation method is
overly conservative as well; the shadow logic would indicate
that there was information flow when there was none.

This paper presents a theoretical basis for GLIFT by in-
troducing essential definitions, properties, and various shadow
logic generation methods. It also provides a solution to the
problem of a commonly used shadow logic generation method
being overly conservative. The major contributions of this
paper are as follows.

1) Definitions and theoretical proofs of fundamental prop-
erties of GLIFT: We present essential definitions, prove
fundamental properties of shadow logic, and propose a
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symbolic representation and formal analysis of shadow
logic for common logical constructs (AND, OR, NOT,
NAND, NOR, XOR).

2) Preciseness of shadow logic: We show the problem
associated with imprecise information flow tracking and
formally prove that a logic function with all prime im-
plicants produces precise shadow logic when shadowed
constructively.

3) Analytic and quantitative analysis of shadow logic: We
present quantitative analysis of the shadow logic for ba-
sic Boolean functions and ISCAS and IWLS benchmarks,
by comparing the area, delay, and preciseness of shadow
logic circuits generated with different methods.

The remainder of this paper is organized as follows. Section
II covers the related work in IFT. In Section III, we formally
define basic concepts of GLIFT, prove fundamental properties,
and propose a symbolic representation as well as quantitative
analysis of the shadow logic for common logical constructs.
Section IV introduces various shadow logic generation meth-
ods with an analysis of their computational complexity. We
show the potential impreciseness of shadow logic, provide
a possible solution, and formally prove it to be effective in
Section V. Section VI provides complexity results in minterm
counts and implementation results of different shadow logic
implementations in terms of area, delay as well as preciseness
using ISCAS and IWLS benchmarks. We conclude and present
future work in Section VII.

II. Information Flow Tracking

Information flow tracking is used to prevent secure data
from leaking to public entities or malicious information from
affecting protected data. IFT can be implemented either stat-
ically, by monitoring where information could flow to verify
if this violates a specified security policy, or dynamically,
by assigning data with a tag then observing where this tag
propagates through the system [10]. This section discusses
various implementations of IFT.

Denning [11] was first to study using static analysis to
enforce information flow policies with little run-time overhead.
Type-based systems proposed by Volpano et al. [12] and
Pottier et al. [13] provide another way to track information
flow security through static compile-time analysis to prevent
information flows from a labeled trusted type to an untrusted
one. A typical example of such type checking systems is
the Jif compiler [14]. However, security policies in these
static approaches need to be defined prior to execution. This
forces programmers to comply with a new typing system. The
drawbacks of static IFT schemes in flexibility and complexity
motivate researchers to track information dynamically.

Some dynamic schemes of IFT can be implemented at
the operating system and application levels by monitoring
information flows with processes. Asbestos [4] is an
operating system that uses labels associated with each process
to determine what operations a process can perform and
which processes it can interact with. Flume [5] provides a
user-level reference monitor on Linux that restricts untrusted
processes from invoking system calls directly. Gupta et al.
[16] proposed scalable dynamic information flow tracking

techniques under multithread schemes. Lewis and Sturton [17]
implemented distributed protocols for IFT on a multi-core
architecture using Asbestos operating system style labels
[4] and message passing. However, these approaches tend
to introduce memory and delay overheads which hinder the
system’s performance. All of these designs tend to track
information at a very coarse granularity and designs that
precisely track all information flows are needed.

More precise approaches track information in hardware.
Dynamic information flow tracking (DIFT), proposed by Suh
et al. [6], tags information from untrusted channels and tracks
it throughout a processor. Raksha [18], FlexiTaint [19], and
Flexible HW [20] are typical DIFT systems. These systems
tend to track information at the instruction or word level and
propagate labels in a conservative manner. In other words,
if either operand in an operation is tagged, then the result
is tagged. GLIFT [7] provides a more precise approach by
tracking information at the fine granularity of bits. It is
flexible enough to be applied to any digital hardware design
and is not centralized around micro-architectures since the
method targets gates and not micro-architectural units, e.g.,
multiplexer, function unit, and register file.

GLIFT targets secure systems and can be used to prove
both the confidentiality of sensitive data as well as integrity
of the system. For confidentiality, GLIFT can detect whether
secret inputs are leaking to unclassified outputs. An example
of violations in confidentiality can be seen in cache timing
attacks, where a secret key is leaked through timing channels
elicited by the cache hit/miss latencies [21]. It can also be
used to detect integrity violations where untrusted inputs
flow to trusted outputs. An example of system integrity can
be found in the Boeing 787 aircraft, which is equipped with
connectivity between the user and flight control networks
[22]. It is important to show that these systems are isolated
meaning that actions taken on the user network do not affect
the flight control network.

In previous work, we used GLIFT to develop an air-tight in-
formation flow tracking microprocessor that tracks all informa-
tion flows emanating from untrusted inputs [7]. We improved
upon this architecture to allow regions of execution to be
tightly quarantined and their side effects to be tightly bounded
[8], which again employs GLIFT to track information flows.
Preliminary work [9] of this paper has provided a theoretical
foundation of GLIFT by defining and proving its fundamental
properties and formalized a symbolic representation of the
tracking logic for Boolean gates. This paper performs further
theoretical analysis by introducing various tracking logic gen-
eration methods and discussing the imprecision problem with
GLIFT. It also presents quantitative analysis results in term of
area, delay, preciseness and computational complexity.

To better understand GLIFT tracking logic, the following
section provides a detailed discussion about the definition and
properties of GLIFT.

III. Concepts and Fundamental Properties of

GLIFT

GLIFT provides an effective approach to track information
flow by labeling each data bit with a tag and tracking the prop-
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Fig. 1. (a) Two-input AND gate. (b) GLIFT tracking logic of two-input AND
gate is Abt + Bat + atbt . Every change at the input of the gate is precisely
tracked at the output.

agation of this bit through separate tracking logic. This section
first provides some terms and definitions of GLIFT, proves
fundamental properties, proposes a symbolic representation of
the shadow logic for primitive gates and finally analyzes the
GLIFT characteristics of logical constructs.

Throughout this paper, upper-case letters without/with a
subscript such as A, B, Ai (i = 1, 2, · · · , n) are used to de-
note logic variables and lower-case letters with a subscript,
at, bt, ai, are used to denote the taint of A, B, Ai, respectively.
f , g, and h are used to denote logic functions; sh(f ), sh(g),
and sh(h) are used to denote the shadow logic functions
for f , g, and h. The following subsection formally defines
the concepts of taint, original logic function, shadow logic
function and preciseness of shadow logic function.

A. Terms and Definitions

Definition 1—taint: Taint is a tag associated with a data bit
indicating that this bit should be tracked through the system.
Taint is propagated from the input to the output of a function
if the tainted input has an influence on the output. A logic
variable is said to be tainted when its taint is logic true. For
a better understanding of taint, consider the two-input AND
gate (AND-2) in Fig. 1(a). To see if the tainted inputs can
affect the output, we toggle the tainted inputs and look at the
output. If a change at the output is observed by changing the
tainted inputs, the output is marked as tainted.

Table I is the truth table of AND-2 with taint information,
where at and bt are the taints of inputs A and B, respectively.
Let us first consider row7 in the truth table (A = 0, B = 1, at =
1, bt = 0). When changing the value of the tainted input A,
the output will change. Thus, the output should be marked as
tainted (ot = 1). Then let us consider row4 (A = 0, B = 0, at =
1, bt = 1), which has two tainted inputs. When changing the
value of either tainted inputs, i.e., A or B, the output does not
change. However, when the values of both tainted inputs are
changed, a change in the output will be observed. Thus, the
output should also be marked as tainted (ot = 1).

It is important to notice that whenever one input of AND-
2 is untainted 0, the output will be untainted regardless of
the other input. Examples of such cases can be found in
row3 and row6 in the truth table. In these cases, untainted
0 prevents tainted information from flowing to the output.
Since those entries with an untainted 0 are not tracked by the

TABLE I

Truth Table of Two-Input AND Gate with Taint Information

# A B at bt O ot

1: 0 0 0 0 0 0
2: 0 0 0 1 0 0
3: 0 0 1 0 0 0
4: 0 0 1 1 0 1
5: 0 1 0 0 0 0
6: 0 1 0 1 0 0
7: 0 1 1 0 0 1
8: 0 1 1 1 0 1
9: 1 0 0 0 0 0
10: 1 0 0 1 0 1
11: 1 0 1 0 0 0
12: 1 0 1 1 0 1
13: 1 1 0 0 1 0
14: 1 1 0 1 1 1
15: 1 1 1 0 1 1
16: 1 1 1 1 1 1

shadow logic, GLIFT more precisely covers the truth table
than previous hardware IFT implementations. When the logic
circuit specified by the truth table is simplified, the shadow
logic for AND-2 is obtained as shown in Fig. 1(b).

In Fig. 1(b) it can be seen that if both inputs are tainted,
then tainted information is clearly flowing to the output. The
more subtle cases are when a single input is tainted. In these
cases, the output will be tainted if either B is tainted and A is
logic 1 or when A is tainted and B is logic 1. In both of these
cases, a change in the tainted input will result in a change
at the output. Thus, in these situations, information from the
tainted input flows to the output of the gate. This is unlike
previous conservative approaches in which the output is said
to be tainted when any inputs are tainted.

Definition 2—original logic function: The original logic
function f is the function under test. This function is given
the following form, where A1, A2, · · · , An, A1, A2, · · · , An are
the inputs and their complements

f = fn(A1, A2, · · · , An, A1, A2, · · · , An).

The original logic function is tainted when there exists at
least one subset of the tainted inputs such that a change at
the output is observed by changing the values of these tainted
inputs. In other words, the tainted inputs can affect the result
of the output.

Definition 3—shadow logic function: The shadow logic
function of an original logic function indicates the taint status
of that original logic function. It will output logic true when-
ever a tainted input can affect the output of the original logic
function and logic false when there is no tainted information
flow through the original logic function. The shadow logic
function for a given function f , denoted by sh(f ), is a function
of the original logic function variables, their complements and
taints, given in the form of

sh(f ) = sh(A1, A2, · · · , An, A1, A2, · · · , An, a1, a2, · · · , an).

Definition 4—preciseness of shadow logic function: A
shadow logic function is said to be precise if it indicates
logic true iff tainted information flows from the input to
the output in the original logic function, otherwise it is said
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to be conservative. In other words, a precise shadow logic
function indicates logic true when and only when at least one
tainted input has an influence on the output in the original
logic function. A precise shadow logic function will contain
the minimum number of minterms among all shadow logic
functions that safely track all the information flows.

With an understanding of essential definitions of GLIFT,
we can now discuss fundamental properties of GLIFT through
theoretical proofs.

B. Fundamental Properties of GLIFT

GLIFT has some fundamental properties that can be used
to derive shadow logic. They are formally stated below as
theorems and lemmas.

Theorem 1: There exists a shadow logic function for a given
original logic function that contains only one of either Ai, Ai,
or ai in any product term.

Proof 1: Only tainted logic variables have a chance to
taint the original logic function. Thus, there exists a shadow
logic function that contains only the taints of the logic
variables but not their inverse. Meaning, terms containing ai

(i = 1, 2, · · · , n) will not be present in such a shadow logic
function.

If the product of Ai and ai (i = 1, 2, · · · , n) appears in a
shadow logic function, there must be at least one other product
term that contains the product of Ai and ai among all the
terms of the shadow logic function in order for simplification
to occur.

Assume that the following term appears in a shadow logic
function:

m1(B1, B2, · · · , Ai = 1, · · · , Br, b1, b2, · · · , ai = 1, · · · , br)

Bj ∈ {0, 1}, bj ∈ {0, 1}, j = 1, 2, · · · , r.
By the definition of taint, changing a tainted input needs to

be tracked by the shadow logic function, thus another term

m2(B1, B2, · · · , Ai = 0, · · · , Br, b1, b2, · · · , ai = 1, · · · , br)

Bj ∈ {0, 1}, bj ∈ {0, 1}, j = 1, 2, · · · , r
will also taint the output since the logic values and taints of
the rest logic variables are kept unchanged. As a consequence,
terms with products of Ai and ai always appear in pairs (e.g.,
m1 + m2) in the shadow logic function. This allows sub-terms
m1 and m2 to be eliminated. Thus, a shadow logic function
can always be described in a form that contains only one of
either Ai, Ai, or ai in any product term. �

Lemma 1.1: A logic variable A can be eliminated from a
product term that contains its taint at .

According to Theorem 1, terms with product of Aat and Aat

always appear in pairs. Thus, such terms can be expanded by
eliminating the logic variable.

Theorem 2: The shadow logic function of a single variable
function is the taint of that logic variable.

Proof 2: The shadow logic function of a single variable
function should contain the taint of that logic variable in all
product terms to indicate tainted information flow. According
to Theorem 1, there exists a shadow logic function in which
the logic variable and its inverse never appear since all product

Fig. 2. Inverter changes the value of the logic input but does not affect the
taint bit.

terms already contain the taint. Thus, it should be exactly the
taint of that logic variable. �

Lemma 2.1: An inverter changes the value of the logic input
but does not affect the taint bit.

As mentioned, all changes to tainted inputs of a function
need to be tracked in order to correctly track all information
flows. So single variable logic functions such as g1 = A and
g2 = A share the same shadow logic function sh(g1) = sh(g2).
In other words, the taint bit propagates from input to output of
an inverter regardless of the original logic function’s inputs.

Lemma 2.2: Inverting the original logic function does not
invert the shadow logic function.

Fig. 2 shows a black-boxed logical function with an inverter
at the output. As already mentioned, the shadow logic function
for the inverse of a variable is equal to the shadow logic
function of the variable itself. Thus, inverting a function does
nothing to its shadow logic. In other words, for any logic
function f , sh(f ) = sh(f ).

Now that some fundamental properties of GLIFT are
proved, the next subsections discuss the shadow logic func-
tions for logic gate primitives by presenting a formal repre-
sentation and minterm count analysis.

C. Deriving Shadow Logic Function for Logic Primitives

1) Representing AND Expressions: The general form of a
logic AND expression is f = g ·h, where g and h can be logic
variables or functions. Assume the shadow logic functions for
terms g and h have already been realized and use sh(f ), sh(g)
and sh(h) to denote the shadow logic function of f, g, and h,
respectively. Referring the shadow logic function for AND-2
as shown in Fig. 1(b), the resulting shadow logic function is
shown in

sh(f ) = g · sh(h) + h · sh(g) + sh(g) · sh(h). (1)

To conceptually understand (1), it can be seen that the first
term on the right side of the formula means when g is untainted
and logic true, sh(h) will determine if f is tainted. When h

is untainted and logic true, sh(g) will determine the taint. The
final term shows that if both g and h are tainted, then the result
should be tainted. The above formula can be given a different
form as shown below in (2). This representation is symbolic

sh(f ) = (g + sh(g)) · (h + sh(h)) − g · h. (2)

Although (2 is symbolic, it provides a good conceptual
understanding of taint. g + sh(g) means two conditions of g

contribute to an tainted output, i.e., untainted true or tainted.
h makes a similar contribution to the shadow logic function
here. The minus sign means removing the term g · h from the
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expression because it never affects the output of the shadow
logic function.

The same methodology can be used for a three-input AND
gate (AND-3). Assume f = g ·h ·k. Using (2), the result below
is obtained

sh(f ) = (g + sh(g)) · (h · k + sh(h · k)) − g · h · k

= (g + sh(g)) · (h + sh(h)) · (k + sh(k)) − g · h · k.

(3)

With the minus operation, which means removing the term
that follows from the equation, a general form of the n-input
AND gate (AND-N) shadow logic function can be given as
(4) (multiplication is defined for logic function with meaning
of logic AND operation)

sh(f = f1 · f2 · · · fn) =
n∏

i=1

(fi + sh(fi)) − f. (4)

Additionally, the shadow logic function for n-input NAND

gate is identical to (4) by Lemma 2.1.
2) Representing OR Expressions: The general form of

a logic OR expression is f = g + h, where g and h can
be logic variables or functions. As before sh(f ), sh(g), and
sh(h) represent the shadow logic functions of f, g, and h,
respectively. By Lemma 2.1, sh(f ) = sh(f ) is true for any
logic function. So the result for the AND-2 expression can be
used to obtain the shadow logic for OR-2 (two-input OR gate)
directly. When rewriting the logic function for OR-2 using De
Morgan’s Law, the following holds:

f = g · h. (5)

Lemma 2.1 states that f = g · h has the same shadow logic
for a function f = g ·h. Thus, the same approach can be used
for OR-2 as it was for AND-2

sh(f ) = sh(f ) = g · sh(h) + h · sh(g) + sh(g) · sh(h). (6)

Because sh(g) = sh(g) and sh(h) = sh(h) by Lemma 2.1, the
result is

sh(f ) = g · sh(h) + h · sh(g) + sh(g) · sh(h). (7)

Also, rewriting the equation in a similar manner as AND-2

sh(f ) = (g + sh(g)) · (h + sh(h)) − g · h. (8)

Extending this shadow logic function for n-input OR gate (OR-
N) yields the general form below

sh(f = f1 + f2 + · · · + fn) =
n∏

i=1

(fi + sh(fi)) − f . (9)

Again, by Lemma 2.1, the shadow logic function for NOR-N
is identical to OR-N, namely (9).

3) Representing XOR Expressions: The general form of a
logic XOR expression is f = g⊕h, where g and h can be logic
variables or functions. It can be rewritten using NOT, AND
and OR gates. With (1) and (6), the shadow logic function for
two-input XOR (XOR-2) can be derived. It is given by

sh(f ) = sh(g) + sh(h). (10)

Extending this shadow logic function for n-input XOR gate
(XOR-N) yields the general form in

sh(f = f1 ⊕ f2 ⊕ · · · ⊕ fn) =
n∑

i=1

sh(fi). (11)

The shadow logic function for XOR-N can be conceptually
understood because a change to any input will invert the
output. In other words, the output of XOR-N is untainted only
when all inputs are untainted.

Now that the shadow logic functions for logic primitives are
formally presented, we can construct shadow logic functions
for more complex logic functions consisting of different types
of gates using (4), (9), and (11). However, it is difficult
to see how the complexity of the shadow logic function
grows with the number of inputs through this representation.
To better understand the complexity for gate-primitives, the
following section provides a method for counting the number
of minterms in a shadow logic function for gate primitives
with different numbers of inputs.

D. Counting Minterms of Logic Primitives

The number of minterms for AND, OR, NAND, NOR, and
XOR gates can be counted quantitatively as outlined below.

1) Number of Minterms for AND-N: For AND-N, the
number of minterms in the shadow logic function can be
calculated using (12), in which C stands for the combination
operation

minterms
AND-N

= 22n−Cn
n ·2n−

n∑

i=1

Ci
n ·(2i−1) ·2n−i. (12)

Equation (12) calculates the number of minterms in a
shadow logic function by subtracting the untainted minterms
from all possible minterms in the shadow logic truth table.
For an n-input logic function, there are a total of 22n entries
in the shadow truth table. That is, n inputs and n bit taint for
those inputs. First, the cases in which all logic variables are
untainted need to be removed. This number is Cn

n · 2n. Then,
the cases with different numbers of untainted variables need
to be taken into consideration. To be general, assume i inputs
among the n inputs are untainted. So i untainted variables need
to be selected from n. This is the first factor in the product. For
AND-N, an untainted logically false variable will determine
the output as untainted. Specifically, all instances containing
a “0” for either of the i untainted inputs need to be removed.
That is the second factor in the product. Finally, the other
n − i tainted variables need to be accounted for. Since tainted
variables can take either logic value the third factor in the
product accounts for the remaining combinations, namely 2n−i.
With this analysis, the number of minterms can be calculated
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for a varying number of input AND gates as later discussed
in the experiments section.

2) Number of Minterms for OR-N: The shadow logic
function for OR-N is the dual of the logic function for AND-
N, which can be seen from

A1 · A2 · · · An = A1 + A2 + · · · + An. (13)

As already shown, function f and f share the same shadow
logic function. So A1, A2, · · · , An in the shadow logic func-
tion for AND-N needs to be replaced with A1, A2, · · · , An

respectively in order to obtain the shadow logic function for
OR-N. Due to this property, the shadow logic functions for
an AND-N gate and an OR-N gate have the same number of
minterms. This can be taken a step further; any two functions
f and g satisfying the following equation:

f (A1, A2, · · · , An) = g(A1, A2, · · · , An) (14)

have the same number of minterms in their shadow logic
functions.

3) Number of Minterms for NAND-N and NOR-N: As stated
in Lemma 2.1, invertors change logic values while keeping
the taint status unaltered. So any two functions satisfying
the following equation have exactly the same shadow logic
function:

f (A1, A2, · · · , An) = g(A1, A2, · · · , An). (15)

With this property, it can be seen that NAND-N and NOR-N
have the same number of minterms as AND-N and OR-N as
well.

4) Number of Minterms for XOR-N: The shadow logic
function for XOR-N is given in (11). To count the number
of minterms in the shadow logic function for XOR-N, the
untainted entries from the shadowed truth table need to be
removed from all possible input combinations. Since all input
values need to be untainted to have a taint free output, 2n

possibilities need to be removed from the total number of
minterms in a shadow logic function. Equation (16) formalizes
this analysis

minterms
XOR-N

= 22n − 2n. (16)

Now that we have formally represented shadow logic func-
tions for the gate primitives, these equations can be used to
derive shadow logic functions for more complicated circuits.
The following section takes this analysis a step further by
presenting different methods for generating shadow logic for
more complex circuits.

IV. Methods for Shadow Logic Generation

Deriving shadow logic from a logic circuit can be done in
two different ways. One we denote as brute force and the other
constructive.

A. The Brute Force Method

The brute force method is based on the definition of flows
of information and taint. It works by changing the inputs to a
logical function and observing what combinations can cause

a difference in the output. For all combinations that cause
a change at the output, a minterm is added to the shadow
logic function. In this way, the brute force method accounts
for only the intended information flows; the shadow logic
function generated by it always contains the minimum number
of minterms among all shadow logic functions that safely track
all the information flows. Thus, by Definition 4, the brute force
method is precise for shadow logic function generation.

The brute force method is of high computational complexity
because every single input combination needs to be checked in
order to accurately determine which minterms are to be added
to the shadow logic function. Theorem 3 formally states and
proves the complexity of this method.

Theorem 3: The complexity of the brute force method is
O(22n).

Proof 3: Using the brute force approach to create the
shadow logic function sh(f ), the algorithm has to compute
the shadow truth table by using the function inputs I and their
taint values T as inputs to the shadow truth table. Each row
of the shadow truth table requires assignments to the input
set I and their taint value set T , and then computing the taint
value for the output of that row. For each row, given a function
f , its inputs set I, and a subset of inputs T that are tainted,
the brute force algorithm checks whether any combination of
tainted inputs affect the output of f , which is exponential in
the number of bits in T . Since this exponential (in T ) algorithm
has to be executed for each row with {I} ∪ {T } inputs, the
overall algorithm is exponential in the number of inputs to the
function and approaches O(22n). �

B. The Constructive Method

A less computationally complex alternative to this brute
force method is to generate shadow logic for gates in a
symbolic manner. This symbolic approach divides the logic
expression into logic primitives and generates shadow logic
for these subsections constructively in a similar manner to
technology mapping. In other words, a library can be built
for each gate that creates its corresponding tracking logic.
This can be easily done by referring to (4), (9), and (11).
The constructive method takes a less complex approach in
that it focuses on generating tracking logic for gates of a
logic function discretely. The computation complexity of this
method is linear to the number of gates in a design.

Fig. 3 illustrates how the constructive method generates
shadow logic for a two-input multiplexer (MUX-2). First,
the logic equation of MUX-2 is translated to a network of
NOT, AND, and OR gates. Then, these logic primitives are
replaced by their corresponding shadow logic. Finally, proper
connections are made to complete the shadow logic circuit.

However, generating shadow logic in this manner is not
always guaranteed to be precise. Meaning, a shadow logic
function generated constructively can indicate a flow of tainted
information propagated from the input to the output when it
in fact tainted information does not flow. Such impreciseness
results from excessive minterms in the shadow logic function
by Definition 4.

As an example, Table II shows the number of minterms
in the shadow logic functions for a 4-bit adder generated
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Fig. 3. (a) 2-to-1 multiplexer. (b) Shadow logic of 2-to-1 multiplexer gen-
erated using the constructive method.

TABLE II

Minterm Counts of Shadow Logic Functions of A 4-Bit Adder

Generated by the Brute Force and Constructive Methods

Method sum[0] sum[1] sum[2] sum[3] cout
Brute force 229 376 241 664 246 272 248 000 208 160
Constructive 229 376 245 760 251 648 250 656 227 864

by the two different methods discussed. We can see that the
number of minterms for the brute force method is less than or
equal to that for the constructive method. This means that the
constructive method more frequently indicates that information
flowed from the input to the output of the logic function. Since
the brute force method generates precise shadow logic, the
constructive method is actually overly conservative because it
contains more minterms.

Such additional minterms are false positives that indicate
that a flow of information has occurred when in fact it has
not. Taint can quickly propagate throughout the system, e.g.,
a tainted state machine can taint the whole design in just a few
clock cycles or a tainted program counter will quickly cause
every bit of information in the processor to become tainted.
When a conservative shadow logic function is used for taint
propagation, the entire system can get into a tainted state when
in fact it is not tainted. At this point, a declassification such
as what is presented in [8], from a separation kernel with the
highest security level is required to recover the system to a
usable state. Generally speaking, being conservative is safe but
frequent declassification will make a system unusable. Section
V will discuss the imprecision problem of the constructive
method in more detail.

V. Impreciseness of the Constructive Method

In the previous section, we introduced two existing methods
for shadow logic generation. However, the brute force method
is computationally expensive for large circuits. Shadow logic
circuits generated by the constructive method tend to contain
false positives that indicate unintended information flows.
This section focuses on the impreciseness of the constructive
method. The imprecision is first observed from a simple
example. Then, the cause of the impreciseness is stated and
analyzed using switching circuit theories. Finally, a solution
to this imprecision problem is proposed and formally proved.

Fig. 4. (a) 2-input multiplexer. The initial function f = SA + SB, when
shadowed constructively, is not precise. (b) Karnaugh map of a 2-input
multiplexer. The dotted box indicates the additional term AB that must be
added to the original logic function to insure its constructively derived shadow
function is precise.

A. Constructive Method Overly Conservative

The constructive method in general produces more minterms
than the brute force method making it overly conservative.
This overly conservative outcome can be seen in the construc-
tive shadowing of a two input multiplexer (MUX-2), whose
logic function is f = SA + SB. Here S is the select line and
the inputs are A and B as shown in Fig. 4(a). To shadow
MUX-2 constructively, all of the gates in the system need
to have shadow logic created for them independently. This
includes shadowing both AND gates (SA and SB) and the OR
gate that combines the AND terms. According to the shadow
function for OR as shown in (9), the function in (17) needs to
be evaluated. Once (17) is expanded using (4) and simplified,
the resulting shadow logic function can be seen in (18)

sh(f ) = SA · sh(SB) + SB · sh(SA) + sh(SA) · sh(SB) (17)

sh(f ) = Sbt + Sat + ABst + ABst + ABst + atst + btst. (18)

If the shadow logic function for MUX-2 is computed using
the brute force method, (19) will be obtained. There is an
extra term ABst in the constructive shadow logic function (18)
that is not present in the shadow function derived from the
brute force method. This term introduces extra minterms in
the shadow logic function and makes it overly conservative

sh(f ) = Sbt + Sat + ABst + ABst + atst + btst. (19)

To better understand this, consider the case when S is tainted
with A and B are both untainted 1. Using the Karnaugh map
in Fig. 4(b), it can be seen that changing S has no affect on
the output of the original logic function and it remains logic 1
because A = B. However, (18) indicates that the output should
be tagged as tainted due to the term ABst . The shadow logic
function generated by the brute force method does not indicate
that the output should be tagged in this case because there is no
such term in the shadow logic function. The following section
describes the cause for this extra term in the constructive
method’s shadow logic function.

B. Cause of Overly Conservative Results

As shown by (17), there are two steps in the shadow
logic function generation process of MUX-2. Shadow logic
for terms of the AND gates and OR gate are computed
separately to get the final shadow logic function. While
generating shadow logic for the term SA, an assumption is
being implicitly made that forces all other minterms to appear
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as false. In other words, all other cases in which S �= 1
and A �= 1 the term is logic false. Constructively shadowing
SB makes a similar assumption. However, such assumptions
cannot be satisfied. Transitioning between two minterms, ABS

and ABS, does not change the output of the original logic
function. This assumption forces these switching cases to be
handled conservatively by the shadow logic function.

Researchers in the testing area have formalized an abun-
dance of theoretical results in fault effect propagation [23],
[24], which is similar to taint propagation in nature. As
observed by researchers in the switching circuit area, recon-
vergent fanout which results in correlation of inputs to the
reconvergence gate [25] and logic hazard [26] which causes
a spurious output pulse during input change both provide a
good insight to the impreciseness of the constructive method.
In the MUX-2 example, the shared variable S causes data
correlation, which violates the implicit assumptions of the
propagation expressions in (9) and thus leads to impreciseness.
From another point of view, S and its complement cause a
one variable switch logic hazard, which cannot be precisely
accounted for by the constructive method.

C. The Complete Sum Approach

As mentioned, when the MUX-2 is shadowed constructively,
the resulting shadow logic is overly conservative. This section
will prove how to obtain a precise shadow logic function.
Before the proof is presented, first observe a solution to the
MUX-2 example.

When MUX-2 is shadowed constructively, the problem
occurs with the minterms ABS and ABS of the original
logic function as shown in the dotted box of Fig. 4(b). The
simplified term from these two minterms is AB. The Karnaugh
map in Fig. 4(b) shows the resulting function with this extra
term included. As can be seen, all prime implicants are now
included in the function, although AB is non-essential to cover
the logic function. By constructively shadowing the original
logic function of SA+SB+AB the switching case that resulted
in this imprecision is no longer present because it is contained
in AB. When this function is shadowed constructively, the
result is identical to that of the brute force method containing
the minimum number of minterms and thus precise.

It should be noted that these switching cases create logic
hazards in the function as shown by Eichelberger [26]. Such
transitions have a chance of momentarily showing logic false
at the output of a logic circuit that has delays present. These
single variable hazards are known as static 1 logic hazard.
Eichelberger [26] defined logic 1 hazards as a transition
from a logic 1 term to another logic 1 term with the output
momentarily showing a logic 0 between transitions. Now
that an understanding of the cause is has been presented, a
solution to the impreciseness of the constructive method can
be formalized through a theoretical proof.

Theorem 4: Covering all 1 to 1 single variable switching
cases will result in a shadow logic function that is precise
when shadowed constructively.

Proof 4: Consider two minterms m1 = (A1, A2 . . . , Ai−1,

Ai, Ai+1, . . . , An) and m2 = (A1, A2 . . . , Ai−1, Ai, Ai+1,

. . . , An) of an n input function f , which differ by a single vari-

able switch. When f is shadowed constructively, the shadow
logic function will be overly conservative because it has no
information about switching between these two minterms. The
shadow logic function labels such transitions as a potential
information flow. Thus in order to have a precise shadow
logic function, all 1 to 1 transitions from single variable
switches need to be covered by a term in the original logic
function.

Assume the two minterms m1 and m2 are covered by
an implicant p = (A1, A2 . . . , Ai−1, Ai+1, . . . , An). The taint
status of p is constantly 0 during the switch because there is no
tainted input. According to (9), the taint status of m1 +m2 +p,
denoted by sh(m1 + m2 + p) is

sh(m1 + m2 + p) = m1 + m2 · sh(p) + p · sh(m1 + m2)

+sh(m1 + m2) · sh(p)

where sh(m1 + m2) and sh(p) are the taint status of m1 + m2

and p, respectively.
Because both m1 + m2 and p are logic true during the

switching between m1 and m2, the taint status of m1 + m2 + p

will be dominated by the taint status of p, which is constantly
0. Thus, the false positives caused by the switching can be
eliminated. �

For example, consider the logic function of MUX-2 as
shown in Fig. 4(b). Here the transition indicated by the box
must be covered because it is a single variable switching case.
In doing so the most precise shadow logic function will be
obtained for MUX-2 as already discussed.

Theorem 5: A function containing all prime implicants will
cover all 1 to 1 single variable switches.

Proof 5: By the definition of logic hazard [26], a function
must have all of its 1 to 1 transitions covered to be free of logic
hazards. To rid the function of all logic hazards, all prime im-
plicants are needed as proved by Eichelberger [26]. The proof
is repeated here for completeness. At least one of the logic
terms in a function must remain logic 1 during a transition in
order to avoid a static 1 logic hazard. Assume that some prime
implicant (Ai, Ai+1, . . . , Aj) is not included in the logic func-
tion. The transition from (A1, A2 . . . , Ai−1, Ai, Ai+1 . . . , Aj)
to (A1, A2 . . . , Ai−1, Ai, Ai+1 . . . Aj) only has a single term
(Ai, Ai+1, . . . , Aj) which is sure to remain 1 during the entire
transition. Thus, this transition contains a logic hazard and all
prime implicants are needed to rid the function of all logic
hazards. �

Theorem 6: A function containing all prime implicants
will generate the most precise shadow logic function when
shadowed constructively.

Proof 6: All 1 to 1 transitions must be covered in order for
a function to produce a precise shadow logic function when
shadowed constructively. Theorem 5 states that a function with
all prime implicants will cover all 1 to 1 transitions. Thus, a
function with all prime implicants will have precise shadow
logic by Theorems 4 and 5. �

Lemma 6.1: The shadow logic function for a function
containing static 1 logic hazards will accurately detect the
potential flow of information from the input to the output
caused by this momentary logic 0 pulse.
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TABLE III

Percentage of Excessive Minterms for Shadow Logic Functions

After Several Expansion Steps

Steps f1 f2 f3 f4

1 3.12% 7.81% 12.89% 17.68%
2 0% 4.68% 9.96% 14.94%
3 2.34% 7.62% 12.74%
4 0% 5.27% 10.55%
5 3.52% 8.79%
6 1.76% 7.03%
7 0% 5.27%
8 3.96%
9 2.64%
10 1.32%
11 0%

Brute force 44 176 632 2168

The last row shows the number minterms in a precise
shadow logic function.

As a sanity check, consider some simple logic expressions
to see how the number of minterms decreases as the function
is expanded. Consider the following four unrelated functions:

f1 = AB + BC

f2 = AB + BC + CD

f3 = AB + BC + CD + DE

f4 = AB + BC + CD + DE + EF.

Table III lists the percentage of excessive minterms, i.e.,
false positives in a conservative shadow logic function that
indicate non-existing information flows, after each expansion
step and the number of minterms in the precise shadow logic
function generated by the brute force method. Expansion
here is the processes of producing another term from the
existing terms. For example, f1 = AB + BC expands to
f1 = AB + BC + AC. This percentage shows the amount
of excessive minterms that are not present in the precise
shadow logic function. The leftmost column indicates the
number of expansion steps taken in the original logic function
and the bottom row shows the number of minterms in the
precise shadow logic function generated by the brute force
method. As shown, with the addition of a prime implicant to
the original logic function through each expansion step, the
number of minterms of the shadow logic function decreases
until the function reaches a complete sum, i.e., having all
prime implicants [27]. At this step it is precise because it
contains no excessive minterms, which is a re-enforcement of
our theoretical proof.

From the theoretical proof and sanity check, we deduce
another method to derive precise shadow logic. We call this
the complete sum approach.

Definition 5—complete sum approach: Constructively shad-
owing a logic function in the complete sum form, i.e., having
all prime implicants, to generate shadow logic.

This approach differs from the conventional constructive
method in that it requires the logic function being shadowed
to have all its prime implicants included. It will produce
an equally precise shadow logic function as the brute force
method as proved. However, the maximum number of prime
implicants for an n-input function approaches O(3n/

√
n) [28],

Fig. 5. Shadow logic function of gate primitives grows exponentially on the
number of inputs. AND, OR, NAND, and NOR all have the same number of
minterms as discussed in Section III. This plot is in log scale.

[29]. The problem of determining if a product term is a prime
implicant of a function is between NP ∪ coNP and

∑P
2

in complexity [29]. These make the complete sum approach
expensive for large designs.

In previous sections, the fundamental properties of GLIFT
were discussed and various shadow logic generation methods
were introduced, which reveals how information flows can be
tracked precisely at the gate level. An effective solution is
provided to overcome the impreciseness of the constructive
method as observed from the MUX-2 example. In the next
section, we present some quantitative analysis using ISCAS
and IWLS benchmarks to show complexity and other factors
such as area, delay and preciseness that should be taken into
consideration when employing GLIFT in real applications.

VI. Experimental Results

In order to more concretely understand how the shadow
logic scales, this section discusses shadow logic when it is
applied to different logical constructs and benchmarks. First,
complexity analysis through minterm count is covered in Sec-
tion VI-A. In this analysis, the number of minterms is used as
our complexity metric because it conveys the complexity of the
results independent of optimizations. It allows us to accurately
show how the complexity of the problem grows with an
increasing number of inputs to the original logic function.
Subsequently, in Section VI-B, ISCAS and IWLS benchmarks
are shadowed with different shadow logic generation methods
to analyze the tradeoff between area, delay and preciseness.

A. Minterm Count Analysis

This section shows experimental results in terms of the
number of minterms of a shadow logic function. Quantitative
calculations are done on a varying number of input AND,
OR, XOR, NAND, and NOR gates using the counting method
in Section III-D. Tests are also run on combinational ISCAS
benchmarks and non-ISCAS benchmarks using the brute force
method. The results for logic gates can be seen in Fig. 5 in
which the number of minterms corresponds to the amount of
information that flows from the inputs to the outputs.

As discussed in Section III-D, AND, OR, NOR, and NAND

all have the same number of minterms due to Theorem 2
and Lemma 2.1. The results show that as the number of
inputs increases, the complexity of the shadow logic function
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Fig. 6. Shadow logic for more complicated logical functions also grows
exponentially on the number of inputs.

increases exponentially. The plot, in log scale, shows the total
number of minterms possible for the original logic function
2n and the shadow logic function 22n. For XOR, the number
of minterms approaches the total number of minterms for a
shadow logic function with n inputs. This is due to the property
of XOR that requires each input to be untainted in order for
the result to be untainted.

The number of minterms for shadow logic functions of
some more complex logic circuits can also be realized using
a brute force approach. The results are for ISCAS benchmarks
74L85 (4-bit magnitude comparator), 74 283 (4-bit adder),
and s344/s349 (4 × 4 add-shift multiplier). Results are also
shown for a simple bit shifter and a multiplexer with different
numbers of inputs. We were limited to the number of ISCAS
benchmarks we could test due to the exponential increase in
the number of minterms on the number of inputs.

Similar behavior shown for gate primitives also holds for
more complicated logic blocks. Graphically these numbers can
be represented in Fig. 6. The figure is grouped into sections
based on the logic blocks tested. Specifically 1, 2, 3, and 4
bit adders, multipliers, and comparators were tested as well
as 2, 4, and 8 bit shifters and multiplexers. Fig. 6 shows that,
similar to the gate primitives, the number of minterms for
more complex logic blocks also increases exponentially on
the number of inputs O(22n).

Minterm count on basic gates and ISCAS benchmarks shows
that tracking data at the gate-level becomes difficult to manage
because of the large increase in the number of minterms.
Since the area, delay and preciness for a circuit are heavily
dependent on the optimization used, the following section
provides insight on the tradeoffs between these three factors
when applied to several benchmarks.

B. Area, Delay, and Preciseness Analysis

We have already shown by a theoretical proof and examples
that the complete sum approach provides a solution to the
impreciseness of the constructive method. However, area and
delay are also important factors that should be taken into
account. This is especially true for the shadow logic since
it can easily dominate the total logic consumption. We carried
out experiments on several ISCAS and IWLS benchmarks to
obtain area and delay reports for shadow logic circuits created
by the discussed shadow logic generation methods. ABC [30]
is used as the synthesis tool because it provides various
synthesis commands and scripts for different optimization
goals. The resyn2 synthesis script in ABC is used to optimize
the shadow logic circuits in our experiment because it provides
a good tradeoff between area and delay.

Fig. 7. Design flows of different shadow logic generation methods. (a) Brute
force method. (b) Complete sum approach. (c) Constructive method.

In our experiment, shadow logic circuits are generated
through three different flows: brute force, complete sum and
constructive as shown in Fig. 7. The complete sum flow
generates functionally equivalent shadow logic circuits as brute
force at a relatively lower computational complexity. It differs
from the constructive flow in that the original logic is expanded
to complete sum representation before being shadowed. The
complete sum flow is listed as a comparison to the other
two flows. ISCAS and IWLS benchmarks are optimized using
the resyn2 synthesis script before being shadowed. Different
methods are processed with different design flows as shown
in Fig. 7.

1) The brute force method works on a full shadow truth
table containing both the original logic variables as well
as their taints as inputs and outputs. ABC takes in the
shadow truth table and generates a shadow logic function
for the benchmark.

2) The complete sum approach uses ESPRESSO [31] to
generate complete sum representation of the benchmark.
Then the complete sum is shadowed constructively using
our own shadowing script to produce a shadow logic
function.

3) The constructive method shadows the optimized logic
circuit directly using our own shadowing script to create
a shadow logic function.

Finally, all the shadow logic circuits are synthesized with
the resyn2 script again and mapped to the MCNC library for
area and delay reports.

Table IV shows some statistics of the benchmarks used
for area and delay analysis. Among the benchmarks, 74 283
is a 4-bit full adder; alu4 cl is a 4-bit arithmetic logic
unit; s344/s349 is 4-bit multiplier; des represents the data
encryption standard and the rest of the benchmarks are glue
logic.

Table V gives the area/delay of shadow logic circuits gen-
erated by these different methods. As an example, the original
design of alu4 cl reports an area/delay of 671/11.9. These
area measurements are generated from ABC and the units
are not provided. The shadow logic for alu4 cl generated
by the brute force method, complete sum approach and con-
structive method have areas/delays of 5824/23.9, 2876/22.5,
and 2292/21.5, respectively. We can see that the shadow logic
is much more complex than the original design since it can
easily dominate the total logic consumption.
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TABLE IV

Statistics of the Benchmarks Used for Area and Delay

Analysis

Benchmark # of Inputs # of Outputs # of Gates
74 283 9 5 197

alu4 cl 10 6 308
s344/s349 9 8 319
9symml 9 1 152
C5315 178 123 1011
C7552 207 108 1197

i10 257 224 1540
C6288 32 32 2022

too large 38 3 3130
des 256 245 3085

TABLE V

Area/Delay of Original Design and Circuits From Different

Shadow Logic Generation Methods

Benchmark Original Brute Force Complete Sum Constructive
74 283 109/6.2 187/9.2 177/9.6 179/10.8

alu4 cl 671/11.9 5824/23.9 2876/22.5 2292/21.5
s344/s349 488/10 1760/18.4 1761/19.4 1765/19.5
9symml 133/12.8 2549/19.5 2569/19.4 2528/19.4
C5315 2501/25.5 -/- -/- 9166/36
C7552 2897/21.3 -/- -/- 9377/30.9

i10 3583/27.9 -/- -/- 14 407/52.9
C6288 4994/76.4 -/- -/- 11 965/93.8

too large 7812/14.5 -/- -/- 15 957/16.7
des 14 539/16 -/- -/- 75 262/23.7

The brute force and complete sum methods are functionally
equivalent. We have formally proven this and did a sanity
check using formal equivalence checking using the cec com-
mand from the ABC tool. Theoretically, an optimal logic
synthesis tool would generate the same optimal logic circuit
for both methods. However, since the two shadow logic func-
tions are initially described differently, they lead to different
implementation results. Logic optimization is a hard problem
and the representation of the shadow logic function can cause
variations in implementation results. We have found that this
is the case with a variety of logic synthesis tools including
Xilinx ISE, Altera Quartus II, and Synopsys Design Compiler.

We were limited to the designs that we could test because
the brute force method took too long to test on functions
with a large number of inputs (over 12 bits of inputs) due
to the complexity of the algorithm. In addition, finding all
prime implicants for a large function is a hard problem. The
maximum number of prime implicants for an n-input function
approaches O(3n/

√
n) [28], [29]. The problem of determining

if a product term is a prime implicant of a function is between
NP ∪ coNP and

∑P
2 in complexity [29]. As a result, designs

with a relatively small number of inputs can have their shadow
logic generated using the brute force method and complete
sum approach but larger ones cannot. For this reason, des and
the other large benchmarks have no area and delay reports
from these two methods.

The complexity of these shadow logic generation methods
can be seen from their execution time, which is shown in

TABLE VI

Runtime Required by Different Methods for Shadow Logic

Generation

Benchmark
Brute Force Complete Sum Constructive

(hh:mm:ss.cs) (ss.cs) (ss.cs)
74 283 0:08:39.26 0.45 0.07

alu4 cl 1:53:23.74 0.43 0.23
s344/s349 0:01:28.51 0.48 0.24
9symml 0:09:27.44 1.12 0.14
C5315 -/- -/- 1.01
C7552 -/- -/- 1.14

i10 -/- -/- 1.36
C6288 -/- -/- 1.33

too large -/- -/- 2.41
des -/- -/- 2.56

Table VI. The brute force method takes the longest time to
complete because its complexity is O(22n). The constructive
method reports the shortest execution time, which is linear to
the number of gates in a design. One needs to find all prime
implicants of an original logic function in the complete sum
approach. This process is time-consuming for large designs
[28], [29]. The tool [31] we used was unable to handle large
bench marks. That’s why the brute force and complete sum
methods do not have runtime results for large designs.

As discussed in previous sections, the constructive method
can be conservative when some prime implicants are not
included; the complete sum approach fixes this impreciseness
by adding prime implicants. By counting the number of
minterms in the shadow logic function generated with the
brute force, complete sum and constructive methods, a better
intuition of the impreciseness of the constructive method can
be established.

Fig. 8 gives the percent of minterms with respect to the
total number of minterms, which is 22n for an n input original
logic function. The impreciseness of the constructive method
can be seen from larger minterm counts, which are listed
bottommost. As an example, for the cout bit of 74 283, shadow
logic generated by the brute force method and the complete
sum approach both tag 79.4% of the total input combinations
as tainted while the shadow logic created by the constructive
method tags to 86.9%. It is also worthy noticing that some
outputs are tainted up to 90% of the total input combinations.
For these outputs, it may be more beneficial to use a simple
logic OR of all the related taint inputs instead of complex
shadow logic because area and delay can be greatly reduced.
Although this will result in impreciseness it can be tolerated
for reduced area and delay.

As shown by experimental results, the shadow logic circuits
generated by the brute force method and complete sum ap-
proach are both precise while those created by the constructive
method can be conservative. However, shadow logic functions
created by the brute force method and complete sum approach
may still report different area and delay since they are initially
described differently. Furthermore, the brute force method and
the complete sum approach are both of high complexity, which
makes them difficult to compute for large designs. Tradeoffs
among area, delay, preciseness and computational complexity
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Fig. 8. Percentage of tainted minterms in shadow logic circuits generated
by the brute force, complete sum, and constructive methods. As we have
proved shadow logic functions generated by the brute force and complete sum
methods contain the same number of minterms since they are both precise.

is to be taken into account in shadow logic circuit design.
Although precision difference of shadow logic functions gen-
erated by different methods can be small but may still be
important for highly secure applications, e.g., in our secure
processor [7], we needed to precisely create shadow logic for
MUXs because they are an essential building block of our
design. If these are not handled precisely, the entire system
can quickly become tainted making any reasonable conclusion
about the information flows nearly impossible.

VII. Conclusion

This paper presented the theory behind the shadow logic for
systems that implement GLIFT. It provides a more concrete
understanding to gate level information flow tracking by
formally presenting terms and definitions, proving essential
properties, formalizing the shadow logic functions for logic
primitives, and introducing a symbolic approach for tracking
logic generation. It also presents the imprecision problem with
the constructive method and presents a proof to show how the
most precise shadow logic function can be obtained without
using the computationally complex brute force approach.

Experimental results have shown that the number of
minterms in a shadow logic function grows exponentially with
the number of inputs to O(22n). In highly secure applications
where high precision is required, sacrifices in terms of the
complexity of generating the precise shadow logic will need to
be made. For example, if non-interference is to be guaranteed
between the flight control and user network on an aircraft,
overly conservative approaches will likely generate too many
false-positives in order to make a reasonable conclusion about
what caused the policy violating information flows. More
precision will reduce the false-positives and build more con-
fidence in what is causing the unintended information flows.
The amount of precision that is required to adequately meet the
information flow policy of an application is an open problem
and reserved for future research.

Area and delay overheads are critical issues if the shadow
logic is to be deployed in an application for dynamic infor-
mation flow tracking. However, if GLIFT were to be deployed
dynamically, only high integrity regions of the system should
be monitored in case the overheads could not be tolerated.
The designer could choose what critical regions should be
monitored to reduce this huge overhead. Additionally, opti-
mized shadow logic for larger components such as multiplexer,

comparator and alu can be built as macros to reduce area
and delay overhead. Moreover, GLIFT can also be added to a
design and test statically if a design complies with pre-defined
information flow policies. Our future work will concentrate on
optimized shadow logic circuit generation which will enable
the wide application of GLIFT as a security enhancement.
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